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1 Overview

For prognostic studies of the global carbon cycle it is critical to correctly
reproduce primary productivity in different marine environments with
the same model. Any given, single model will simulate biogeochemical
processes with varying accuracy at different oceanic sites.
In general, we seek for different model formulations that are appropriate
for different specific biogeochemical questions. These individual mod-
els are required to share a common set of basic parameterisations (the
kernel). The efforts put into evaluating and improving a common kernel
greatly pay off with a simplified error analysis. Our strategy also helps
to determine important processes and those which play only a minor
role.
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Figure 1: The basic model kernel decouples carbon from nitrogen
fluxes. Most parameterisations for phytoplankton growth are adopted
from Geider et al. (1998). Mass fluxes within the ecosystem are primar-
ily regulated by the carbon-to-nitrogen (C:N) utilisation ratio of phyto-
plankton, thus giving it the name C:N-Regulated Ecosystem model (CN-
REcoM). As a further new and important feature, the model explicitly
resolves the carbon content of transparent exopolymeric particles (TEP-
C) and their role for particle formation and export.

2 CN-REcoM
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Figure 2: Near Bermuda (BATS site) oligotrophic conditions prevail
near the surface except for the short period during the onset of the
bloom. When applied to oligotrophic sites, conventional nitrogen or
phosphorus based models produce systematic errors in carbon flux es-
timates (Schartau and Oschlies, 2003). In the monthly averaged values
of a CN-REcoM simulation at BATS, that are shown in the figure, the
decorrelation of nitrate concentration (DIN), chlorophyll a (Chl a), and
carbon based primary production (CPP) becomes significant.
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3 REcoM & Co
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Figure 3: For carbon cycling it is of particular interest to determine the amount of cal-
cification by phytoplankton. Here, we seek for a mechanistic model that can simulate
coccolithophorid blooms. We postulate that the success of the calcifying algae (Emil-
iania Huxleyi) is strongly regulated by the nitrogen-to-phosphorus (DIN:DIP or N:P)
utilisation ratio of phytoplankton. The figure shows the success of coccolithophores
over other phytoplankton (e.g., diatoms) under high N:P conditions at the site of Ocean
Weather Ship India (OWS-INDIA).
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5 An Ocean General Circulation Model with REcoM & Dia

REcoM&Dia has been coupled to the general circulation model MITgcm (Marshall et al., 1997). Research activities include
assessing the impact of physical processes, for example advection, mixing, mixed layer depth, on biological productivity and export
fluxes into the deep ocean. For this purpose the modelling system is configured in a zonally periodic channel (Fig.6 and Fig.7), but
it is also possible to design an experiment which simulates production and export of the global oceans.
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Figure 6: In a 500 by 500 km channel at eddy permitting resolution, the im-
pact of iron limitation is clearly visible after 10 model years in the zonal mean.
The white dashed line marks the mixed layer depth. On the left hand side,
without iron limitation, mixing provides high nutrient concentrations (DIN
and DSi, nitrogen and silica respectively). The choice of wind forcing causes
an Ekman drift to the right where nutrients are depleted. On the right hand
side, with iron limitation, chlorophyll concentrations are generally smaller and
limited to the region where mixing recharges surface concentrations of iron.
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Figure 7: Top view of the same channel as in Fig.6.
With iron limitation (bottom figure), production is
limited to regions where suitable mixing recharges
surface concentrations of iron from below. Without
iron limitation (top figure) production occurs over
the entire surface area.

4 REcoM & Dia

On a global scale, diatoms contribute some 40% of oceanic primary production and are very efficient
exporters of fixed carbon to the abyssal ocean. Diatoms consume silicon and iron, and Fe fertilization has
been shown to lead to rapid Si and C drawdown in so-called High-Nutrient-Low-Chlorophyll regions of
the ocean such as the Southern Ocean. However, Fe availability and residence time in the euphotic layer
also depend on the chemical speciation of iron (Wells, 2003).
Based on CN-REcoM, we have constructed a regulatory model of diatom physiology, that depends on Si
and Fe availability. Currently, we are coupling this model to a prognostic model of iron speciation (Weber
et al., Modelling the biogeochemistry of iron at the Bermuda Atlantic Timeseries Station. In preparation)
to simulate diatom blooms in the Southern Ocean.
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Figure 4: Schematic representation of the iron spe-
ciation model: dissolved iron is partitioned into in-
organic ferric and ferrous species, truly dissolved or-
ganically complexed iron and colloidal iron. Direct
or indirect photochemical reactions (yellow) drive
a daily cycle in iron speciation. Ultimately iron is
either taken up by phytoplankton or adsorbes onto
sinking particulate matter.
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Figure 5: Iron input to the surface ocean with dust
deposition is episodic rather than continuous, and
the residence time of iron within the surface layer
after an iron addition has been observed to be days
rather than years, probably due to loss of colloidal
iron (Bowie et al., 2001). Such a behaviour can-
not be simulated with simple speciation models that
are tuned to reproduce the deep ocean Fe distribu-
tion with scavenging residence times for iron be-
tween years and centuries. Here we compare the
temporal evolution of total dissolved iron as mod-
eled by four different models of iron speciation af-
ter increasing dissolved iron by four nM over one
day. The models are the three models presented
in Parekh et al. (2004) that successfully reproduce
the interbasin gradients of deep iron concentrations
(red, green and blue lines), and our iron speciation
model (black line).
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