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Abstract. A new inverse model is presented for the analysis of hydrographic section data
in conjunction with velocity measurements. The model offers advantages over commonly
applied interpolation techniques because it combines data and physical assumptions such
as geostrophic balance in the framework of a finite element discretization. Specifically a
quadratic objective function of model-data misfits is minimized to give estimates of trans-
ports together with formal error estimates. The finite element method allows the accurate
representation of highly irregular bottom topography and ensures consistent interpolation
of model variables to measurement points. The model is called FEMSECT for Finite Ele-
ment Method SECTion model. FEMSECT also gives improved flexibility and performance
over standard box models by allowing dynamic adjustment of the model variables temper-
ature and salinity. Idealized test cases illustrate that the finite element methods solve the
thermal wind equations far more accurately than standard finite difference methods, espe-
cially in the presence of steep topography. For a more realistic test, FEMSECT is applied
to hydrographic CTD-section data and moored-instrument current meter measurements
from an array in the Fram Strait. Transport estimates by FEMSECT prove to be more
robust and less sensitive to the spatial data resolution than estimates by a conventional
interpolation method that only uses information from moored instruments. FEMSECT is
available as a highly portable Matlab code and can be run on an ordinary desktop com-
puter.

1. Introduction

The classical analysis of hydrographic section data relies on the
geostrophic balance of pressure gradient force and Coriolis force.
This balance is often expressed in terms of geopotential height
anomaly or the thermal wind equations. The latter relates the lo-
cal horizontal density gradient on a constant height surface to the
vertical gradient or shear of the velocity normal to the plane of the
density gradient. Given measurements of density (as a function of
measured temperature, salinity, and pressure or depth), an estimate
of the geostrophic velocities can be obtained by vertically integrating
the thermal wind equations, relative to a so-called reference veloc-
ity. As an educated guess, one can imagine a “level-of-no-motion”
at the ocean floor or between water masses that move in opposite
directions; at this level the horizontal velocity can be assumed to
be small. However, without additional dynamical constraints, this
reference velocity is (mathematically) completely arbitrary. There-
fore, additional data or additional assumptions about the absolute
velocity are necessary.

Inverse techniques have widely been used to estimate mass and
property fluxes through hydrographic sections in so-called inverse
box-models [e.g., Wunsch, 1978; Rintoul, 1991; Macdonald and
Wunsch, 1996; Ganachaud and Wunsch, 2000]. Other inverse sec-
tion models treat not only reference velocity but also temperature
and salinity as independent variables [Nechaev and Yaremchuk,
1995; Yaremchuk et al., 1998, 2001; Losch et al., 2002]. Essen-
tially, these techniques require data and corresponding model val-
ues to agree within prescribed prior error bars. This is very often
achieved by a least-square fit, minimizing an objective function that
is the sum of the squared differences of model and data values,
weighted by appropriate covariance matrices [Wunsch, 1996]. Part
of the information required in addition to the hydrographic data
can be inferred from mass or property conservation principles, for
example, within boxes that the hydrographic sections form, but in
most cases a null space remains and further information is needed.
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In recent years, measurements of absolute velocities have be-
come more frequent and more reliable. Ship-mounted acoustic
Doppler current profiler (ADCP) measurements can reach accu-
racies of 1 cm s−1 [Cisewski et al., 2003] due to improvements in
the global positioning systems (GPS). There have been dedicated
efforts to monitor the current system in special regions such as the
Fram Strait with long-term current meter moorings [Fahrbach et al.,
2001; Schauer et al., 2004]. Time series of temperature and veloc-
ity from moored instruments provide estimates of heat and volume
fluxes with excellent temporal resolution. However, the main source
of error in these transport estimates stems from under-resolving the
spatial structure of the flow. At this point a consistent approach is
necessary that combines the valuable current measurements that are
still comparatively sparse in space with hydrographic data that have
a good spatial coverage, but are not of high temporal resolution.

Least-square methods are a natural choice, because all available
information can be combined into a synthesis: The influence of
each piece of information can be controlled by carefully assigning a
prior error estimate, and all derived results, for example, mass trans-
port through a hydrographic section, are not only the best estimate
in an optimal sense, but also it is straightforward to compute error
estimates for these results.

Recently, finite element methods (FEM) have received consider-
able attention in oceanography, because the triangular discretization
that is typical to FEM allows an appropriate resolution of very irreg-
ular domains at comparatively low cost. Furthermore, the variables
in FEM are not only defined at discrete grid nodes, but continu-
ously over the whole domain, because the interpolation between
grid nodes is implicitly defined by so-called basis functions. Appli-
cations in oceanography include regional studies [Schlichtholz and
Houssais, 1999; Dobrindt and Schröter, 2003; Myers and Weaver,
1995; Myers et al., 2004], tidal models, both regional [Walters,
1987] and global [Le Provost et al., 1998], and recently even gen-
eral circulation models [Danilov et al., 2004].

The flexible discretization with triangles in the finite element
method is attractive for a hydrographic section because the triangles
naturally take care of the so-called bottom wedges, where conven-
tional finite difference methods are ambiguous [e.g., Wunsch, 1996;
Ganachaud, 2003]. The second advantage stems from the implicitly
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defined interpolation rules that allow model variables to be mapped
naturally to the data locations, thus making the modeling system
highly consistent. These advantages are bought with slightly higher
conceptional and computational efforts.

Here we will demonstrate how a new inverse section model—
that we call FEMSECT because it is based on the finite element
method—can help to interpret current measurements in conjunc-
tion with hydrographic data. The model concept is described in
Section 2; in Section 3 we discuss the discretization associated with
the finite element method. Section 4 demonstrates in a realistic ap-
plication in Fram Strait the capabilities of the model and conclusions
are drawn in Section 5.

2. Geostrophic Inverse Model

2.1. Thermal wind equations

The inverse model calculates density from the non-linear equa-
tion of state of sea-water [Fofonoff and Millard, 1983] as a function
of salinity S, in situ temperature T , and pressure p = −gρ0z (or
depth). g is the acceleration resulting from gravity, ρ0 a mean den-
sity, and z the vertical coordinate. According to the thermal wind
equation, the vertical shear of horizontal velocity is proportional to
the horizontal density gradient. Integrating the thermal wind equa-
tion yields

v = vref −
g

ρ0f

0

@

z
Z

−h

∂ρ

∂x
(T, S, p) dz

1

A (1)

with the unknown reference velocities vref . f = 2Ω sin φ is the
Coriolis parameter that depends on latitude φ. The local coordinate
system is oriented along the section, so that the x direction is parallel
to the section and the velocity v is normal to it.

2.2. Least-squares method: Optimization and error
estimation

In order to fit the geostrophic velocity shear to the data, we define
the following objective function:

J =
1

2
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+
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T
WS (S∗ − ΦSS)
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T
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(2)

Here, in a compact matrix notation, the variables T , S, and v are ar-
ranged in column vectors T = (T1, . . . , Ti, . . .)

T , etc.. All starred
variables denote data vectors, for example T ∗

i is the temperature at
the position (xi, zi) in the section plane. Φα are linear interpolation
operators (matrices) that map the model variables α = T, S, v to the
corresponding data location. If the model grid nodes are identical
to the data locations then Φα is simply the unit matrix. The third
term in (2), which is actually the sum of two symmetric covariance
terms, allows for correlations between temperature and salinity.

The data-model misfit is weighted by weighting matrices Wα

that are the inverses of prior error covariances. For a specific case,
these error covariances are described in Section 4. “Regularization”
R provides prior information where the data is not sufficient to de-
termine a unique solution; choosing a proper regularization also
speeds up the convergence of the optimization process [Thacker,
1989]. We choose to include a prior guess for the unknown refer-
ence velocities and penalize roughness of the solution by requiring
the horizontal gradients of temperature, salinity, and velocity to be

small. After discretization we write, again in matrix notation:
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where ∂v/∂x, ∂T/∂x, and ∂S/∂x represent the vectors of dis-
cretized horizontal derivatives of the vectors v, T, and S. vref,0

is a first or prior guess for reference velocity. In this paper, we
choose vref,0 = 0 near the bottom, but other choices are equally
possible. The vertical position of the reference velocity can be dif-
ferent for each station pair and no assumptions about a hypothetical
level-of-no-motion are made. The weight matrices W

(T,S,v)
r can be

horizontally variable; in Section 4 they are chosen to be diagonal
with diagonal elements (∆x/0.01)2, where ∆x = ∆x(x) is the
local horizontal grid spacing.

Smoothness could also be imposed by penalizing the curvature
(second derivatives) of the hydrographic fields [e.g., Nechaev and
Yaremchuk, 1995; Losch et al., 2002]. However, in the present finite
element framework, this choice requires higher order basis functions
(see Section 3), which we want to avoid for simplicity.

The optimal solution for the (independent) control parameters
T , S, and vref minimizes objective function (2), subject to equa-
tion (1). This solution is found by an iterative procedure, in our
case a BFGS quasi-Newton algorithm with bounds as implemented
by Kelley [1999]. The BFGS algorithm needs the gradient of the
objective function with respect to the control parameters to find the
descend direction. Because all operations in the above equations
are linear, except for the computation of density from temperature
and salinity, constructing this gradient is straightforward.

The Hessian matrix H of second derivatives of J can be inter-
preted as the inverse of the error covariance matrix of the control
parameters [Thacker, 1989]. For any derived quantity ϕ that can be
expressed as a linear or linearized function of the control parameters
b = (T, S, vref ) near the solution b0: ϕ(b) = ϕ(b0)+Lϕ (b− b0),
with the linear operator Lϕ = ϕ′|b0 , the error covariance can be
computed from the Hessian matrix as

cov(ϕ) = L
T
ϕ H

−1
Lϕ. (4)

3. Discretization of the Model Equations

Clearly, the discretization involves only that of linear operations.
We choose a finite element grid that is based on a Delaunay trian-
gulation [Barber et al., 1996]. Figure 1 shows an example of such
a grid for a section across the Fram Strait between Spitsbergen and
Greenland in the Arctic Ocean (inset figure in Figure 1). Note
that the grid is almost regular, that is, the grid nodes are aligned
in both the horizontal and the vertical. Only near the bottom are
some triangles slanted to resolve the topography. But the inclina-
tion of these triangles is much smaller than it appears to be from
the figure, because in the figure, as usual, the depth is scaled up by
orders of magnitude. Nevertheless, the inclination of these triangles
can cause errors in the horizontal gradient computation, and their
inclusion must be considered carefully.

3.1. Finite Elements

Following the general procedure in finite element methods, the
thermal wind equations are rewritten in weak form, that is, they are
projected onto appropriate test functions ϕ̃ and integrated over the
computational domain:

ZZ

∂v

∂z
ϕ̃ dx dz = − g

ρ0f

ZZ

∂ρ

∂x
(T, S, p)ϕ̃ dx dz. (5)
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Figure 1. Numerical grid of a section across Fram Strait at approximately 79◦N with inset map of the area. In color
the measured in situ temperature in ◦C in August 2002. The black dots mark the positions of moored instruments,
while the grid nodes are chosen to coincide with the position of hydrographic measurements.

We now describe two different discretizations on the triangular grid

in Figure 1: the first approximates all continuous variables by piece-

wise linear functions, the second uses piece-wise constant functions

to represent velocities on the grid and piece-wise linear functions

for all other variables.

3.1.1. Linear basis functions for velocity

The standard Galerkin method replaces the continuous function

v, ρ, and ϕ̃ by an expansion into basis functions φi that are one at

the current node i, and zero at all other nodes:

v(x, z) =
X

i

viφi(x, y)

ρ(x, z) =
X

i

ρiφi(x, y)

ϕ̃(x, z) =
X

i

ϕ̃iφi(x, y).

(6)

vi, ρi, and ϕ̃i denote point values at grid node i. After substitution,

equation (5) becomes
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with the matrices

Uij =

ZZ

φj
∂φi

∂z
dxdz, (8)

Rij = − g

ρ0f

ZZ

φj
∂φi

∂x
dxdz. (9)

Equation(7) holds for any ϕ̃. Thus, the equivalent problem to equa-

tion (7), in matrix notation, is

Uv = Rρ, or v = U
−1

Rρ. (10)

The boundary condition at the bottom z = −h, v(−h) = vref ,

is applied by replacing in matrix U the row corresponding to the

boundary node with (0, . . . , 1, . . . , 0), where the one is the diago-

nal element Uii, and moving the boundary value vref to the right
hand side. This also ensures the existence of the inverse of U.

The basis functions φi are chosen as piece-wise linear functions
on all elements that belong to grid node i:

φi(r) =

8

>

<

>

:

1 − r for all elements that contain

node i

0 for all other elements.

(11)

r is the distance from node i normalized by the distance between
node i and the neighboring node. With this definition, matrices U

and R are readily computed.
3.1.2. Piece-wise constant basis functions for velocity

So far, we have computed velocities at the same points, the grid
nodes, that also represent the temperature and salinity measure-
ments. In contrast, the standard dynamic method computes veloci-
ties between station pairs. To achieve a similar numerical scheme,
the Galerkin equations (5) require a small modification. Partial in-
tegration of the left hand side of equation (5) in z yields

Z

vϕ̃(n · z) dx−
ZZ

v
∂ϕ̃

∂z
dx dz =

− g

ρ0f

ZZ

∂ρ

∂x
(T, S, p)ϕ̃ dx dz, (12)

where the first integral is taken along the boundaries at the surface
and at the bottom of the domain; (n · z) is the projection of the nor-
mal to the boundary onto the vertical. After specifying boundary
values for the velocity v at either surface or bottom, the value of the
first integral in equation(12) along the other boundary follows from
the so-called solvability condition for weak solutions. For exam-
ple, assume that boundary values for velocity v are imposed at the
bottom. Then

R

vϕ̃ dx over the surface is computed as follows: the
second term in the left side of equation (12) vanishes if ϕ̃ ≡ 1, and
the surface integral must balance the integral over the bottom and
the right hand side integral in equation (12).

Instead of this procedure we replace v with a potential V , such
that

v =
∂V

∂z
, (13)

and solve for V instead of v. The resulting second-order differen-
tial equation for the new unknown variable V requires two boundary
conditions: one is the reference velocity and the other is an arbi-
trary constant that does not affect the velocity v. For example, we
can choose a V (z = 0) at the surface so that the first term in equa-
tion(12) represents the boundary integral along the bottom boundary
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only. V is represented with the same linear basis functions φi as
density and the test functions ϕ̃. As a consequence, v, since it is
the derivative of V , is now represented by basis functions that are
piecewise constant on the elements.

3.2. Testing the Discretized Thermal Wind Equations in
Idealized Geometries
3.2.1. Front over a steep slope

In a first test of the finite element discretization, we compute
velocities from thermal wind relative to the bottom or the surface
through an idealized domain with a front over a steep slope (Fig-
ure 2). We assume a density field that is an inverse tangent function
of the horizontal coordinate: ρ = [arctan(ax + b) + cz]kg m−3,
so that we can integrate equation (1) analytically. For our choice
of density with a = 1/(50km), b = 20, c = −3/(400m), a do-
main that is 1000 km wide and has a maximum depth of 400 m, and
with g/(ρ0f) = 100m4 kg−1 s−1, we obtain a transport of 5.60 Sv
(1Sv = 106 m3 s−1).
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Figure 2. Test domain with hypothetical measurement points
(stars). Solid thin lines mark the finite element triangular grid,
the thick dashed lines correspond to the finite difference grid of
the dynamic method. The shading shows the density front with
dark shades for dense water and light shades for light water.

The standard dynamical method, for example, as implemented
in the matlab routines of the CSIRO sea water library [Morgan,
1994], computes geopotential height anomalies at the location of
vertical casts of temperature and salinity. Velocities are then calcu-
lated between station pairs and therefore, the method is accurate to
first order. However, because of the finite resolution in the horizon-
tal, special interpolation techniques are required near the bottom to
resolve bottom wedges [e.g., Wunsch, 1996]. Ganachaud [2003]
compared different interpolation methods and found that they can
yield transports that are different by several Sverdrups. Assuming
that the transport through the bottom wedges vanishes the dynamic
method gives a transport of 4.85 Sv, relative to the bottom, if mea-
surements of temperature and salinity are available for the hypo-
thetical stations in Figure 2. In a second case the reference level
is chosen to be at the surface, that is, the largest velocities occur
near the bottom. In this case, which serves as an extreme case only,
the dynamic method is even less accurate and yields a transport of
4.05 Sv.

Our finite element discretization is based on piece-wise linear
basis functions for density (or temperature and salinity) and either
piece-wise linear or constant basis functions for velocity. If the den-
sity field is chosen to vary linearly between stations these methods
are exact.

However, for our density field that is a non-linear function of the
horizontal coordinate, we get deviations from the exact transport
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Figure 3. Deviation of transport values from the true value of
1 as a function of number of velocity nodes for three different
methods.

by 0.04 Sv for piece-linear basis for velocity and and −0.17 Sv for
piece-wise constant velocity basis functions. Also in the extreme
case of zero reference velocities at the surface the estimated trans-
port is much more accurate than for the finite-difference method:
for piece-wise linear velocity basis functions we get 5.30 Sv and for
piece-wise constant functions 5.77 Sv.
3.2.2. Flat bottom

In a different test case, we test the performance of piece-wise
linear versus piece-wise constant basis functions for velocity. For
this, geostrophic velocities relative to the bottom are computed
in a domain with a flat bottom at depth h =

√
2 and length

L = 1. The density field is sinusoidal with the horizontal coor-
dinate: ρ = ρ0 + ρ0f

g
cos 2n−1

2L
πx, where L is the length of the

section and n = 1, 2 . . . is the number of velocity nodes. For a flat
bottom the horizontal and vertical integrations to compute the total
transport are independent and the transport only depends on the net
density difference across the section, which is the same for all n, so
that the analytical transport is always 1

2
h2 = 1. Ten hypothetical

stations with constant spacing define the horizontal grid. The ex-
ample is constructed so that central differences yield exact results,
because in summing up the differences between the values at grid
node i and i − 1 cancels all interior contributions exactly. Conse-
quently, the dynamic method yields a transport value 1 independent
of n (Figure 3). For the finite element method with piece-wise linear
basis functions for velocity the transport deviates from the correct
value as the resolution decreases relative to the number of velocity
nodes n. On the other hand, the transport values obtained from
finite elements and piece-wise constant basis functions for velocity
are also indistinguishable from the true value 1. In fact, deviations
are smaller than 10−14 and therefore within machine precision.

For this problem, the highest accuracy is achieved with central
differences, because the horizontal operator acting on density is first
order, while the velocity is subject to a zero order differential oper-
ator in the horizontal. Therefore discretizing density with a higher
order (linear = first order) basis function than velocity (constant =
order zero) results in a more accurate transport value than using
the same order (linear) for both density and velocity. Consequently
piece-wise constant basis functions for velocity are preferred for
this application.

4. A First Application: Fram Strait

Fram Strait represents the only deep connection between the Arc-
tic Ocean and the Nordic Seas. This connection is two-fold: Arctic
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Ocean freshwater from the north has a strong impact on convec-
tion in the Nordic Seas and further south, while warm and saline
Atlantic waters from the south affect the water mass characteris-
tics in the Arctic Ocean and influence ice and atmosphere. The
topographic constraints of the Fram Strait split the West Spitsber-
gen Current (WSC), which carries Atlantic Water northward, into
at least three branches. Two of them enter the Arctic Ocean along
different pathways. The third branch recirculates immediately in
the Fram Strait. The East Greenland Current (EGC) carries water
from the Arctic Ocean southwards in a concentrated core above the
continental slope.

The variability of oceanic fluxes through the Fram Strait has been
monitored by an exceptionally dense array of moorings since 1997
[Fahrbach et al., 2001; Schauer et al., 2004]. Timeseries of tempera-
ture and velocity from moored instruments provide estimates of heat
and volume fluxes with excellent temporal resolution but the spatial
structure of the flow is under-resolved. This is the main source of the
error in previous transport estimates. With our new finite element
section inverse model, we expect to reduce the problem of spatial
resolution—because we can now use additional hydrographic data
that has a higher spatial resolution than the moorings—and thus,
obtain more reliable transport estimates by combining all available
data.

4.1. Velocity Measurements and Hydrographic Data

The array of current meter moorings is described comprehen-
sively in Woodgate et al. [1998]; Fahrbach et al. [2001] and Schauer
et al. [2004]. We only repeat a few details that are relevant here:
The mooring array extends from the eastern Greenland shelf break
to the western shelf break off the coast of Spitsbergen (Figure 1).
From 1997 to 2001, 14 moorings covered the section, except for
the years 1999 and 2000 when 3 moorings in the central part of the
strait were not deployed. In 2002 the array was augmented with 2
additional moorings in the recirculation area between 0 and 2◦E and
one at the Greenland shelf. The horizontal spacing of the moorings
increases over the continental slopes. The instruments are deployed
at depths starting at 10 m above the seabed to approximately 60 m
below the surface. Figure 4 shows the position of the moorings
in August 2002. Each year during redeployment of the array in
summer or autumn, hydrographic measurements were carried out at
CTD-stations along the mooring line with high spatial resolution.
In order to exploit the flexibility of the finite element method, we
use the positions of the CTD-stations to generate the grid, so that the
interpolation from model variables to data is trivial for temperature
and salinity.

Without the hydrographic section data, the largest uncertainty
of transport estimates from moored current meters and tempera-
ture recorders stems from aliasing due to the low resolution of the
available data points. In previous work, measurements of moored
instruments were mapped to a fine resolution grid by kriging [e.g.,
Deutsch and Journel, 1992] to yield temperature and absolute veloc-
ity fields that resolve the warm core of the West Spitsbergen Current
and the shallow flow of the East Greenland Current rather well when
compared to temperature measurements or relative geostrophic ve-
locity fields from high resolution CTD sections [Schauer et al.,
2004]. However, the complex structure of the return flow in the
central Fram Strait is not properly resolved by the moored array.
Further, mesoscale eddies are aliased into large scale flow by dis-
tant moorings [Fahrbach et al., 2003]. Temporal averaging into
monthly means of measured velocities eliminates transient small
scale structures, but stationary mesoscale eddies over topography,
which are observed in the central Fram Strait, remain aliased.

4.2. Weight Matrices and Prior Error Estimates

Prior to inversion of all data with the help of the finite element
model FEMSECT, weighting matrices for equations(2) and (3) have
to be constructed. The weighting matrices define the “physically ac-
ceptable” deviations of the model state from data and constraints.
They are taken to be the inverses of error covariances that are esti-
mated prior to the inversion, so that a larger prior error amounts to
a smaller weight and less allowed deviation from the corresponding
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Figure 4. Velocities estimated by interpolating moored instru-
ment data (top, with position of moored instruments) and esti-
mated with the help of the inverse model FEMSECT (bottom).

datum and vice versa. With the exception of T and S from CTD
measurements all cross-correlations are neglected and the covari-
ance matrices are diagonal.

For T and S from CTD-measurements, we construct
covariances—local to the respective CTD-station—from verti-
cal correlation and cross-correlations between T and S. This
procedure, which follows Losch et al. [2002], allows the model to
change the depth of an isopycnal without changing the T -S relation
on the isopycnal [Yaremchuk et al., 2001]. To these covariances,
we add a depth dependent estimate of uncorrelated “ocean noise”
according to Bindoff and McDougall [1994], that is, the variance
of differences between neighboring stations, and an estimate of
uncorrelated “measurement error”. The latter can include both
actual instrument errors and possible errors that arise from the
quasi-synopticity of the CTD-data. Here, we allow a large error of
1◦C for T and 0.1 for S, because CTD data are often not represen-
tative of the entire period covered by the mooring data. In total, the
covariance estimate includes diagonal terms on the order of (1◦C)2

near the bottom to (1.75◦C)2 near the surface for temperature
and 0.12 to 0.752 for salinity, respectively; off-diagonal terms are
smaller.

For velocity data we assume an uncorrelated error of 1 cm s−1,
the initial reference velocity is assumed to be 0±5 cm s−1. We im-
pose smoothness by specifying Wr in equation(3) to be (∆x/0.01)2

for both T , S, and velocity v, where ∆x = ∆x(x) is the local hor-
izontal grid spacing.

In order to reduce the amount of hydrographic data, we interpo-
lated the 1 dbar data to standard depth levels (-10 m, -20 m, -50 m,
-75 m, -100 m, -150 m, -200 m, -250 m, -300 m, -400 m, -500 m, etc.)
to obtain 1404 data points for temperature and salinity each for the
72 stations of CTD-section in August 2002. In that year there were
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Figure 5. Model-data misfit after inversion (dots) with prior er-
rors (circles) for August 2002 (Figure 4), for temperature (left),
salinity (middle), and velocity (right) data. Only near the surface
a few model-data misfit values remain are larger than the prior
errors, so that for the most part the assumption of geostrophic
balance is valid.
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Figure 6. Transport estimates for 7 different years. The esti-
mates do not always refer to data from the same month of the year
and should therefore not be treated as a timeseries. The differ-
ences in transports between 1998 and 2001 can be explained by
the resolution of the mooring array that is too coarse to represent
the recirculation patterns in the central Fram Strait. FEMSECT
can reduce this resolution problem by using additional informa-
tion from CTD-data and geostrophy.

66 moored current meters in place. The flexibility of the finite ele-
ment grid allows to choose the grid nodes to coincide naturally with
the hydrographic data points, so that the dimension of the control
vector is 2×1404+71=2879. For other years the number of data and
grid points is comparable. With this configuration we needed typi-
cally on the order of 1000 iterations to reach convergence, measured
by a reduction of the norm of the gradient by a factor of 1000.
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Figure 7. Comparison of northward and southward volume
transports between FEMSECT and the mooring data alone in
Sv (1Sv = 106 m3 s−1).

4.3. Velocity Fields and Transport Estimates

Velocity from interpolation of mooring data by kriging and from
a full inversion of all CTD and mooring data with FEMSECT are
shown in Figure 4 for August 2002. Both velocity fields reveal an
intense northward flow of the West Spitsbergen Current, occupying
the whole water column at the eastern shelf slope. Measurements
by moored current meters in the top panel of Figure 4 clearly show
its strong barotropic character. In this area, the inverse solution in
the bottom panel differs only slightly from the kriging solution by
additional (geostrophic) shear at the lower boundary of the Atlantic
water layer at approximately 700 m depth. At the opposite side of
the Fram Strait, the shallower and weaker East Greenland Current
shows up as a southern flow with a core over the Greenland shelf
slope. The strong density gradient in the upper layer gives rise to
significant vertical velocity shear which is much better reproduced
by the inverse solution than by the velocity obtained from moor-
ings alone; the latter tend to have smooth vertical velocity gradients
(small vertical shear) due to the interpolation. A part of the Atlantic
water recirculates in the central Fram Strait and the velocity field
from the inversion suggests that this flow is characterized by smaller
spatial scales than are resolved by the mooring array.

Temperature and salinity are control variables of FEMSECT and
are adjusted during the inversion. Figure 5 shows the model-data
misfit after the inversion (dots) along with the prior errors (circles)
as a function of depth. Generally, the model-data misfit is consis-
tent with the prior errors. The resulting difference between initial
and inverted density field can reach 0.3 kg m−3 (not shown). The
difference is most pronounced in areas with strong vertical den-
sity gradients, especially in the western part of the strait. Over the
Greenland shelf this density difference is associated with the fresh-
water layer in the upper 30–50 m. Over the continental slope density
differences are large in the core of the East Greenland Current be-
cause the inverse model changes the density field in order to fit a
geostrophic shear to the current measurements. Model velocity de-
viates from the moored instrument data by less than the prior error
of 1 cm after the inversion except for near surface values.

In Figure 6 we compare estimates of volume transports and
heat transports relative to −0.1◦C through the Fram Strait obtained
with the kriging method described in Schauer et al. [2004] from
monthly averages of current and temperature data from moored in-
struments for seven different times during the period 1997–2003,
to estimates of the inverse model FEMSECT from the same data
plus hydrographic data from the CTD section. (The heat transports
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Table 1. Transport estimates for the two sensitivity experiments with complete and reduced mooring data sets.
Volume net

[Sv]
Volume

northward [Sv]
Volume

southward [Sv]
Heat net [TW]

August 2002
Mooring data only 3.6 12.5 −9.0 61.2
Mooring data only, with gap 15.5 23.4 −7.9 70.4
FEMSECT for CTD section with complete moorings array 6.4±6.4 13.4±4.3 −7.0±3.3 52.4±12.7
FEMSECT for CTD section with moorings array, with gap 6.9±6.7 13.4±4.4 −6.5±3.5 52.5±12.8

September 2003
Mooring data only 5.9 14.2 −8.3 52.1
Mooring data only, with gap 12.2 20.1 −7.9 56.6
FEMSECT for CTD section with complete moorings array 2.9±6.5 11.3±4.2 −8.4±3.4 49.7±15.8
FEMSECT for CTD section with moorings array, with gap 3.2±6.8 10.7±4.6 −7.5±3.4 48.5±16.0
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Figure 8. Velocity difference between solutions based on the
complete and the reduced mooring data set for August 2002.
Top: interpolation of moored instrument data, bottom: inverse
solution with moored instrument data and CTD data. Note, that
the color scale is different by one order of magnitude.

are strictly speaking temperature transports, as the mass balance
through the Fram Strait is non-zero, but we stick to the jargon of
relative heat transports for convenience.) In all cases, we assume
quasi-synopticity and only use moored data from the months during
which CTD data are available, because for now we wish to avoid
mixing data from different time periods for simplicity.

FEMSECT provides uncertainty estimates along with the solu-
tion. These uncertainty estimates are computed from the inverse
Hessian of the objective function J in equation (2). In the limit
of Gaussian statistics, the inverse Hessian can be interpreted as
the error covariance matrix of the control parameters temperature,
salinity, and reference velocity (cf. Section 2.2). The estimated un-
certainties then correspond to the standard deviation of a normally
distributed variable. With our choice of prior error estimates, the

volume transport uncertainties are of the order of 6–7 Sv, that is,
in some cases larger than the volume transport estimate itself. It
is important to understand that the simultaneous inversion of all
data and model equations results in a formal error propagation that
translates the measurement and model errors into uncertainties of
estimated quantities such as net volume transport. For example, we
chose a prior error of 5 cm s−1 for the bottom (reference) veloci-
ties. Changing this prior error to 1 cm s−1 reduces the estimated
uncertainty by 14%; reducing the prior “measurement errors” for
temperature (1 ◦C) and salinity (0.1) by a factor of five, decreases
the posterior uncertainty by 35% of the previous value. As a more
radical test, we increased the weight of all regularization terms by
a factor of 4, that is, doubled the prior errors for reference velocity
and roughness, to obtain posterior volume and heat transport errors
that are increased by 40–50%. Thus, the size of the estimated un-
certainty of inverse solutions is controlled by the prior errors that
define the weights in the objective function. It is the responsibility
of the investigator to check that both prior and posterior errors are
consistent with the model solution and observations Wunsch [1996].

For the years 1998 to 2001, net volume transport estimates from
the different methods differ by as much as the uncertainty esti-
mate provided by FEMSECT. Separating the volume transport into a
northward and a southward component (integral over all northward
and southward velocities, respectively) points towards an explana-
tion that relates the large difference to the resolution of the mooring
array (Figure 7): In the years 1997, 1999, and 2000, the estimated
southward volume transport is larger with the interpolation method
than with FEMSECT while the northward transports are similar for
both methods. In contrast, the southward transports are similar in
1998 and 2001, but now the northward transport estimates are off
by as much as 4 Sv. All years up to 2001 have in common that the
mooring array had a gap between 1◦W and 3◦E which leads to a mis-
representation of the recirculation region in the interpolated data. In
the years 1997 to 2000, a prevailing southward flow was measured
at both ends of the gap, which gives enormous southward trans-
port when interpolated across the significant distance of the gap.
A change in the circulation pattern in 2001 results in the opposite
effect: Northward flow measured at the ends of the gap and interpo-
lated across the gap results in the strongly overestimated northward
volume transport and in consequence in a net transport to the north.
FEMSECT uses additional data and geostrophic velocity informa-
tion instead of simply interpolating mooring data. By combining the
mooring data with hydrographic data and geostrophy, FEMSECT
can provide reliable and realistic velocity and transport estimates
that are superior to those obtained from unphysical interpolation of
data.

This problem of unresolved recirculation between −1◦W and
3◦E was recognized [Fahrbach et al., 2003] and resolved by de-
ploying additional moorings in the recirculation region in 2002 and
2003. With the additional data, a much more realistic representation
of the flow field in the central Fram Strait is obtained (Beszczynska-
Möller et al., Variability of volume and heat fluxes through Fram
Strait from the array of moorings, manuscript in preparation). Con-
sequently, transport estimates from mooring data alone and inverse
estimates agree much better in those years.
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The net heat transport relative to −0.1◦C is less sensitive to the
resolution problem described above than the net volume transport.
This observation supports the above hypothesis of an unresolved
flow field in the center of the strait, because almost all heat (i.e.,
temperature relative to −0.1◦C) is carried north by the West Spits-
bergen Current, that is, by a permanent feature in the eastern part of
the strait that is also well resolved by the mooring array. Therefore,
the estimates based on mooring data alone and FEMSECT estimates
generally agree with each other quite well. With one exception (in
1999 when the volume transport estimates also differ most), all esti-
mates of net heat transport from moorings fall within the uncertainty
range of FEMSECT estimates (Figure 6). For 2002 and 2003, the
net volume transports estimated from moored instrument data also
fall into the error range estimated with FEMSECT.

In the following, we test the hypothesis that better spatial resolu-
tion of data improves transport estimates from interpolated mooring
data and that the lack of data resolution explains the larger differ-
ence between interpolation and inverse model solution. From two
mooring data sets from the period with increased spatial coverage
by moorings in the central Fram Strait (August 2002 and September
2003), the central two moorings are removed to mimic the situation
of previous years. Figure 8 compares velocity fields obtained from
interpolation of all moored instrument data and the inverse model to
the respective solutions for the reduced mooring data set for August
2002. If mooring data is interpolated to yield velocity fields, remov-
ing the two moorings in the center of the strait (open circles) leads
to a dramatically different velocity field in the central part of the
section. Northward velocity differences over 10 cm s−1 are clearly
a result of the poor resolution. On the other hand, the structure of the
currents reproduced by FEMSECT seems to be much less sensitive
to the spatial resolution of the mooring data.

Table 1 shows the corresponding volume and heat transport es-
timates for August 2002 and September 2003. For both periods
removing the two central moorings results in a strongly increased
northward volume transport for the kriging method: The estimate
is nearly doubled for August 2002 and 50% higher for September
2003. Together with a much weaker decrease of the southward vol-
ume transport, overestimating the northward component yields a
net volume transport that is almost three times larger in 2002 and
two times larger in 2003. At the same time, net volume transport
estimates by the inverse model, based on the complete and the re-
duced mooring data set are different by less than 10% in both cases.
Differences in estimated heat transports are also of one order of
magnitude larger in the case of estimates based on mooring data
alone as compared to inverse model results.

While we would like to claim that our inverse solution is far supe-
rior to the interpolation method, it should be noted that this positive
result is to some extent fortuitous: Inspection of Figure 4 reveals
that at the two locations of the additional moorings the measured
velocities near the bottom are small, so that our prior estimate of
zero bottom velocities is justified a posteriori. Together with a re-
alistic bottom velocity, the geostrophic shear provides a reasonable
velocity estimate throughout the water column, which does not need
correction by measurements of absolute velocities (by moored in-
struments). However, adding more data always improves the inverse
solution by decreasing the formal posterior error estimate (Table 1).

We emphasize that the choice of zero bottom velocity is by no
means a limitation of the method: any prior estimate of bottom
velocities can be used in the inverse model.

5. Conclusion

Inverse methods and finite elements are a perfect combination for
analyzing irregularly spaced section data in oceanography. With the
help of inverse methods, data of different type and resolution can be
combined with dynamical balances to yield a dynamically consis-
tent best fit to all available information. Finite elements, on the other
hand, provide an elegant and consistent way to account for irreg-
ularly spaced data and complex topography with a triangular grid.

Grid nodes can be chosen to coincide with data locations making
interpolation of model variables to data trivial. Also, the finite ele-
ment method requires the numerical formulation of the dynamical
equations in matrix form, which in turn simplifies the formulation
of the adjoint model for the gradient computation: the adjoint of a
matrix operator is simply its transpose.

All these characteristics of finite elements and inverse methods
can be combined to formulate a new analysis tool for oceanographic
section data. This model, which we call FEMSECT for Finite Ele-
ment Method inverse SECTion model, is used to estimate transports
of volume and heat through the Fram Strait, where an exceptional
data set with moored instrument data and hydrographic data from
oceanic transects is available. Combining all data already reveals
that calculations from interpolation of mooring data alone tend to
overestimate total transports in the case of poor spatial resolution
of moored instrument data. FEMSECT provides more reliable esti-
mates that are less sensitive to the spatial resolution of the moorings
because it replaces interpolation with geostrophic shear information
from CTD-measurements.

Further analyses of the Fram Strait data are underway. There we
investigate time series of moored instrument data for which CTD
data are not available at the same time. In this case, the prior errors
of the CTD need to be increased to account for the assumption that
the density field is constant.

In general, additional data could be included in the analysis of
hydrographic sections with FEMSECT. In the absence of moored
instruments, ship-based ADCP (Acoustic Doppler Current Profiler)
velocity data could fill the gap and provide an estimate of the abso-
lute velocity to yield transport estimates for the entire section.

Further developments of FEMSECT include using basis func-
tions of arbitrary (higher) order in order to increase the accuracy of
the solution. With higher-order basis functions it is also natural to
include regularization terms in the objective function that penalize
the second instead of the first derivative of the fields. In some appli-
cations it may be necessary to be able to put the reference velocity
at an arbitrary depth within the water column. Currently the posi-
tion of the reference velocity is restricted to either the bottom or the
surface of the domain, so that there is also room for improvement.

The finite element method is very appealing from a mathemati-
cal point of view. Especially integral quantities, such as integrated
transports through a section, benefit from the conservative proper-
ties of the numerical scheme. Together with the geometrical flexi-
bility of a triangular grid, we achieve with our finite element section
model a proper representation of the bottom topography and bottom
wedges even with limited horizontal resolution; the model provides
natural interpolation rules for irregularly spaced data that emerge
from the method itself; the model integrates the thermal wind equa-
tion accurately if piece-wise constant basis functions are chosen to
represent velocity. Piece-wise linear basis functions should only be
used for temperature, salinity, and density values for this applica-
tion.

In order to complement the flexibility of the finite element model,
FEMSECT is available as a highly portable Matlab code. It can
be obtained from authors on request. More convenient download
methods are in preparation. All computations in this paper were
performed on ordinary P4 desktop computers, Unix Workstations,
and Apple computers. Typically on a 2 GHz P4 with 512 MB RAM,
1000 iterations of the BFGS algorithm took less than 40 minutes for
the Fram Strait experiments, and the inversion of the Hessian ma-
trix (≈ 30002 elements) less than 1 minute. Note that our problem
was sufficiently small to allow a direct inversion of the Hessian ma-
trix in Matlab. Larger problems may require an iterative procedure
following Yaremchuk et al. [2001] or Yaremchuk et al. [2002].

When undertaking the difficult task of analyzing sparse data,
inverse methods appear the perfect tool to combine information of
different origins, such as, in our example, ship-borne measurements,
measurements from moored arrays, and dynamical balances. These
methods provide both a “best estimate” from data with prior error
estimates and a posterior formal error estimate. We conclude that
inverse methods should be used routinely for the analysis of data.
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and estimation of uncertainty for solutions to inverse problems, Ocean
Dynamics, 52, 71–78, 2002.

Yaremchuk, M. I., D. Nechaev, J. Schröter, and E. Fahrbach, A dynami-
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