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Abstract

We address the problem of reconstructing a global field from proxy data with sparse spatial sampling such as the MARGO (multi-

proxy approach for the reconstruction of the glacial ocean surface) SST (sea-surface temperature) and d18Oc (oxygen-18/oxygen-16

isotope ratio preserved in fossil carbonate shells of planktic foraminifera) data. To this end, we propose to ‘assimilate’ these data

into coupled climate models by adjusting some of their parameters and optimizing the fit. In particular, we suggest to combine a

forward model and an objective function that quantifies the misfit to the data. Because of their computational efficiency, earth

system models of intermediate complexity are particularly well-suited for this purpose. We used one such model (the University of

Victoria Earth System Climate Model) and carried out a series of sensitivity experiments by varying a single model parameter

through changing the atmospheric CO2 concentration. The unanalyzed World Ocean Atlas SST and the observed sea-ice

concentration served as present-day targets. The sparse data coverage as implied by the locations of 756 ocean sediment cores from

the MARGO SST database was indeed sufficient to determine the best fit. As anticipated, it turned out to be the 365 ppm

experiment. We also found that the 200 ppm experiment came surprisingly close to what is commonly expected for the Last Glacial

Maximum ocean circulation. Our strategy has a number of advantages over more traditional mapping methods, e.g., there is no

need to force the results of different proxies into a single map, because they can be compared to the model output one at a time,

properly taking into account the different seasons of plankton growth or varying depth habitats. It can be extended to more model

parameters and even be automated.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The multi-proxy approach for the reconstruction of
the glacial ocean surface (MARGO) project will
produce various sea-surface temperature (SST) recon-
structions from different proxies as well as a reconstruc-
tion of d18Oc (oxygen-18/oxygen-16 isotope ratio
preserved in fossil carbonate shells of planktic forami-
nifera). It is planned to provide these data at the core
locations (Fig. 1) as well as in the form of regularly
gridded fields and paleo-maps (see the companion paper
by Schäfer-Neth et al., 2005). Such paleo-maps are not
only useful for displaying and discussing the data, but
also for forcing ocean or atmosphere models.
e front matter r 2004 Elsevier Ltd. All rights reserved.

ascirev.2004.05.010

ing author. Tel.: +49-421-218-7189; fax: +49-421-218-

ess: apau@palmod.uni-bremen.de (A. Paul).
Examples for simulations of the ocean at the Last
Glacial Maximum (LGM) based on the CLIMAP
Project Members (1981) SST reconstruction or mod-
ifications thereof are given by Seidov et al. (1996),
Winguth et al. (1999), Schäfer-Neth and Paul (2001) and
Paul and Schäfer-Neth (2003, 2004). In our previous
work (Paul and Schäfer-Neth, 2003, 2004) we use the
GLAMAP SST reconstruction (Sarnthein et al., 2003a)
for the Atlantic Ocean, which as compared to CLIMAP
is characterized by 1–2 1C colder tropics and seasonally
ice-free Nordic Seas.
On the one hand, classical surface mapping methods

of paleo-climate proxy variables make insufficient or no
use of (1) the specific properties of each proxy (e.g.,
different seasons of plankton growth or varying depth
habitats) and (2) the dynamical constraints of the ocean
circulation, or, more broadly, the coupled ocean–sea-
ice–atmosphere system.
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Fig. 1. Unanalyzed annual mean WOA (1998) 10m temperature (contours at an interval of 2 1C) and distribution of the 756 ocean sediment cores

from the MARGO (multi-proxy approach for the reconstruction of the glacial ocean surface) SST (sea-surface temperature) database (circles). The

WOA temperature data was smoothed with a cosine arch filter of 2000 km width. Dark gray shading indicates gaps in the original data set. The

central meridian of the Hammer equal-area projection is located at 601W, and the line interval of the geographical grid is 301 (the same map

projection is also used in Fig. 2).
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On the other hand, coupled climate models do not
require the proxy data for forcing and allow for a
data–model comparison directly at the core locations
(Broccoli and Marciniak, 1996), but their LGM results,
although all physically plausible in some sense, are
radically different among each other (Mix, 2003). For
example, there is no agreement on whether the LGM
meridional overturning circulation (MOC) was weaker
or stronger than today. Furthermore, these models
simulate a wide range of sea-surface temperatures. More
generally, they agree with some paleo-data, but are in
conflict with some other paleo-data.
We therefore suggest to combine coupled climate

models and sparse proxy data and construct an SST
map that accommodates best the information obtained
from paleo-proxies with the physical constraints of the
climate system.
More recently any such data–model combination has

been termed ‘data assimilation’ (Wunsch, 1996), with
the general goal to use data in order to improve the
performance of numerical models (Hargreaves and
Annan, 2002). Here it means finding a set of parameter
values such that the model equilibrium solution is best
compatible with observational (or proxy-) data.
This method is not entirely new. Even the most

comprehensive coupled climate model contains para-
meterizations of processes that either have not been
understood yet from first principles, or that cannot be
resolved because of their spatial or temporal scales, and
there is some freedom in tuning the associated
model parameters. This freedom is used to optimize
the fit to present-day climate data. Basically, what we
have in mind is to tune a climate model to fit paleo-
proxy data.
An earth system model of intermediate complexity is

particularly well-suited for this purpose, because it is
computationally efficient and can be used to carry out
more than one LGM experiment. To illustrate our
point of ‘assimilating’ reconstructed proxy-data into a
coupled climate model, we performed a series of
experiments with one such model and used the same
test data set for present-day SST as in Schäfer-Neth et
al. (2005), complemented by a second data set for
observed sea-ice concentration. We varied a single
model parameter (through changing the atmo-
spheric CO2 concentration) and left all boundary
conditions unchanged. Our strategy could be easily
extended to, e.g., the MARGO reconstructions of SST
and sea-ice extent, by designing an LGM experiment
according to the Paleo-Modelling Intercomparison
Project (PMIP) 2 recommendations (http://www-lsce.
cea.fr/pmip2/).

http://www-lsce.cea.fr/pmip2/
http://www-lsce.cea.fr/pmip2/
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2. Methods

We used a coupled climate model, combined it with
an explicit objective function that quantified the misfit
to the data, selected a parameter which presumably
affected the results significantly, performed a series of
sensitivity experiments and evaluated the objective
function for discrete values of the selected parameter.

2.1. Coupled climate model

We chose the ‘UVic Earth System Climate Model’
version 2.6, which consists of the Modular Ocean Model
(MOM) 2 of the Geophysical Fluid Dynamics Labora-
tory (GFDL) (Pacanowski, 1996), coupled to an atmo-
spheric energy–moisture balance model (Fanning and
Weaver, 1996) and a sea-ice model. We used the sea-ice
model in its standard form, in which the thermody-
namics is based on the zero-heat capacity formulation
by Semtner (1976), together with the lateral growth and
melt parameterization by Hibler (1979), and the
dynamics is elastic-viscous-plastic (Hunke and Duko-
wicz, 1997). This particular model version allows for the
advection of moisture by monthly winds prescribed
from the NCEP reanalysis climatology (Kalnay et al.,
1996) and is described in detail by Weaver et al. (2001).
The 280 and 365 ppm restart files were kindly provided
by Michael Eby (pers. comm.), which enabled us to
initialize the model from near-steady states. All experi-
ments were integrated for at least 1000 years, by which
time the global air-sea heat flux averaged over 10 years
was between 0.009 and 0:135Wm�2: This corresponded
to a residual trend in the global annual-mean ocean
temperature between 0.02 and 0.30 1C per 1000 years.

2.2. Objective function

An objective (or ‘cost’) function typically charac-
terizes an ‘inverse problem’ (Wunsch, 1996). Here we
combine it with a ‘forward model’ like the UVic coupled
climate model.
The purpose of an objective function F is to provide a

measure for the misfit between data and model, and
hence it involves the observations (or proxy data) x; the
corresponding model output x0 and the model para-
meters p:

F x; x0; pð Þ ¼
XN

n¼1

XL

l¼1

f lnðx; x
0; pÞ: (1)

The components f ln of the objective function are taken
as sum of squares (e.g., Jentsch, 1991; Hargreaves and
Annan, 2002):

f ln x; x
0; pð Þ ¼

X
i

xiln � x0
iln

giln

� �2

: (2)
In our case, the number of variables N ¼ 2; where n ¼ 1
stands for temperature and n ¼ 2 for sea-ice concentra-
tion. Furthermore, the number of seasons L ¼ 2; where
l ¼ 1 stands for January–February–March (JFM) and
l ¼ 2 for July–August–September (JAS). The sum on i is
over all grid cells that contain data. In particular, xil;n¼1

refers to the World Ocean Atlas unanalyzed temperature
data for 10m depth (WOA, 1998) and xil;n¼2 to the
Atmospheric Model Intercomparison Project (AMIP) 2
sea-ice concentration data (Taylor et al., 2000).
An important issue is the choice of the weighting

factors giln that are to give each component f ln an
approximately equal weight (Jentsch, 1991). We set
them such that the objective function became the sum of
the individual root-mean square (RMS) seasonal errors,
each normalized by the corresponding RMS seasonal
contrast of the 365 ppm experiment and squared. The
components with n ¼ 2 that referred to sea-ice concen-
tration were further multiplied by a factor of 0.12, which
is the ratio of the area affected by the AMIP 2 sea-ice
concentration data (43.1�106 km2) and the area covered
by the annual-mean WOA unanalyzed SST data
(361.7�106 km2).

2.3. Selected parameter

To illustrate our technique, we applied a globally
uniform climate forcing

Q ¼ DF2x ln
C

C0

to the energy balance at the top of the atmosphere by
directly reducing the outgoing longwave radiation
(Weaver et al., 2001). Here C is a prescribed atmospheric
CO2 concentration, C0 some reference level ðC0 ¼

350 ppmÞ and DF2x ¼ 5:77Wm�2 corresponds to a
specified radiative forcing of 4Wm�2 for a doubling
of CO2; as estimated from calculations with radiative
transfer models (Ramanathan et al., 1987; Hartmann,
1994).

2.4. Series of sensitivity experiments

Usually, the model parameters p ¼ ðp1; . . .Þ would be
adjusted within their uncertainty ranges. In our simple
example, we tuned the climate forcing Q over a wide
range through changing the CO2 concentration between
200 and 560 ppm (Table 1). This range is much larger
than the uncertainty of the radiative transfer scheme,
which has been calibrated against satellite and ship-
board measurements by Fanning and Weaver (1996).

2.5. Evaluation of the objective function

‘Assimilating’ (paleo-) data into the coupled climate
model now means to evaluate the objective function for
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Table 1

List of experiments with atmospheric CO2 concentration, radiative

forcing and equilibrium temperature response (in terms of the global

mean surface-air and ocean temperatures, Ta and To)

Experiment pCO2 (ppm) Q ðWm�2Þ Ta (1C) To (1C)

1 200 �3.23 11.1 3.3

2 280 �1.28 12.9 3.6

3 365 0.24 14.2 4.2

4 450 1.45 15.2 4.6

5 560 2.67 16.2 5.1

Experiment 5 was a transient experiment, initialized with an atmo-

spheric CO2 concentration of 280 ppm. The atmospheric CO2

concentration was increased by 1% per year until the final value of

560 ppm was reached. At this time (i.e., after 70 years of model

integration), the global mean surface-air and ocean temperatures were

Ta ¼ 14:9 1C and To ¼ 3:8 1C.
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discrete values of the selected parameter and search for a
minimum. With our choice of the objective function,
this is equivalent to the ‘least squares method’. To
facilitate the comparison with the more traditional
mapping methods discussed by Schäfer-Neth et al.
(2005), we interpolated the model output as well as the
two test data sets (the unanalyzed WOA SST and
AMIP2 sea-ice concentration) to a 21�21 grid. We
computed two types of RMS errors for SST: The first
one was based on all unanalyzed WOA data and
referred either to the annual mean or the two seasons
JFM and JAS. The second one was determined from the
annual mean of the unanalyzed WOA data restricted to
those 21�21 latitude–longitude grid cells that contained
at least one of the 756 ocean sediment cores from the
MARGO SST database. Furthermore, in presenting or
results, we used the same Hammer equal-area map
projection as in Schäfer-Neth et al. (2005) (cf. Fig. 1).
3. Results

The simulated annual-mean SST for intermediate
atmospheric CO2 concentrations was generally too cold
in the Atlantic Ocean and generally too warm in the
Indian and Pacific Oceans (Fig. 2). Regional positive
anomalies indicate that the Gulf Stream separated from
the coast too far south, and that the water that reached
the surface in the major coastal upwelling areas was too
warm.
The subtropical and subpolar fronts were reproduced

by the coupled climate model, albeit with smaller SST
gradients than observed (not shown). In the 365 ppm
experiment, the North Atlantic Ocean turned out to be
too cold, because the sea ice extended too far equator-
wards (cf. Figs. 3 and 4). This in turn was caused by the
fact that the NADW was formed slightly too far south
(cf. Fig. 5).
For the 365 ppm experiment, the global mean surface-
air temperature (Table 1) was close to present-day
observations (e.g. 13.84 1C according to the NCEP
reanalysis climatology, Kalnay et al., 1996). Comparing
the global mean surface-air temperatures for the 280 and
560 ppm experiments, the equilibrium temperature
response for a doubling of the atmospheric CO2

concentration with respect to preindustrial times was
3.3 1C, which is in the range simulated by more
comprehensive coupled climate models.
With respect to the present-day climatology, too

much sea ice was simulated especially in the Nordic
Seas, but also in the Southern Ocean (Figs. 3 and 4). The
sea-ice concentration in the 200 ppm experiment as
compared to the 365 ppm experiment showed a large
expansion during Northern Hemisphere winter down to
501N (Fig. 3). In contrast, there was still an ice-free
region off southern Norway during Northern Hemi-
sphere summer (Fig. 4). In both cases, the simulated sea-
ice margins roughly corresponded to the GLAMAP
reconstruction (Gersonde et al., 2003; Paul and Schäfer-
Neth, 2003; Sarnthein et al., 2003b). During Southern
Hemisphere winter, sea ice vastly expanded in the Drake
Passage and Atlantic and the Indian sectors of the
Southern Ocean.
Fig. 5 shows the MOC in the Atlantic Ocean for

LGM and modern atmospheric CO2 concentrations.
The deep circulation is represented by two cells with
centers at 1500 and 3500m depth (in the 200 ppm
experiment) and 1500 and 4000m depth (in the 365 ppm
experiment). In the 200 ppm experiment, the formation
of North Atlantic Deep Water (NADW) takes place in
two latitude bands between 40–501N and 60–701N,
and the outflow of NADW to the Southern Ocean
is 2 Sv ð1 Sv ¼ 1� 106 m3 s�1Þ: In contrast, in the
365 ppm experiment, the formation of NADW is
concentrated in the 60–701N latitude band and the
outflow of NADW to the Southern Ocean is 12 Sv. The
cooling of the tropical SST in the 200 ppm experiment
with respect to the 365 ppm experiment amounts to
about 3 1C (not shown).
The RMS annual-mean error of SST as a function of

latitude for the global ocean was generally smallest for
the 365 ppm experiment (left column in Fig. 6), in
accordance with the global area-weighted RMS annual-
mean errors (cf. Table 2, which can be directly
compared to the results presented by Schäfer-Neth et
al., 2005). However, in the Atlantic Ocean, the RMS
error was smaller for the 450 ppm experiment than for
the 365 ppm experiment, while in the Pacific and Indian
Oceans, the 280 ppm experiment performed best. The
same basic pattern was born out by the unanalyzed
WOA data restricted to the MARGO core locations
(Table 3 and right column in Fig. 6).
The RMS seasonal SST errors were also generally

smallest for the 365 ppm experiment (Table 4). With
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Fig. 2. Difference between the sea-surface temperature as simulated by the UVic coupled climate model for different concentrations of atmospheric

CO2 (all other boundary conditions were unchanged) and the unanalyzed annual-mean WOA (1998) 10m temperature shown in Fig. 1, in units of

1C. Top: 280 ppm. Center: 365 ppm. Bottom: 450 ppm.
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Fig. 3. Simulated sea-ice concentration for JFM (January–February–March) for two different concentrations of atmospheric CO2; but otherwise
unchanged boundary conditions. Left: 200 ppm (value appropriate for the LGM). The thick black lines indicate the sea-ice boundary based on the

CLIMAP and GLAMAP reconstructions (Gersonde et al., 2003; Paul and Schäfer-Neth, 2003; Sarnthein et al., 2003b). Right: 365 ppm (present-day

value). In the Northern Hemisphere, the thick black line indicates the 50% contour of the AMIP 2 observed climatology for the period of 1979–2001

(Taylor et al., 2000). A 50% contour was used by Sarnthein et al. (2003b) for calibrating their method of reconstructing past sea-ice extent. In the

Southern Hemisphere, the thick black line is the 15% contour of the AMIP 2 climatology. A 15% contour is commonly used for indicating present-

day sea-ice extent. The polar stereographic map projection (also used in Fig. 4) extends to 401N in the Northern Hemisphere and 401S in the

Southern Hemisphere, and the line interval of the geographical grid is 301.
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Fig. 4. Simulated sea-ice concentration for JAS (July–August–September) for two different concentrations of atmospheric CO2; but otherwise
unchanged boundary conditions. Left: 200 ppm (value appropriate for the LGM). Right: 365 ppm (present-day value). The thick black lines have a

similar meaning as in Fig. 3.
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Fig. 5. Vertical meridional overturning streamfunction as simulated by the UVic coupled climate model for two different concentrations of

atmospheric CO2; but otherwise unchanged boundary conditions, in units of Sv ð1Sv ¼ 1� 106 m3 s�1Þ: Left: 200 ppm. Right: 365 ppm.
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respect to sea-ice concentration, the RMS seasonal
errors tended to be smaller for the 450 ppm experiment
than for the 365 ppm experiment, which reflects that
too much sea ice was simulated in the 365 ppm
experiment (cf. Figs. 3 and 4). The objective function
still attained its minimum value for the 365 ppm
experiment (Table 4).
4. Discussion

4.1. Optimum fit

The explicit use of an objective function allowed for a
concise measure of the misfit to the target. Accordingly,
the 365 ppm experiment showed the best agreement with
the present-day test data (Table 4). This did not come as
a surprise, because during their development all climate
models are carefully tuned to the present-day climate.
However, we note that a higher weighting of the sea-ice
concentration data relative to the SST data could
produce a smaller value of the objective function for
the 450 ppm experiment than for the 365 ppm experi-
ment. This shows the sensitivity of the objective function
(Eq. (1)) to the choice of the weighting factors (Eq. (2)).
Furthermore, in the 365 ppm experiment the RMS

annual-mean SST error reached its minimum value
because of a balanced representation of the Atlantic and
Indo-Pacific Oceans (‘harmony of errors’, cf. Table 2
and Fig. 2). The RMS error also concealed large
anomalies in regions such as the northern North
Atlantic or North Pacific Oceans that are important
for deep water formation (Figs. 2 and 6c–f). We could
possibly circumvent this problem by choosing a ‘mini-
max’ objective function, which would force any mini-
mization procedure to focus on regions with largest
data–model discrepancies (LeGrand and Alverson,
2001).
The pre-industrial CO2 concentration (280 ppm) gave

already a noticeably larger deviation from the present-
day observations than the 365 ppm experiment, in terms
of the objective function as well as the RMS annual-
mean SST error; similarly, the 450 ppm experiment.
Table 3 shows that we would arrive at the same
conclusion if we had to rely on the WOA (1998) data
at the MARGO core locations only.

4.2. Comparison to classical mapping methods

Compared to mapping SST data from a density of
points given by the location of the MARGO cores using
classical methods such as kriging or objective analysis
(Schäfer-Neth et al., 2005), the coupled climate model
was able to ‘reconstruct the modern ocean surface’ with
an only slightly lower accuracy (the RMS annual-mean
error with respect to all available unanalyzed WOA data
is 2.04 1C as compared to 1.22 1C for variogram
analysis/kriging and 1.56 1C for objective analysis).
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Fig. 6. Zonal-mean distribution of the RMS annual-mean difference between the sea-surface temperature as simulated by the UVic coupled climate

model for different concentrations of atmospheric CO2 (280, 365 and 450 ppm) and the unanalyzed 10m temperature of the World Ocean Atlas

(WOA, 1998), in units of 1C, for the global ocean as well as the Pacific, Atlantic and Indian Oceans. Left column: With respect to all available

unanalyzed WOA data. Right column: With respect to the unanalyzed WOA data at the MARGO core locations only.
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Furthermore, the ‘reconstructed’ sea-surface condi-
tions are consistent with the fundamental equations of
the coupled climate model. Spatial and temporal
correlations of the different regions are implicit in these
equations. At the chosen resolution of the ocean model,
information on ocean currents is exploited and frontal
systems are preserved. As an advantage of a coupled
climate model (also as compared to an ocean-only
model subject to restoring boundary conditions) the sea-
ice distribution can be simulated and compared to an
independent set of observations. This enabled us to add
sea-ice concentration to the objective function.
In addition, there is no need for a sophisticated

gridding and mapping of the proxy data at the core
locations for other uses than displaying or comparing it.
In particular, it is not necessary to extrapolate the proxy
data into areas where no sediment cores can be taken,
e.g., areas covered by sea ice today, or to make
assumptions about seasons during which there is only
very little plankton growth and no significant imprint on
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Table 2

RMS annual-mean SST differences between the simulated and observed fields at all WOA (1998) unanalyzed data locations (binned into

21 longitude/latitude squares)

Ocean Atmospheric CO2 concentration (ppm)

200 280 365 450 560

Atlantic 4.29 2.89 2.18 1.83 1.78

Pacific 2.26 1.72 1.85 2.32 2.95

Indian 2.24 1.96 2.23 2.66 3.20

Mediterranean 6.20 4.16 3.10 2.32 1.56

Global 2.97 2.17 2.04 2.28 2.73

Table 3

RMS annual-mean SST differences between the simulated and observed fields restricted to those 21� 21 latitude–longitude grid cells that contained

at least one ocean sediment core from the MARGO SST database

Ocean Atmospheric CO2 concentration (ppm)

200 280 365 450 560

Atlantic 4.63 2.98 2.34 2.10 2.10

Pacific 1.91 1.55 1.93 2.51 3.20

Indian 2.48 2.07 2.25 2.64 3.16

Mediterranean 6.19 4.10 3.03 2.25 1.48

Global 3.55 2.46 2.24 2.39 2.75

Table 4

Hemispheric RMS seasonal errors (model–data) and seasonal contrasts (model only)

Variable Hemisphere Season Atmospheric CO2 concentration (ppm)

200 280 365 450 560

Sea-surface temperature NH JFM 4.13 2.97 2.67 2.72 3.01

JAS 3.77 2.69 2.64 2.77 3.25

Model contrast 4.85 4.92 4.90 4.99 4.97

SH JFM 2.02 1.87 2.22 2.71 3.27

JAS 2.81 2.20 2.01 2.20 2.70

Model contrast 4.32 4.34 4.35 4.27 4.17

Sea-ice concentration NH JFM 0.21 0.15 0.14 0.13 0.13

JAS 0.15 0.13 0.12 0.12 0.12

Model contrast 0.19 0.18 0.20 0.21 0.18

SH JFM 0.11 0.12 0.07 0.07 0.07

JAS 0.26 0.24 0.19 0.14 0.14

Model contrast 0.32 0.31 0.28 0.24 0.21

Objective function 2.27 1.35 1.24 1.41 1.90

Here ‘NH’ stands for ‘Northern Hemisphere’ and ‘SH’ for ‘Southern Hemisphere’. The value of the objective function is the sum of the individual

RMS seasonal differences, each normalized by the corresponding RMS seasonal contrast of the 365 ppm experiment and squared. The components

related to sea-ice concentration are further weighted by the ratio of the area affected by the AMIP 2 sea-ice concentration data and the area covered

by the annual-mean WOA unanalyzed SST data (which is 0.12, see Methods).
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the sedimentary record is left, e.g., winter in the
Southern Ocean. The proxy data is only used where
and when it is available.
Finally, there is no need to force the results of
different proxies into a single map, no matter how
desirable such a map would be for other purposes. The
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results from the different proxies used in MARGO can
be as radically different as those from different coupled
climate models. As an advantage of our strategy, they
can be compared to the model output one at a time,
properly taking into account the different seasons of
plankton growth or varying depth habitats. In this way
the discrepancies among the different proxies can be
addressed and clarified.
A disadvantage of using a coupled climate model for

assimilating proxy data is that it is computationally
much more demanding than classical mapping methods.
Another problem is the ambiguity in minimizing the
objective function, which is hidden in the usual forward
problem. Model errors might compensate: We might
adjust one or a few parameters considered uncertain or
critical to match the paleo-data, while actually other
parameters may be in cause. To distinguish between
multiple solutions, corresponding to multiple sets of
model parameters, ultimately requires the computation
of the joint ‘probability density function’ (PDF) of
parameter values (Hargreaves and Annan, 2002).

4.3. The 200 ppm experiment

In many ways the 200 ppm experiment came surpris-
ingly close to what is commonly expected from an
experiment subject to full LGM boundary conditions.
First, it satisfies ‘a widespread, if not universal, belief
that the LGM circulation was weaker than today’,
which however, has not been firmly established from
plaeotracer data yet (Wunsch, 2003). Second, far from
the direct influence of the ice sheets in the high northern
latitudes, the main cause of glacial cooling must have
been lower levels of atmospheric greenhouse gas
concentrations. With a given climate sensitivity of
4Wm�2 for a doubling of the atmospheric CO2

concentration, the tropical cooling in the UVic coupled
climate model turned out to be 3 1C, which is in
accordance with evidence from planktic fauna and flora
as well as oxygen isotope measurements (e.g., Crowley,
2000; Schäfer-Neth and Paul, 2004). Third, sea-ice cover
vastly expanded, but the Nordic Seas were partly ice-
free during summer (Sarnthein et al., 2003b).
The severe reduction of the MOC in the 200 ppm

experiment as compared to the 365 ppm experiment is
the result of a change in the subtle balance of thermal
and haline buoyancy forcing in the Atlantic Ocean.
According to the analysis by Schmittner et al. (2002),
changes in the atmospheric hydrologic cycle dominate
changes in the surface heat flux. We found that these
changes caused a reduced convection intensity, de-
creased SST and reduced evaporation in the North
Atlantic Ocean, which in a positive feedback loop led to
a further reduction of the MOC. As a result, south of
651N, evaporation decreased much more than precipita-
tion, which is reflected in the meridional gradients of
sea-surface density (Paul and Schäfer-Neth, 2003) and
depth-integrated steric height (Schmittner et al., 2002).
To determine absolute LGM circulation rates, addi-

tional proxy data is required. Passive, steady-state tracer
data alone (such as d13C) do not suffice, but must be
coupled with a ‘clock’ (LeGrand and Wunsch, 1995).
This could be provided by a reconstruction of the LGM
density field with accuracy and spatial sampling
adequate to infer the paleo-geostrophic shear (Lynch-
Stieglitz et al., 1999), or with well-distributed measure-
ments of a radioactive tracer such as 14C (Meissner et
al., 2003) or the 231Pa/230Th ratio (Yu et al., 1996;
Marchal et al., 2000). The absolute strength and
associated stability of the glacial circulation are im-
portant because they set the stage for understanding
rapid climate changes such as the Dansgaard–Oeschger
or Heinrich events.
5. Outlook

Regarding the ‘assimilation’ of real proxy data, our
objective function could be adapted to compare the
different MARGO SST proxies to the model output one
at a time, properly taking into account the different
seasons of plankton growth or varying depth habitats.
Instead of the observed sea-ice concentration, we could
use the reconstructed sea-ice extent for average LGM
winter and summer conditions, as depicted in Figs. 3
and 4. By including an isotopic cycle into the UVic
coupled climate model, simulating the oxygen isotope
ratios d18Ow and d18Oc and comparing the outcome to
the MARGO d18Oc reconstruction, we could even
exploit the information on the LGM density field that
is implicit in the oxygen isotope data (see Discussion).
Ideally, we would aim for a good fit to the LGM as well
as the present-day data.
The next step would be to extend our method to more

than one model parameter, choose a grid of discrete
values and search on this grid for a minimum of the
objective function. We would select a restricted number
of model parameters which are either poorly known or
may affect the results significantly (Jentsch, 1991).
Parameters related to radiation (e.g., the planetary and
atmospheric emissivities, scattering coefficients and
planetary albedo, cf. Fanning and Weaver (1996))
dominate the globally averaged climate, while para-
meters related to dynamics (the coefficients of horizontal
diffusion and advection in the atmosphere, the hor-
izontal and vertical diffusion coefficients in the ocean)
are mainly important for the redistribution of heat and
moisture, and hence the climatic gradients (Jentsch,
1991).
The manual search for the optimum fit could in

principle be automated by using inverse methods such
as, e.g., nudging, a Kalman filter or the adjoint method
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(Wunsch, 1996). Recent examples for the application of
inverse methods to paleoceanographic problems are
given by Winguth et al. (1999, inverse physical-
biogeochemical ocean model), LeGrand and Alverson
(2001, inverse ocean box model), Wunsch (2003, inverse
dynamical ocean model) and Grieger and Niebler (2003,
semi-inverse ocean model).
Each of these inverse methods has its own strengths

and weaknesses, e.g., nudging a climate model to data
violates such general principles as the conservation of
heat and salt, whereas the adjoint method requires
finding the inverse (‘adjoint’) of a complex forward
model, which is an extremely tedious and time-consum-
ing task.
Furthermore, a coupled climate model is nonlinear by

nature, and the objective function needs no longer have
a unique minimum, but ‘may come to resemble a chaotic
function’ with many nearby, or distant, minima, and
‘hills, plateaus, and valleys’ inbetween (Wunsch, 1996, p.
386). These multiple minima produce predictions that
come all very close to the target observations.
A method that overcomes such problems is the Monte

Carlo Markov Chain method (Hargreaves and Annan,
2002) based on a Bayesian approach to parameter
estimation and the Metropolis-Hastings algorithm. It
does not require finding the adjoint and yields the
solution to the inverse problem in terms of an estimate
for the joint posterior probability density function
(PDF), instead of an unique optimum solution. How-
ever, at present, this method can only be applied to very
efficient climate models. To sample the PDF of the
model parameter space of the UVic coupled climate
model in its standard form would go beyond the
presently available computational resources and require
to severely degrade its horizontal and vertical resolution.
6. Conclusion

We addressed the question whether or not a global
SST field can be reconstructed from data available at the
MARGO core locations. In response to this question,
we found that
(1)
 combining a forward model like the UVic coupled
climate model and the use of an objective function
quantifies the misfit to the target data in a concise
manner,
(2)
 the sparse MARGO data coverage is indeed
sufficient to determine the optimum fit,
(3)
 the accuracy is comparable to that of classical
mapping methods such as kriging or objective
analysis.
The strategy of ‘assimilating’ sparse proxy data (e.g., the
MARGO SST reconstruction) into a coupled climate
model is free from many restrictions imposed on
classical mapping methods by limited sampling density.
Finally, we note that our 200 ppm experiment came
surprisingly close to what is commonly expected from an
experiment subject to full LGM boundary conditions.
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