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Abstract

During the Last Glacial Maximum, the Earth’s orography and oceanic heat transport contribute to a cooling in the North

Atlantic. By using an atmospheric general circulation model of intermediate complexity, we investigate the sensitivity of the

atmospheric temperature and circulation during glacial climate, focussing on the impact of the orography and different oceanic heat

transports. The results show a strong dependence of the glacial Northern Hemisphere circulation pattern to the changed orography.

The blocking effect of the elevated orography due to the Laurentide Ice Sheet over the North American continent forced a deflection

of westerlies, their enhancement and a southward displacement over the Atlantic. Independently, the glacial climate is influenced by

the oceanic heat transport. The reduced oceanic heat transport on the glacial climate shows a 20–40% contribution for the total

cooling relative to the present-day climate in the North Atlantic and polar regions. Finally, we find that the altered orography in the

Northern Hemisphere and different oceanic heat transports result in a changed hydrological cycle, a reduction of the Hadley

circulation and a southward shift of the Intertropical Convergence Zone in the boreal winter during glacial times.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The Last Glacial Maximum (LGM) at about 21,000
years B.P. is the period when the most recent glaciation
cycle was at its peak. This period is well captured by
marine sediment cores, terrestrial climate records and
ice-core data (e.g. Jouzel et al., 1987; Farrera et al.,
1999; Mix et al., 1999; Alley and Clark, 1999; Bard,
1999; Clark et al., 2002). The abundance of LGM data
allows us to reconstruct global sea surface temperature
(SST) fields and the sea-ice margins in the Atlantic
Ocean. However, various SST reconstructions (e.g.
CLIMAP 1981; GLAMAP 2000—German Glacial
e front matter r 2005 Elsevier Ltd. All rights reserved.

ascirev.2005.07.007

ing author. Tel.: +49421 218 7186;

8 7040.

esses: vanya@palmod.uni-bremen.de (V. Romanova),

dkrz.de (G. Lohmann), grosfeld@palmod.uni-

Grosfeld), mbutzin@marum.de (M. Butzin).
Atlantic Ocean Mapping Project; Pflaumann et al.,
2003; Mix et al., 2001; Sarnthein et al., 2003; Paul and
Schäfer-Neth, 2003; Weinelt et al., 1996) differ in the
constructing methodology and in the LGM definitions
for time intervals, but all suppose climatic stability with
maximum glacial sea level low stand.

The CLIMAP (1981) SST and sea-ice reconstruction
is characterized by sea-ice margins in Northern Hemi-
sphere reaching far south and a general cooling of the
surface waters, except for some areas in the tropical
Pacific Ocean, where sea temperatures were higher than
present-day values. An additional reduction of CLI-
MAP SSTs in the tropics (Lohmann and Lorenz, 2000)
can provide for consistency with more actual paleo-data
(Farrera et al., 1999) and snow lines (Lorenz and
Lohmann, 2004). The CLIMAP (1981) reconstruction
with applied additional tropical cooling at the surface
boundary of an ocean model provokes weakening of the
overturning circulation (Prange et al., 2002; Knorr and
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Lohmann, 2003). However, some new reconstructions
give evidence for substantially reduced sea ice coverage
with vast ice-free areas in the Nordic Seas (Weinelt et al.,
1996; de Vernal and Hillaire-Marcel, 2000; Sarnthein et
al., 2003; Paul and Schäfer-Neth, 2003). The GLAMAP
2000 (Pflaumann et al., 2003; Sarnthein et al., 2003; Paul
and Schäfer-Neth, 2003) and Weinelt et al. (1996) SST
reconstructions, taken as boundary conditions to an
ocean general circulation model (OGCM), provoke even
more intense overturning strength compared to the
present-day simulation (Romanova et al., 2004; Prange
et al., 2004), which maintains the warm temperatures in
the Nordic Seas. To examine the atmospheric response
to different oceanic background conditions, we use the
corresponding heat transports, as obtained from an
OGCM integrated under LGM conditions, to force an
atmospheric general circulation model (AGCM).

During the LGM the orography over North Amer-
ican and European continents was altered due to the
highly elevated Laurentide, Fennoscandian and Barents
Sea Ice Sheets. Along with the modified thermal forcing,
the changed orography over North America can
strongly influence the atmospheric circulation causing
splitting of the zonal flow and its deviation from the
present-day circulation (Kutzbach and Wright, 1985;
Manabe and Broccoli, 1985; Broccoli, 2000). As well,
the blocked entrance of the Barents Sea and the build-up
of continental ice on the Barents Sea shelf during LGM
can influence the hydrological cycle over northwest
Europe and have a significant impact over North
Atlantic Ocean (Pflaumann et al., 2003).

The relative importance of thermal and orographic
forcing upon dependence of the strength of zonal mean
flow upon the extratropical stationary wave field has
been investigated by several authors. Using an AGCM,
Nigam et al. (1987) found that the orographical factor
has two times greater influence than the heating factor in
the upper troposphere, and that their contributions are
equal for the lower troposphere. Other authors (Valdes
and Hoskins, 1989; Chen, 2000) found predominance of
the thermal factor for maintaining the extratropical
stationary wave structure in the lower troposphere. Held
and Ting (1990) pointed out that the dominance of each
factor depends mainly on the strength of the low-level
mid-latitude westerlies. Using a coupled atmosphere-
ocean climate model, Kim (2004) investigated the effect
of the ice sheet topography and the change of CO2

concentration on the LGM climate. He found that
climate cooling of the LGM is more than half that due
to the reduction of the atmospheric CO2.

This study, therefore, provides LGM simulations
forced with oceanic heat transports, based on different
glacial reconstructions, and concentrates on the sensi-
tivity of the atmospheric circulation system to: (i)
different thermal forcing conditions; (ii) large-scale
orographic obstacles such as the Laurentide Ice Sheet
over North American continent; and (iii) the glacial
atmospheric CO2 reduction. Its objective aim is to
deconstruct the effects of orographically and thermally
induced responses and to assess the significance of each
factor for the modified flow regime compared to the
present-day conditions. The paper is organized as
follows: the second section gives a description of the
methodology and the experimental set-up, and the third
section shows the results. The results are discussed in
Section 4, and the conclusions are given in Section 5.
2. Methodology

2.1. Boundary conditions

The present-day simulation is forced with SST and ice
compactness taken from the Atmospheric Model Inter-
comparison Project (AMIP) (Phillips et al., 1995). The
temperature fields represent climatological averages for
the time period from 1979 to 1994. The CLIMAP (1981)
SST and sea-ice extent reconstruction for the LGM,
based on foraminiferal assemblages, is taken as a
boundary condition for simulating glacial conditions.
The validity of CLIMAP reconstruction is strongly
discussed, especially in the tropical areas (e.g. Farrera et
al., 1999; Mix et al., 1999; Bard, 1999) indicating too
warm SSTs. Hence, one experiment is carried out forced
with CLIMAP (1981) SSTs but additional cooling of
3 1C in the tropics. This experiment aims to reduce the
temperature discrepancies between marine and terres-
trial proxy data for the LGM. The new reconstruction,
GLAMAP 2000, provides SSTs and sea-ice margins for
another boundary condition. In this reconstruction, the
winter sea ice extent is similar to the CLIMAP summer
sea ice margin and the Nordic Seas are ice-free during
summer months. The average surface temperature in the
Atlantic Ocean is by 0.7 1C higher than in the CLIMAP
reconstruction.

The glacial runs use glacial orography, land-sea and
glacier masks (Peltier, 1994). The CO2 concentration is
fixed to 360 ppm for the present-day experiment and is
reduced to 200 ppm for the glacial run according to
observational values (e.g. Barnola et al., 1987; Keeling
et al., 1996). The Earth’s obliquity, orbital eccentricity
and vernal equinox mean longitude of perihelion for the
present day and glacial runs are taken for the years
2,000 year A.D. and 21,000 year B.P., respectively, and
are calculated according to Berger (1978).

2.2. Ocean circulation model

The above mentioned SSTs and sea-ice cover are
applied to the AGCM ECHAM3/T42 (Roeckner et al.,
1992; Lohmann and Lorenz, 2000). The resulting
monthly averaged surface air temperatures, surface
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freshwater fluxes and wind stresses serve as forcing fields
for the OGCM Large Scale Geostrophic (LSG), (Maier-
Reimer et al., 1993). The ocean model integrates the
momentum equations, including all terms except the
nonlinear advection of momentum. It has a horizontal
resolution of 3.51� 3.51 and 11 vertical levels. The
advection scheme for the temperature and salinity is a
third-order QUICK scheme (Leonard, 1979; Schäfer-
Neth and Paul, 2001; Prange et al., 2003). Vertical
diffusivity is explicitly prescribed ranging from
0.3 cm�2 s�1 at the surface up to 3.2 cm�2 s�1 in the
abyssal ocean, as obtained from simulations of oceanic
radiocarbon (Butzin et al., 2003). A heat flux para-
meterization is applied, which allows for scale selective
damping of surface temperature anomalies (Prange et
al., 2003) and the free evolution of the SSS (sea surface
salinity). The model includes a parameterization of
overflow. The glacial sea level is reduced by 120m, the
Bering Strait is closed and the Barents Sea is ice covered,
leading to a blocking of the ocean currents in these
regions. The equilibrium states are obtained after 5500
years of model integration, initialized with present-day
conditions and with an additional global salinity
increase of 1 psu. The 10 years monthly averaged SST
fields, as simulated by the ocean model, are applied to
the bottom boundary of the AGCM PUMA.

2.3. Atmospheric circulation model

The atmospheric model used in the present study is
Portable University Model of Atmosphere (PUMA)
developed at the University of Hamburg (Fraedrich et
al., 1998; Lunkeit et al., 1998). The dynamical core of
PUMA is based on the multi-layer spectral model
proposed by Hoskins and Simmons (1975). It integrates
the primitive equations formulated in terms of the
vertical component of the absolute vorticity, the
horizontal divergence, the temperature, the logarithm
of the surface pressure and the specific humidity. The
equations are solved using the spectral transform
method (Orszag, 1970; Eliasen et al., 1970). The
calculations are evaluated on a longitude/latitude T21
grid of 64 by 32 points, which corresponds approxi-
mately to 5.61 in Gaussian coordinates. Five equally
spaced, terrain-following sigma levels are used in the
vertical direction. The surface fluxes of moisture, heat
and momentum are calculated with bulk formulas.
Parameterizations for the land and soil temperatures,
soil hydrology and river runoff are implemented in the
model.

PUMA is classified as a model of intermediate
complexity (Claussen et al., 2002) and it is designed to
be comparable with comprehensive AGCMs like EC-
HAM (Roeckner et al., 1992). Previously, it was used
for evaluation of stormtracks and baroclinic life cycles
(e.g. Frisius et al., 1998; Franzke et al., 2000) for
investigating the atmospheric response during deglacia-
tion (Knorr et al., 2005), and it is shown that the results
are comparable to other AGCM simulations (Grosfeld
et al., 2005, pers. comm.).

The AGCM is coupled to a mixed layer (slab) ocean
model. The mixed-layer temperature Tmix is calculated
following the equation:

dTmix

dt
¼

Qatm þQocean

rwcrw
hmix

, (1)

where rw and crw are the water density and the heat
capacity, respectively. The mixed layer depth hmix is
fixed at 50m. The atmospheric heat flux Qatm is the sum
of the net short-wave and long-wave radiative energy
fluxes, the sensible heat flux and the latent heat flux due
to evaporation. The oceanic heat flux Qocean is monthly
prescribed in the experimental set-up. The coupled
system, forced with prescribed oceanic heat transport,
allows prediction of the sea surface temperature. A
simple thermodynamic sea ice model is implemented
into the system.

2.4. Experimental set-up

To simulate the atmospheric present-day and glacial
conditions, we perform numerical experiments using at
first the PUMA with prescribed SSTs and sea-ice extend.
The equilibrium states are obtained after 50 years
integration. The present-day experiment using initially
the AMIP forcing is denoted with AMIP, and the
glacial simulations are indicated with: CLIMAP for the
simulation with CLIMAP forcing; CLIMAPc for the
simulation with CLIMAP and additional tropical cool-
ing; and GLAMAP for the experiment with GLAMAP
2000 boundary conditions (Table 1).

To calculate the surface heat fluxes Qatm, monthly
averages over the last ten modeled years from the
experiments with prescribed surface boundary condi-
tions are estimated. These fluxes are applied to the
mixed layer ocean model. The heat flux from AMIP is
used for five coupled experiments (Table 1): a present-
day experiment (hereafter called the control run); two
glacial experiments with orography given by Peltier
(1994), the first one with CO2 equal to 200 ppm
(Lau_200) and the second CO2 equal to 360 ppm
(Lau_360); and two experiments with implemented half
height of the Laurentide Ice Sheet with 200 ppm
(halfLau_200) and 360 ppm (halfLau_360) CO2. To
visualize the different orography used to force the
sensitivity experiments as represented in the model grid,
the surface geopotentials for the present-day, the half of
the height and the full height of the Laurentide Ice Sheet
are shown in Fig. 1. The difference of the corresponding
atmospheric patterns gives the isolated effect of the
changed orographic forcing and the effect of changed
atmospheric carbon dioxide concentration. The next
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Table 1

Overview of numerical experiments and their set-up

Prescribed surface temperatures Set-up CO2

(ppm)

Orbital

parameters

Orography Abbreviation

AMIP PD 360 2000 y A.D. Present-day AMIP

CLIMAP LGM 200 21,000 y B.P. Peltier (1994) CLIMAP

CLIMAP with tropical cooling LGM 200 21,000 y B.P. Peltier (1994) CLIMAPc

GLAMAP 2000 LGM 200 21,000 y B.P. Peltier (1994) GLAMAP

AGCM+ML experiments with prescribed heat fluxes

10 years averaged surface heat fluxes from exp. AMIP PD 360 Present-day control

LGM 200 21,000 y B.P. Peltier (1994) Lau_200

Sensitivity exp. 360 21,000 y B.P. Peltier (1994) Lau_360

LGM 200 21,000 y B.P. 1/2 Laurentide Ice Sheet halfLau_200

Sensitivity exp. 360 21,000 y B.P. 1/2 Laurentide Ice Sheet halfLau_360

10 years averaged surface heat fluxes from exp. CLIMAP LGM 200 21,000 y B.P. Peltier (1994) LGM_CL

10 years averaged surface heat fluxes from exp. CLIMAPc LGM 200 21,000 y B.P. Peltier (1994) LGM_CLc

10 years averaged surface heat fluxes from exp. GLAMAP LGM 200 21,000 y B.P. Peltier (1994) LGM_GL

Fig. 1. Surface geopotential (m2 s�2) for: (a) the control run; (b) the exp. with half of the height of the Laurentide Ice Sheet; (c) the exp. with full

height of the Laurentide Ice Sheet.

V. Romanova et al. / Quaternary Science Reviews 25 (2006) 832–845 835
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three experiments (LGM_CL, LGM_CLc and
LGM_GL) represent the glacial set-up, using heat fluxes
taken from the glacial experiments with prescribed
sea surface temperatures CLIMAP, CLIMAPc and
GLAMAP, respectively. The latter climatological
means, obtained through different thermal forcing,
extract the effect of the different oceanic heating on
the atmospheric circulation systems.
3. Results

3.1. The North Atlantic meridional overturning and the

oceanic heat transport

The overturning circulations in the Atlantic Ocean as
simulated with the OGCM LSG for the present-day
simulation and the glacial experiments are shown in
Fig. 2. The maximum transport of the overturning cell is
strongest for the present-day ocean and equal to 20 Sv
ð1 Sv ¼ 1� 106 m3 s�1Þ. The meridional overturning for
the glacial experiments depends on the glacial recon-
struction used as a boundary condition. The experi-
Fig. 2. Atlantic meridional overturning stream function for experiments (

reconstruction ðLGM_CLÞ; (c) LGM exp. forced with the CLIMAP reconstr

LGM exp. forced with the GLAMAP 2000 reconstruction ðLGM_GLÞ. Uni
ments forced with CLIMAP and GLAMAP 2000
reconstructions yield maximum overturning rates of
about 18 Sv. These experiments differ in the location of
the NADW (North Atlantic Deep Water) formation
(Fig. 2b and d). The Nordic Seas are ice-free for the
summer months in the GLAMAP 2000 reconstruction,
which allows NADW to be formed further to the north
(Fig. 2d). The experiment forced with the coldest
boundary conditions—CLIMAP with additionally ap-
plied cooling in the tropics—gives 50% (around 10 Sv)
reduction of the North Atlantic maximum overturn-
ing strength compared to the present-day simulation
(Fig. 2c).

Along with the overturning rates, the meridional heat
transports in the Atlantic basin differ in the four
experiments. At 301N, the oceanic heat transport is
0.5 PW ð1 PW ¼ 1015 WÞ for the experiment performed
with the coldest SST (CLIMAPc). The experiment
forced with the original CLIMAP reconstruction
(Fig. 2b) has a meridional heat transport of 0.8 PW.
The highest value is represented by the glacial experi-
ment forced with GLAMAP 2000 at 0.9 PW. All glacial
runs possess reduced heat transports compared to the
a) present-day simulation; (b) LGM exp. forced with the CLIMAP

uction with additionally applied tropical cooling ðLGM_CLcÞ; and (d)

ts are in Sv ð1 Sv ¼ 1� 106 m3 s�1Þ.
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present-day simulation (1.0 PW). The divergences of
these oceanic heat transports, represented as Qocean, are
taken as basis of the atmospheric simulations.

3.2. Surface air temperatures (SAT)

3.2.1. Mixed layer experiments versus prescribed SST

experiments

Global mean surface air temperatures for the simula-
tions with prescribed SSTs and for the experiments
performed with a coupled mixed-layer ocean are shown
in Fig. 3. Lowering of global temperatures (of around
1 1C) is found for the model runs performed with the
coupled model, compared to the experiments forced
with prescribed SSTs. The spatial surface temperature
patterns and the surface heat fluxes for the experiments
with prescribed SST are very similar to the respective
ones performed with the mixed layer ocean (not shown).
Since the discrepancies in the SSTs are small, we
presume that the slab ocean representation yields an
adequate heat balance to assure a stable climatological
forcing. In the further discussion, we therefore consider
only the experiments performed with PUMA coupled to
a mixed layer ocean. The global surface temperature
lowering as a result of the reduction of CO2 from the
present-day value of 360 ppm to 200 ppm is around
0.5 1C (Fig. 3, cf. exp.: 1) Lau_360 and Lau_200; and 2)
halfLau_360 and halfLau_200). A similar reduction
(0.3 1C) of the global surface temperature is provoked
by the change of the orography from half of the height
of the Laurentide Ice Sheet to full height of the
Laurentide Ice Sheet (Fig. 3, cf. exp.: 1) halfLau_360
and Lau_360; and 2) halfLau_200 and Lau_200).

Comparing the SAT of the glacial experiments
(Lau_200, LGM_CL, LGM_CLc and LGM_GL) to
Fig. 3. Annual mean, summer and winter global surface air temperatures

experiments (AMIP, CLIMAP and GLAMAP forced with prescribed SST,

LGM_CLc and LGM_GL performed with PUMA coupled to a slab ocean
the present-day experiment, a global temperature low-
ering is found (Fig. 3), which is a consequence of the
combined effect of the glacial experimental set-up,
orbital parameters, glacial ice sheets, and reduced
CO2. The difference between the glacial experiments in
the SAT values is solely due to the difference in the
oceanic heating. The highest value of the global SAT is
found for experiment Lau_200, forced with a present-
day heat transport but glacial set-up, and the lowest
value for experiment LGM_CLc, forced with the heat
transport resulting from the experiment with CLIMAP
with additional cooling in the tropics ðCLIMAPcÞ.

3.2.2. Comparison of the modeled present-day climate to

data

To validate the present-day simulation we use an
extend SST data set after Kaplan et al. (1981). The data
set represents 145 years of analyzed global SST
anomalies (with regards to normals of 1951–1980) on
a 51� 51 grid. The monthly SST anomalies were added
to the AMIP climatology (Phillips et al., 1995) and the
averaged DJF temperatures are plotted in Fig. 4b. As
the SST spatial pattern of the control run (Fig. 4a) is
similar to the SST pattern over the observational period,
our heat flux forced climate simulation can be taken as
an adequate representation of the present-day climate.
The averaged SST differences between the model and
the observational data are 0.64 1C, 0.07 1C and 0.58 1C
for the Atlantic, Pacific and Indian oceans, respectively.

3.2.3. Spatial temperature differences

The spatial pattern of the SAT differences between
experiments Lau_200, halfLau_200, Lau_360 and half-
Lau_360 and the control run are shown in Fig. 5. Strong
cooling of �16 1C is found over North American
averaged over a period of 25 years of integration for the different

and control, Lau_200, Lau_360, halfLau_200, halfLau_360, LGM_CL,

, Table 1).
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Fig. 4. Sea surface temperature (a) control run (averaged over a period

of 25 years); (b) Kaplan et al. (1998) data set.
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continent, which is provoked only from the half of the
height of the Laurentide Ice Sheet and the ice albedo
(Fig. 5c). Simulating a climate with the full height of the
Laurentide Ice Sheet adds another �4 1C to the North
American cooling (Fig. 5a), thus the temperature is
reduced to �20 1C. The estimates of the SAT anomalies
relative to the present-day climate in different latitudinal
belts (Table 2) show the effect of CO2 reduction which is
comparable to the effect of the elevation increase of the
Laurentide Ice Sheet to its maximum height.

All glacial simulations exhibit strong continental
cooling in the mid-latitudes in the Northern Hemisphere
(for all simulations the values are about: Europe �10 1C,
Siberia �15 1C, North America �20 1C and Greenland
�30 1C; not shown). The differences between the
experiments appear mainly in the tropics. The coldest
experiment LGM_CLc exhibits a decrease of the
tropical zonal mean SAT of around �6 1C compared
to the control run, whereas the experiments LGM_CL
and LGM_GL show a decreases of 3 1C only (Table 2).
The spatial SAT anomalies relative to the glacial
experiment forced with present-day oceanic heat trans-
port (Fig. 6a,c) show positive anomalies of around 1 1C
in the tropical regions for the experiments LGM_CL
and LGM_GL.
3.3. Consequences of different SST forcings on the

atmospheric circulation

The global sea level pressure (SLP) pattern over the
Northern Hemisphere is relatively well captured in the
present-day experiment (control run) (Fig. 7a). The
model simulates the bipolar pressure structure in the
North Atlantic, however, its strength is slightly under-
estimated in the present-day experiment. Its deepening
appears not as strong as the observational data, due to
the coarse model resolution. The Azores High, the
Aleutian Low and the Siberian High are well captured
by the model, giving a reasonable climatology (Fig. 7a).
The glacial SLP distributions in experiments Lau_200
(Fig. 7b), LGM_CLc (Fig. 7d), LGM_CL, and
LGM_GL (both not shown) differ from the present
day pattern due to the higher glacier elevation, affecting
especially the orography over North America. A high-
pressure center is situated over the North American
continent, which is in contrast to present-day condi-
tions. The Icelandic Low is deepened and shifted to the
south-eastern part of the North Atlantic. Thus, the
meridional pressure gradient structure is strengthened
and dislocated from the present-day configuration. A
strong ridge in the sea level isobars is located along the
eastern coast of North America, indicating strong
advection of warm air from the tropics. The high
pressure center over the elevated orography of the
North American continent is located oppositely to the
Siberian High, and the Aleutian Low is situated against
the Icelandic Low pressure. The regular alternation of
the highs and lows under glacial conditions provide a
wavelike structure of the pressure formations, a feature
which is lacking in the present-day climatology. In Fig.
7c, the sea level pressure field is shown for experiment
halfLau_200, experiencing only half of the height of
Laurentide Ice Sheet. The zonal pressure structure in
this case is already disturbed and the anomalous high
isobaric center over the North American continent is
already formed.

The annual mean present-day and glacial surface
wind patterns in the Northern Hemisphere are shown in
Figs. 8a,b. Enhanced westerlies over the Atlantic Ocean
caused by the enhanced strength of the pressure gradient
between Icelandic Low and Azores High are represen-
tative for the simulated glacial set-ups (Fig. 8b for
experiment Lau_200) compared to the control run (Fig.
8a). The atmospheric flow, originating from the Pacific
Ocean, turns to the north and is tending to overpass the
glacier’s orography along with the barotropic vorticity
balance. After entering the American continent, the flow
sets southward in anticyclonic rotation. Over central
North America it turns to a cyclonic circulation and
enters the Atlantic Ocean, where it is strengthened by
the enhanced pressure gradient. The axes of the
westerlies over the Atlantic are oriented in south-
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Table 2

Annual mean surface air temperatures (SAT) anomalies with respect to the control run calculated over different global latitudinal belts and over the

Atlantic and Pacific Oceans

Tropics Mid-latitudes Polar regions

301S–301N (1C) 301N–601N (1C) 601N–901N (1C)

Global Lau_200–control �2.14 �9.20 �18.98

Lau_360–control �0.79 �6.89 �16.93

HalfLau_200–control �1.80 �9.08 �17.54

HalfLau_360–control �0.52 �6.63 �15.33

LGM_CL2control �3.46 �13.55 �24.62

LGM_CLc2control �6.20 �15.14 �26.01

LGM_GL2control �2.69 �11.80 �22.96

Atlantic Lau_200–control �2.17 �8.78 �19.33

Lau_360–control �0.84 �6.89 �17.37

HalfLau_200–control �2.06 �8.45 �17.57

HalfLau_360–control �0.80 �6.59 �16.13

LGM_CL2control �3.59 �13.29 �24.85

LGM_CLc2control �6.18 �14.55 �26.57

LGM_GL2control �3.32 �11.17 �23.14

Pacific Lau_200–control �2.00 �7.69 �11.59

Lau_360–control �0.76 �5.11 �9.35

HalfLau_200–control �1.90 �6.90 �10.94

HalfLau_360–control �0.74 �4.80 �8.50

LGM_CL2control �3.06 �14.04 �18.99

LGM_CLc2control �5.52 �14.65 �19.66

LGM_GL2control �2.08 �11.74 �17.18

Fig. 5. Spatial pattern of the annual mean surface air temperatures anomalies between the experiments: (a) Lau_200–control; (b) Lau_360–control; (c)

halfLau_200–control; (d) halfLau_360–control. (Contour intervals: 1 1C for SAT40 1C; 2 1C for 0 1C4SAT4�4 1C; and 4 1C for �4 1C4SAT.)

V. Romanova et al. / Quaternary Science Reviews 25 (2006) 832–845 839
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Fig. 6. Spatial pattern of annual mean surface air temperatures

anomalies between LGM exp. forced with three different oceanic heat

flux patterns and the LGM exp. forced with present-day heat fluxes: (a)

LGM_CL–Lau_200; (b) LGM_CLc–Lau_200; (c) LGM_GL–Lau_200.

(Contour intervals: 1 1C for SAT40 1C; 2 1C for 0 1C4SAT4�4 1C;
and 4 1C for �4 1C4SAT).
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west–northeast direction and shifted to the south. In the
control run, the axes of the westerlies stay clearly zonal
and are located more to the north.

The surface circulation over North America depends
on the height of the Laurentide Ice Sheet (Fig. 8c, exp.
halfLau_200). The westerlies also divert their trajectories
due to the blocking effect of the orography in
experiment halfLau_200, but not as pronounced as in
the glacial experiments. Their strengthening in the
North Atlantic is in between the present-day and the
glacial one.

3.4. The zonal mean precipitation

To assess different representations of the Hadley
circulation and the Intertropical Convergence Zone
(ITCZ) for the different glacial reconstructions, the
zonal mean precipitation is calculated. The boreal
summer and winter zonal mean precipitation values as
a function of the latitude are shown in Fig. 9a,b. The
region of maximum precipitation in the boreal summer
for the present-day simulation is situated in the North-
ern Hemisphere, while in boreal winter it is located in
the Southern Hemisphere. All the year round it stays
close to the equator. The modeled JJA precipitation is in
a good agreement with the summer climatological
estimates of Jaeger (1976) (Fig. 9b). The winter
precipitation profiles of the control run are consistent
over the Northern Hemisphere and equatorial region
(Fig. 9a), but differ substantially over the Southern
Ocean. The precipitation maximum at 601S could be due
to uncertainties in the measured data and/or it cannot be
reproduced by the model due to its coarse resolution.
Under glacial conditions, more pronounced seasonality
is detected. In the boreal summer the precipitation
maximum has shifted deeper to the north and in boreal
winter deeper to the south. In the temperate latitudes of
the Northern Hemisphere the influence of the Lauren-
tide Ice Sheet is seen, leading to a distinct decrease in
glacial precipitation.
4. Discussion

The different glacial reconstructions provide different
steady states of the ocean circulation with a definite
overturning strength. The forcing ‘CLIMAP with
tropical cooling’ produces a weak Atlantic overturning
circulation relative to that under present-day conditions.
The lowered tropical energy release to the atmosphere,
resulting from the imposed tropical cooling in this
experiment ðLGM_CLcÞ, reduces the capability of the
atmosphere to export heat to the north. Thus, the
atmospheric circulation leads to a uniform cooling of
the globe in experiment LGM_CLc (about 7 1C
compared to control run, Fig. 2), and the weak oceanic
heat transport in the North Atlantic allows the
occurrence of ice formation far to the south. The glacial
simulations LGM_CL and LGM_GL, using the ocea-
nic heat transport generated by the ocean experiments
with a stronger overturning circulation, are associated
with ice-free conditions in the Nordic Seas during
summer. The increase of the SAT mainly in the tropical
Pacific Ocean is an effect of the high tropical tempera-
tures in the CLIMAP and GLAMAP 2000 reconstruc-
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Fig. 7. Annual mean sea level pressure for (a) the control run; (b) Lau_200; (c) halfLau_200 and (d) LGM_CLc experiments. Units are hPa. The

fields are averaged over 25 years of integration.
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tions. The latter is implicitly connected with the
enhanced evaporative conditions and water vapour
export from the Atlantic Ocean (Lohmann and Lorenz,
2000). The composed effect of changed land ice sheets,
oceanic heat transport and hydrology during glacial
times affect the tropics by displacing the ITCZ to the
south, as shown by coupled and uncoupled model
studies (Lohmann, 2003; Chiang et al., 2003). Reduced
zonal mean precipitation in all glacial simulations
prompt for a weaker Hadley circulation and deeper
shifts of the ITCZ towards both sides of the equator
(Fig. 9).

The altered orography during the LGM induces
completely different glacial SLP patterns compared to
present-day. A new high-pressure center is located over
northern North America, which is related to the
elevations of the glaciers and appears to be a robust
feature for the LGM climate. Thus, a stable wavelike
distribution of the SLP is established over the Northern
Hemisphere. This leads to excitation of stationary wave,
as a bifurcation of the flow occurs from a relatively
zonal flow for the present-day to a wavelike structure
under LGM conditions (Cook and Held, 1988). The
westerlies from the Pacific Ocean tend to overpass the
glaciers from the north, which is in agreement to other
model results (e.g., Kutzbach and Wright, 1985;
Manabe and Broccoli, 1985). The splitting of the flow
in the luff side of the Laurentide Ice Sheet, followed by a
southward displacement of a part of the flow, is weakly
represented in our simulations, which is a result of the
low horizontal resolution of the model. Along with the
modified glacial pressure structure in the North Atlan-
tic, the westerlies at the surface are enhanced and
displaced to the south. Simulating LGM with an
AGCM coupled to a mixed layer ocean, Marsiat and
Valdes (1999) found stronger westerlies over the whole
atmospheric column and the highest speed over the
Atlantic ocean.

The flow deflection in the glacial experiments in the
Northern Hemisphere is caused by the diabatic heating
and/or orography and transients. The zonal asymme-
tries in the transient eddy vorticity fluxes play a minor
role in maintaining the climatological stationary eddies
(Held et al., 2002). Therefore, their contribution for the
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Fig. 8. Surface wind field for (a) control run; (b) Lau_200 and (c) halfLau_200 experiments. The fields are averaged over 25 years of integration.

Units are ms�1.
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steady atmospheric state is not considered in this study.
A separation of the thermally induced climatological
changes from the orographically provoked diversion of
the atmospheric flow is carried out through applying
different thermal boundary conditions to the mixed
layer model keeping the same orography. The analysis
of the experimental results shows that the thermal
heating, as given through different LGM reconstruc-
tions, could contribute from 17% to 40% for the mid-
latitude and polar cooling (Table 2).

Regarding the orographic influence onto the climate,
experiment halfLau_200, performed with half of the
height of the Laurentide Ice Sheet and the same heat flux
forcing as in experiment Lau_200, shows that the effect
is already large enough to excite a planetary wave and
an anticyclonic formation which is found over the ice
sheet. The temperature over the North American
continent is lowered by 80% relative to the whole
cooling provoked by the ‘full’ height of the Laurentide
Ice Sheet. Therefore, the atmospheric response to the
half of the land boundary conditions is not lowered by
half of the ‘full’ orography, which points to a non-linear
behavior of the climate system relative to orographic
changes.
5. Summary and conclusions

We performed AGCM simulations for present day
and glacial climates using different oceanic background
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Fig. 9. Zonal mean precipitation obtained from the control run and

from the experiments LGM_CL, LGM_CLc and LGM_GL, com-

pared with climatological estimates of Jaeger (1976): (a) for winter and

(b) summer seasons. The fields are averaged over 50 y of integration.

Units are cm/year.
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states and orography. The reference climate is based on
present-day SSTs (Phillips et al., 1995), whereas the
glacial background climate was derived from different
reconstructions based on CLIMAP (1981), CLIMAP
SST with additional cooling in the tropics (Lohmann
and Lorenz, 2000), and the new reconstruction GLA-
MAP 2000 (Sarnthein et al., 1996; Paul and Schäfer-
Neth, 2003). The oceanic heat transports for present-day
and glacial climates are derived from OGCM simula-
tions.

Our experiments aim to systematically analyze the
role of the oceanic heat transport and orography for the
glacial climate. Since coupled models show mutually
inconsistent results (Hewitt et al. 2001; Kitoh et al.,
2001; Shin et al., 2003), our admittedly simplified
approach provides another perspective to understand
the glacial climates.

We find that the elevated North American continent
provokes a more wavelike Northern Hemisphere atmo-
spheric circulation relative to a situation when the
Laurentide Ice Sheet was absent. The situation is not
qualitatively different from a sensitivity experiment
when the height of the Laurentide Ice Sheet was
reduced. In the glacial experiments, the surface flow
over the North Atlantic is enhanced and displaced
southward. This flow characteristics is independent of
the CO2 concentration and appears to be robust for the
glacial climate.

In our first set of experiments, the oceanic heat
transport is fixed to present-day conditions. Along with
the wavelike Northern Hemisphere atmospheric circula-
tion, the equatorial Pacific Ocean is warmed while the
North Atlantic is cooled. Caused by a southward shift of
the thermal equator during glacial times, a southward
shift of the ITCZ is detected for the boreal winter
season. The southward shift of the ITCZ during glacial
times affects the interbasin water vapor transport which
is important for the large-scale THC under glacial and
present day conditions (Lohmann and Lorenz, 2000;
Lohmann, 2003).

Additional to the orographic forcing, significant
changes of the Northern Hemisphere circulation are
induced by the glacial background climate. Assessing,
separately, the relative contribution of the ocean
circulation and the Laurentide Ice Sheet upon the North
Atlantic climate, it is found that the changes of the
orography and albedo caused even only with half height
of the Laurentide Ice Sheet induce strong temperature
changes of about �16 1C, whereas a reduced glacial
ocean circulation with about half of present day strength
induces an additional cooling of about �4 1C, only. We
conclude therefore, that the strength of the oceanic
thermohaline circulation is of secondary importance for
the North Atlantic climate relative to the orography and
albedo effects induced by the Laurentide Ice Sheet.

In our experiments we have neglected feedbacks
connected with the dynamics of the ice sheet and with
asynchronous development of the American, Fennos-
candian, and Barents Sea Ice Sheets. However, the
experiment with half of the height of the Laurentide Ice
Sheet can represent a transient state of the glacial
continental ice cover and the associated atmospheric
reaction. Our study emphasizes the importance of
reconstructing the extent and height of the continental
ice sheets and including dynamical ice sheets in model
experiments, rather than investigating the changes of the
oceanic heat transport.
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