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Alfred Wegener Institute, Bussestrasse 24, D-27570 Bremerhaven

Germany.

1 Introduction

The singular evolutive interpolated Kalman filter (SEIK) as a
variant of the ensemble Kalman filter has been implemented and
tested for application in oceanography assimilating altimetric
data within twin experiments framework. Previous studies sug-
gest that this filter is reasonably well-behaved in the presence of
instability. In the SEIK assimilation algorithm, the analysis error
covariance matrix is approximated by a covariance matrix whose
rank corresponds to the number of ensemble members used for
representing the forecast error covariance. In order to achieve a
computationally efficient algorithm, the rank of this covariance
matrix is often chosen to be small, leading to problems with the
convergence of the filter.

We modified the SEIK algorithm in order to incorporate sta-
tionary covariance. Our goal was the improvement of the perfor-
mance of the SEIK algorithm without increasing the number of
ensemble members, since the evolution of the ensemble members
is the most computationally demanding part of the algorithm.
The performance of our hybrid algorithm has been tested and
compared to the SEIK algorithm as well as to the local SEIK
algorithm using twin experiment set up and a simplified chan-
nel configuration of the Finite Element Ocean Model (FEOM)
developed at the Alfred Wegener Institute (AWI). In the experi-
ments, we deal with flows generated by baroclinic instability. In
this setting, we compare results of the assimilation when only
observations of the sea surface height (SSH) data are present. In
particular, we consider the distribution of the errors with height
in all model fields and this way investigate the filter’s ability to
propagate information from the measurements of SSH to larger
depths.

2 Twin experiment setup

•A reference model run is used as ”true” field for verification
and for the construction of observations.

•Observations at time tk are obtained by adding random Gaus-
sian measurement error with mean zero and standard devia-
tion of 5 cm to the ”true” SSH field at time tk.

•Observations of the SSH are assimilated every 10 days.

• In order to initialize the filter we make a long model run, and
using different model states, we construct the initial covari-
ance and the initial guess. The initial analysis is calculated as
the average over model realizations, and the initial covariance
matrix is then estimated via EOF analysis on that sample as
Pa

0 = V0U0V
T
0 . Here V0 = [v1 . . .vr] is n×r matrix whose

columns are the r eigenvectors vi, i = 1, . . . , r corresponding
to the r largest eigenvalues of the computed covariance matrix
on the sample. The matrix U0 is r × r diagonal matrix with
these r eigenvalues on the diagonal.

• all experiments use r = 15 EOFs.

• In the experiments, we deal with flows generated by baroclinic
instability. We use a simplified channel configuration of the
Finite Element Ocean Model (FEOM) developed at the Alfred
Wegener Institute (AWI).

Left: True SSH (upper panel) and SST fields (lower panel) at
t = 0.

Right: Estimated SSH (upper panel) and SST fields (lower panel)
at t = 0.

Left: True velocity field at t = 200 days.

Right: True temperature field at t = 200 days.

3 Hybrid SEIK Filter Algorithm

Hybrid ensemble variational schemes were developed to incorpo-
rate error covariances estimated from an ensemble into the vari-
ational framework [2]. In theses schemes, the background error
covariance is replaced by a weighted sum of the 3DVAR back-
ground error covariance and the sample ensemble covariance.
We developed a hybrid scheme starting from the SEIK algo-

rithm. In the SEIK algorithm (see [4]), x
f
k is calculated as the

average over the ensemble members xf,i(tk), i = 1, . . . , r + 1

and P
f,SEIK
k as corresponding covariance matrix. From such

calculated x
f
k and P

f,SEIK
k the analysis xa

k is obtained using
formulas:

xa
k = x

f
k + Kk(xo

k −Hkx
f
k),

Kk = Pa
kH

T
k R−1

k . (3.1)

The analysis covariance matrix Pa
k is easily calculated in its re-

duced form from the reduced form of the forecast error covariance
matrix. Such calculated Pa

k is used in (3.1) to calculate the xa
k as

well as for generating new ensemble members. The new ensem-
ble members are redrawn in such a way as to have their mean
equal to xa

k and the covariance equal to Pa
k. Each of the en-

semble members is evolved to the new time step to obtain new
xf,i(tk), i = 1, . . . , r + 1.

In the hybrid algorithm P
f
k is modeled as

P
f
k = αP

f,SEIK
k + (1− α)B, (3.2)

where B = P0 is the covariance matrix that is constant in time
and α is a coefficient between zero and one.
The analysis error covariance matrix P

a,SEIK
k is calculated

again in reduced form from (3.2) and resampling is done from
the covariance given as linear combination

αP
a,SEIK
k + (1− α)B. (3.3)

This procedure provides ensemble analysis states for the next
step of the SEIK filter algorithm.
The performance of this hybrid algorithm has been tested and
compared to the SEIK algorithm, use of constant covariance ma-
trix as well as local SEIK algorithm (see [3]) using twin experi-
ment set up from above.

4 Twin experiment results

Left: True SSH (upper panel) and SST fields (lower panel) at
t = 200 days.

Right: Estimated SSH (upper panel) and SST fields (lower panel)
at t = 200 days (after 20 analysis steps) using hybrid algorithm
with α = 0.8.
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Left: Cross section of true state at t = 200 days and approximately
40o lon. From top to the bottom: Temperature, zonal velocity,
meridional velocity.

Right: Cross section of estimated state at t = 200 days and approx-
imately 40o lon using our hybrid algorithm with α = 0.8.

Finally, we compare four algorithms by calculating the relative
root mean square error at analysis times:

||xt
k − xa

k||2
||xt

k||2
.

Here, xt
k and xa

k are true and analysis fields respectively at the
analysis time tk.
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Upper Left : Relative RMS error of SSH field for constant covariance
matrix, SEIK, local SEIK and our hybrid SEIK algorithm with α =
0.8.

Upper Right: Relative RMS error of zonal velocity field for constant
covariance matrix, SEIK, local SEIK and our hybrid SEIK algorithm
with α = 0.8.

Lower Left : Relative RMS error of meridional velocity field for con-
stant covariance matrix, SEIK, local SEIK and our hybrid algorithm
with α = 0.8.

Lower Right: Relative RMS error of temperature field for constant
covariance matrix, SEIK, local SEIK and our hybrid SEIK algorithm
with α = 0.8.

5 Conclusion

The covariances derived from the ensemble Kalman filter meth-
ods are nonstationary and anisotropic. However, in order to
have good estimation results a large number of ensemble mem-
bers need to be evolved in general. We have modified the SEIK
algorithm in order to incorporate stationary covariance. This
hybrid SEIK filter algorithm performs better than either SEIK
or use of constant error covariance during assimilation. However,
with the same number of ensemble members the accuracy of the
local SEIK is superior to the accuracy of the hybrid algorithm
developed here.
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