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Simple models for complex phenomena

Simulation of complex phenomena in space and time with simple mathe-
matical models

Well-known examples of simple models with complex outcome:

1. Ising model (1D: Ising, 1925; 2D: Onsager, 1944, phase transition)

2. Mandelbrot set: iteration of zn+1 = z2
n + c, c and zn ∈ C

3. Logistic map: xn+1 = rxn (1− xn), xn ∈ IR (May, 976)
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Cellular automata: discrete in space, time, and
state

Characterization of cellular automata (CA):

• CA are regular arrangements of single cells of the same kind.

• Each cell holds a finite number of discrete states.

• The states are updated simultaneously (‘synchronously’) at discrete
time levels.

• The update rules are uniform in space and time.

• The rules for the evolution of a cell depend only on a local neighbor-
hood of cells.
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Cellular automata: history

• Norbert Wiener and Aturo Rosenblueth, The mathematical formula-
tion of the problem of conduction of impulses in a network of con-
nected excitable elements, specifically in cardiac muscle. Arch. Inst.
Cardiol. Mexico, 16, 205-265, 1946.

• Stanislas Ulam (1952, 1962): growth processes.

• John von Neumann further developed CA in order to construct self-
reproducing CA (’the robot that is able to rebuild itself’).

• Konrad Zuse (Rechnender Raum 1969; English translation: Calculat-
ing Space, 1970).

• Early 1970ies Conway: ’Game of Life’: it has the power of a universal
Turing machine: that is, anything that can be computed algorithmi-
cally can be computed within Conway’s Game of Life.

• Wolfram (1983, 1984): systematic investigation of one-dimensional
CA.
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Fredkin’s game

Fredkin’s game is defined on the smallest von Neumann neighborhood
encompassing 4 cells (grey) with two possibles states per cell: dead or
alive, white or black, off or on, 0 or 1.

The rules of Fredkin’s game are simple: for each cell

• count the number of live cells, N, of the 4 neighbors:
N = 0,1,2,3, or 4;

• even or odd: each cell with an even number (0, 2, 4) of live neighbors
will be dead at the next time level and alive otherwise.
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Simulation of fluid flows: top-down
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Simulation of fluid flows: top-down versus bottom up
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Simulation of fluid flows with Lattice-Gas Cellu-
lar Automata (LGCA)

Fluid flow: continuity and Navier-Stokes equations are based on conser-
vation of mass and momentum.

Basic idea of LGCA for fluid dynamics: create an artificial micro-world
that

• is much simpler than the real world,

• possesses built-in conservation laws for mass and momentum (and
nothing else), and

• leads to continuity and Navier-Stokes equations in the ’macroscopic
limit’ (averaging over space).

LGCA (in contrast to CA): split update rule into collision and propaga-
tion.
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Hardy, Pomeau, and de Pazzis (1973, HPP)
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a) before collision
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b) after collision
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c) after propagation
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HPP

• 2D, square lattice

• 4 cells per node

• 4 lattice velocities = vectors that link neighboring lattice nodes

• identical particles with mass m = 1

• momentum = mass * lattice velocity

• succession of collision and propagation

• 1 type of collision only: head-on, conserves mass and momentum

•However: HPP does not lead to Navier-Stokes
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Symmetry of the lattice

HPP fails to yield Navier-Stokes because of ’not enough symmetry’ of the
underlying lattice. 4-fold symmetry of the square lattice is ’too coarse a
resolution with respect to angle’.

Frisch, Hasslacher, and Pomeau (1986, FHP): triangular lattice with 6-fold
symmetry (in 2D) is enough to yield Navier-Stokes.

FHP: 6 (or 7) cells per node; several types of collisions.
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FHP
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Mass and momentum density

Calculate mean occupation numbers, Ni, by averaging over a large num-
ber (32 x 32) of lattice nodes (’coarse graining’):

Ni(t, r) = 〈ni (t, r)〉

where ni (t, r) ∈ {0, 1} is the occupation number of cell i of the node at
location r and at time t.

Mass and momentum density are defined as follows:

ρ(t, r) := ∑
i

Ni(t, r)

j(t, r) := ∑
i

ciNi(t, r)

where the ci are the lattice velocities.
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Figure 1: Simulation with PI-LGCA of a Karman vortex street in 2D at a Reynolds number of 80: flow
past a plate. The figure shows the perturbation of the velocity after 80 000 time steps. The homogeneous
flow field was subtracted to make the eddies clearly visible. The lattice consists of 6400 times 3200 nodes
(Wolf-Gladrow et al., 1991).
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Computational aspects

The state of a single cell can be described by one bit: 0 = empty, 1 = occu-
pied.

32 (or 64) bits can be stored in a single integer variable.

Logical operators (C) or logical functions (FORTRAN) work bitwise on
whole integers.

Collisions can be expressed in terms of logical operations (and, exclusive
or, inclusive or, not).

Propagation can be realized by shifts of bits.

LGCA are well adapted for massive parallel computers because collisions
are local and propagation involves nearest neighbors only.

The LGCA method is numerically stable (no rounding errors).

17 Dieter Wolf-Gladrow: From CA to LBM, 24 September 2008



Desperately seeking a lattice for simulations in
three dimensions

2D: lattice made of plane-filling regular polygons
3D: five regular polytopes: the Platonic solids

No space-filling regular polytope in 3D with sufficient symmetry!

Solution: use face-centered hypercube (FCHC) in 4D and ’project’ back to
3D.

FCHC: 24 lattice velocities⇒ collision rules quite complicated (use look-
up tables instead of logical functions).
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LGCA for fluid dynamics: diseases

disease cause therapy/cure remarks
non-isotropic lattice higher symmetry HPP→ FHP

advection tensor of 4th of lattice
term rank is add inner degree HPP→ PI

non-isotropic of freedom
multi-speed models

violation of Fermi-Dirac rescaling FHP, FCHC, PI
the Galilei distributions (symptomatic
invariance treatment)
spurious regular as many collisions Zanetti

invariants lattices as possible invariants
noise Boolean averaging enormous memory

variables (coarse graining) demand
pressure depends multi-speed Chen et al. 1989

explicitly on models
velocity
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Lattice Boltzmann Models (LBMs)

McNamara and Zanetti (1988) introduced LBM in order to get rid of the
noise in LGCA.

Basic idea: Replace particles with unit mass by packages of particles
with variable mass. Use the same lattices as for LGCA (because same
symmetry constraints apply), use same collision operators as for LGCA,
however, replace the discrete occupation numbers (ni = 0 or 1) by the
mean occupation numbers (Fermi-Dirac distributions). Keep succession
of collision and propagation.

Further developments: Replace Fermi-Dirac distributions by Boltzmann
distributions and simplify the collision operator (BGK approximation).
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Microdynamics of LGCA (ni = 0 or 1):

ni (x + ci∆t, t + ∆t)− ni (x, t) = ∆i(nj)︸ ︷︷ ︸
collisions

Lattice Boltzmann equation with BGK approximation (Fi ≥ 0, real):

Fi (x + ci∆t, t + ∆t)− Fi (x, t) = −1
τ

(
Fi − F(eq)

i

)
= −ω

(
Fi − F(eq)

i

)

BGK approximation (Bhatnagar, Gross, and Krook, 1953; Welander, 1954):
Collisions lead to approach to equilibrium. Replace complicated colli-
sions by simple relaxation of non-equilibrium distributions towards equi-
librium distributions on a time scale τ (non-dimensional; ∆t is hidden in
τ).
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D2Q9 = LBM in 2 dimensions with 9 lattice velocities
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D2Q9

ρ(x, t) = ∑
i

Fi(x, t) mass (1)

j(x, t) = ρ(x, t)v(x, t) = ∑
i

ciFi(x, t) momentum (2)

Distribution functions Fi(x, t) = fluid at rest (Wi > 0) plus small perturba-
tions fi(x, t)

Fi(x, t) = Wi + fi(x, t)

with | fi(x, t)| << Wi.
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D2Q9: derive equilibrium distributions - it’s a
kind of magic

1. step: Fluid at rest distributions Wi are derived from the following con-
straints: moments up to order 4 over the Wi are equal to the correspond-
ing moments over the Boltzmann distribution

wB(v) = ρ0
m

2πkBT
exp

[
−mv2/2kBT

]

The odd moments vanish and the even moments read

∑
i

Wi =
∫

dv wB(v) = ρ0

∑
i

Wiciαciβ =
∫

dv wB(v)vαvβ = ρ0
kBT
m

δαβ

∑
i

Wiciαciβciγciδ =
∫

dv wB(v)vαvβvγvδ

= ρ0

(
kBT
m

)2

(δαβδγδ + δαγδβδ + δαδδβγ).

⇒

W0 =
4
9

ρ0, Wm =
1
9

ρ0 m = 1, 2, 3, 4, Wn =
1

36
ρ0 n = 5, 6, 7, 8
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Maximum entropy principle

2. step: In order to derive the equilibrium distributions F(0)
i one applies

the maximum entropy principle with the entropy relative to the fluid at
rest distributions (Wi)

S(ρ, j) := − k
m ∑

i
F(0)

i (ρ, j) ln
F(0)

i (ρ, j)
Wi

.

and the definition of mass and momentum

ρ(ρ, j) = ∑
i

F(0)
i (ρ, j)

j(ρ, j) = ∑
i

ciF
(0)
i (ρ, j).

as constraints.

Maximize entropy ... after some calculus and algebra ...

F(0)
i (ρ, j) =

Wi

ρ0

{
ρ +

m
kBT

ci · j +
m

2ρkBT

[
m

kBT
(ci · j)2− j2

]}
. (3)

25 Dieter Wolf-Gladrow: From CA to LBM, 24 September 2008



LBM algorithm

The algorithm proceeds as follows:

1. Initial values of ρ(x, t) and j(x, t)⇒ F(0)
i (ρ(x, t), j(x, t)); set Fi = F(0)

i .

2. Apply lattice Boltzmann equation

Fi (x + ci, t + ∆t) = (1−ω) Fi (x, t) + ωF(0)
i (x, t)

3. Fi ⇒ ρ(x, t) and j(x, t)

4. ρ(x, t) and j(x, t) ⇒ F(0)
i ; proceed with the second step of the algo-

rithm.
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Construction of other LBMs

In order to construct a LBM for a given partial differential equation one
has to specify 3 items:

1. A kinetic equation (collision and propagation); for example: the lat-
tice Boltzmann equation with BGK approximation.

2. A lattice with sufficient symmetry.

3. Equilibrium distributions: make an ansatz.
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LBM for the diffusion equation

Temperature T

1. Kinetic equation: the lattice Boltzmann equation with BGK approxi-
mation reads:

Tm(x + cm, t + ∆t) = (1−ω)Tm(x, t) + ωT(0)
m (x, t)

2. Square lattice in 2D has sufficient symmetry for diffusion.

3. Linear ansatz for equilibrium distributions:

T(0)
m = γ0 + γ1T.

The free parameters of the equilibrium distributions (here: γ0 and γ1)
are constrained by the definition of T as the sum over all T(0)

m per node
⇒

T(0)
m =

T
2D

4. The resulting LBM at ω = 1 is identical to the standard finite differ-
ence scheme at its stability limit (Wolf-Gladrow, 1995).
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5. A small modification (replace the constant ω by the temperature de-
pendent ω(T)) leads to a LBM for the non-linear diffusion model
(Wolf-Gladrow, 1995).

∂T
∂t

= ∇ [κ(T)∇T]

κ(T) =
[

1
ω(T)

− 1
2

]
1
D

.

For κ(T) = T a solution reads

T(x, t) =
1
6t

(
A2t2/3− x2

)
for |x| < At1/3

and T(x, t) = 0 otherwise.
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Figure 2: Integration of the nonlinear diffusion equation by the LBM. The initial distribution is marked
by circles. The numerical solution at t = 210 (solid line) is indistinguishable from the analytical solution
(dashed-dotted line; not visible). The broken line shows the difference between numerical and analytical
solution multiplied by 100. (Wolf-Gladrow et al., 2000).
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Who needs LBM?

Succi (2001)

• Don’t use

– Strong compressibility.

– Substantial heat transfer effects.

• Can use

– Turbulent flows in simple geometry (cubes, channels).

• Should use

– Single and multiphase flows in grossly irregular geometries
(porous media, oil and water, flow past cars).

• Must use

– Flow with suspended particles.

– Hydrodynamic problems with additional physics.
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Applications

1. Flow past obstacles

2. Flow through porous media

3. Multi-phase flow (free surfaces, oil and water)

4. Animations, movies
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Figure 3: Flow past an obstacle. Source: www.bfg.uni-freiburg.de/Projects/dlb/re1350000slice.jpg
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Figure 4: J. Hagedorn has performed a series of runs simulating multiple fluids through a tube. Parameters
have been varied to investigate the effects of tube radius, tube length, wetting parameters, and other
parameters on the stability of the fluid structure. Results [left panel] are very similar to experimental
results [right panel] generated by Dr. Kalman Migler of the Polymers Division of MSEL ...
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Figure 5: Muli-phase flow: central collision of two droplets (Danijel Babic, Moritz von Stosch, University
of Aachen).
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Figure 6: Study of a reactive flow through a porous structure using the Lattice Boltzmann technique. The
structure is rendered by isosurfaces and the flow and species concentration (color) with volume rendering.
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Figure 7: Xiaoming Wei, Ye Zhao, Zhe Fan, Wei Li, Feng Qiu, Suzanne Yoakum-Stover, and Arie Kaufman
IEEE Transactions on Visualization and Computer Graphics, 10(6):719-729, 2004.
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Open ends

CA: reversible computation in 3D (Miller and Fredkin, 2005)

LGCA: for fluid dynamics largely replaced by LBM; growth of tumors

LBMs:

1. high flexibility (compared to LGCA) due to choice of kinetic equation,
lattice, equilibrium distributions;

2. improvement of stability by modification of the collision operator;

3. local refinements;

4. LBMs for other differential equations;

5. applications, applications, applications, ...
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Thanks for your attention!
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