Intercomparison between several finite element and finite volume approches to model the North Sea tides

Silvia Maßmann, Alexey Androsov, Sergey Danilov and Jens Schröter

Alfred-Wegener-Institut, Bremerhaven, Germany

7th International Workshop on Unstructured Grid Numerical Modelling of Coastal, Shelf and Ocean Flows Halifax, September 17-19, 2008

Overall goals:

- \blacktriangleright unstructured, non-linear shallow water models
- \blacktriangleright adjoint model generation
- \triangleright optimization of model parameters

What is the focus of this presentation?

- \triangleright influence of spatial discretization (FE, FV)
- \triangleright computational efficiency

Unstructured grid models

finite volume (FV): easy to implement, less accurate in space finite element (FE): implementation more elaborate FV:

- \triangleright Chen et al (FVCOM)
- \blacktriangleright Casulli&Walters (UnTRIM)

FE:

- ▶ wave continuity equation models (ADCIRC, QUODDY, MOG2D, T-UGO)
- ▶ other models (TELEMAC-2D, P1P1, NC)

finite elements

 \blacktriangleright $P_1^{nc}P_1$ (NC): approx. 3x more edges than nodes \blacktriangleright P_1P_1 : pressure modes, stabilization

finite volumes

elevation at circumcenters

FVCOM

elevation at nodes

What kind of time stepping provides stable and efficient algorithms?

- \triangleright semi-implicit: bigger time steps, but matrix inversion (needs a solver)
- \triangleright explicit: small time steps for stability
- Runge-Kutta: more iterations per time step
- ▶ Adam-Bashforth: more storage

Model intercomparison in the North Sea

M2 tidal wave

- ▶ open boundary conditions: TPXO6.2 (OTPS Egbert et al)
- \triangleright closed boundary condition: free-slip
- bathymetry: GEBCO 1min

Results in the North Sea

Under the limitations

- \triangleright no wetting and drying
- \blacktriangleright minimal depth of 5m
- \blacktriangleright topography not tuned
- \blacktriangleright constant bottom friction

most of the codes give good results

Error - spatial distribution

Amplitude

ampl(observation) - ampl(computation), cm

Error - spatial distribution

Phase

phase(observation) - phase(computation), deg

Error statistics

vector error $=\frac{1}{\Delta}$ N \sum N $n=1$ $[(A_*cos\varphi_* - Acos\varphi)^2 + (A_*sin\varphi_* - Asin\varphi)^2]_n^{1/2}$

Computational cost

- IBM p655 cluster (5 nodes with 8 CPUs each)
- ighthroap use of 1 CPU of a compute node (Power4+ system (1.7GHz) with 16 GByte Ram)
- \blacktriangleright size of the mesh
	- \blacktriangleright Number of nodes = 121699
	- \blacktriangleright Number of edges = 355589
	- Number of volumes $= 233872$

Conclusions

- \blacktriangleright all models give reasonable results
- \triangleright semi-implicit codes are faster with same accuracy

Outlook

- \blacktriangleright adjoint model via automatic differentiation
- \triangleright sensitivity of bottom topography and bottom friction
- \triangleright optimization of parameters, initial and boundary condition
- \triangleright wetting & drying (done for NC, under testing)
- \triangleright astronomical tides (important for the Baltic Sea)

Questions

- \blacktriangleright How does the energy balance between M2, M4 and M6 look like?
- \triangleright What is the accuracy of the energy equation?
- \triangleright What is the influence of numerical diffusion?
- \triangleright What are good wetting $\&$ drying schemes to give correct tidal dissipation rates?