Intercomparison between several finite element and finite volume approches to model the North Sea tides

Silvia Maßmann, Alexey Androsov, Sergey Danilov and Jens Schröter

Alfred-Wegener-Institut, Bremerhaven, Germany

7th International Workshop on Unstructured Grid Numerical Modelling of Coastal, Shelf and Ocean Flows Halifax, September 17-19, 2008

Overall goals:

- unstructured, non-linear shallow water models
- adjoint model generation
- optimization of model parameters

What is the focus of this presentation?

- influence of spatial discretization (FE, FV)
- computational efficiency

Unstructured grid models

finite volume (FV): easy to implement, less accurate in space finite element (FE): implementation more elaborate FV:

- Chen et al (FVCOM)
- Casulli&Walters (UnTRIM)

FE:

- wave continuity equation models (ADCIRC, QUODDY, MOG2D, T-UGO)
- other models (TELEMAC-2D, P1P1, NC)

finite elements

P₁^{nc}P₁ (NC): approx. 3x more edges than nodes
P₁P₁ : pressure modes, stabilization

finite volumes

elevation at circumcenters

FVCOM

velocity at baricenters

What kind of time stepping provides stable and efficient algorithms?

- semi-implicit: bigger time steps, but matrix inversion (needs a solver)
- explicit: small time steps for stability
- Runge-Kutta: more iterations per time step
- Adam-Bashforth: more storage

	Leap frog	Runge-Kutta	Adam-Bashforth	semi-implicit
P1P1				х
NC	х		(x)	х
FV		х	Х	х

Model intercomparison in the North Sea

M2 tidal wave

- open boundary conditions: TPXO6.2 (OTPS Egbert et al)
- closed boundary condition: free-slip
- bathymetry: GEBCO 1min

Results in the North Sea

Under the limitations

- no wetting and drying
- minimal depth of 5m
- topography not tuned
- constant bottom friction

Error - spatial distribution

Amplitude

ampl(observation) - ampl(computation), cm

Error - spatial distribution

Phase

phase(observation) - phase(computation), deg

Error statistics

vector error = $\frac{1}{N} \sum_{n=1}^{N} [(A_* \cos\varphi_* - A\cos\varphi)^2 + (A_* \sin\varphi_* - A\sin\varphi)^2]_n^{1/2}$

Computational cost

- IBM p655 cluster (5 nodes with 8 CPUs each)
- use of 1 CPU of a compute node (Power4+ system (1.7GHz) with 16 GByte Ram)
- size of the mesh
 - Number of nodes = 121699
 - Number of edges = 355589
 - Number of volumes = 233872

Conclusions

- all models give reasonable results
- semi-implicit codes are faster with same accuracy

Outlook

- adjoint model via automatic differentiation
- sensitivity of bottom topography and bottom friction
- optimization of parameters, initial and boundary condition
- wetting & drying (done for NC, under testing)
- astronomical tides (important for the Baltic Sea)

Questions

- How does the energy balance between M2, M4 and M6 look like?
- What is the accuracy of the energy equation?
- What is the influence of numerical diffusion?
- What are good wetting & drying schemes to give correct tidal dissipation rates?