Sequential data assimilation on high-performance computers with the Parallel Data Assimilation Framework PDAF

Lars Nerger

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

and

Bremen Supercomputing Competence Center BremHLR

lars.nerger@awi.de

Overview

- Sequential data assimilation
 - Ensemble-based Kalman filters
- Parallel Data Assimilation Framework PDAF
- Parallel performance of PDAF
- Application examples

Sequential Data Assimilation

Data Assimilation

- Optimal estimation of system state:
 - initial conditions (for weather forecasts, ...)
 - trajectory (temperature, concentrations, ...)
 - parameters (growth of phytoplankton, ...)
 - fluxes (heat, primary production, ...)
 - boundary conditions and 'forcing'
- Characteristics of system:
 - high-dimensional numerical model $\mathcal{O}(10^7)$
 - sparse observations
 - non-linear

Sequential Data Assimilation

Consider some physical system (ocean, atmosphere,...)

Kalman Filters (Kalman, 1960)

- Optimal estimation problem
- Assume errors to be Gaussian distributed
 - Analysis is combination of two Gaussian distributions
 - Analysis is variance-minimizing
- Express problem in terms of mean state x and state error covariance matrix P
- Propagate matrix P by (linearized) model
- Issues:
 - Nonlinearity will not conserve Gaussianity
 - Storage of state covariance matrix can be unfeasible
 - Evolution of covariance matrix extremely costly
 - Reduce cost: simplify dynamics and/or approximate P

Ensemble-based Kalman Filter

Approximate probability distributions by ensembles

Computational and Practical Issues

- Huge amount of memory required (model fields and ensemble matrix)
- Huge requirement of computing time (ensemble integrations)
- Natural parallelism of ensemble integration exists
 - but needs to be implemented
- Existing models often not prepared for data assimilation

Parallel Data Assimilation Framework

Lars Nerger - Sequential data assimilation with PDAF

Motivation

- Parallelization of ensemble forecast can be implemented independently from model
- Filter algorithms can be implemented independently from model
- Goals
 - Simplify implementation of data assimilation systems based on existing models
 - Provide parallelization support for ensemble forecasts
 - Provide parallelized and optimized filter algorithms
 - Provide collection of "fixes" for filters, which showed good performance in studies

PDAF: Considerations for Implementation

Logical separation of problem

Further considerations

- Combination of filter with model with minimal changes to model code
- Control of assimilation program coming from model
- Simple switching between different filters and data sets
- Complete parallelism in model, filter, and framework

Extension for data assimilation

PDAF interface structure

- Interface independent of filter (except for names of user-supplied subroutines)
- User-supplied routines for elementary operations:
 - field transformations between model and filter
 - observation-related operations
 - filter pre/post-step
- User supplied routines can be implemented as routines of the model (e.g. share common blocks or modules)

2-level Parallelism

- 1. Each model task can be parallelized
- 2. Multiple concurrent model tasks
- Filter-update is parallel
- 2 parallelization strategies: distribute ensemble members or state in sub-domains

Current KF algorithms in PDAF

- Ensemble Kalman filter (EnKF, Evensen, 1994)
 - original ensemble-based KF
 - simplest formulation of ensemble-based KFs
- SEIK filter (Pham et al., 1998)
 - very efficient ensemble-based KF
- LSEIK filter (Nerger et al., 2006)
 - Iocalized analyses for better filter performance
- SEEK filter (Pham et al., 1998)
 - > explicit low-rank (error-subspace) formulation
 - linearized error forecast

Parallel Performance of PDAF

Parallel performance of PDAF

Performance tests on

SGI Altix ICE at HRLN (German "High performance computer north")

nodes: 2 quad-core Intel Xeon Harpertown at 3.0GHz network: 4x DDR Infiniband compiler: Intel 10.1, MPI: MVAPICH2

- Ensemble forecasts
 - > are naturally parallel
 - dominate computing time E.g. parallel forecast over 10 days: 45s
 - SEIK with 16 ensemble members: 0.1s LSEIK with 16 ensemble members: 0.7s
 - parallel efficiency near 1

Speedup of SEIK with domain decomposition

- Test only assimilation without model dynamics
- SEIK performs global optimization
 - better speedup for larger ensembles
 - resampling is local, but no ideal speedup (MKL library?)
 - analysis and pre/poststep show very small speedup
 - behavior seems to be due to network latency of the machine used

State dimensionn = 3,000,000Observationsm = 30,000Ensemble sizeN

Lars Nerger - Sequential data assimilation with PDAF

Speedup of LSEIK with domain decomposition

- LSEIK performs sequence of local optimizations on subsubdomains defined by influence radius for observations
 - near-ideal speedup for analysis step and resampling (ensemble transformation)
 - total speedup is limited by
 - non-local gathering of observation-state residuals
 - pre/poststep

State dimensionn = 300,000Observationsm = 30,000Ensemble sizeN

Lars Nerger - Sequential data assimilation with PDAF

Application examples

- Assimilation of satellite altimetry (Project Tandem, @ AWI T. Janjic Pfander)
 - ➤ with finite element ocean model FEOM
 - utilize information from tandem mission of Topex/Poseidon and Jason 1
- Ocean chlorophyll assimilation into global NASA Ocean Biogeochemical Model (with Watson Gregg, NASA GSFC)
 - Generation of daily re-analysis maps of chlorophyll at ocean surface
- Coastal assimilation of ocean surface temperature (within project "DeMarine Environment", AWI and BSH)
 - Improve operational forecast skill, e.g. for storm surges

PDAF is available!

- With a restricted GPL-license
- Upon request (not yet downloadable 😕)
 - Mail me (Lars.Nerger@awi.de)
 - ➤ Go to

www.awi.de/en/go/pdaf

to get contact information

 Distributed is the source code of PDAF together with an example implementation

Requirements

- Fortran compiler (gfortran works!)
- MPI (OpenMPI works!)
- BLAS & LAPACK
- make

I don't have a Matlab version!

- Sequential data assimilation is not serial
- ⇒ Mixed parallel efficiency of ensemble-based Kalman filtering (forecasts & analysis/resampling)
- Parallel Data Assimilation Framework PDAF
 - Simplified implementation of assimilation systems
 - Flexibility: Different assimilation algorithms and data configurations within one executable
 - Full utilization of parallelism in models and filters
 - Available upon request

Thank you!