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ABSTRACT: The inversion of real time sensor data from diverse sources to obtain a situation perspective in 
short time is a hard problem. By utilizing an analog forecasting method in combination with a simultaneous 
evaluation of multiple sensor measurements allows for fast and accurate situation awareness. While the 
traditional decision matrix approach leads to frequent false warnings, the multi-sensor inversion may give more 
reliable results, once measurements are available. In this presentation we will describe our approach and prove its 
suitability by means of a benchmark experiment.   

1. INTRODUCTION 

In order to give timely and spatially accurate forecasts of tsunami impact within very short time, it is 
necessary to invert from measurement data to the tsunami scenario. In other words, the following 
question needs to be answered: 

Given a number of measurements, what is the corresponding tsunami situation? 

Current tsunami early warning systems (TEWS) employ different approaches of different 
complexities, which will be reviewed subsequently. The simplest warning approach is based on 
seismic information alone. In a decision matrix, several parameters are checked; among them, the 
location to be under or close to the sea, the magnitude to be larger than a certain pre-defined 
threshold, etc. Once the criteria are fulfilled a warning is issued. This approach is employed in the 
current operational warning center of BMG in Jakarta as well as in many other warning centers. 

A slightly more complex approach includes simulation results to assess the tsunami situation. From 
the seismic parameters, a possible earthquake induced initial uplift is derived. This uplift may then be 
used to perform a forward computation. However, due to timing constraints, most often the simulation 
results are derived from a database of pre-computed tsunami scenarios. In this case, the pre-computed 
scenarios contain information about the corresponding earthquake parameters. Either the closest 
matching scenario is taken as a forecast or a (linear) combination of several closely matching 
scenarios is derived. This approach works for a linearized problem formulation, where scenario 
computations are only taken to near shore control points. This approach is employed for example in 
the database developed by ITB or in the Japanese TEWS operated by JMA [1]. 

The most advanced TEWS operational to date employ inversion methods to derive refinements of 
initial uplift distributions. These inversions are computed in a linearized setting from deep ocean 
pressure gauge readings. By utilizing a linear relation between wave heights at known sensor 
locations and corresponding uplift values at a priori defined fault planes, corrections to the source can 
be computed by solving a linear inverse problem. This method works well in the far field, where the 
assumption of linear wave behavior holds and it has proved its reliability in the Pacific Warning 
Center equipped by NOAA [5]. 

For near field tsunami warning with highly non-linear wave characteristics, high sensitivity on the 
source distribution and rupture area, and extremely short forecast times, this approach fails. It is the 
aim of this paper to introduce the new multi-sensor inversion approach, developed in the GITEWS 
project to overcome these deficiencies. In this approach, the following assumptions are made: 
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1. The situation is observed by such diverse sensors as seismic sensors (giving seismic 
parameters), GPS sensors (giving earth crust deformation vectors), and wave gauges (giving 
water elevation data) is physically consistent. Therefore, the sensors observe one physical 
system from different perspectives. 

2. Pre-computed scenarios are physically consistent representations of a possible real situation. 
Scenarios are simplified virtual physical systems, but their resemblance to reality is accurate 
within data uncertainty. Thus, virtual sensor data extracted from scenarios can be interpreted 
as observations of a consistent physical system. 

Now, from these assumptions it follows that a comparison of measured sensor data with virtual sensor 
data, extracted from scenarios, gives information about the resemblance of a pre-computed scenario 
with the real situation. If the scenario data match well to the sensor observations, the scenario 
represents the real situation well. 

This type of forecasting method has been used in the atmospheric sciences for a long time and is 
known as analog forecast [3]. An analog to the real situation is looked for and serves as an 
extrapolation to future times or uncovered spatial areas. The novelty in the approach proposed in this 
paper is the simultaneous use of multiple values. This is necessary in order to diminish uncertainty in 
the different measurements. To give an example: In the September 12, 2007 Mw 8.4 Earthquake west 
of Bengkulu, according to current knowledge the epicenter was located at (4.517°S, 101.382°E), 
while the area of maximum slip distribution was around (3.2°S, 100.9°E), approx. 150 km to the 
North [2]. Simulations based solely on the seismic parameters would give misleading forecasts. Once, 
gauge measurements and/or GPS dislocation measurements become available (usually after only a 
few minutes), a precise inversion can be made. 

In order to apply this methodology, we need to answer the following questions, which will be the 
outline of this article: 

1. How can we define a generalized distance between scenario and reality, given a multitude of 
different measurements? 

2. How can we model and evaluate uncertainty in the measurement (for example the 
uncertainty in the earthquake epicenter, that does not necessarily coincide with the rupture 
area center)? 

3. How does this method work, given an example earthquake? 

4. And finally, what can be deduced as a result? 

2. DISTANCE METRIC FOR MULTI-SENSOR SELECTION 

It is our task to derive a generalized distance measure to compare multiple sensor values with scenario 
data. In this presentation we will consider three different groups of sensors, providing six different 
types of measurements: 

Table 1. Sensor groups and measurement types. 

Sensor group Measurement type 

Seismic System epicenter location (lon, lat) 
 Magnitude (Mw) 
 Depth (in km) 

Gauge System Arrival time at gauge i (ti in sec.)  
 Wave height time series at gauge i (sshi(t) in m) 

GPS System Dislocation vector at GPS reciever j (as 3D-vector in (lon,lat,z)j) 
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2.1 Individual distance metrics 

For each of the measurement types given in table 1, we will first define an individual distance metric. 
For the epicenter location this is the two-norm (Euclidean distance), denoted by dloc: 

. 
(1)

 

For the magnitude M we chose the simple difference dM, as well as for the depth D: 

 (2) 

Arrival time t at any given gauge position is again treated by a simple difference: 

. (3) 

Time series are slightly more complicated. We employ the simplest metric here, the one-norm and 
denominate the distance metric by dts, where the index i stands for the time-step counter: 

.
 

(4)
 

Finally we need to compare the GPS dislocation vectors to obtain dGPS. Here we can employ the 
Euclidean distance again: 

 

(5)

 

2.2 Modeling uncertainty and noise 

In order to take noise in the data into account as well as modeling the uncertainty not related to 
measurement error we introduce uncertainty radii, which complement the above defined individual 
distance metric. The radii are introduced individually for each measurement type and can be adjusted 
correspondingly. We will demonstrate this with the epicenter location. 

We know that the epicenter location is not closely related to the center of the rupture area from the 
example in the introduction. Therefore, if only seismic parameters are available, then all scenarios 
with a rupture zone center located in a certain distance to the measured epicenter are equally likely to 
happen and therefore indistinguishable. The location distance metric for all these scenarios should be 
zero. Thus, we define an uncertainty radius U and modify the metric in the following way: 

 (6) 

In other words, all scenarios with rupture area centers closer to the measured epicenter than U obtain a 
dloc value of zero.  

We still need to specify U. Since the dislocation between epicenter and rupture center is larger for 
large earthquakes we employ the following formula for U: 

 (7) 

The first part of equation (7) says that an uncertainty radius is only considered for earthquakes of 
magnitude 7 or larger, while the second part tells us that the uncertainty radius increases quadratically 
with the size of the earthquake. Cs is a scaling factor, which can be tuned. 
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Similar uncertainty values are employed for each individual metric. The actual values for the 
uncertainty are tuning parameters, which need to be adjusted according to experience with the system. 

2.3 Scaling to unified values 

In order to be able to compare the very different values, we need to scale them. An appropriate scaling 
will discriminate small differences and it will project all values to a non-dimensional value range in 
the unit interval. The scaling function used here is given by: 

 
(8)

 

!d is a scaling factor, which has to be chosen such that the first approximately 25% of the distance 
metric interval is mapped to the interval [0,0.8]. To give an example: if we assume that the distance in 
unit magnitude dM can lie in the range of 0<dM<10, then we want the distance values of 0 up to 2.5 to 
map to scaled values between 0 and 0.8. The value of !d can be fixed in the system. From now on, all 
different distances will be assumed to be in the unit interval (after applying the scaling function). 

2.4 Combined metrics 

After including an uncertainty model and scaling to the unit interval with accentuation on small 
distances, the individual metrics need to be combined. This is achieved with a weighted sum 

approach. Let us denote by  the scaled metric corresponding to the measurement type 
. For the gauge and GPS sensor groups, we need to consider individual 

sensors, while for the seismic sensor group we will use aggregated data (derived by the seismic 
system from individual seismometer sensors). Therefore, we first derive group metrics by using 
weighted sums for each sensor group. Let the index j denote the sensor counter in each group. Then 
we define the group metric dgroup (where group stands for either gauge arrival time t, gauge time series 
ts or GPS group) by 

 

(9)

 

The weights wj can be used to switch off non-functional sensors or to indicate unreliable sensors by 
giving them less weight. Each individual sensor has its own weight. The set of weights needs to be 
tuned, based on experience and experiments. 

In order to derive the mismatch value, we combine the group metrics again by a weighted sum 
approach: 

 

(10)

 

Now, the weights Wi are used to emphasize the importance of each individual sensor group. We 
weight the direct wave measurements (by gauges) more relevant than the pure seismic information, 
for example. Note that all weights are normalized, that means we have 

 

(11)

 

This requirement together with the scaling function guarantees that the group metrics as well as the 
mismatch are normalized, in other words take values between 0 and 1. A mismatch value of 0 means 
perfect match of scenario with real measurements (given the data uncertainty). A value of 1 indicates 
maximum distance between real measurements and scenario values. 

The data uncertainty may lead to a large number of indistinguishable scenario mismatches. Assume 
that only seismic data is available for the matching process. Assume further that the earthquake is 
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large and that the scenario database population density is high (i.e. a large number of scenarios is 
contained in the database). Then all the scenarios with their rupture center in the radius of uncertainty 
of the measured epicenter are assigned a mismatch of zero in the location measurement type. 

3. RELIABILITY EVALUATION 

In the previous section we have achieved to define a generalized distance – the mismatch – to measure 
the matching of a scenario with the real situation measured at a number of sensors different in type 
and location.  Now, we will deal with situations in which either not all sensors deliver measurement 
data (which will usually be the case), or where not all sensor values can be compared, since they are 
not supported by the scenario. For example, a few minutes after an earthquake, we can assume that the 
seismic parameters are available, but only one or two of the gauge sensors have received a signal and 
only a few of the GPS sensors measured a deviation from the reference position. Additionally, we 
may consider scenarios in the database that include GPS deviations and others that do not include 
these values (e.g. scenarios based on Okada’s fault plane mechanics usually do not involve a holistic 
view of earth crust deformation). 

3.1 Reliability value 

In order to take missing measurements into account, we simply set the weights corresponding to the 
missing values to zero. Note that we need to re-normalize the weight set by 

 

(12)

 

The above formula holds for the sensor weights, but an analog formula holds for the group weights 
Wi. Now, in order to assess the reliability of a scenario matching result, we can compare the number 
of total sensors (with their weights) to the number of sensors with relevant data. As an example, if 10 
sensors were available to measure the wave arrival, but only two of them had been reached, after a 
few minutes, the reliability or data quality would not be very high (approx. 20% of the theoretically 
optimal condition, where all 10 sensors provide relevant data). On the other hand, if all sensors had 
contributed data (after a longer time period), the reliability or data situation would be perfect. Even 
though the mismatch value could be worse than in the first case (it might be easy to find a scenario 
that matches the arrival time at two positions quite well, but to match all ten positions would be more 
difficult), the second situation would give much more accurate situation awareness. With this 
reasoning, we define the reliability  

 

(13)

 

Since the weights are normalized the sum over all sensor weights is always 1. Therefore, eq. (13) is 
equivalent to 

 

(14)

 

To conclude: It is a simple renormalization procedure and weight manipulation operation to account 
for missing measurements. Additionally, the weights give insight into the reliability of the matching. 
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3.2 Skill value 

Now, we will consider the situation, where a given set of measurements cannot be complemented by 
scenario data. It could be that the scenario’s computational domain does not cover the whole affected 
area or a sensor group might not be available in the scenario (e.g. time-series or GPS values). 

We can employ the same methodology as above and set the weights, which cannot be matched to 
zero. Again a renormalization has to be carried out. In fact this step has to be preceded by the missing 
sensor weight manipulation. We noted in the previous section that the mismatch might be smaller for 
smaller numbers of data items in the comparison. Therefore, we need to quantify the matching quality 
again.  

Since missing values in a scenario is a quality indicator for each individual scenario, we call this value 
the skill of a scenario. Again, the weights are non-zero only for those values that are truly used. The 
ratio of weight sum of used sensors over total available sensors gives an indication of the skill. An 
example: if we put weight W 0.25 on the seismic sensor group, 0.5 on the gauge group and 0.25 on 
the GPS group and we have scenarios that contain GPS values and others that do not. Then – given a 
complete set of sensor measurements – the skill for the scenarios with GPS would be 1 while the skill 
for the scenarios without would be 0.75. 

Formally, we define the skill: 

 

(15)

 

We have now derived three values characterizing a scenario match:  

1. The mismatch describes the distance of a scenario to the real measurements. 

2. The reliability describes the data quality or reliability. If  this value is high, a large number of 
theoretically available sensor values could be assessed and the data situation appears to be 
reliable. 

3. The skill describes the matching quality in terms of data available in the scenario. If the skill 
is large (close to 1) almost all available data could be complemented by scenario data. 
Therefore a scenario with high skill value is regarded to be more relevant than one with a 
low skill. 

Note that these values are not unique. It may be that a scenario with low skill might be the one to 
match reality best, mainly by chance. It may well be that higher reliability leads to worse mismatch. 
However, this is not a problem, since the absolute mismatch value is not physically motivated and 
gives no absolute indication on the matching quality. 

3.3 Indiscriminate matching lists 

In order to deal with larger numbers of indiscriminate mismatch values for situations in which not a 
lot of sensor values is available, we introduce a threshold based mismatch list generation procedure. 
In order to quantify the number of possible scenarios, we look at the ordered spectrum of mismatches 
(fig. 1). The situation shows that approx. 60 scenarios are indistinguishable (zero-mismatch and zero 
difference). We plot also the differences from one scenario to the next scenario (the gradient of the 
spectrum). This plot indicates that there are jumps in the mismatch spectrum. In other words, a 
number of scenarios are similar in their mismatch and after a jump the next level of similarly 
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Figure 2. Initial uplift (left) and instrumentation (right) for the benchmark experiment. Seismic 

parameters (epicenter in red), wave gauges (blue), GPS stations (orange) and benchmark stations 

(green). Stations not used are marked in gray. 

mismatching scenarios is reached. In order to maintain certain variability in the results and to account 
for uncertainties in the measurements, the list of returned scenarios is cut off, where the difference 
value excesses the cutoff value (three times the mean) for the third time. In this example, 72 scenarios 
form the set of possible events, given only the seismic information. 

4. BENCHMARK EXPERIMENT 

In order to test our approach, a benchmark experiment has been defined. We assume a Magnitude 8.0 
earthquake close to Padang, West Sumatra, with its epicenter at (99.93°E, 1.96°S). The source 
distribution is inhomogeneous and depicted in figure 2 (left). We assume an instrumentation as in 
figure 2 (right), where (under optimal conditions) the seismic system is working, the GPS system is 
represented by the current SuGAr continuous GPS network stations [4], and the gauge system is 
represented by the two existing German deep ocean wave gauges (buoys). All “measurement data” 
have been computed independently by A. Babeyko’s group at GFZ Potsdam, including the two 
benchmark coastal gauge readings in Padang and Bengkulu (fig. 3). 

It is important to note that a scenario exists in the database, which matches the benchmark gauges 
very well, and which also matches the arrival and wave height time series at the buoys very well, even 
though it does not rely on an inhomogeneous slip distribution (see fig. 4). 

The aim of our exercise is to find a scenario in the database that based on the matching, represents the 
benchmark gauges as accurate as possible. The chief officer on duty (COOD) in the warning center 
would then be able to give a qualified warning. Let us first consider the traditional case, where only 
seismic information is available. Taking the uncertainty into account, the simulation system finds 
approx. 70 scenarios indistinguishable. The corresponding mareograms (gauge timeseries) are plotted 
in figure 5. A warning decision based on the worst case would be appropriate in Padang, but in 

    

Figure 1. Spectrum of mismatches (left) and difference |mismatch(i)-mismatch(i-1)| (right). The red line 

indicates the cutoff for significant changes. 
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Bengkulu this would lead to a false warning. 

In contrast to this, if also GPS and buoy data readings could be included, all scenarios give distinct 
mismatch values. We will still get a list of probable matching scenarios from our threshold based 
indiscriminate matching list (fig. 6). However, a worst case warning would lead to accurate forecasts 
in both benchmark positions. Additionally, the best matching scenario (red line) represents almost the 
optimal solution in the database. In fact, it can be shown that a selection based only on gauge and 
seismic data would give the optimal solution. 

4.1 Conclusions 

In this article we introduced the methodology for the GITEWS multi-sensor selection. It is embedded 
in an analog forecasting paradigm for tsunami early warning in the near-field regime. We 
demonstrated how the multi-sensor approach can effectively reduce uncertainty in short time and in 
the near-field, where non-linear wave effects cannot be neglected. The approach leads to accurate and 
qualified warning products, which is the subject of an other paper with U. Raape et al. (DLR). 

The approach takes noise and data uncertainty into account and is robust against these effects. 
However, tuning of thresholds and weights needs to be performed with real life data streams. This 
will be the task of the operational testing phase of the GITEWS system. 
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Figure 3. Benchmark gauge time series in Padang (PDG, left) and Bengkulu (BKL, right). 
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Figure 4. Manually selected best matching scenario: benchmark gauge time series [upper left; true 

solution (black), scenario solution (red), both gauges PDG and BKL are in one chart], buoy time series 

[upper right, both buoys in one chart, DOB02 (bold)], initial uplift (lower left) and maximum wave 

height (lower right). 

  
Figure 5. Selection results with only seismic information known (descriptions as in fig. 6). 

  
Figure 6. Matching result including all sensor groups (optimal conditions): benchmark gauge time 

series at PDG and BLK (upper left and right; true solution (black), best match scenario solution (red), 

next best matches (blue)). 

 


