Saltfingers

Alfred Wegener Institute, Bremerhaven

18. Juni 2009

Saltfingers

・ロ・ ・聞・ ・ヨ・ ・ヨ・

Introduction Motivation

Simulation Of Saltfingers

Preliminary Work Different Lewis Numbers Present Work Results

Conclusions

・ロト ・ 日 ・ ・ ヨ ト

< ≣⇒

Motivation

Short Introduction to Saltfingers

 warm and saline water lies over cold and less saline water with density ratio R_ρ

$$1 \le R_{\rho} = \frac{|\alpha|\partial_{z}\overline{T}}{\beta\partial_{z}\overline{S}} \le \frac{\kappa_{\tau}}{\kappa_{s}}$$

with $\alpha =$ thermal expansion coefficient

- $\beta = {\sf saline}\ {\sf contraction}\ {\sf coefficient}$
- T, S =temperature and salinity

 $R_{
ho} < 1$ stratification is unstable (not get confused with Semiconvection)

Motivation

Definitions

Reynolds Average:

Density ratio:

Lewis Number:

Flux Ratio:

Turbulent Fluxes:

 $X = \overline{X} + X'$ $R_{\rho} = \frac{\alpha \partial_{z} \overline{T}}{\beta \partial_{z} \overline{S}}$ $\tau = \frac{\kappa_{\rm s}}{\kappa_{\rm T}}$ $\gamma = \frac{\alpha \overline{w' T'}}{\beta \overline{w' S'}}$ $\overline{w'X'}$

・ロト ・同ト ・ヨト ・ヨト

臣

Saltfingers

Motivation

Why We Do Saltfinger Simulations

- Thermohaline staircases are a possible result from saltfingers (William Merryfield ,,Origin of thermohaline staircases" (2000)
 , Timour Radko (2005))
- Saltfingers play an important role in mixing processes where double-diffusion occur
- Study the structure of saltfingers there are high resolved 3D-simulations necessary
- Resolve the Lewis Number $\tau = 0.01$

- Today there are a lot of different systems known where double-diffusion occur (e.g. massive He³ stars, earth core, compositions of metals, coffee and milk, ...)[Turner 1985]
- ► These systems are compareable (e.g eddy size of turbulences in the ocean and stars both ≈ 1cm but convective scales are quiet different)

Preliminary Work Different Lewis Numbers Present Work Results

3D and $2\frac{1}{2}$ D Saltfinger Simulations

Simulations with 512^3 and with 512x8x512 gridpoints in a regular grid

Initial conditions:

Gridspace:
$$\Delta x = \Delta y = \Delta z = 160 \mu m$$

Lewis Number: $\tau = \frac{\kappa_s}{\kappa_\tau} = 0.01$

Density Ratio: $R_
hopprox 1.3$

We have ≈ 170 sec modeltime of 3D–simulation and over 1400 sec modeltime of $2\frac{1}{2}D$ –simulation

(D) (A) (A) (A)

Preliminary Work Different Lewis Numbers Present Work Results

Mean Turbulent Fluxes, $\overline{w'T'}$ and $\overline{w'S'}$

Abbildung: 3D and $2\frac{1}{2}D$ simulation, tubulent flux of temperature Abbildung: 3D and $2\frac{1}{2}D$ simulation, turbulent flux of salinity

イロト イポト イヨト イヨト

Э

Preliminary Work Different Lewis Numbers Present Work Results

Fluxratio $\gamma = \frac{\alpha \overline{w'T'}}{\beta w'S'}$

Abbildung: Flux Ratio of 3D and $2\frac{1}{2}D$ simulation

Abbildung: Density Ratio, 3D and $2\frac{1}{2}D$

イロト イポト イヨト イヨト

1200

Э

Preliminary Work Different Lewis Numbers Present Work Results

Lewis Numbers $\tau = 0.01$ and $\tau = 0.1$?

Differences resulting from varied Lewis Numbers

$$au_1^{-1} = 100$$
 and $au_2^{-1} = 10$

other initial conditions are identically ($R_{\rho} = 1.32, ...$)

イロト イポト イヨト イヨト

2

Preliminary Work Different Lewis Numbers Present Work Results

Snapshot of Saltfingers with different Lewis Numbers

Abbildung: $\tau = 0.01$, t = 500sec

Abbildung: $\tau = 0.1$, t = 500sec

イロト イヨト イヨト イヨト

Saltfingers

Preliminary Work Different Lewis Numbers Present Work Results

Turbulent Fluxes $\overline{w'T'}$ and $\overline{w'S'}$

Abbildung: Turbulent fluxes of temperature

Abbildung: Turbulent fluxes of salinity

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Preliminary Work Different Lewis Numbers Present Work Results

Flux Ratio $\gamma = rac{lpha \partial_z \overline{w'T'}}{eta \partial_z \overline{w'S'}}$ and Density Ratio $R_{
ho}$

Abbildung: Flux Ratio

Abbildung: Density Ratio

・ロト ・日下 ・ 日下

< ≣⇒

Preliminary Work Different Lewis Numbers Present Work Results

Mean Values of Temperature and Salinity

Abbildung: Mean temperature

Abbildung: Mean salinity

イロト イポト イヨト イヨト

Э

Preliminary Work Different Lewis Numbers Present Work Results

Conclusions For Further Work

- 3D simulations are expensive
- Mean values between 3D- and 2¹/₂D simulations do not differ signifficant
- For our case (estimate vertical fluxes) we can use 2¹/₂D simulations for further work

- 3 ≥ >

Preliminary Work Different Lewis Numbers Present Work Results

Aims

- get an estimate of the vertical fluxes of heat and salinity
- find good initial coditions for simulations
- find the effective vertical diffusivity of heat and salinity
- e.g Merryfield found a parametrisation for the case of saltfingers like

$$\mathcal{K}^f_{\mathcal{S}} = 0.17 imes rac{1 - au R_
ho}{R_
ho - \gamma}$$

where K_S^f is the effecitve diffusivity of salinity

Preliminary Work Different Lewis Numbers Present Work Results

Initial Conditions for $2\frac{1}{2}D$ -Simulations

Initial conditions of simulations

- ${}^{1}R_{
 ho} \approx 1.7$ ${}^{2}R_{
 ho} \approx 1.07$
- $\int_{\kappa_{\tau}}^{1/2} \sigma = \frac{\nu}{\kappa_{\tau}} = 7$ Prandtl Number

•
$$\tau = \frac{\kappa_s}{\kappa_\tau} = 0.01$$
 Lewis Number

- use a stretched coordinate system in vertical direction with $\Delta z = 200\mu$ m ($\Delta z = 600\mu$ m upper and lower 100 gridpoints)
- use a damping layer to absorb vertical fluxes at the upper and lower boundaries

Preliminary Work Different Lewis Numbers Present Work Results

Saltfingersimulation $R_{ ho} = 1.7$

salinity and contour of temperature

- $R_{
 ho} = 1.7$
- fingerwidth about $d \approx 0.005 \text{m}$

・ロト ・同ト ・ヨト ・ヨト

Preliminary Work Different Lewis Numbers Present Work Results

Saltfingers with $R_{ ho} = 1.7$ and $R_{ ho} = 1.07$

Abbildung: snapshot of salinity at modeltime t = 400

Abbildung: snapshot of salinity at modeltime $t_{O} = 400 \times 420 \times 200$

Saltfingers

Preliminary Work Different Lewis Numbers Present Work Results

Mean Values of Temperature and Salinity

Abbildung: mean values of temperature and salinity with $R_{
ho} = 1.7$ (left side) and $R_{
ho} = 1.07$ (right side)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Preliminary Work Different Lewis Numbers Present Work Results

Mean Values of Temperature and Salinity

Abbildung: mean values of temperature and salinity with $R_{\rho} = 1.7$ (left side) and $R_{\rho} = 1.07$ (right side)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Preliminary Work Different Lewis Numbers Present Work Results

Density Ratio of Saltfingers

Abbildung: densityratio $R_{\rho} = \frac{\alpha \partial_{z} \overline{T}}{\beta \partial_{z} \overline{S}}$ left side $R_{\rho} = 1.7$, right side $R_{\rho} = 1.07$

・ロト ・日下 ・ 日下

< ≣⇒

Preliminary Work Different Lewis Numbers Present Work Results

Turbulent Fluxes

Abbildung: turbulent fluxes $\frac{\overline{w'T}}{\partial_z \overline{T}} \left(\frac{\overline{w'S'}}{\partial_z \overline{S}}\right)$ $R_{\rho} = 1.7$ (left side) and $R_{\rho} = 1.07$ (right side)

・ロト ・聞ト ・ヨト ・ヨト

臣

Preliminary Work Different Lewis Numbers Present Work Results

Buoyancy

Abbildung: buoyancy $N^2 = -\frac{g}{\rho}\partial_z\rho$ $R_\rho = 1.7$ (left side) and $R_\rho = 1.07$ (right side)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Э

Preliminary Work Different Lewis Numbers Present Work Results

Fingerwidth

Abbildung: Fingerwidth $d^4 = \frac{\nu \kappa_T}{g \alpha \partial_z \overline{T}}$ $R_{\rho} = 1.7$ (left side) and $R_{\rho} = 1.07$ (right side)

イロン イヨン イヨン イヨン

Preliminary Work Different Lewis Numbers Present Work Results

Simulation of Saltfingers

salinity and contour of temperature

- $R_{
 ho} = 1.07$
- 512x16x512
 Gridpoints
- ▶ fingerwidth about d ≈ 0.004 - 0.005m

Saltfingers

イロト イポト イヨト イヨト

Preliminary Work Different Lewis Numbers Present Work Results

Unstable Case

salinity and contour of temperature

- $R_{
 ho} = 0.6$
- $\ \, \bullet \ \, 512\times 16\times 512 \\ Gridpoints$

salinity and contour of temperature

Saltfingers

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Conclusions

stability is allways preserved (except in R_ρ = 0.6 simulation)
 flux ratio γ = aw/T'/βw'T'
 ≈ 0.5
 ...

If we compare our data with the work from Shen (1997):

• similar fingerwidth: pprox 0.5 cm

•
$$\tau_{shen}^{-1} = 80$$
 where $\tau_{awi}^{-1} = 100$

- higher grid resolution as Shen
- 3-dimensional not 2-dimensional
- Shen's simulation end before mixing begins and diffusive Saltfingers occur

is our vertical domain wide enough?

イロン イヨン イヨン イヨン