AWI

・ロト ・回ト ・ヨト ・ヨト

Double diffusion in Astrophysics and Oceanography Metstroem presentation Hannover

F. Zaussinger (MPA) and T. Zweigle (AWI)

23. July 2008

DD in Astrophysics and Oceanography

Compare the incomparable

Astrophysics - Semiconvection

Massive stars SC in massive stars - Preparation Simulations of SCZ

Oceanography - Saltfingers Simulations

Oceanography - Saltfingers

Compare the incomparable

Modelling double diffusive convection

2 gradients:

• Astro:
$$\nabla := \frac{\partial \ln T}{\partial \ln P}$$
, $\nabla_{\mu} := \frac{\partial \ln \mu}{\partial \ln P}$

2 diffusivities:

• Astro:
$$\kappa_{\tau}$$
, κ_{γ} , ν

Oceanography - Saltfingers

Compare the incomparable

Modelling double diffusive convection

2 gradients:

• Astro:
$$\nabla := \frac{\partial \ln T}{\partial \ln P}$$
, $\nabla_{\mu} := \frac{\partial \ln \mu}{\partial \ln P}$

• Ocean:
$$\nabla T = \frac{\partial T}{\partial z}$$
, $\nabla S = \frac{\partial S}{\partial z}$

- 2 diffusivities:
 - Astro: κ_τ, κ_γ, ν

• Ocean:
$$\kappa_{\tau}$$
, κ_{s} , ν

Oceanography - Saltfingers

AWI

3

ヘロン 人間 とくほど くほとう

Compare the incomparable

Structure of interest in Astrophysics

```
Semiconvection:
He/Salt stabilizes, T destabilizes
```


Oceanography - Saltfingers

AWI @

・ロト ・回ト ・ヨト ・ヨト

Compare the incomparable

Structure of interest in Oceanography

Saltfingers: T stabilizes, He/Salt destabilizes

DD in Astrophysics and Oceanography ○○○●	Astrophysics - Semiconvection	Oceanography - Saltfingers
Compare the incomparable		
Comparable? YES!		

- Plasma and water are both fluids. Using (nearly) the same equations.
- $\blacktriangleright \ \frac{Le}{Pr} \approx \frac{1}{100}$
- > 2 gradients (He/T and Salt/T) for double diffusive convection.

DD in Astrophysics and Oceanography ○○○●	Astrophysics - Semiconvection 0000 0000	Oceanography - Saltfingers
Compare the incomparable		
Comparable? YESI		

- Plasma and water are both fluids. Using (nearly) the same equations.
- $\blacktriangleright \ \frac{Le}{Pr} \approx \frac{1}{100}$
- ▶ 2 gradients (He/T and Salt/T) for double diffusive convection.

Δ\ ۸ / Ι

イロン イヨン イヨン ・

- saltfingers in stars: off center burning
- semiconvection in ocean: close to melting icebergs

Astrophysics - Semiconvection ●000 0 0000	Oceanography - Saltfingers
	Astrophysics - Semiconvection ●○○○ ○○○○○

Massive stars

ASTROPHYSICS – SEMICONVECTION

Oceanography - Saltfingers

Massive stars

Structure of massive stars

• $M \ge 9M_{\odot}$, $9 * 2 * 10^{33}g \sim 3Mio * M_{earth}$

Oceanography - Saltfingers

Massive stars

Structure of massive stars

- $M \ge 9M_{\odot}$, $9 * 2 * 10^{33}g \sim 3Mio * M_{earth}$
- convective core, radiative envelope

Oceanography - Saltfingers

Massive stars

Structure of massive stars

- $M \ge 9M_{\odot}$, $9 * 2 * 10^{33}g \sim 3Mio * M_{earth}$
- convective core, radiative envelope
- central hydrogen burning (T ~ 40MioK)

Oceanography - Saltfingers

AWI

Massive stars

Structure of massive stars

- $M \ge 9M_{\odot}$, $9*2*10^{33}g \sim 3Mio*M_{earth}$
- convective core, radiative envelope
- central hydrogen burning (T ~ 40MioK)
- semiconvection zone is a layer "between" core and envelope
- SCZ is left behind by shrinking core (during evolution)

Oceanography - Saltfingers

Massive stars

Semiconvection Zone in massive stars

Oceanography - Saltfingers

Massive stars

Stability and instability criterions

$$\blacktriangleright \nabla_{\mu} := \frac{\partial \ln \mu}{\partial \ln P}, \ \nabla_{ad} := \left(\frac{\partial \ln T}{\partial \ln P}\right)_{ad}, \ \nabla := \frac{\partial \ln T}{\partial \ln P}$$

Oceanography - Saltfingers

Massive stars

Stability and instability criterions

•
$$\nabla_{\mu} := \frac{\partial \ln \mu}{\partial \ln P}$$
, $\nabla_{ad} := (\frac{\partial \ln T}{\partial \ln P})_{ad}$, $\nabla := \frac{\partial \ln T}{\partial \ln P}$
• $R_{\mu} = \frac{\nabla_{\mu}}{\nabla - \nabla_{ad}}$ stability parameter

Oceanography - Saltfingers

Massive stars

Stability and instability criterions

Oceanography - Saltfingers

🛤 AWI 🍏

3

・ロン ・回と ・ヨン・

Massive stars

Stability and instability criterions

$$\begin{array}{l} \nabla_{\mu} := \frac{\partial \ln \mu}{\partial \ln P}, \ \nabla_{ad} := (\frac{\partial \ln T}{\partial \ln P})_{ad}, \ \nabla := \frac{\partial \ln T}{\partial \ln P} \\ R_{\mu} = \frac{\nabla_{\mu}}{\nabla - \nabla_{ad}} \ \text{stability parameter} \\ N^2 = g H_p^{-1} (\nabla_{\mu} - (\nabla - \nabla_{ad})) \ \text{Brunt-Väisälä frequency} \\ \\ \hline \frac{\text{semiconvection, if:} \ \nabla - \nabla_{ad} > 0 \ \nabla_{\mu} > 0 \ R_{\mu} > 0}{\text{stable:} \ N^2 > 0 \ \nabla_{\mu} > \nabla - \nabla_{ad} \ R_{\mu} > 1} \\ \hline \text{unstable:} \ N^2 < 0 \ \nabla_{\mu} < \nabla - \nabla_{ad} \ R_{\mu} < 1 \end{array}$$

DD in	Astrophysics	and	Oceanography

SC in massive stars - Preparation

- ▶ Prandtl number: $Pr = \sigma = \frac{\nu}{\kappa \tau} = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}}$
- \blacktriangleright water \sim 7 , mercury \sim 0.015 , in stars \ll 10^{-6}

DD in	Astrophysics	and	Oceanography

SC in massive stars - Preparation

- Prandtl number: $Pr = \sigma = \frac{\nu}{\kappa \tau} = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}}$
- \blacktriangleright water \sim 7 , mercury \sim 0.015 , in stars \ll 10^{-6}
- ▶ small Pr = heat diffuses very quickly compared to the velocity

DD in	Astrophysics	and	Oceanography

SC in massive stars - Preparation

- ▶ Prandtl number: $Pr = \sigma = \frac{\nu}{\kappa \tau} = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}}$
- \blacktriangleright water ~7 , mercury ~0.015 , in stars $\ll10^{-6}$
- small Pr = heat diffuses very quickly compared to the velocity
- Lewis number: $Le = \tau = \frac{\kappa_{He}}{\kappa_{T}} = \frac{\text{mass diffusivity}}{\text{thermal diffusivity}}$

AWI @

(日) (同) (E) (E) (E)

SC in massive stars - Preparation

- ▶ Prandtl number: $Pr = \sigma = \frac{\nu}{\kappa \tau} = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}}$
- \blacktriangleright water ~7 , mercury ~0.015 , in stars $\ll10^{-6}$
- small Pr = heat diffuses very quickly compared to the velocity
- Lewis number: $Le = \tau = \frac{\kappa_{He}}{\kappa_{T}} = \frac{\text{mass diffusivity}}{\text{thermal diffusivity}}$
- in stars $Le \ll Pr \ll 1$, $\frac{Le}{Pr} \approx \frac{1}{100}$ and $\kappa_{He} \ll \nu \ll \kappa_T$

DD in Astrophysics and Oceanography 0000	Astrophysics - Semiconvection ○○○○ ●○○○	Oceanography - Saltfingers 00000000
Simulations of SCZ		
Simulation 1		

► Grid: 160 vertical x 240 horizontal \cong 1500km x 2250km $\cong \triangle x = 9,43$ km, $\triangle t = 5 * 10^{-3}$ scrt

total simulation time: 33min

DD in Astrophysics and Oceanography 0000	Astrophysics - Semiconvection oooo ooo •ooo	Oceanography - Saltfingers 00000000
Simulations of SCZ		
Simulation 1		

► Grid: 160 vertical x 240 horizontal \cong 1500km x 2250km $\cong \triangle x = 9,43$ km, $\triangle t = 5 * 10^{-3}$ scrt

- total simulation time: 33min
- stable
- LES

Oceanography - Saltfingers

AWI

Simulations of SCZ

Simulation 1 - stable - mass-fraction He and x-momentum

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection ○○○○ ○○●○	Oceanography - Saltfingers
Simulations of SCZ		
Simulation 2 - unstable		

► Grid: 160 vertical × 240 horizontal \cong 1500km × 2250km $\cong \triangle x = 9,43$ km, $\triangle t = 5 * 10^{-3}$ scrt

total simulation time: 33min

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection ○○○○ ○○●○	Oceanography - Saltfingers
Simulations of SCZ		
Simulation 2 - unstable		

► Grid: 160 vertical x 240 horizontal \cong 1500km x 2250km $\cong \triangle x = 9,43$ km, $\triangle t = 5 * 10^{-3}$ scrt

- total simulation time: 33min
- unstable
- LES

Oceanography - Saltfingers

AWI

Simulations of SCZ

Simulation 2 - unstable – mass-fraction He and x-momentum

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection 0000 0000	Oceanography - Saltfingers

OCEANOGRAPHY – SALTFINGERS

Oceanography – Saltfingers

- ► Thermohaline staircases are a possible result of Saltfingers.
- ► Double-diffusion can have an effect on large scale results.

(see Merryfield et al 1999, Journal of Phys. Oceanography)

Oceanography – Saltfingers

- ► Thermohaline staircases are a possible result of Saltfingers.
- ► Double-diffusion can have an effect on large scale results.

(see Merryfield et al 1999, Journal of Phys. Oceanography) Saltfingering occurs e.g.:

Oceanography – Saltfingers

- ► Thermohaline staircases are a possible result of Saltfingers.
- ► Double-diffusion can have an effect on large scale results.

(see Merryfield et al 1999, Journal of Phys. Oceanography) Saltfingering occurs e.g.:

Mediterranean outflow into Atlantic

Oceanography – Saltfingers

- ► Thermohaline staircases are a possible result of Saltfingers.
- ► Double-diffusion can have an effect on large scale results.

(see Merryfield et al 1999, Journal of Phys. Oceanography) Saltfingering occurs e.g.:

- Mediterranean outflow into Atlantic
- River mouthes (Po outflow into Adriatic sea)

AWI @

イロト イポト イヨト イヨト

Oceanography – Saltfingers

- ► Thermohaline staircases are a possible result of Saltfingers.
- ► Double-diffusion can have an effect on large scale results.

(see Merryfield et al 1999, Journal of Phys. Oceanography) Saltfingering occurs e.g.:

- Mediterranean outflow into Atlantic
- River mouthes (Po outflow into Adriatic sea)
- Tropical western Atlantic

AWI @

イロト イポト イヨト イヨト

Oceanography – Saltfingers

- ► Thermohaline staircases are a possible result of Saltfingers.
- ► Double-diffusion can have an effect on large scale results.

(see Merryfield et al 1999, Journal of Phys. Oceanography) Saltfingering occurs e.g.:

- Mediterranean outflow into Atlantic
- River mouthes (Po outflow into Adriatic sea)
- Tropical western Atlantic
- Polar regions (Semiconvection)

DD in	Astrophysics	and	Oceanography

Oceanography - Saltfingers

Simulations

Ocean Model and Data

DD in	Astrophysics	and	Oceanography

Oceanography - Saltfingers

Simulations

Ocean Model and Data

•
$$\sigma = \frac{\nu}{\kappa_{\tau}} \approx 7$$
 (Prandtl number)

DD in	Astrophysics	and	Oceanography

Oceanography - Saltfingers

Simulations

Ocean Model and Data

•
$$\sigma = \frac{\nu}{\kappa_T} \approx 7$$
 (Prandtl number)
• $\tau_{ocean} = \frac{\kappa_T}{\kappa_S} = 100$ (Lewis number)

DD in	Astrophysics	and	Oceanography

Oceanography - Saltfingers

Simulations

Ocean Model and Data

•
$$\sigma = \frac{\nu}{\kappa_T} \approx 7$$
 (Prandtl number)

•
$$\tau_{ocean} = \frac{\kappa_T}{\kappa_S} = 100$$
 (Lewis number)

•
$$Ra \sim 10^5$$
 (Rayleigh number)

DD in	Astrophysics	and	Oceanography

Oceanography - Saltfingers

🖛 AWI 🍏

э

Simulations

Ocean Model and Data

DD in Astrophysics and Oceanography	Astrophysics 0000 0 0000	- Semiconvection	Oceanography - Saltfingers ○●○○○○○○
Simulations			
Simulation			
2D–Simulation of Salt	fingers		
5	12 imes 1024	Gridpoints	

 16.5×33 cm^2

DD in Astrophysics and Oceanography 0000	Astrophysics	- Semiconvection	Oceanography - Saltfingers ⊙●○○○○○○
Simulations			
Simulation			
2D–Simulation of Saltfinge	rs		
512 × 16.5 ×	1024 33 с	Gridpoints cm ²	

• $\Delta T = 1^{\circ}C$, $\Delta S = 0.33$

DD in Astrophysics and Oceanography 0000	Astroph y 0000 0 0000	vsics - Semiconvection	Oceanography - Saltfingers ○●○○○○○○
Simulations			
Simulation			
2D–Simulation of Saltfing 512 × 16.5 ×	ers 1024 33	Gridpoints cm ²	

$$\Delta T = 1^{\circ}C, \ \Delta S = 0.33$$

•
$$\sigma = 6.2, \ \tau_{ocean} = 100$$

DD in Astrophysics and Oceanography 0000	Astrophysi 0000 0 0000	ics - Semiconvection	Oceanography - Saltfingers 0000000
Simulations			
Simulation			
2D–Simulation of S	511 × 1024 512 × 1024 16.5 × 33	Gridpoints cm ²	

🛰 AWI 🎯

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• $\Delta T = 1^{\circ}C$, $\Delta S = 0.33$

•
$$\sigma = 6.2, \tau_{ocean} = 100$$

• time \approx 90 sec with $\Delta t = 0.001$ sec

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection 0000 0000	Oceanography - Saltfingers 0000000
Simulations		
Simulation		
2D–Simulation of Saltfinge	rs	
512 imes	1024 Gridpoints	
16.5 $ imes$	33 cm ²	
	2	

🛤 AWI 🍏

・ロト ・回ト ・ヨト ・ヨト … ヨ

- ▶ $\sigma = 6.2, \tau_{ocean} = 100$
- time \approx 90 sec with $\Delta t = 0.001$ sec

DNS

DD in Astrophysics and Oceanography

Astrophysics - Semiconvection

Oceanography - Saltfingers

📥 AWI 🍏

э

・ロト ・回ト ・ヨト ・ヨト

Simulations

Figure: t = 30 sec

DD in Astrophysics and Oceanography $_{\rm OOOO}$

Astrophysics - Semiconvection

Oceanography - Saltfingers

📥 AWI 🍏

э

・ロト ・回ト ・ヨト ・ヨト

Simulations

Figure: t = 40 sec

DD in Astrophysics and Oceanography $_{\rm OOOO}$

Astrophysics - Semiconvection

Oceanography - Saltfingers

🛏 AWI 🍏

э

・ロン ・回 と ・ヨン ・ヨン

Simulations

Figure: t = 50 sec

DD in Astrophysics and Oceanography $_{\rm OOOO}$

Astrophysics - Semiconvection

Oceanography - Saltfingers

🛏 AWI 🍏

э

・ロト ・回ト ・ヨト ・ヨト

Simulations

Figure: t = 60 sec

DD in	Astrophysics	and	Oceanography

Oceanography - Saltfingers

Simulations

Running Simulation

3D–Simulation

DD	Astrophysics	and	Oceanography	

Oceanography - Saltfingers

Simulations

Running Simulation

3D-Simulation

$\begin{array}{ll} 512\times512\times512 & \mbox{Gridpoints}\\ 8.25\times8.25\times8.25 & \mbox{cm}^3 \end{array}$

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection 0000 0000	Oceanography - ○○○○○○●○

Simulations

Running Simulation

3D-Simulation

$\begin{array}{ll} 512\times512\times512 & \mbox{Gridpoints}\\ 8.25\times8.25\times8.25 & \mbox{cm}^3 \end{array}$

• $\tau_{ocean} = 100, \ \sigma \approx 6.77$

Saltfingers

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection	0
		0
	ōooo	

Oceanography - Saltfingers

Simulations

Running Simulation

3D-Simulation

 $\begin{array}{ll} 512\times512\times512 & \mbox{Gridpoints}\\ 8.25\times8.25\times8.25 & \mbox{cm}^3 \end{array}$

•
$$\tau_{ocean} = 100, \ \sigma \approx 6.77$$

•
$$\Delta T = 1^{\circ}C$$
, $\Delta S = 0.17$

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection	Oceanography - Saltfingers
Simulations		

Running Simulation

3D-Simulation

 $\begin{array}{ll} 512\times512\times512 & \mbox{Gridpoints}\\ 8.25\times8.25\times8.25 & \mbox{cm}^3 \end{array}$

AWI

э

・ロン ・回と ・ヨン・

•
$$\tau_{ocean} = 100, \ \sigma \approx 6.77$$

•
$$\Delta T = 1^{\circ}C$$
, $\Delta S = 0.17$

• estimated time pprox 80 sec with $\Delta t = 0.001$ sec

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection	Oceanography - Saltfingers
Simulations		

Running Simulation

3D-Simulation

 $\begin{array}{ll} 512\times512\times512 & \mbox{Gridpoints}\\ 8.25\times8.25\times8.25 & \mbox{cm}^3 \end{array}$

AWI

э

・ロン ・回と ・ヨン・

•
$$\tau_{ocean} = 100, \ \sigma \approx 6.77$$

•
$$\Delta T = 1^{\circ}C$$
, $\Delta S = 0.17$

• estimated time pprox 80 sec with $\Delta t = 0.001$ sec

DNS

Astrophysics - Semiconvection 0000 0000	Oceanography - Saltfingers ○○○○○○●
	Astrophysics - Semiconvection

▶ The intention are simulations with

$1024 \times 1024 \times 1024 \qquad \text{Gridpoints}$

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection 0000 0000	Oceanography - Saltfingers ○○○○○○●
Simulations		
Next Steps		

The intention are simulations with

$1024 \times 1024 \times 1024$ Gridpoints

Test existing models

DD in Astrophysics and Oceanography	Astrophysics - Semiconvection 0000 0000	Oceanography - Saltfingers ○○○○○○●
Simulations		
Next Steps		

The intention are simulations with

$1024 \times 1024 \times 1024$ Gridpoints

Test existing models

