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ABSTRACT

Ensemble Kalman filter methods are typically used in combination with one of two localization techniques.

One technique is covariance localization, or direct forecast error localization, in which the ensemble-derived

forecast error covariance matrix is Schur multiplied with a chosen correlation matrix. The second way of

localization is by domain decomposition. Here, the assimilation is split into local domains in which the as-

similation update is performed independently. Domain localization is frequently used in combination with

filter algorithms that use the analysis error covariance matrix for the calculation of the gain like the ensemble

transform Kalman filter (ETKF) and the singular evolutive interpolated Kalman filter (SEIK). However,

since the local assimilations are performed independently, smoothness of the analysis fields across the sub-

domain boundaries becomes an issue of concern.

To address the problem of smoothness, an algorithm is introduced that uses domain localization in com-

bination with a Schur product localization of the forecast error covariance matrix for each local subdomain.

On a simple example, using the Lorenz-40 system, it is demonstrated that this modification can produce

results comparable to those obtained with direct forecast error localization. In addition, these results are

compared to the method that uses domain localization in combination with weighting of observations. In the

simple example, the method using weighting of observations is less accurate than the new method, particularly

if the observation errors are small.

Domain localization with weighting of observations is further examined in the case of assimilation of

satellite data into the global finite-element ocean circulation model (FEOM) using the local SEIK filter. In

this example, the use of observational weighting improves the accuracy of the analysis. In addition, depending

on the correlation function used for weighting, the spectral properties of the solution can be improved.

1. Introduction

The ensemble-based Kalman filter approach has been

widely used for data assimilation in both meteorology

and oceanography (see, e.g., Houtekamer and Mitchell

1998, 2001; Brankart et al. 2003). In the ensemble Kalman

filter algorithms, the forecast error covariance matrix is

approximated by a covariance matrix whose rank is 1 less

than the number of ensemble members. For computa-

tional tractability, the number of ensemble members,

and therefore the rank of the covariance matrix is often

chosen to be small. This, however, can lead to the di-

vergence of the filter (Houtekamer and Mitchell 1998).

To apply the ensemble Kalman filter methods in practice,
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it is therefore often necessary to localize the covariances

in order to increase the rank of the analysis error co-

variance matrix.

In Houtekamer and Mitchell (1998, 2001) the en-

semble Kalman filter was used together with a localiza-

tion applied directly to the forecast error covariance

matrix. In the latter paper, the ensemble derived fore-

cast error covariance matrix is Schur multiplied (ele-

mentwise multiplied) with a stationary a priori chosen

covariance matrix that is compactly supported.

As an alternative to direct forecast error localization,

the method of domain localization has been used in several

studies (Haugen and Evensen 2002; Penduff et al. 2002;

Brusdal et al. 2003; Evensen 2003; Brankart et al. 2003;

Ott et al. 2004; Nerger et al. 2006; Hunt et al. 2007; Miyoshi

and Yamane 2007). In the domain localization methods,

disjoint domains in the physical space are considered as

domains on which the analysis is performed. An analysis

step is performed independently for each subdomain, using

observations not necessarily belonging only to that sub-

domain. Results of the local analysis steps are pasted to-

gether and then the global forecast step is performed.

These methods resemble optimal interpolation (OI),

which is also based on a local analysis (Lorenc 1981;

Cohn et al. 1998) and much can be learned by applying

the substantial body of research that has been per-

formed with OI. For example, it was shown that OI can

produce spurious noise in the analysis fields as a result of

different sets of observations used on different parts of

the model state (Cohn et al. 1998).

In contrast to OI, covariances used in ensemble-based

filters are ensemble derived, and therefore nonisotropic

and nonstationary. In addition, the covariance used with

OI would go to zero with increasing distance. This is not

the case in the ensemble Kalman filter (EnKF) because

of sampling error. Furthermore, these methods are used

with weighting of the observations, or localization of the

R matrix, as described in section 2 (Penduff et al. 2002;

Hunt et al. 2007; Nerger and Gregg 2007), which has not

been done with OI.

In this work we investigate the impact of this weight-

ing on the analysis and focus on explaining the effects of

domain localization in ensemble-based Kalman filter

algorithms. Furthermore, we discuss spectral properties

of the solution depending on different weighting func-

tions of the observations.

In section 2 we discuss domain localization in the

context of ensemble-based Kalman filters and introduce

a modification to the algorithm in order to include a

Schur product with an isotropic matrix. Then, in section

3 we compare the different localization methods when

applied to the Lorenz-40 system and show the beneficial

effect of weighting of observations and the technique

introduced in section 2 together with domain localiza-

tion for ensemble Kalman filter algorithms. In section 4,

we apply a domain-localized singular evolutive inter-

polated Kalman filter (SEIK) (Pham et al. 1998; Pham

2001; Nerger et al. 2006) to a realistic oceanographic

problem. Furthermore, we discuss the influence of the

different correlation functions used for weighting of

the observations within domain localization. We consider

the effects on accuracy as well as on spectral properties

of the solution. The concluding remarks are presented

in the last section.

2. Domain localization

a. Why is domain localization used?

As for OI, one of the major advantages of using domain

localization is computational since solving for the analysis

update is not performed globally but on much smaller

local domains. Accordingly, the updates on the smaller

domains can be done independently and therefore in par-

allel. This gain comes at a price as shown by Cohn et al.

(1998) by comparing the OI to global analysis: in case of

the estimation of a smooth field, OI can produce boxiness

in analysis fields because of its local approximation.

In ensemble-based Kalman filters, the domain locali-

zation method is more widely used with algorithms that

use the analysis error covariance matrix for the calculation

of the gain (Nerger et al. 2006; Hunt et al. 2007; Miyoshi

and Yamane 2007) instead of the forecast error covari-

ance matrix. Examples of such methods are the ensemble

transform Kalman filter (ETKF; Bishop et al. 2001) and

the SEIK (Pham et al. 1998; Pham 2001). These methods

used for the analysis update the following formula:

xa
k 5 x

f
k 1 Kk(yo

k 2 Hkx
f
k),

Kk 5 Pa
kHT

k R21
k . (1)

Here xa
k and x f

k represent the analysis and forecast state

vector at time tk, respectively. Observations are denoted

with yo
k, the observational operator is denoted with Hk, Kk

is the Kalman gain, Pa
k is the analysis error covariance

matrix, and Rk denotes the observation error covariance

matrix. In these methods an ensemble resampling [in

SEIK (Pham 2001) or transformation (Bishop et al. 2001)]

is used that ensures that the ensemble statistics represent

exactly the analysis state and error covariance matrix.

Once the ensemble members are generated, each mem-

ber is propagated with the full numerical model to time

tk11. The forecast state at time tk11 is the average over the

ensemble members. System noise can be added to each

ensemble member (see Pham 2001), but it is neglected in

the formulation presented in this paper.
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In these algorithms, the forecast error covariance ma-

trix is never explicitly calculated. Therefore, direct fore-

cast localization as in Houtekamer and Mitchell (1998,

2001) is not immediately possible. To obtain the effect of

direct forecast localization, a simple formula is required

to calculate the analysis error covariance matrix corre-

sponding to a localized forecast error covariance matrix

in terms of the ensemble members. To this end, one could

use the representation of the localized forecast covariance

matrix in terms of ensemble members:

P
f
k 5

1

r
�
r11

i51
[xf ,i(tk) 2 x

f
k][xf ,i(tk) 2 x

f
k]T. (2)

Here, xf,i(tk) are ensemble members i 5 1, . . . , r 1 1 of

size n at time tk and x f
k is the average over ensemble

members: x f
k 5 1/(r 1 1)�r11

i51 x f ,i(tk). Now, let C be a ma-

trix of rank M that is used for the Schur product. Let vj

represent eigenvectors of matrix C multiplied with the

square root of the corresponding eigenvalue. Then the

localized error covariance matrix can be represented as

�
r11,M

i,j51
ui,ju

T
i,j with ui,j 5

1
ffiffi

r
p [xf ,i(tk) 2 x

f
k]+vj, (3)

where + denotes the element-wise product (Schur product)

and the property of the Schur product (a + c)(b + d)T 5

(abT) + (cdT) is used. This representation implies that one

can use the ensemble ui,j instead of the ensemble mem-

bers xf,i for the calculation of the analysis error covariance

matrix with the same formulas as in the original algo-

rithms (see the appendix for the detailed application with

the SEIK algorithm). This procedure increases the cost

of the algorithm for calculating the analysis error co-

variance matrix. The increase in cost depends on the rank

of the chosen localization matrix C. However, since the

evolution of ensemble members is the most expensive

part of these algorithms, this increase in cost may not be

significant for low-rank covariance C.

With this procedure the direct forecast localization is

applied without any approximation in the analysis cal-

culations of algorithms involving the analysis error co-

variance matrix. However, if the rank M of C is larger

than the ratio of the number of observations to the

number of ensemble members, it is hard to computa-

tionally justify the use of this approach (see the appendix

for details).

In the SEIK algorithm (similarly in the ETKF) a resam-

pling of the ensemble is performed by a random transfor-

mation matrix under the conditions that the new ensemble

mean equals the analysis state and the ensemble covariance

matrix equals the analysis error covariance matrix. For the

SEIK filter, the method has been described as second-

order exact sampling with linear constraints (Pham 2001).

However, this resampling is only possible if the rank of

the analysis covariance matrix obtained using the lo-

calized forecast error covariance matrix is smaller than

the size r 1 1 of the ensemble (Pham 2001). Since the

rank of the analysis error covariance matrix has been

most likely increased by the localization, one will not be

able to recover this matrix exactly with r 1 1 ensemble

members. However, one can preserve the exact mean

and some other prechosen properties of the covariance

matrix. For example, one can obtain a new ensemble

whose covariance matrix, as calculated from (2), is equal

to the analysis error covariance matrix, which corre-

sponds to the forecast error covariance matrix without

localization.

b. Basic aspects of domain localization

Let us now consider what happens if one uses domain

localization. In an algorithm with domain localization

the forecast error covariance matrix is calculated using

P
f ,loc
k 5 �

r11,L

i,j51
ui,ju

T
i,j, (4)

where ui,j 5 (1/
ffiffi

r
p

)[xf ,i(tk) 2 x f
k]+1D

j
with j 5 1, . . . , L

and L is the number of subdomains. Here 1Dj
is a vector

whose elements are 1 if the corresponding point belongs

to the domain Dj otherwise they are 0. This forecast

error covariance matrix has a block structure and is

not isotropic. The localized forecast error covariance

matrix in (4) is positive semidefinite because it is a sum

of rank-1 positive semidefinite matrices. Equation (4)

shows that the domain localization can be represented as

a direct localization of a forecast error covariance matrix

with a matrix C that has block structure and is the sum

of rank-1 matrices 1Dj
1T

Dj
. The rank of matrix C corre-

sponds to the number of subdomains. In other words,

in practice the subdomains may have to be made quite

small, to ensure that rank(C) is large enough. This is

contrary to the direct forecast error localization where

the localization matrix usually has full rank. The fact

that C is not positive definite but semidefinite for do-

main localization methods can theoretically lead to the

following problem. In case that rank(C)rank (P
f
k) , n,

the matrix C+P
f
k is singular (Horn and Johnson 1985).

This is problematic, if the analysis increment is calcu-

lated for very accurate observations.

In domain localization methods, the rank is not in-

creased locally on each subdomain. Accordingly, it is

possible to resample exactly on that subdomain in con-

trast to direct forecast error localization. Because the

assimilations are performed independently in each local
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region, the smoothness of the analysis fields is of more

concern in domain localization methods than with direct

forecast error localization. In particular, two neighbor-

ing subdomains might produce strongly different anal-

ysis estimates when the assimilated observations have

gaps, because distinct sets of observations are used for

the analyses. To resolve the smoothness problem of the

analysis fields, weighting of observations was proposed

(Penduff et al. 2002; Hunt et al. 2007; Nerger and Gregg

2007). This method weights observations depending on

their distance from the point at which the assimilation is

performed as will be discussed next.

c. Influence of the observation operator on
domain localization

Ensemble-based Kalman filters apply the observation

operator directly on each ensemble member before

localization is applied. Therefore, the localization is

usually performed on the matrices HkP
f
k and HkP

f
kHT

k

(Houtekamer and Mitchell 1998, 2001):

HkP
f
k 5

1

r
�
r11

i51
fHk[xf ,i(tk)]� Hk(x

f
k)g[xf ,i(tk)� x

f
k]T

HkP
f
k HT

k 5
1

r
�
r11

i51
fHk[xf ,i(tk)]� Hk(x

f
k)g

3fHk[xf ,i(tk)]� Hk(x
f
k)gT.

Once these matrices are calculated, they are Schur mul-

tiplied with the matrices HkC and HkCHT
k , respectively.

For the domain localization methods, different anal-

ysis results can be obtained depending on the treatment

of the observations. Two different cases are of interest:

Observations can be restricted to the local analysis

subdomains only (Ott et al. 2004; Miyoshi and Yamane

2007), or the observational domains can be allowed to be

larger and partially overlap (Penduff et al. 2002; Nerger

et al. 2006; Hunt et al. 2007). If all the observations in the

full domain are used for the analysis in each disjoint

subdomain, the algorithm without localization is re-

covered. This follows from

1

r
�
r11

i51
�
L

j51
fHk[x f ,i(tk)]� Hk(x

f
k)g[x f ,i(tk)+1D

j
2 x

f
k+1D

j
]T

5
1

r
�
r11

i51
fHk[x f ,i(tk)]� Hk(x

f
k)g[x f ,i(tk)� x

f
k]T 5 HkP

f
k .

(5)

If, on the other hand, we restrict observations to the

local analysis subdomains the covariance matrix is given

by (4).

Let us now consider observations that are limited to

a domain Dmj larger than the subdomain Dj on which

the analysis is performed. Let 1
Dmj

be a vector that has a

value of 1 if the observation belongs to the domain Dmj

and is 0 otherwise. Furthermore, let Dj 4 Dmj. Again,

using the property of the Schur product (a + c)

(b + d)T 5 (abT) + (cdT), it is

1

r
�
r11

i51
�
L

j51
fHk[xf ,i(tk)]+1Dm

j
� Hk(x

f
k)+1Dm

j
g[xf ,i(tk)+1D

j
� x

f
k+1D

j
]T

5
1

r
�
r11

i51
�
L

j51
(1Dm

j
1T

D
j
)+fHk[xf ,i(tk)] 2 Hk(x

f
k)g[xf ,i(tk) 2 x

f
k]T 5�

L

j51
(1Dm

j
1T

D
j
)+HkP

f
k .

Here, the matrix �L

j511Dmj
1T

Dj
has entries of 0s and 1s,

because the domains Dj are disjoint. The number of

diagonals with all values equal to 1, depends on the

number of observations in the overlapping subdomains

Dmj. In case of domain localization, the analysis in a lo-

cal subdomain Dj is computed using the corresponding

submatrices of (1Dmj
1T

Dj
)+HkP

f
k and 1Dmj

1T
Dmj

+HkP
f
kHT

k .

An obvious modification to this algorithm is to use the

matrices (1Dmj
1T

Dj
)+HkP

f
k+HkC and 1Dmj

1T
Dmj

+HkP
f
kHT

k +
H

k
CHT

k . Here, the matrix C is generated with a support

distance chosen to be not larger than the distance cor-

responding to the support distance of 1
Dmj

1T
Dmj

. Note

that we cannot recover the direct forecast error locali-

zation by this method, because the solving for analysis in

the direct forecast localization is performed globally.

Performing the analysis step domain by domain, gives

the same result only for block structure matrices, such

as those obtained when observations belong to disjoint

subdomains. The proposed modification keeps the com-

putational benefits of domain localization, but also
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introduces the full rank, positive definite covariance ma-

trix C to the domain localization method. In the resam-

pling step, however, one generates on each subdomain

a local ensemble to represent the analysis covariance

matrix corresponding to the forecast covariance matrix

without localization with C. This method will be denoted

(SD1Loc) in the next section.

An alternative to this approach is weighting of the

observation (Penduff et al. 2002; Hunt et al. 2007;

Nerger and Gregg 2007). Its implementation requires

for each observation a weight that depends on the dis-

tance of the observation from the analysis location. The

forecast error covariance matrix does not need to be

computed explicitly. The weighting of observations mod-

ifies only the observational error covariance matrix R.

With observation localization, the analysis ensemble is

generated to represent the analysis covariance calcu-

lated with the modified matrix R. This method will be

called method (SD1ObLoc) below. The direct forecast

error localization and the weighting of observations are

not equivalent, as pointed out by Miyoshi and Yamane

(2007) on a simple example. They considered the weight-

ing when only a single observation is assimilated. In this

case, the observation error s2
obs is modified to s2

obs/wd,

where wd is a weight that depends on the distance of the

observation from the analysis point and can be calcu-

lated using any correlation function. Accordingly, in

case of weighting of observations, the gain is wd(HPf )T/

(wdHPf HT 1 s2
obs). In contrast, for direct forecast error

localization the gain is wd(HPf )T/(HPf HT 1 s2
obs). In

both methods the same correlation function can be used

for wd. Note, that it is not possible to find two different

correlation functions depending only on distance that

yield the same gain for both localization methods. The

example also indicates that the differences between the

method of weighting of observations and direct forecast

error localization method will be strongest if the ob-

servational error is small compared to HPf HT.

3. Experiments with the 40-variable Lorenz model

To examine the localization methods discussed in the

previous sections with a small dynamical model, data

assimilation experiments with the Lorenz-40 dynamical

system of Lorenz and Emanuel (1998) were performed.

This nonlinear model has been used to assess ensemble-

based assimilation schemes in a number of studies (e.g.,

Whitaker and Hamill 2002; Ott et al. 2004; Sakov and

Oke 2008). The model is governed by 40 coupled or-

dinary differential equations in a domain with cyclic

boundary conditions. The state vector dimension is 40 and

the fourth-order Runge–Kutta time integration scheme

is used with a time step of 0.05 nondimensional units.

The full state is observed at every time step. The ob-

servations are generated from a model trajectory by

contaminating the state by uncorrelated normally dis-

tributed random noise. For the first set of experiments

the observation error has a standard deviation of sobs 5 1,

while sobs 5 0.1 is used for the second set of experiments.

The assimilation is performed over 50 000 time steps

after a spinup period of 1000 time steps. A 10-member

ensemble is used. To initialize the filter, a sample is

generated from the true model trajectory over 60 000

time steps. The initial covariance matrix is estimated

via empirical orthogonal function (EOF) analysis such

that it corresponds to the nine largest singular values

of the computed sample covariance matrix. The initial

ensemble is generated by second-order exact sam-

pling. As the performance of the data assimilation al-

gorithms depends on random numbers used in the initial

sampling, all experiments are repeated 10 times with

different random numbers. The assimilation performance

is assessed in terms of root-mean-square (RMS) errors.

These are calculated over 50 000 time steps for varying

localization radii and forgetting factors (see the ap-

pendix for algorithmic details including the forgetting

factor) and averaged over 10 experiments with differ-

ent random numbers.

The following assimilation methods are compared.

First, an ensemble square root filter as described in

Whitaker and Hamill (2002) is applied. The localization

is performed by a Schur product of the ensemble fore-

cast error covariance matrix with a correlation matrix

C given by the piecewise rational fifth-order polynomial

function (Gaspari and Cohn 1999). This method will be

labeled (GLocEn). The other methods are applied with

domain localization (i.e., separate analysis updates for

each grid point). In the method labeled (SD1) point-

localized assimilation updates are performed using the

local SEIK filter and observations within a varying ob-

servational radius. This corresponds to the use of the

top-hat function for the matrices HkC and HkCHT
k . The

local SEIK filter with observational weighting by the fifth-

order polynomial function is used for the method labeled

(SD1ObLoc). To apply this method, all 40 available ob-

servations are used and the weighting is varied by speci-

fying the support radius for the fifth-order polynomial

function. For support radii below 20, this configuration is

analogous to setting the influence radius of the obser-

vations to the support radius. This is due to the fact that

the method would disregard all observations for which

the weight is equal to zero. Finally, the method labeled

(SD1Loc) uses for each observational subdomain a re-

formulated local SEIK filter with localization by the

Schur product of the local forecast error covariance

matrix with the corresponding submatrix of matrix C. In
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this method, the resampling is performed locally using

the analysis error covariance matrix corresponding to

the forecast error covariance matrix without localization

by C on the subdomain.

The RMS error for the method (GLocEn) averaged

over 10 experiments with different random numbers in

the initialization is shown in Fig. 1 as a function of the

support radius of the fifth order polynomial and the

forgetting factor. Figure 1 shows RMS errors for (left)

sobs 5 1 and (right) sobs 5 0.1. White regions denote

parameter values for which the filter diverges, which is

defined for errors above 1 for sobs 5 1 and above 0.1 for

sobs 5 0.1. For sobs 5 1, the smallest mean RMS error of

0.202 is obtained for a support radius of 18 and a for-

getting factor of 0.95. The minimum value as well as the

corresponding support radius and forgetting factor vary

between the 10 experiments with different random

numbers. The optimal support radius and forgetting

factor are also influenced by the observation error. For

sobs 5 0.1 the minimum mean RMS error is 0.0194. It is

obtained for a support radius of 20 and a forgetting

factor of 0.96.

Figure 2 shows mean RMS errors for the methods

using domain localization for the two observational er-

ror levels. The top row shows the RMS errors for the

method (SD1). The middle row shows corresponding

results for the method (SD1ObLoc) and the last row for

the method (SD1Loc) with a support radius of 20 grid

points for the localization matrix C. Let us first compare

the methods for the case of sobs 5 1. The parameter area

corresponding to the convergence of method (SD1) is

much smaller than for the other methods. The use of all

observations in the method (SD1) corresponds to the

use of the SEIK filter without localization, which diverges

for all forgetting factors used here. The smallest mean

RMS error for the method (SD1) is 0.220. It is obtained

when the observational radius is 6 and the forgetting

factor is 0.93.

Weighting of observations increases the range of pa-

rameters for which the filter converges. The most accu-

rate results are obtained for an observational radius of

20 and a forgetting factor of 0.93. Here, the minimum

error is slightly larger compared to the minimum error

of (GLocEn) and its value is 0.203.

Using the method (SD1Loc) for a localization matrix

C with support radius of 20 grid points, a minimum RMS

error value of 0.197 is obtained. The optimal parame-

ters are an observational radius of 10 and a forgetting

factor of 0.95. Finally, results obtained with the method

(SD1Loc) are shown for a localization matrix C with

support radius of 20 grid points and varying observa-

tional radius and forgetting factor. The accuracy of the

results depends on the support radius of the localization

matrix C. Figure 2 shows the optimal result for sobs 5 1.

Changing the support radius of the localization matrix C

will change the range of the parameters for which con-

vergence is achieved, as well as the RMS errors.

If the observational error is decreased to sobs 5 0.1,

the differences between the methods (GLocEn) and

(SD1ObLoc) become evident. The minimum mean

RMS errors are 0.0194 for (GLocEn), 0.0220 for (SD1),

0.0205 for (SD1ObLoc), and 0.0188 for (SD1Loc). The

methods with the smallest mean RMS errors are (GLocEn)

and (SD1Loc). The minimum RMS error obtained for

the method (SD1ObLoc) is larger than that for (GLocEn).

This difference is due to the different effects of both lo-

calization methods as was discussed toward the end of

section 2c. However, if one excludes the initial transient

FIG. 1. RMS mean error as a function of the support radius of the localization and the forgetting factor for method

GLocEn. Errors obtained with an observational error with standard deviation of (left) sobs 5 1 and (right) sobs 5 0.1.

Please note the different color scales.
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phase of the assimilation the errors obtained for the two

methods are much closer. This is visible in Fig. 3 where

the RMS errors are calculated using only the last 48 000

steps of each assimilation experiment. The smaller dif-

ferences indicate that the asymptotic behavior of both

methods is similar. To assess the statistical significance

of the results, t tests were performed. Tested was the

hypothesis that the minimum errors obtained over 10

random-number experiments are different. The tests

showed that the RMS errors for (GLocEn) and

(SD1ObLoc) are significantly different, at 5% signifi-

cance level, for the mean errors over 48 000 time steps for

FIG. 2. RMS mean errors as in Fig. 1. Shown are the experiments (top) SD1, (middle) SD1ObLoc, and (bottom)

SD1Loc for (left) sobs 5 1 and (right) sobs 5 0.1.

2052 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



both sobs 5 0.1 and sobs 5 1. In addition, the RMS errors

are significantly different over 50 000 time steps for

sobs 5 0.1, but not for sobs 5 1.

4. Experiments with a global ocean model

In the previous section we have discussed the perfor-

mance of the different localization schemes when ap-

plied to a small strongly nonlinear dynamical system.

In this section, we apply the localization to a realistic

oceanographic problem: the assimilation of satellite

data into a global ocean circulation model. We focus on

the method of weighting of observations with local SEIK

filter and study the filtering behavior when different

correlation functions for the weighting of observations

are applied. The results are assessed in terms of the ac-

curacy of the analysis and forecast fields as well as the

spectral properties of the error of the estimated fields.

a. Experimental setup

The experiments conducted here are analogous to

Skachko et al. (2008) with a few modifications. Skachko

et al. (2008) updated only the sea surface height (SSH)

field with a local SEIK filter, while temperature and

salinity are updated following the first baroclinic mode

in the vertical direction. In contrast, we use the domain

localized SEIK filter algorithm (Pham et al. 1998; Pham

2001; Nerger et al. 2006) as implemented within the parallel

data assimilation framework (PDAF; Nerger et al. 2005) to

update the full model state, consisting of temperature, sa-

linity, SSH, and velocity fields. Furthermore, a model ver-

sion without adiabatic pressure correction is used, while

Skachko et al. (2008) used this correction in order to reduce

a systematic drift of the mean surface elevation.

The assimilated observations are dynamical ocean

topography (DOT) data. The DOT was obtained by

means of a geodetic approach from carefully cross-

calibrated multimission-altimetry data [from the Envi-

ronmental Satellite (Envisat), the Geosat Follow-On

(GFO), Jason, and the Ocean Topography Experiment

(TOPEX)/Poseidon missions] and the Gravity Recovery

and Climate Experiment (GRACE) gravity fields [see

Skachko et al. (2008) for more details]. The geoid data

are provided as a truncated spherical harmonic series

(i.e., in a band-limited global spectral representation on

a sphere). The altimetric measurements are given as

weighted mean values over the footprint of the radar

signal along the ground track of the spacecraft. To en-

sure that the computed DOT is consistent with the geoid

field, spectral consistency between sea surface height

fields and the geoid field needs to be achieved (Albertella

et al. 2008). The consistency is ensured by applying a

Gauss-type filter (Jekeli 1981; Wahr et al. 1998). The

filter length is driven by the spatial resolution of the

gravity field. For the GRACE-based gravity field model

ITG03s (Mayer-Gürr 2007), the filter half-width is typ-

ically 240 km. The polar areas, part of the Indonesian

region, and the Mediterranean Sea are characterized by

low data accuracy due to the presence of ice or complex

bottom topography. For this reason, the observational

data are substituted in these regions by the values of the

(Rio et al. 2005, hereafter RIO05) mean dynamical to-

pography. The data cover the period between January

2004 and January 2005 and are available at 10-day in-

tervals. For combining the different data types, the data

are interpolated onto the model grid [see Skachko et al.

(2008) and Albertella et al. (2008) for more details]. The

interpolation introduces cross correlations between the

observations. However, since the same observations are

FIG. 3. RMS mean errors for the methods (left) GLocEn and (right) SD1ObLoc for the last 48 000 time steps of

experiments with sobs 5 0.1.
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used in all experiments presented below and all the

observations are contaminated with observational er-

rors in the same way, these errors will not affect the

comparison of the weighting functions discussed here.

The study was performed using the finite-element

ocean circulation model (FEOM; Wang et al. 2008)

configured on a global triangular mesh with the spatial

resolution of 1.58. There are 24 unevenly spaced levels

in the vertical direction. FEOM solves the standard set

of hydrostatic ocean dynamic primitive equations using

continuous linear representations for the horizontal ve-

locity, surface elevation, temperature, and salinity.

To generate the initial error covariance matrix, a model

run was performed to produce a set of 10-day forecasts

over a year. The initial error covariance matrix is then

approximated with a low-rank matrix using the first 12

empirical orthogonal functions of the ensemble. The

initial field was the same as in Skachko et al. (2008). The

12 EOFs and the initial state estimate were used to gen-

erate the initial ensemble of 13 model states by second-

order exact sampling (Pham 2001).

During the assimilation, the analysis of the full ocean

field is carried out by applying the local SEIK filter after

each 10-day forecast. The analysis for each water col-

umn of the model depends only on observations within

a specified influence region. In the analysis, a diagonal

observation error covariance matrix is used with an er-

ror variance of 25 cm2 analogously to similar studies

performed with reduced rank filters (e.g., Penduff et al.

2002). The error variance accounts for the error of al-

timetry and gravity data as well as mapping errors. Also,

it can partially account for the effects of cross correlations

introduced by interpolation (Janjić and Cohn 2006).

b. Influence of the weighting function on
estimation errors

Although localization has been widely used in com-

bination with ensemble-based Kalman filters, the rea-

sons for choosing a particular correlation function for

localization are not well established. The localization

length scales should be related to the scale of the SSH

features, which vary in the global ocean depending

on latitude and dynamic regime. Currently, ensemble

Kalman filter methods use an isotropic correlation

function for localization, and rely on ensemble-derived

covariances from the model to represent the dynamical

properties of the system. For this application, a localiza-

tion function with length scales varying with the latitude

might be beneficial. However, the experiments per-

formed here are concerned with the general differences

induced by the weighting functions. For this reason, iso-

tropic correlation functions are used here for localization.

Besides the fifth-order polynomial function an expo-

nential correlation function (Gelb 1974) has been used

for weighting observations (Penduff et al. 2002; Nerger

and Gregg 2007). In this section, experiments with dif-

ferent correlation functions for the weighting of obser-

vations are discussed. Considered are the fifth-order

polynomial correlation function from Gaspari and Cohn

(1999) with support radius equal to the observational

radius (5TH), uniform weighting by one (UNIT), and

exponential weighting e2d/L (EXP). Here, d is the distance

FIG. 4. Correlation functions used for the weighting of observations. The exponential

weighting gives more weight to remote observations and less for short distances then the use of

the fifth-order polynomial.
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between the analysis point and the observation, while

L is the length scale of the weighting. The localization

parameters for all three methods have been tuned in an

extensive series of tests. In these tests, the observational

radius was varied between 2000 and 300 km. For the

experiment 5TH, the experiments indicated that an ob-

servational radius of 900 km represents an optimal

choice to include as many observations as possible and

still obtain reasonably accurate results. For the exper-

iments EXP and UNIT we compare the radius of 900 km

with smaller radii. The correlation functions used here

are shown in Fig. 4. For the detailed discussion, we only

consider a selection of relevant cases. In particular, we

consider exponential weighting with L 5 900 km (EXP)

and L 5 300 km (EXP300) as well as unit weighting

with radii of 900 km (UNIT), 500 km (UNIT500), and

300 km (UNIT300).

The RMS errors of the SSH field over time obtained

with four weighting functions are shown in Fig. 5. After

1 year of assimilation, the experiments 5TH and EXP300

give the most accurate solution with about 0.05-m fore-

cast RMS error, followed by the experiment EXP. Note

that the experiment EXP300 shows the largest spread

between the analysis and forecast RMS errors. This is the

result of the fast decrease of the exponential function for

short distances. Thus, the forecast is less stable than in the

other experiments due to a higher imbalance (Mitchell

et al. 2002; Kepert 2009). Consistent with the experiments

performed with the Lorenz-40 model, the application of

observational weighting functions improves the accuracy

of the forecast field compared to uniform weighting.

The previous experiments showed that for exponen-

tial weighting the same forecast accuracy can be obtained

as for the experiment 5TH. This, however, required

FIG. 5. Evolution of the RMS error of SSH for the global ocean (except zones corresponding to RIO05 data) for the

experiments (top left) 5TH, (top right) UNIT, (bottom left) EXP, and (bottom right) EXP300. Black and gray dots

represent forecast and analysis errors, respectively. Thin lines connect an analysis error with the subsequent forecast

error.
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a smaller radius L than the observational influence

radius. A similar effect can be demonstrated for uni-

form weighting. As here the weight is constant within

the observational radius, the performance is only

influenced by the observational radius. Figure 6 shows

RMS errors for the SSH fields depending on the ob-

servational influence radius for uniform weighting of

observations. Comparing Figs. 5 and 6 shows that one

can obtain the same accuracy with a 900-km radius

in the experiment 5TH, as with an influence radius of

300 km and uniform weighting (UNIT300). However,

the spread between the forecast and analysis errors

increases as the influence radius is decreased, indi-

cating larger imbalances. This is similar to the exper-

iment EXP300, but for UNIT300 the spread is slightly

smaller. As a result of this, the accuracy of the fore-

casted field is the same for 5TH and UNIT300, while

for the analysis the RMS error is smaller for UNIT300.

Furthermore, only by disregarding a relatively large

number of observations one can obtain estimates that

are comparable to the experiment 5TH. This is not

a desirable property of the data assimilation scheme.

c. Spectral properties of the estimated fields

The previous section has shown that the modification

of the observation error covariance matrix by different

weighting functions affects the accuracy of the estimates.

We now consider whether the improved accuracy results

from additional filtering introduced by the modification

of the observation error covariance matrix. For this

purpose, we examine spectral properties of the estima-

tion errors depending on the type of the observational

weighting function.

Using the global approach (Albertella et al. 2008), the

geodetic DOT can be computed on the entire surface of

the earth on an equiangular grid of 18 3 18. With this ap-

proach, the land areas are filled with an arbitrary function

and an iterative procedure is used to smooth the field over

land and the land–ocean transition. Using the same pro-

cedure, the forecast and analysis fields are extended over

the entire earth’s surface. Spherical harmonic analysis up

to spherical harmonic degree 180 can then be applied to

obtain the harmonic spectrum of each field.

In this study, we only consider the error in the mean

DOT obtained by averaging over 10-day outputs. Figure 7

shows the spectral distribution of the mean data field

up to spherical harmonic degree ‘5 45. In addition, the

spectral distribution in terms of the degree ‘ is shown. It

is given by �m(To
‘m)2 where To

‘m are spherical harmonic

coefficients of the data. As can be seen from Fig. 7, the

mean field has nonzero spectral coefficients between

order 210 and 10 and up to spherical harmonic degree

35. The spectral coefficients are negligible beyond

these degree and orders.

The spectral error distributions obtained with the four

weighting functions displayed in Fig. 4 are shown as a

function of the degree in Fig. 8. Namely, the difference

�oi
‘ 5 �

m
(To
‘m 2 Ti

‘m)2

is shown as a function of the harmonic degree. Here Ti
‘m

are spectral coefficients of the model field and i can be

i 5 a for the analysis result (left panel of Fig. 8) or i 5 f

for the forecast result (right panel). The distribution of

�oi
‘ for the forecast field shows a similar structure as for

the analysis. However, the amplitudes are larger for the

FIG. 6. RMS error of SSH for the global ocean as in Fig. 5 for assimilation with domain localization and unit weighting

of observations. The support radius is (left) 500 and (right) 300 km.
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forecast for all methods. Although the RMS errors in the

cases EXP and UNIT are similar, the spectral structures

show obvious differences. In the case EXP, the error is

reduced for larger degrees and increased for smaller

degrees (up to spherical harmonic degree 12) compared

to the case UNIT. This difference is even more pro-

nounced for the case EXP300. The spectral properties of

the error for the methods UNIT, EXP, and EXP300

show that the cutoff distance rather than the structure of

the correlation function has a dominating effect on the

spectral error distributions above spherical harmonic

degree 12. For smaller degrees the structure of the cor-

relation function seems to be dominating. The case 5TH

shows relatively evenly distributed error structures for all

scales. Note, that the data alone have spectral coefficients

only up to spherical harmonic degree 35. Thus, errors

above this degree were introduced by the analysis scheme

and were further amplified by the forecast. For the ex-

periments EXP, EXP300, and 5TH, these errors are

smaller than for the experiment UNIT. Therefore, the

improvement in the accuracy is the result of additional

filtering introduced by the modification of the correla-

tion function for the method of weighting of observations.

5. Conclusions

Ensemble Kalman filter methods are typically used

with one of two localization techniques: domain locali-

zation or direct forecast error localization. For domain

localization, the assimilation is split into local domains

in which the assimilation updates are performed inde-

pendently using observations within a chosen distance.

Weighting of the observations can be used together with

domain localization. Here, domain localization has been

FIG. 7. (left) Logarithmic (base 10) spectral distribution of the mean data field plotted up to spherical harmonic

degree 45. (right) Spectral distribution in terms of spherical harmonic degree.

FIG. 8. Logarithm of the spectral difference between (left) analysis and the data and (right) forecast and the data

depending on spherical harmonic degree.
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investigated and compared to direct forecast error lo-

calization. The direct forecast error localization method

applies a Schur product of the ensemble forecast co-

variance matrix with a localization matrix given by a

chosen correlation matrix. It was shown that the domain

localization is equivalent to the direct forecast error

localization using a localization matrix that is positive

semidefinite, has block structure and is not isotropic.

The rank of this localization matrix depends on the

number of subdomains that are used in the assimilation

implying that subdomains may have to be made quite

small, to ensure that the rank is large enough. In con-

trast, the matrix usually used in direct forecast error

localization has full rank and is positive definite and

isotropic.

A new algorithm was presented that introduces a full-

rank positive definite matrix in domain localization

methods. For each local analysis subdomain, it uses

observations from a region that is larger than this sub-

domain. This is combined with a Schur product with an

isotropic matrix for each local forecast covariance matrix

(SD1Loc). Numerical experiments using the Lorenz-40

dynamical model showed that the errors obtained with

this method are comparable to the direct forecast lo-

calization technique. Furthermore, these results were

compared to a method of weighting of observations

(SD1ObsLoc). In case of the Lorenz-40 model, the

weighting of observations was less accurate, than the new

method (SD1Loc). However, both ways of introducing

the full-rank positive definite matrix in the domain lo-

calization algorithms, proved to be beneficial in com-

parison to the use of domain localization alone as in

(SD1). The comparison of the localization methods has

been performed here with the highly nonlinear Lorenz-40

model. With a smoother model, the differences in the

relative performances might be smaller.

The method of weighting of observations was fur-

ther examined in the case of assimilation of satellite

data into the global finite element ocean model FEOM.

Also in this example, the use of the full-rank matrix with

observational weighting improves the accuracy of the

analysis. Weighting of observations by different corre-

lation functions showed that fifth-order polynomial

weighting produced the most accurate forecast results

compared to uniform weighting and exponential weight-

ing. In addition, depending on the correlation function

chosen for weighting, the spectral properties of the so-

lution can be improved. Weighting of the observations

by the fifth-order polynomial produced spectral results

that are closest to the data. Note, that the fifth-order

piecewise rational function that vanishes at the distance

of 900 km is compactly supported and approximates

a Gaussian function with a length scale of 246.5 km

(Gaspari and Cohn 1999). Thus, it corresponds well to

the accuracy of the spherical harmonic degree 60 of the

geoid model. Although the accuracy with exponential

weighting and uniform weighting of observations are

similar for the forecasted field, the spectral structures

show that using the exponential weighting reduces the

error for larger degrees and increases the error for smaller

degrees compared to uniform weighting. The weighting by

fifth-order polynomial shows relatively evenly distributed

error structures for all scales.
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APPENDIX

Use of Direct Forecast Localization in the
SEIK Algorithm

Here we demonstrate the application of direct fore-

cast localization in the analysis step of the SEIK filter

algorithm. In the SEIK algorithm (Pham 2001), the

vector x f
k of size n is calculated as the average over the

ensemble members xf ,i
k with i 5 1, . . . , r 1 1. The P

f ,SEIK
k

is the ensemble covariance matrix in (2). Since the ma-

trix P
f ,SEIK
k has rank r, it can be represented in a factor-

ized form (Pham 2001) as

P
f ,SEIK
k 5 Lk[(r 1 1)TTT]21LT

k , (A1)

where Lk is a matrix of size n 3 r containing in each

column the difference between ensemble members i 5

1, . . . , r and the mean x f
k . The matrix T is of size (r 1 1) 3 r,

with values 1 2 1/(r 1 1) on the diagonal and 21/(r 1 1) in

the off-diagonal elements and the lowermost row. The

analysis covariance matrix Pa,SEIK
k is calculated from

the factorized form of the forecast error covariance

matrix by

Pa,SEIK
k 5 LkUkLT

k , (A2)

where Uk is of size r 3 r and given by

Uk 5 fr[rTTT]211(HkLk)TR21
k HkLkg

21. (A3)

Here, r with 0 , r # 1 denotes the forgetting factor.

It serves to inflate the estimated forecast covariance

matrix. It is the inverse of the ‘‘covariance inflation’’

parameter, that is used, for example, in the ETKF. The

Pa,SEIK
k is used in its factorized form in (A2) to obtain the

analysis according to
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xa
k 5 x

f
k 1 Kk(yo

k � Hkx
f
k),

Kk 5 Pa,SEIK
k HT

k R21
k 5 LkUk(HkLk)TR21

k . (A4)

To modify the SEIK algorithm to take into account

direct forecast localization, we need to use modified

matrices LS
k and TS in (A3) and (A4). Here LS

k contains

the difference between the ensemble members uij, de-

fined in (3), and their mean. The TS denotes a matrix of

size rM 1 1 3 rM, with
ffiffiffiffiffiffiffi

rM
p

(1 2 1/[rM 1 1]) on the

diagonal and �
ffiffiffiffiffiffiffi

rM
p

/(rM 1 1) off diagonal and in the

lowermost row. In addition, r 1 1 needs to be replaced

with rM 1 1 in (A1) and (A3). The equations with

modified matrices provide an analysis covariance matrix

Pa,loc
k analogous to (A2).

This modification increases the computational cost to

compute the analysis. In particular, from (A3) we note

that the trivial inversion of a matrix of size r 3 r in SEIK

algorithm has increased to an inversion of an rM 3 rM

matrix. One of the reasons for using the analysis error

covariance matrix in the calculation of the gain is to

avoid the implicit inversion of the matrix H
k
P

f
kHT

k 1 R
k

that is required in algorithms using the forecast co-

variance matrix. The matrix to be inverted is of size p 3

p, where p is the number of observations. Therefore, if

the rank M is larger than the ratio of the number of

observations to the number of ensemble members, it

would be hard to justify the use of this algorithm.

Furthermore, in the SEIK algorithm second-order-

exact sampling with linear constraints is used in order to

ensure that the new ensemble mean equals the analysis

state and the ensemble covariance equals the analysis

error covariance at the analysis time. However, second-

order-exact resampling is only possible if the rank of the

matrix Pa,loc
k is smaller than the number of ensemble

members r 1 1 (Pham 2001). Since we are increasing

the rank of the matrix by the localization, we will not be

able to exactly represent the matrix Pa,loc
k with r 1 1

ensemble members. However, we are able to preserve

the exact mean and some other prechosen properties

of the covariance. For example we can resample such

that the analysis ensemble represents the covariance

matrix Pa,SEIK
k instead of Pa,loc

k .
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