Introduction

・ロ・ ・ 御・ ・ 油・ ・ 油・

Numerical simulation of double-diffusive Processes in Ocean and in Stars Metstrm Meeting Berlin

Thomas Zweigle, Martin Losch (AWI Bremerhaven) Florian Zaussinger, Friedrich Kupka, Henk Spruit (MPI Astrophysik, Universität Wien)

28.-29. October 2010

<u>Aim of this work / open questions</u>

- Understanding mixing processes in various double-diffusive regimes (star, ocean, coffeecup).
- What is the role of relevant dimensionless numbers according to mixing time-scales?
- How efficient is double-diffusive convection ? (power laws, $\kappa_{\rm eff})$
- Is double-diffusive convection in liquid and gaseous regimes comparable ?

・ロン ・回 と ・ ヨ と ・ ヨ と

Saltfingers and Semiconvection

- Saltfingers occur when the **faster** diffusing component stabilizes and the **slower** diffusing component destabilizes
- <u>Semiconvection</u> occurs when the **slower** diffusing component stabilizes and the **faster** diffusing component destabilizes

Figure: Saltfinger instability

イロト イヨト イヨト

Characteristic of Saltfingers

Staircases

- Internal instabilities by growing Saltfingers
- Saltfingers producing staircase structures in the ocean, probably.
- Interface in staircase is an area of vertical salinity transport by Saltfinger (resp. Semiconvection)

AWI 🗇 🦇

3

イロト イヨト イヨト

Effective Diffusivities

Zweigle, Zaussinger, Kupka, Losch

イロト イヨト イヨト

Turbulent mixing by Saltfingers

Arising Saltfingers (left), turbulent mixing (middle) and equilibrium state (right)

・ロン ・回 と ・ ヨ と ・ ヨ と

Results for Saltfingers and Semiconvection

possible parametrisation for effective diffusivities

$$K_S = f(R_{\rho}^f, \gamma, \tau),$$
 and $K_T = \frac{\gamma}{R_{\rho}^f} K_S$

- estimated effective diffusivities are compareable with measurements and labor experiments of Saltfingers
- Semiconvection leads to stable stratification (see below)

Semiconvection

Figure: Semi-convective double layer simulation. (Salinity/Temperature)

Properties:

- 'stabilized convection'
 - counteracting concentration gradient
 - Semiconvection leads to
 - layering (Latte Machiatto)

イロト イヨト イヨト

• $\kappa_S \ll \kappa_T$

•
$$R_{
ho}=rac{Ra_{S}}{Ra_{T}}>1$$

•
$$\sigma$$
 and τ $[10^{-2} - 10^{1}]$

How do σ , τ , R_{ρ} and Ra_{τ} influence the SC mixing process?

To answer this question 2D numerical simulations have been done. The influence of the initial parameter space is measured in terms of the Nusselt numbers Nu_T and Nu_S .

- non-dimensional approach for idealized water <u>and</u> gaseous regimes
- compressible / incompressible (Boussinesq approximation / fully explicit ideal gas)
- wide range of σ , τ , R_{ρ} and Ra_T
- Question 1: $Nu_T \sim Ra_T$ (power law)?
- Question 2: $Nu_T \sim Nu_S$?

Introduction	Saltfingers	Semiconvection	Comparison	Cooperations and Achnowledgement		
	Mathematical approach (Antares code)					

- Low Mach number solver for binary mixture equations (explicit <u>and</u> implicit)
- Gaseous SC firstly solved in characteristics with WENO 5th order.
- Time integration: TVD2, optional: Boussinesq equations solved with SDIRK (fixed point iteration)
- Numerically stable solutions on staggered grid for WENO and Poissonsolver. (**BiG**rid **M**arker **A**nd **C**ell)
- Parallelisation: Efficient Poisson solver based on Schur Complement method. Hybrid parallelisation (OpenMP and MPI).

• Local grid refinement

Introduction Saltfingers Semiconvection Comparison Cooperations and Achnowledgement Physical outcome 1/2

• Compressible and incompressible SC regimes are (numerically and physically) comparable as long as $H < H_P$.

•
$$Nu_S = \tau^{-1/2} (Nu_T - 1)$$

- Stable multilayer simulations for $\sigma < 1$.
- An extrapolation into stellar relevant regime is valid (under the diffusion correction assumption) and has already been done (next slide).

・ロン ・回 と ・ ヨ と ・ ヨ と

• Next step: Direct layer formation, 3D.

Introduction

Physical outcome 2/2

Modified power law: $Nu_T = (\sigma Ra_T)^{-0.25} + 1$ for $Ra_* = \sigma Ra_T < 10^6$ in the limit $R_\rho \downarrow 1$

Comparison

Comparison between Saltfingers and Semiconvection

blue: temperature 9.5-10 (dT=0.1)

イロト イヨト イヨト

Theses:

T. Zweigle: Direkte Numerische Simulation von Salzfingern im Ozean

F. Zaussinger: Numerical simulation of double-diffusive convection (submitted)

Publications:

F. Zaussinger, H. Spruit: The mixing rate of Semiconvection (to be submitted to Astronomy & Astrophysics in Nov/Dec)

・ロン ・回 とくほ とくほ とう

- Egbers / Harlander (BTU Cottbus)
- Behrens / Wirth and Horenko / Klein / Munz : Model intercomparison study. Test case: Bubble test case from Robert (1992)

Figure: Saline bubble experiment for increasing resolution ($62^2 \rightarrow 1000^2$)