High resolution deformation microstructures in ice: grain-boundary morphology and subgrain boundaries in samples from creep tests and an Antarctic ice core

> Ilka Hamann¹ Atsushi Miyamoto² Nobuhiko Azuma³ Sepp Kipfstuhl¹ Sérgio H. Faria⁴

¹Alfred Wegener Institute for Polar and Marine Research, Germany
 ²Institute of Low Temperature Science, Hokkaido University, Japan
 ³Dept. Mechanical Engineering, Nagaoka University of Technology, Japan
 ⁴ GZG, Sect. Crystallography, University of Göttingen, Germany

ESF-Workshop April 10th 2008

Detour:

µS-Mapping validation

X-ray Laue diffraction

Detour:

µS-Mapping validation

- Measured samples: 15
- Measured grains: 83
- Measured sGB: 235
- Shallow sublimation groove ("sGB") misorientation frequencies (rough figures!!)

	c-axes	a-axes (max. mis.)
− <0.5°:	40%	34%
- 0.5-1°:	28%	32%
– 1 -2 °:	17%	22%
– 2-3 °:	8%	6%
– 3-4°:	5%	4%
– 4-5°:	1%	1%

EPICA Dronning Maud Land drilling location

SAMPLES

•EDML

ESF-Workshop April 10th 2008

Deformation Experiments

SAMPLES •EDML •Creep tests µS-MAPPING •GB morphology •sGB Interaction of GB and sGB •sGB-types X-ray LAUE •sGB-types

SUMMARY

ESF-Workshop April 10th 2008

Microstructure Mapping

SAMPLES •EDML •Creep tests µS-MAPPING •GB morphology •sGB Interaction of GB and sGB •sGB-types X-ray LAUE •sGB-types **SUMMARY**

Grain-boundary morphology

SAMPLES

Grain-boundary morphology

SAMPLES

•Creep tests

•EDML

ESF-Workshop April 10th 2008

Subgrain-boundary

SAMPLES •EDML •Creep tests µS-MAPPING •GB morphology •sGB Interaction of GB and sGB •sGB-types X-ray LAUE •sGB-types **SUMMARY**

Subgrain-boundary density

SAMPLES

•EDML

•Creep tests

µS-MAPPING

•GB morphology

•sGB

•Interaction of GB and sGB

•sGB-types

X-ray LAUE

•sGB-types

SUMMARY

X-ray Laue diffraction

SAMPLES •EDML •Creep tests µS-MAPPING •GB morphology •sGB Interaction of GB and sGB •sGB-types X-ray LAUE •sGB-types **SUMMARY**

SUMMARY

- Subgrain boundary types promise dislocation type classification.
- Moderate values of µstructure parameters (sGBdensities and grain-boundary irregularities) in ice sheets compared to creep tests show that dislocation density decreasing processes (recovery and dynamic recrystallization) play a very important role under low stress conditions.
- How can µstructure parameters with depth in EDML be invariant if the recrystallization regimes should be changing?

SAMPLES •EDML •Creep tests **µS-MAPPING** •GB morphology •sGB Interaction of GB and sGB •sGB-types X-ray LAUE •sGB-types SUMMARY

ESF-Workshop April 10th 2008

ESF-Workshop April 10th 2008

Overview

Samples

EDML
Creep tests

µSM-method

Grain-boundary morphology
Perimeter ratio statistics

sGB

sGB-density statistics
Interaction of GB and SGB
sGB-types

X-ray Laue method

sGB-types