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Abstract  

Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation 

and potential carbon release due to global warming. Permafrost sections along coastal and 

river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and 

ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly 

decomposed, and refroze under different periglacial environments, reflected in specific 

biogeochemical and cryolithological features. OM in permafrost is represented by twigs, 

leaves, peat, grass roots, and plant detritus. The vertical distribution of total organic carbon 

(TOC) in exposures varies from 0.1 wt% of the dry sediment in fluvial deposits to 45 wt% in 

Holocene peats. Variations in OM parameters are related to changes in vegetation, 

bioproductivity, pedogenic processes, decomposition, and sedimentation rates during past 

climate variations. High TOC, high C/N, and low δ13C reflect less-decomposed OM 

accumulated under wet, anaerobic soil conditions characteristic of interglacial and interstadial 

periods. Glacial and stadial periods are characterized by less variable, low TOC, low C/N, and 

high δ13C values indicating stable environments with reduced bioproductivity and stronger 

OM decomposition under dryer, aerobic soil conditions. Based on TOC data and updated 

information on bulk densities, we estimate average organic carbon inventories for ten 

different stratigraphic units in Northeast Siberia, ranging from 7.2 kg C m-3 for Early 

Weichselian fluvial deposits, to 33.2 kg C m-3 for Middle Weichselian Ice Complex deposits, 

to 74.7 kg C m-3 for Holocene peaty deposits. The resulting landscape average is likely about 

25% lower than previously published permafrost carbon inventories. 
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1 Introduction 

During the late Quaternary, a large pool of organic carbon accumulated in sedimentary 

deposits and soils in Arctic permafrost regions, thus representing a significant long-term 

carbon sink. According to recent estimates the soil organic carbon pool in permafrost regions 

amounts to about 1672 Pg carbon, corresponding to about 50 % of the global belowground 

organic carbon [Tarnocai et al., 2009]. Calculations of organic carbon mass stored in the 

upper meter of soil in permafrost regions (496 Pg) double previous estimates for that same 

region, while for the 0 to 300 cm depth they estimate a carbon store of about 1024 Pg 

[Tarnocai et al., 2009]. The inventory of organic carbon located deeper than 300 cm is based 

on very few measurements and therefore connected to strong uncertainties that need to be 

reduced. Based on first order estimates from Zimov et al. [2006a, 2006b] for a large region in 

Northeast Siberia with ice-rich and organic-rich permafrost of the Yedoma Suite, Tarnocai et 

al. [2009] calculate that 407 Pg of carbon are stored here alone in depths below 300 cm. 

Similar ice- and organic-rich deposits are reported from Alaska [Pewe, 1975] and Northwest 

Canada [Fraser and Burn, 2002]. 

The importance of this large, deep, and long-term pool for modern carbon cycle dynamics 

becomes clear when we consider that even deep permafrost can be vulnerable to thawing due 

to climate change and resulting landscape disturbances [Schuur et al., 2008; Jorgenson et al., 

2010; Grosse et al., in press], and actually is warming and thawing in many regions for 

several decades already [Romanovsky et al., 2010]. Shallow and deep carbon in permafrost 

can be remobilized by a variety of climate-change related processes, such as soil warming, 

active layer deepening, fires, thermokarst, and thermo-erosion [Harden et al., 2008; Grosse et 

al., in press], allowing microbial turnover of old carbon that was accumulated and stored 

frozen for long periods of time [Dutta et al., 2006; Wagner et al., 2007]. Various studies 

indicate that past and future carbon release from permafrost via the greenhouse gases methane 
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and carbon dioxide can cause significant positive feedbacks to climate warming [Gruber et 

al., 2004; Walter et al., 2007; Schuur et al., 2009]. 

 

However, despite strong indications for the significance of the deep permafrost-stored organic 

carbon pool as a long-term sink in the global carbon cycle, uncertainties in the size and 

character of this carbon pool remain very high, since only very few field data sets exist 

[Tarnocai et al., 2009]. Therefore, better knowledge of the distribution of organic matter 

(OM) in permafrost, its characteristics, and availability for decomposition is required to 

evaluate current and future carbon dynamics in permafrost regions and their consequences for 

the global climate system.  

 

Since 1998, northeast Siberian permafrost sequences have been analyzed as frozen archives 

for Arctic paleoenvironmental and climate dynamics of the last about 200,000 years in the 

context of the joint Russian-German science cooperation “SYSTEM LAPTEV SEA” [e.g. 

Andreev et al., 2004, 2009; Grosse et al., 2007; Schirrmeister et al., 2002a, 2002b, 2003, 

2008, 2010, 2011, in press; Wetterich et al., 2008, 2009]. In addition to paleoecological, 

mineralogical and sedimentological datasets, fossil OM data from permafrost deposits have 

been obtained and interpreted as biogeochemical paleoproxies. Total organic carbon (TOC) 

values reflect variation in bioproductivity and OM accumulation. The total organic carbon to 

total nitrogen ratio (TOC/TN, here abbreviated as C/N) indicates the degree of decomposition 

of OM, initiated by the original vegetation imprint, then modified by microbial activity and 

pedogenic processes where low C/N values represent stronger decomposed OM and high C/N 

values represent less decomposed OM [Carter and Gregorich, 2007; White, 2006]. The 

content of total inorganic carbon (TIC) mostly depends on the occurrence of freshwater 

biogenic carbonates (mollusk and ostracod shells) [Wetterich et al., 2005, 2009] but also from 

source rock detritus. Variations in stable carbon isotope (δ13C) values indicate different 
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origins of OM (e.g. marine, terrestrial, algae, higher land plants) due to different isotopic 

fractionation during carbon metabolism [Clark and Fritz, 1997; Schliesser et al., 1995; 

Meyers, 2003]. In addition to plant uptake effects, lower δ13C data corresponds to less 

decomposed organic matter, while higher δ13C reflect stronger decomposition [Gundelwein et 

al., 2007]. Finally, absolute ice contents of frozen ground classified as ice-rich (>50 wt%), 

ice-bearing (25 to 50 wt%), and ice-poor (<25 wt%) reflect among other factors water 

availability, soil drainage, temperature, freezing regimes and their dynamics during 

permafrost formation [French and Shur, 2010]. On a global scale, processes of permafrost 

formation and deformation are strongly controlled by climate variation and the direct and 

indirect impact on the thermal regime of frozen ground. This is reflected in the variable 

composition and cryolithological characteristics of permafrost deposits formed and 

transformed during different late Quaternary climate periods. The relation of ice and OM 

features in permafrost to climate and lithostratigraphical classifications are essential indicators 

for understanding past, current and future processes of OM accumulation, preservation, and 

degradation in permafrost soils. 

The major objective of this paper is (1) to summarize new regional datasets on the quality and 

quantity of fossil OM in late Quaternary permafrost sequences of NE Siberia, (2) to 

characterize the heterogeneity of carbon pools in permafrost deposits as related to stratigraphy 

and depositional history, and (3) to improve quantification of permafrost carbon stocks in 

order to understand the vulnerability of such pools to climate change and disturbances. 

 

2 Study sites 

All studied sites are located in the continuous permafrost region of northern East Siberia. The 

region is characterized by a broad variety of terrestrial syngenetic and epigenetic permafrost 

sediments [Yershov, 1989, 1991]. A total of twenty exposures on the coasts of the Laptev and 

East Siberian seas as well as on river banks in the Lena Delta and the Indigirka-Kolyma 
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lowland (Figure 1, Table 1) were investigated for OM characteristics of the permafrost 

deposits. The locations were primarily selected to study in detail the stratigraphic and 

paleoenvironmental significance of late Pleistocene and Holocene frozen terrestrial and 

aquatic deposits, with a focus on late Pleistocene Ice Complex deposits of the Yedoma Suite 

[Schirrmeister et al., in press; Zimov et al., 2006a, 2006b]. However, according to our 

cryolithological, paleoecological, and geochronological datasets, the profiles of all twenty 

sites represent different stratigraphical cross-sections and cover a wide range of depositional 

environments in periglacial landscapes during the late Quaternary (Table 1). Generally, such 

exposures at sea coasts and river banks are naturally formed by active thermo-erosion and 

slumping of ice-rich permafrost, exposing sediments and ground ice in rapidly retreating steep 

bluffs and terraces and allowing access to still-frozen sediments in vertical profiles of 3 to 40 

m total height.  

Typical exposures included Yedoma elevations, which are largely composed of Weichselian 

Ice Complex deposits, Holocene thermokarst depressions filled with lacustrine and boggy 

deposits, and sometimes underlying older strata (Figure 2a). In some cases, exposures were 

extended below current sea level by drilling into terrestrial sediments onshore and offshore on 

the continental shelf, allowing investigation of permafrost OM characteristics down to more 

than 100 m depth at some sites (Figure 2b).  

A generalized stratigraphical scheme (Figure 3, SOM-1) includes several typical main 

depositional components of the upper permafrost zone in the study region: Tertiary sands with 

coal inclusions; late Saalian (200 to 150 ka) ice-rich deposits (Ice Complex); pre-Eemian (> 

130 ka) alluvial (floodplain) deposits; Eemian (130 to 110 ka) thermokarst lake and lagoon 

deposits; early Weichselian (100-60 ka) fluvial and alluvial (floodplain) deposits; middle and 

late Weichselian (60 to 15 ka) ice-rich deposits (Ice Complex, Yedoma Suite); Lateglacial (15 

to 10 ka) and early Holocene (10 to 8 ka) basin deposits including lacustrine sediments and 

terrestrial peat; and Holocene (10 ka to modern) cover deposits.  

 6
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3 Methods 

Complete exposure profiles in a particular area were sampled in numerous overlapping 

subprofiles of 1 to 5 meters height across the bluffs depending on access to frozen sediments, 

which then were merged into a representation of the site-specific stratigraphy of the 

permafrost deposit. Field investigations in the outcrop exposures included cryolithological 

characterization, lithostratigraphical differentiation, and collection of several hundred samples 

to be analyzed for lithology, OM and ground ice characteristics. About 0.5 to 1.0 kg of frozen 

autochthonous sediment per sample was taken and stored in plastic bags. The ice content was 

estimated immediately after thawing in the field by weighing the wet sample, then drying and 

reweighing to compare the weight loss (water/ice content) to the total weight of the wet 

sample, expressed as weight percentage (wt%). Upon return to the laboratory the samples 

were freeze-dried, carefully manually homogenized and split into subsamples for various 

purposes. The contents of total organic carbon (TOC), total carbon (TC), and total nitrogen 

(TN) were measured with a CNS analyzer (Elementar Vario EL III). For TOC measurement, 

samples were pretreated by HCl to remove carbonate, while TC values were estimated 

without such pretreatment. The C/N ratio was calculated as the quotient of TOC and TN 

values if TN values were >0.05 wt%. The total inorganic carbon (TIC) values were calculated 

by the difference between total carbon (TC) and TOC. Stable carbon isotopes (δ13C) of TOC 

were measured with a Finnigan DELTA S mass spectrometer if TOC values were >0.3 wt%. 

The δ13C values are expressed in delta per mil notation (δ, ‰) relative to the Vienna Pee Dee 

Belemnite (VPDB) standard and the analyses were accurate to ± 0.2 ‰. In total, 806 samples 

were analyzed for ice content, 1281 for TOC, 1062 for TIC, 882 for C/N, and 865 for δ13C, 

providing a comprehensive dataset on fossil organic carbon characteristics for permafrost 

deposits of Northeast Siberia. The organic carbon inventory was calculated by converting ice 

content measurements (wt%) into bulk density (103 kg m-3) using a linear relationship 

(R2=0.94; p<0.01, Figure 4) developed for a subset of thirteen Ice Complex samples collected 
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at multiple sites in the Kolyma River region [Dutta et al., 2006. In soil science, the bulk 

density is a standard parameter describing the dry mass of a volume unit of soil that accounts 

for both the density of the solid materials as well as the pore volume [Schachtschabel, 2002]. 

In ice-rich permafrost deposits, the pore volume is entirely filled by ice and the ice content is 

considered an equivalent of the pore volume. Excess ice content can increase the pore volume 

to higher values than possible for unfrozen water saturated sediments, and thus is a strong 

control of overall bulk density. The organic carbon inventory of the frozen sediment (kg C m-

3) was bulk density multiplied by percent organic carbon. Frequent massive ice wedges 

which, according to numerous own field observations and compilations by other workers [e.g. 

Romanovskii, 1977;  Zimov et al., [2006a, b] Kanevievski et al. 2011, can be 50 to 80% of the 

permafrost volume and are not included in this calculation. 

 

4 Results 

4.1 Organic matter components and their origin 

The late Quaternary permafrost deposits contained OM largely originating from fossil plant 

detritus, mosses, rootlets, seeds, leafs, filamentous grass roots, woody fragments of shrub 

roots and twigs, and single stems of small trees. Plant OM is often accumulated in buried 

cryosols, in peaty layers, in individual peaty inclusions, and in plant detritus layers of 

lacustrine origin. However, fine dispersed OM detritus embedded within a mineral soil matrix 

is also common. More detailed data on the composition of plant OM are available from 

palynological and carpological studies of past vegetation dynamics in the study region [e.g. 

Anderson and Lozhkin, 2001; Andreev et al., in press; Giterman et al., 1982; Kaplina, 1981; 

Kienast et al., 2005, 2008, in press; Wetterich et al., 2008, 2009]. In addition, some OM 

originates from fossil faunal remains that are found in permafrost deposits, including large 

and small mammal bones, insects, and aquatic organisms. Fossil soil microorganisms, fungi, 

algae, and lichen also add to the permafrost OM.  
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Several cryolithological facies types typical of periglacial lowlands were distinguished within 

the studied permafrost sections and cores. Deposits with very high excess ice content, large 

syngenetic ice wedges, and lens-like reticulated cryostructures are termed Ice Complexes (in 

Russian: ledovyi complex, according to Soloviev, [1959]. Their OM content is characterized 

by cryosols, peat inclusions, and fine-distributed plant-detritus that accumulated in a 

polygonal tundra or tundra-steppe landscape. In the study region, a ice-rich deposits similar to 

the Yedoma Ice Complex already accumulated during a late Saalian stadial and a following 

interstadial period (Figures 2a; 3). Sparse grass/sedge-dominated vegetation was the major 

organic carbon source for soils and sediments during late Saalian stadial times, but dense 

grass-dominated tundra followed under more temperate interstadial climate conditions 

[Andreev et al., in press]. Syngenetic permafrost development and cryoturbation resulted in 

rapid burial of OM into permafrost. Cryoturbation occurs in varying degrees in most of the 

paleosols in this and all overlying strata. During the Pre-Eemian stadial the presence of green 

algae spores in sediments is indicative of the occurrence of polygonal ponds in otherwise a 

sparsely vegetated grass/sedge tundra. Large amounts of plant OM were found in Eemian 

thermokarst deposits preserved in ice wedge casts (where ice wedges had melted during 

previous warm periods) and in lacustrine sediments. The Eemian vegetation was mainly 

composed of grass/sedge associations, with some herbs, birch, alder, and willow shrubs, and 

larch, birch and alder trees presenting an open shrub-tundra to forest-tundra. In addition, 

wetland, riparian and aquatic plants were present, reflecting lacustrine thermokarst conditions 

[Andreev et al., in press; Kienast, et al., 2008, in press; Wetterich et al., 2009].  

Loess-like floodplain deposits accumulated during late Saalian and early Weichselian cold 

periods containing remains of sparse grass/sedge vegetation, preserved as filamentous grass 

roots. In the early Weichselian, fluvial sands accumulated in many regions of the study area 

but very little plant OM was found in these deposits, including dispersed plant detritus mixed 

with mineral soil or peat layers that accumulated under stagnant water conditions in 
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abandoned river channels and oxbow lakes. In general, the early Weichselian was also 

dominated by sparse tundra-steppe vegetation, forming the major source of OM in permafrost 

deposits during this stadial period. 

Alluvial deposits on top of fluvial sands accumulated in polygonal ice wedge systems on 

floodplain terraces under less severe middle Weichselian interstadial climate conditions, 

resulting in accumulation of large amounts of OM, in particular moss peat. During this period, 

Ice Complex deposits of the Yedoma Suite were formed in a polygonal landscape, which was 

characterized by patchwork-like distribution of a variety of vegetation communities. A dense, 

herb-dominated grass-sedge vegetation with few shrubs [Andreev et al., in press; Kienast et 

al., 2005], previously termed the ‘tundra-steppe’ [Yurtsev, 2001], produced large amounts of 

plant organic matter in permafrost. The OM of the middle Weichselian is largely composed of 

peat inclusions, peat lenses, woody twig and root fragments, filamentous grass roots, and 

disperse plant detritus mixed with mineral soil. In addition, Yedoma  Ice Complex sequences 

contain aquatic floral and faunal elements like algae and zooplankton, and large amounts of 

mammal bones of the mammoth fauna [Sher et al., 2005]. Late Weichselian stadial parts of 

Ice Complex deposits contain less plant OM represented by sparse tundra-steppe vegetation as 

compared to the middle Weichselian [Andreev et al., in press].  

Large amounts of organic matter in permafrost regions were reworked and deposited in 

thermokarst depressions formed as permafrost thawed and the ground subsided due to loss of 

ground ice volume during the Lateglacial to early Holocene transition. Such depressions are a 

dominant landform of the modern relief of NE Siberian Arctic lowlands. . Deposits in 

thermokarst depressions are often composed of lacustrine sediments that accumulated in 

thermokarst lakes beginning already in the Lateglacial interstadial periods. These thermokarst 

lake sediments contain OM resulting from re-working and deposition of older material eroded 

from shore bluffs into the lake by thermal erosion typical for thermokarst lakes in addition to 

in-situ production of new OM from aquatic plants and animals. 
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Lacustrine sediments are often followed by Holocene peat bog deposits that accumulated in 

ice wedge polygonal systems after lake basins had drained, which is typical process during 

the evolution of permafrost landscapes [Wetterich et al., 2009]. The Lateglacial vegetation is 

generally described as grass/sedge-dominated vegetation with willow and birch shrubs 

[Andreev et al., in press]. Aquatic plants and algae occurred as well as faunal associations of 

ostracods and mollusks [Wetterich et al., 2005, 2008, 2009]. 

Besides the syn- and epicryogenic deposits frozen during or after their accumulation 

described above, so-called taberite deposits (frozen sediments thawed under thermokarst lakes 

and then refrozen after lake drainage) are connected with former taliks (thaw bulbs) below 

thermokarst lakes of the Eemian and Lateglacial to early Holocene periods. Such transformed 

deposits are characterized by a dense appearance caused by low ice content and coarse lattice-

like ice structures. Plant remains are only seldom visible. Taberites contain more strongly 

decomposed plant OM than unaltered Ice Complex deposits, reflecting partial decomposition 

of OM in thawed zones under lakes [Wetterich et al., 2009]. 

 

4.2 Organic matter heterogeneity in vertical permafrost profiles 

Considering the site-specific characteristics of permafrost deposits as determined with 

cryolithological, geochronological, and paleoecological methods, stratigraphical units are 

often characterized by specific carbon and OM features, which additionally can vary within 

single units. The important stratigraphic units used to estimate the C inventory are labeled 

with small letters (a to k) in the corresponding tables and figures. Two key sites (Figures 5 

and 6) are presented in this section to highlight the spatial and temporal variability of OM 

parameters in late Quaternary permafrost. Datasets from three more key sites from the Lena 

Delta, the Bykovsky Peninsula and the Duvanny Yar section (site №  2-5, 6-7, 20 in Figure 1)  

are available as supporting online material (SOM-2, SOM-3, SOM-4). 
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A comprehensive permafrost record representing the last ~200,000 years is available from the 

south coast of Bol’shoy Lyakhovsky Island at the coast of the Dmitry Laptev Strait (sites № 

16, 17 in Figure 1) [Schirrmeister et al., 2002b; Andreev et al., 2004, 2009; Wetterich et al., 

2009]. Numerous subprofiles were studied from sea level at the beach up to about 30 m above 

sea level (a.s.l.) (Figure 2a). Figure 5 combines records of selected key profiles of site № 17 

(Figure 1) in stratigraphical order from a ca 20 km long coastal segment. The oldest horizon, 

classified as late Saalian ice-rich deposits (unit a), is characterized by ground ice contents of 

frozen sediments of 20 to 80 wt%, massive syngenetic ice wedges of several meters width, 

TOC contents varying between 2.8 and 12.7 wt%, C/N ratios of 5.3 to 24.1, and δ13C values 

between –28.7 and –26.8 ‰. The following Pre-Eemian floodplain deposits (unit b) show a 

completely different patterns with low ice contents (20 to 30 wt%), very thin epigenetic ice 

wedges, and low TOC contents (ca. 0.5 wt%). C/N ratios (0.7 to 6.7) are rather low, and δ13C 

values are higher (–25.3 to –24.9 ‰) as compared to the underlying sediments of unit a. 

Eemian thermokarst lake deposits (unit c) exposed in ice wedge casts contain only little 

ground ice (20 to 30 wt%) and have variable TOC (0.7 to 5.1 wt%). Single layers with 

strikingly high TIC contents of up to 7 wt% mark the occurrence of mollusks and ostracod 

shells. Peaty layers (not shown in Figure 5) covering the Eemian ice wedge cast horizon are 

characterized by high ice contents (54 to 75 wt%), high TOC contents (up to 17 wt%), a 

relative even C/N ratio (10 to 14), and very low δ13C values of –30.6 to –28.9 ‰.  

The overlying middle Weichselian Ice Complex sequence (unit e) is about 15 m thick and 

characterized by 30 to 62 wt% ice content, large syngenetic ice wedges, and TOC contents of 

1 to 4 wt% except of a peaty cryosol horizon containing 5 to 17 wt% TOC. C/N ratios are 

strongly varying between 1 and 20 especially in the lower segment with higher TOC contents, 

whereas the upper part is marked by more consistent C/N ratios of about 10. The δ13C values 

(-26.1 to -24.5 ‰) are rather high and consistent, except of the peaty cryosol horizon 

characterized by low δ13C values (–29.1 to –27‰). The carbon isotope signature of thawed 
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and refrozen Ice Complex material of taberite (unit g) exposed below thermokarst deposits is 

different from Weichselian Ice Complex deposits with the lowest δ13C values at –31 to - 

30 ‰.  

Finally, Lateglacial to early Holocene lacustrine sediments deposited in a thermokarst 

depression (unit i) contained 20 to 30 wt% ice and 1.5 to 3.7 wt% TOC. The C/N ratio was 

low and uniform (3 to 8) and the δ13C values varied between –28.8 and –26.5 ‰. The 

uppermost peat cover  in the thermokarst depression was clearly distinguished from the 

underlying lacustrine sequence by high TOC contents (8 to 13.6 wt%), C/N rations of 13 to 15 

and very low δ13C values of –30.9 to –30.3 ‰. 

 

At the second key site at Cape Mamontov Klyk in the western Laptev Sea (site № 1 in Figure 

1), permafrost deposits were studied at coastal cliffs up to 30 m a.s.l. while an additional 70 m 

deep core was drilled below sea level (b.s.l.). Hence, the studied permafrost sequence (Figure 

2b) covers the upper 100 m of permafrost at this site [Winterfeld et al., in press]. Available 

OM characteristics are combined and summarized in Figure 6. The lowermost horizon of 

probably Eemian thermokarst lagoon deposits is characterized by low TOC contents (0.2 to 

1.2 wt%), low TIC contents (0.1 to 0.3 wt%), an even C/N ratio between 9 and 12, and rather 

high δ13C values (–26.9 to –24.8 ‰). These deposits form a cryopeg, i.e an unfrozen but 

perennially cryotic zone in permafrost because of freezing-point depression due to high 

salinity of the pore water. According to the bedded sediment structure of the overlying early 

Weichselian fluvial deposits (unit d) and the occurrence of layers with plant detritus and 

woody fragments, the OM parameters are strongly varying in the overlying horizon. A several 

decameter thick sequence of fluvial and lacustrine fine-grained sand that also belong to unit d 

contained little organic matter. Therefore, C/N and δ13C values were determined from single 

plant detritus layers. Middle Weichselian alluvial peat-sand-alternations covering the 

underlying sands of unit d are characterized by high ice contents (up to 70 wt%), varying 
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TOC contents (between 0.2 and 15.3 wt%), and correspondingly variable C/N (between 2 and 

25) and δ13C values (–27.7 to –23.2 ‰).  

Late Weichselian Ice Complex deposits (unit f) contain 35 to 70 wt% of excess ice, large 

syngenetic ice wedges, and depending on the presence or absence of cryosol horizons 1.4 to 

8.5 wt% TOC. Higher TIC contents of 1 to 2.2 wt% are related to the occurrence of mollusk 

and ostracod shells. Holocene deposits of a thermokarst depression unit (i) and a 

thermoerosional valley (unit k) composed of peaty cryosols are characterized by similar 

excess ice contents between 25.8 and 62.2 wt% and, except for the uppermost peat cover (unit 

h) by rather uniform values of OM parameters. The peat cover is characterized by high ice 

contents (46 to 74 wt%), high TOC values (4 to 22 wt%),   low δ13C (about –28 ‰), and high 

C/N ratios (14.5 to 16).  

 

The organic C inventory within the frozen sediment component of the ten major 

stratigraphical units (a to k) varied by more than a factor of 10 from about ~7 kg C m-3 in the 

Early Weichselian fluvial deposits (unit d) to more than 70 kg C m-3 in the Holocene cover 

unit (unit h) (Table 2). On average, Yedoma Suite Ice Complex units contain about 21 to 33 

kg C m-3 across all sampled profiles (Table 2). Between the selected Yedoma sites shown in 

Figure 7, the organic C inventories range between 14 kg C m-3 at Duvanny Yar and 30 kg C 

m-3 in the Lena Delta (Table 3). At individual sites, organic C inventories in the Yedoma Ice 

Complex vary strongly with a standard deviation of 8 to 20 kg C m-3 (Table 3). These 

amounts take into consideration the ice and organic C content of the frozen soil, but do not 

account for the presence of ice wedges, which further reduces the organic C inventory at the 

landscape scale. 

 

5. Discussion 
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According to our comprehensive data set of OM characteristics, the TOC and TIC contents, 

the OM composition, and the decomposition degree are highly variable between and 

sometimes also within individual stratigraphical units. The OM signatures of late Quaternary 

permafrost deposits reflect different local landscape and sediment facies conditions in the 

accumulation area that affected factors important for OM preservation and incorporation into 

permafrost: hydrology and soil moisture regime; vegetation cover, organic surface litter 

production and decomposition; soil formation, cryoturbation and sedimentation rates; 

subsurface microbial decomposition; freezing and thawing conditions in the active layer; and 

aggradation of permafrost [Grosse et al., in press].  

Specific sediment accumulation conditions at the studied sites include alluvial, fluvial, limnic, 

proluvial and aeolian processes. For all studied sites we found that remains of terrestrial C3 

plants dominate the composition of OM, which is evident by 13C values between -31.4 and -

23.4‰. Generally, the OM characteristics in permafrost deposits differ between horizons 

accumulated during temperate interglacial or interstadial periods, and those accumulated 

during harsh glacial or stadial periods (Figure 8). The OM character between various units is 

therefore largely controlled by changes in paleoclimatic conditions during late Quaternary 

climate cycles and related paleoenvironmental dynamics, in particular those of landscape and 

vegetation. For example, syngenetic permafrost formation with ice wedge growth in 

polygonal tundra landscapes over long interstadial periods in the late Pleistocene led to rather 

intense accumulation and frozen preservation of plant remains, which today is illustrated by 

less decomposed OM and high TOC. On the contrary, fluvial-dominated accumulation during 

the same time period but at other locations led to rather low OM contents. Deposits formed 

during interglacial thermokarst formation, identified both for the Eemian and the Holocene, 

still store considerable amounts of reworked OM. High carbon inventories in thermokarst lake 

deposits are partially related to a concentration effect for reworked OM as thaw subsidence 

progresses. Therefore, thermokarst lakes and basins can act as a local sink for portions of the 
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carbon released from thawing permafrost deposits, while at the same time thermokarst lakes 

also result in intense OM degradation and methane production in the anaerobic environments 

of organic-rich lake sediments and taliks [Walter et al., 2006]. Post-lake drainage peat growth 

sequesters carbon from the atmosphere and increases the carbon inventory of thermokarst 

depressions, while at the same time these polygonal peatlands are methane emitters [Jones, M. 

et al., in review].  

 

In order to illustrate the relationship between OM parameters, in particular between TOC and 

C/N ratio, and between C/N ratio and δ13C, we plotted diagrams for Weichselian Yedoma Ice 

Complex deposits from various locations (Figure 7). There is a logarithmic correlation 

between TOC contents and C/N ratios that fits best for the Ice Complex deposits at Cape 

Mamontov Klyk and on Bykovsky Peninsula (Figure 7; R2=0.71 and R2=0.75, respectively). 

Except for the Ice Complex on Bol'shoy Lyakhovsky a similar pattern was observed for other 

sites. Maximum C/N ratios of about 25 were also paired with maximum values of TOC with 

up to 30 wt%. A rather linear correlation between C/N and δ13C values, indicating the degree 

of OM decomposition, was be found best expressed in the Ice Complex deposits at Cape 

Mamontov Klyk (Figure 7; R2=0.62) and similarly for other sites.  

As the plant remains in Weichselian Yedoma Ice Complex deposits all represent similar 

grass/sedge tundra vegetation, variation in TOC content, C/N ratio, and δ13C values are 

connected to changes in the bioproductivity, intensity and character of cryosol formation, and 

different degrees of OM decomposition under subaerial or subaquatic conditions. Variations 

in plant associations depending on general climate changes are also obvious and lead to 

changes in OM characteristics [Andreev et al., in press; Guthrie, 1990; Kaplina, 1981; 

Kienast et al., 2005, 2008, in press; Wetterich et al., 2008, 2009; Yurtsev, 2001]. High TOC 

contents, high C/N ratios, and low δ13C values reflect less-decomposed organic matter under 

anaerobic conditions [Gundelwein et al., 2007], which are characteristic for the middle 
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Weichselian interstadial when intense soil formation and peat accumulation in a polygon 

tundra landscape took place. Stadial or glacial periods are characterized by less variable, 

generally low TOC contents with low C/N ratios, which indicate stable environments with 

reduced bioproductivity and higher decay rates. High δ13C values also reflect these relatively 

dry, aerobic conditions.  

 

Carbon dynamics in permafrost regions interact strongly with several components of the 

Earth's climate system. The release of carbon from permafrost and its transfer to the 

atmosphere and hydrosphere occurs largely via the active layer [Wagner et al., 2007; Schuur 

et al., 2009], via thermokarst lakes and their thaw bulbs [Walter et al., 2006], via export of 

dissolved and particulate carbon with streams [Frey et al. 2009], and via erosion of coasts, 

lake and river shores [Jorgenson and Brown, 2005; Rachold et al., 2003]. Therefore, a broad 

assessment of permafrost carbon dynamics needs to take into account that the release of 

permafrost-stored carbon is not only a near surface process involving shallow permafrost soil 

carbon pools in the active layer and thawing soils but also includes the transfer of carbon from 

deeper permafrost stores to the hydrosphere and atmosphere by disturbances such as 

thermokarst and erosion [Schuur et al., 2008, Grosse et al., in press].  

Generally, OM stored in permafrost still represents a very poorly constrained pool in the 

global carbon cycle, which is only recently begun to be included in any current global carbon 

cycle model framework. However, recent attempts to inventory carbon pools in the Arctic and 

especially in near-surface soils and deeper sediments in permafrost regions have shown the 

potentially very large size of soil carbon stored in the permafrost region [McGuire et al., 

2009; Tarnocai et al., 2009, Zimov et al., 2009]. These studies also highlighted the existing 

uncertainties in current estimates and the need for more detailed assessments of such carbon 

pools and the character of OM, and a denser coverage with field data on shallow and deep 

carbon. For the peatland component of the permafrost soil carbon pool relative good estimates 
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of carbon distribution with depth exist based on peatland inventories and thousands of peat 

cores from the circum Arctic [Gorham, 1991; Smith et al., 2004; Tarnocai, 2004; Jones and 

Yu, 2010]. For mineral soils in permafrost regions, however, such spatial and depth 

information is still very rare, though it has been shown that including deeper permafrost and 

soil strata into carbon inventories considerably increases the permafrost carbon pool 

[Bockheim and Hinkel, 2007; Ping et al., 2008]. As many of these deeper carbon pools are 

nevertheless vulnerable to thaw and OM release due to a variety of well documented 

permafrost degradation processes, their characterization is an important task. Further attempts 

to tackle this data paucity for high latitude systems are on the way for example by creating 

geospatial soil carbon databases including deeper deposits, such as currently in progress for 

Alaska [Johnson and Harden, 2009].  

For Siberia, a first order estimate of organic carbon stored in the Ice Complex of the Yedoma 

Suite was attempted by Zimov et al. [2006a, 2006b], assuming general and homogeneous 

values for TOC content (2.6 %), massive ice content (50 %), bulk density (1.65 103 kg m-3), 

thickness (25 m), and spatial distribution (1 million km2) for this strata.  

The data presented in this paper, when coupled with direct measurements of bulk density 

from a subset of Yedoma Ice Complex sites [Dutta et al., 2006] allow us to improve the first 

order carbon inventory calculation by increasing the number of percent C measurements and 

soil bulk density estimates by an order of magnitude. Interestingly, the percent C 

measurements shown here largely validate the early estimates of Zimov et al. [2006a, 2006b]. 

However, the bulk density estimates, calculated from the direct sediment ice content 

measurements, are lower by a factor of about 2, thus decreasing previous average permafrost 

C inventories by 25 to 50%. While the empirical bulk density conversion from ice content is 

based only on a small subset of Ice Complex samples (n=13), the measured tight negative 

correlation (R2=0.94) between ice content and frozen sediment bulk density (Figure 4), as 

well as the direct theoretical link between those two variables, increases our confidence in 
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downwardly revising sediment bulk density values, and thus organic C inventory (kg C m-3) 

for the Yedoma Ice. In addition, the new lower bulk density measurements presented here are 

consistent with bulk density measured across a range of Alaskan permafrost mineral soils 

(E.A.S. Schuur, unpublished data). Despite this refinement of the organic C inventory 

estimate, there still remain large organic C pools frozen at great depth in permafrost and this 

C pool remains vulnerable to climate change [Schuur et al., 2008]. 

When calculating the potential of future greenhouse gas release from decomposition of OM 

from degrading Ice Complex deposits or similar ice-rich permafrost, several current 

knowledge gaps should be taken into account. Variables that determine organic carbon 

content (weight per soil volume) are carbon concentration, ice content, the distribution of 

massive ice bodies, soil bulk density, and spatial extent and average depth of the particular 

permafrost units. Here, we have increased the number of carbon concentration and bulk 

density estimates (based on ice content) of late Quaternary Ice Complex deposits in Yedoma 

landscapes (about 500 samples) by roughly an order of magnitude whereas the remaining 3 

variables still have large uncertainty that should be addressed by future studies: 

(1) Ice-rich permafrost contains roughly 50 to 80 vol% massive ice, which occurs as huge ice 

wedges and segregated ice, which distinctively lowers the total carbon pool on the landscape 

scale [Schirrmeister et al., in press]. 

(2) The spatial distribution of Ice Complex in Siberian Arctic lowlands is only approximately 

known [Romanovskii, 1993]. The distribution of similar deposits in Alaska and Canada is 

increasingly documented  [Kanevskiy et al., 2011]. 

(3) The morphology of Siberian Arctic lowlands is dominated by Holocene thermokarst 

basins and only remnants of late Pleistocene Yedoma hills with Ice Complex deposits are 

preserved [e.g. Grosse et al., 2007], so the average thickness and in particular the area of Ice 

Complex across the region is significantly reduced. Lastly, stratigraphical units within 

permafrost deposits reveal highly variable OM contents and qualities with depth [this study]. 
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This has considerable effects on both the total C inventory and the spatial structure (location) 

of the C inventory.  

 

In addition to these factors that control carbon pool size, the variation in OM quality with 

depth demonstrated in this study reflect past climate-driven factors that preceded C 

incorporation into permafrost, and will also control the release rate of this carbon with further 

thawing of permafrost. Therefore, specific biochemical analyses of OM to understand the 

lability of carbon in permafrost and its bio-availability for decomposition upon thawing are 

necessary in order to understand the potential rate of C release once thawed [Dutta et al., 

2006, Schuur et al., 2009; Zimov et al., 2006b].  

Ultimately, the vulnerability of the permafrost carbon pool to climate change [Schuur et al., 

2008] is connected to the vulnerability of permafrost to the direct effects of climate change 

[Jorgenson et al., 2010] or resulting disturbances, such as thermokarst or wildfires [Grosse et 

al., in press]. Most recent analyses of permafrost temperature trends indicate that a continued 

warming occurred over the last decades in Siberia as well as in most other Arctic regions 

[Romanovsky et al., 2010], pointing to profound changes in the future stability of at least parts 

of the current permafrost carbon pool and the potential thawing, decomposition and release of 

old carbon into the active carbon cycle by microbially generated greenhouse gas emissions 

and dissolved and particulate organic C transfer into the hydrosphere.  

 

6 Conclusions 

We presented one of the first in-depth studies on the complexity of OM distribution for the 

upper permafrost zone up to 100m depth in the northeastern Siberian Arctic, indicating that 

considerable variability of OM distribution between different stratigraphical units, between 

the same stratigraphical unit at different study sites, and even within stratigraphic units at the 

same site, are important factors that need to be taken into account in future inventories. 
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Studies of paleoenvironmental properties and organic carbon biogeochemistry are important 

for better understanding of the origin, preservation, distribution, total inventory and 

vulnerability of OM in permafrost deposits. Both tools are necessary to determine the role of 

permafrost-stored organic carbon in the global carbon cycle. 

TOC contents at our study sites vary between 0.1 to 45.2 wt%, TIC contents between 0 to 7.2 

wt%, C/N ratios between 0.03 to 38.4, and δ13C values between -31.0 to -23.4 ‰. For 

individual strata, OM accumulation, preservation, and distribution are strongly linked to a 

broad variety of paleoenvironmental factors and specific surface and subsurface conditions 

before inclusion of OM into the permafrost. 

Based on our own data and scarcely existing literature data on stratigraphical differences and 

spatial variation of organic carbon sequestered in late Quaternary permafrost deposits, we 

believe that knowledge about the quantities and qualities of this potentially significant OM 

pool is still too limited for extrapolating to larger spatial scales. However, by combination of 

TOC and ice content measurements, and new bulk density estimates, this approach 

downwardly revises the overall carbon inventory. Further work on thickness and proportion 

of massive ice bodies and the distribution of permafrost strata will help to extrapolate to 

larger spatial scales. The enhancement of detailed regional permafrost spatial databases and 

regional organic carbon inventories, in combination with targeted field studies of deep soil 

organic carbon in permafrost regions, would be a logical next step to alleviate these 

challenges [e.g., Tarnocai et al., 2004; Johnson and Harden, 2009]. 
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Figure captions 

Figure 1. Study sites of permafrost archives in NE Siberia with datasets of fossil organic 

matter (see also Table 1) 

Figure 2. Schematic cross sections of exemplary permafrost sequences;  Figure 2A. Section 

exposed at south coast of Bol’shoy Lyakhovsky Island at the Dmitry Laptev Strait (site № 17 

in Figure 1); Figure 2B. Section and drilling transect at Cape Mamontov Klyk in the Western 

Laptev Sea (site № 1 in Figure 1) 

Figure 3. General scheme of the stratigraphical segments of the permafrost zone and several 

components of arctic periglacial landscapes at the Dmitry Laptev Strait 

Figure 4: Relationship between absolute ice content and bulk density of Ice Complex 

samples collected at multiple sites in the Kolyma River region 

Figure 5. Exemplary compilation of ice content and OM signatures of permafrost sequences 

at the Dmitry Laptev Strait (site № 17 in Figure 1; Bol’shoy Lyakhovsky) described in 

Wetterich et al. [2009], Schirrmeister et al. [in press], Andreev et al. [2009] and Andreev et 

al. [2004]. 

Figure 6. Exemplary compilation of ice content, carbon and OM signatures of permafrost 

sequences in the Western Laptev Sea coastal area (site № 1 in Figure 1; Cape Mamontov 

Klyk) described in Schirrmeister et al. [2008] and Winterfeld et al. [in press] 

Figure 7. Correlation of OM signatures (TOC, C/N, δ13C) of Yedoma Ice Complex deposits 

from different key sites (site № 1, 5, 6, 17. 20 in Figure 1 and Table 1) 

Figure 8. Stratigraphical classification of permafrost deposits by OM signatures and ice 

content. Note the logarithmic scale for the TOC values. 
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Table 1. General stratigraphic order for each study site and relevant own publications with 
detailed lithostratigraphic descriptions [ISchirrmeister et al., 2008; IIWinterfeld et al., in press; 
IIISchirrmeister et al., 2010; IVSchirrmeister et al., 2003; VSchirrmeister et al., 2011; 
VISchwamborn et al., 2002; VIIWetterich et al., 2008; VIIISchirrmeister et al., 2002a; 
IXSchirrmeister et al. 2002b; XSchirrmeister et al., 2009; XIAndreev et al., 2004; XIIAndreev et 
al. 2009; XIIIWetterich et al., 2009; XIVStrauss, 2010, subm]. Small letters refer to stratigraphic 
units (see also Figure 2, 3, 5, 6, 8 and SOM 2, 3, and 4) used for the carbon inventory 
estimation. 

Site № Study site (references) Lithostratigraphy Unit
Western Laptev Sea  (I, II, III)  

1 Cape Mamontov Klyk  
 

Holocene cover and valley (k) deposits 
Late Glacial to Holocene thermokarst deposits 
Late Weichselian Ice Complex 
Middle Weichselian alluvial and fluvial deposits 
Early Weichselian fluvial deposits 
Eemian thermokarst lagoon deposits 

h 
i 
f  
d 
- 
- 

Lena Delta (III, IV, V, VI, VII) 

2 Turakh Sise Island 
Holocene deposits 
Middle to Late Weichselian fluvial sands 

- 
d 

3 Ebe Sise Island (Nagym)  h 
4 Khardang Island  i 
5 Kurungnakh-Sise Island  

Holocene cover deposits 
Late Glacial to Holocene thermokarst deposits 
Late Weichselian Ice Complex 
Middle Weichselian Ice Complex 
Early Weichselian fluvial deposits 

f 
e 
d 

Central Laptev Sea (III, VIII, IX)  
6 Bykovsky Peninsula  h 
7 Muostakh Island 

Holocene cover and valley (k) deposits 
Late Glacial to Holocene thermokarst deposits 
Taberite formed during Weichselian to Holocene transition 
Late Weichselian Ice Complex 
Middle Weichselian Ice Complex 

I 
g 
f 
e 

New Siberian Archipelago (III, X)  
8 Stolbovoy Island h 
9 Bel’kovsky Island i 

10 Kotel’ny Island (Cape Anisii) e 
11 Kotel’ny Island 

(Khomurganakh River) 

Late Holocene cover deposits 
Late Glacial to Holocene thermokarst deposits 
Middle Weichselian Ice Complex 

 

12 Bunge Land (low terrace) Late Holocene alluvial deposits - 
13 Bunge Land (high terrace) Late Glacial to Holocene thermokarst deposits i 
14 Novaya Sibir Island  Early to Middle Weichselian fluvial deposits d 
15 Maly Lyakhovsky Island Middle Weichselian Ice Complex e 

Dmitry Laptev Strait (III, XI, XII, XIII)  
16 Bol’shoy Lyakhovsky Island  

(Vankina river mouth) 
h 
i 

17 Bol’shoy Lyakhovsky Island 
(Zimov’e river mouth) 

Late Holocene cover and valley (k) deposits 
Late Glacial to Holocene thermokarst deposits 
Taberite formed during Weichselian to Holocene transition 
Middle Weichselian Ice Complex 
Eemian thermokarst lake deposits 
Taberite formed during Saalian to Eemian transition 
Pre-Eemian flloodplain deposits 
Late Saalian ice-rich deposits 

g 
e 
c 
- 
b 
a 

18 Cape Svyatoy Nos Middle Weichselian Ice Complex 
Pre-Eemian floodplain deposits 
Late Saalian ice-rich deposits 

e 
b 
a 

19 Oyogos Yar coast Late Holocene cover deposits 
Late Glacial to Holocene thermokarst deposits 
Taberite formed during Weichselian to Holocene transition 
Middle Weichselian Ice Complex 
Eemian thermokarst lake deposits 

h 
i 
g 
e 
c 
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Taberite formed during Saalian to Eemian transition - 
Kolyma lowland (XIV) 

20 Duvanny Yar 
 

Late Holocene cover deposits 
Late Glacial to Holocene thermokarst deposits 
Middle Weichselian Ice Complex 
Eemian thermokarst lake deposits 

h 
i 
e 
c 

 
 
Table 2. Carbon inventory estimates for different stratigraphical units according to average 
and range data across all sites in Figure 8 and Table SOM-4. Note that these estimates are for 
frozen sediment and soil and do not account for presence of ice wedges. 
 
Unit Stratigraphical Units  

Ice content 
(wt%) 

Estimated 
bulk density  
(103 kg m-3) 

TOC 
(wt%) 

Carbon 
inventory 
(kg C m-3) 

SD  
(propagated 
error) 

k Holocene thermo-
erosional valley 

44.2 ± 9.0 0.781 5.3 ± 4.9 41.42 40.87 

i Holocene thermokarst 44.4 ± 16.0 0.775 6.9 ± 9.0 53.51 77.22 
h Holocene cover 47.4 ± 14.5 0.686 10.9 ± 12.9 74.73 96.26 
g Taberites 28.8 ± 4.8 1.242 2.7 ± 1.4 33.55 17.82 
f Late Weichselian Ice 

Complex 
38.3 ± 12.5 0.958 2.2 ± 0.9 21.08 11.92 

e Middle Weichselian 
Ice Complex 

40.5 ± 12.8 0.892 3.7 ± 4.1 33.23 40.07 

d Early to Middle 
Weichselian fluvial 
deposits 

22.4 ± 11.3 1.434 0.5 ± 1.4 7.17 18.72 

c Eemian lake deposits 29 ± 8.3 1.236 3.2 ± 4.2 39.57 50.10 
b Pre Eemian floodplain 32.6 ± 8.3 1.129 1.0 ± 0.8 11.29 8.28 
a Saalian ice-rich 

deposits 
58.7 ± 20.1 0.347 5.3 ± 4.3 18.41 34.93 

 
 

Table 3. Estimated soil carbon inventory of Yedoma Ice Complex deposits for the individual 
five sites mentioned exemplarily in the text. This does not account for the presence of ice 
wedges volume. 

Site №  in 
Figure 1 
and Table 1 

Individual sites 
Total C 
content 
(kg C m-2) 

Total 
depth (m) 

Average Carbon 
inventory 
(kg C m-3) across 
measured profile 

SD 

1 Cape Mamontov Klyk 315.44 12.70 24.84 14.17 
5 Lena Delta 553.33 18.25 30.32 16.13 
6 Bykovsky Peninsula 910.20 36.35 25.04 13.41 

17 Bol’shoy Lyakhovsky 
Island 

180.75 10.20 17.72 20.08 

20 Duvanny Yar 596.46 42.00 14.20 7.90 
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