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Ensemble square-root Kalman filters are currently the
computationally most efficient ensemble-based Kalman
filter methods. In particular, the Ensemble Transform
Kalman Filter (ETKF) [1] is known to provide a minimum
ensemble transformation in a very efficient way. In
order to further improve the computational efficiency, the
Error-Subspace Transform Kalman Filter (ESTKF) was
developed [2]. The ESTKF solves the estimation prob-
lem of the Kalman filter directly in the error-subspace
that is represented by the ensemble. As the ETKF, the
ESTKF provides the minimum ensemble transformation,
but at a slightly lower cost. Both, the ETKF and ESTKF
are related to the SEIK filter [3]. This filter shows small
deviations from the minimum transformation, but is
similarly efficient as the ESTKF.

The equations for the ETKF, ESTKF and SEIK filter
algorithms are displayed on the right hand side. The
equations have only subtle differences.

Error space representation
The ETKF uses the ensemble perturbation matrix Z
to represent the estimated error space. In contrast,
ESTKF and SEIK use a basis of the error space, which
has one column less than Z.

State analysis update
The correction of the state estimate (ensemble mean)
is identical in all three filters.

Ensemble transformation
The ensemble transformation is computed in different
representations. Matrix A of the ESTKF is smaller
than Ã of the ETKF by one row and one column. When
both filters use the same definition of matrix square
root, they provide identical ensemble transformations.

The smaller transformation matrix A of the ESTKF
slightly reduces the computational cost compared to
the ETKF. The cost can be further reduced by using
the Cholesky decomposition instead of the singular
value decomposition. However, the ensemble quality
deteriorates with a Cholesky decomposition.

Computing times
(Ensemble size 20; Lorenz96 model; 50000 steps)

ETKF ESTKF SEIK-Cholesky

46.0s 44.7s 26.7s

• The Error Subspace Transform Kalman filter (ESTKF)
is an efficient ensemble square-root filter that com-
putes the weights for the ensemble transformation di-
rectly in the error subspace.

• The ESTKF provides ensemble transformations that
are analytically identical to those of the ETKF. In a nu-
merical application, small differences can occur due
to the finite numerical precision.

• When the symmetric square root is used, the SEIK
filter shows very similar results to those of the ETKF
and ESTKF. With Cholesky decompositions, the qual-
ity of the SEIK filter deteriorates.

• An implementation of the ESTKF is available in the
release of the Parallel Data Assimilation Framework
(PDAF) [5].

ETKF ESTKF SEIK

Z f = X f −X f , Z f ∈ R
n×N Sf = X f Ω, Sf ∈ R

n×(N−1) L f = X f T, L f ∈ R
n×(N−1)
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Notation:

State vector x f ∈ R
n; Ensemble of N members X f =

[

x f (1), . . . ,x f (N)
]

; Matrix of ensemble means X f =
[

x f , . . . ,x f
]

The error subspace has a dimension of N−1. The ETKF
uses an ensemble representation of the error subspace
of N ensemble perturbations. The ESTKF and the SEIK

filter directly use a basis of the error subspace of dimen-
sion N − 1. The difference between ESTKF and SEIK is
caused by the distinct projection matrices Ω and T.

ETKF ESTKF SEIK
Analysis covariance matrix

P̃a = Z f Ã(Z f )T Pa = Sf A(Sf )T P̂a = L f Â(L f )T

with transformation matrix

Ã ∈ R
N×N A ∈ R

(N−1)×(N−1) Â ∈ R
(N−1)×(N−1)

Ã−1 = (N −1)I +(HZ f )TR−1HZ f A−1 = (N −1)I +(HSf )TR−1HSf Â−1 = (N −1)TTT +(HL f )TR−1HL f

Ensemble transformation

X̃a = Xa +
√

N −1Z f C̃ Xa = Xa +
√

N −1Sf CΩT X̂a = Xa +
√

N −1L f ĈΩT

with square-root

C̃C̃T = Ã CCT = A ĈĈT = U

The symmetric square root C = UΛ−1/2UT from the singular value decomposition UΛVT = A−1 can be used in all cases.

The filters compute square roots of different matrices (Ã,
A, Â). The ensemble transformations in ETKF and ES-
TKF are identical if the symmetric square root is used.

For SEIK, the transformation deviates slightly. In addition,
it varies with the order of the ensemble members in the
ensemble matrix.

Twin experiments were conducted using the nonlinear
Lorenz96 model [4] implemented in PDAF [5]. Syn-
thetic observations of the full state were generated from
a model run. Observations were assimilated at each time
step over 50000 time steps. For SEIK, configurations with

either symmetric square root or with a square-root based
on Cholesky decompostion were used. The global formu-
lations of the filters were used. Localization is not required
for the small Lorenz96 model if the ensemble size is large
enough.
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Figure 1: Mean RMS errors over 10 experiments are
shown as functions of the ensemble size and forgetting
factor (covariance inflation). The results from ESTKF and
ETKF are almost identical. Analytically, both filters are
equivalent. Thus, the differences are only caused by the
finite precision of the numerical computations. The SEIK

filter with symmetric square root also provides very sim-
ilar results. Errors from the SEIK filter using a Cholesky
decomposition of the transformation matrix Â are larger.
This is caused by an inferior ensemble quality in which
a small number of ensemble members carry most of the
variance.
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