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ii. Abstract 
 

The scallop Argopecten ventricosus is characterized by its high swimming activity, fast 

growth, high reproductive effort and the early age to get first sexual maturity. These traits 

may be the result of the adaptation to a specific environment that favors an active lifestyle 

and a short lifespan (2 years). This opens the question of how environmental factors 

modulate the way a short living marine ectotherm budget energy investments among life 

history traits and how this modulation impacts the lifespan within a cohort. Temperature 

and predation are two key environmental factors that affect physiological and cellular 

responses in marine ectotherms that have been investigated in the present study. 

Lifelong investments among life history traits were studied looking at trade-offs among 

growth, reproduction and cellular maintenance mechanisms under the different 

environmental conditions. The cellular maintenance mechanisms were studied in different 

tissues by antioxidant and damage removal capacities. In order to demonstrate the 

efficiency of cellular maintenance mechanisms, oxidative damage accrual of proteins and 

lipids and undegradable waste accumulation (lipofuscin) were assessed in parallel. The 

trade-offs were also investigated within a cohort raised in the field throughout the species 

record lifespan (2 years).  

The long-term elevation of temperature (5°C above the temperature measured in the field) 

enhanced metabolic rates, reproduction effort but also oxidative damage accrual and high 

mortality rates despites the conjunctly increase in antioxidant capacities. The high mortality 

probably exerted a strong selection of better-adapted individuals with less oxidative 

damage and better growth. Scallops exposed to predator pressure (the blue crab: Callinectes 
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sapidus) developed thicker shells and bigger swimming muscles and at the meantime 

constrained reproduction investment as indicated by the deferment and the lower 

investment into gametogenesis. Lower reproductive effort was combined with lower 

oxidative damage accrual especially in mantle and gill tissues, and may have prevented 

post-spawned mortalities. When studying the trade-offs in scallops reared in the field, it 

appears that scallops at their first reproductive event (< 1 year of age) showed the highest 

levels of oxidative damage (protein carbonyls and lipid peroxidation products). While 

antioxidant capacities did not appear to prevent oxidative damage, young scallops seem to 

remove damage before the undegradable waste product lipofusin accumulates. In contrast, 

older individuals (>1 year of age) failed to prevent lipofuscin accumulation.  

For this species, the applicability of evolutionary theories of aging suggest that a rapid 

growth and early maturation at young age compromise later cellular maintenance. 

However, species may have a great variety of strategies in order to deal with the oxidative 

challenges throughout their lifespan, which depend strongly on the environmental 

conditions and state of life. The results speak for extrinsic factors (temperature and 

predation) to have potential roles on the lifespan in A. ventricosus scallops. This makes 

aging and oxidative stress mechanisms in short living bivalves an interesting but complex 

process influenced by a variety of interactive intrinsic and extrinsic processes that should 

be considered in future studies.  
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iii.  Zusammenfassung 
 

Die Kammmuschel Argopecten ventricosus ist charakterisiert durch hohe 

Schwimmaktivität, schnelles Wachstum, hohen Reproduktionsaufwand und frühes Alter 

der ersten sexuellen Reife. Diese Eigenschaften können das Ergebnis von Anpassungen an 

einen speziellen Lebensraum sein, welcher einen aktiven Lebensstil und kurze 

Lebensspannen (2 Jahre) bevorzugt. Es ergibt sich die Frage inwiefern Umweltfaktoren die 

Art und Weise, wie kurzlebige marine ektotherme Organismen ihre Energiekosten 

zwischen lebensgeschichtlichen Eigenschaften einteilen, und wie diese Modulierung die 

Lebensspanne einer Kohorte verändern kann. Temperatur und Räuberdruck sind in marinen 

Ektothermen zwei Schlüsselumweltfaktoren, bei denen sich gezeigt hat, dass sie Einfluss 

auf physiologische und zelluläre Antworten nehmen und wurden in dieser Arbeit 

untersucht. 

Energetische Kosten lebensgeschichtlicher Eigenschaften wurden untersucht, um 

Austauschbeziehungen zwischen Wachstum, Reproduktion und zellulären 

Aufrechterhaltungs-mechanismen unter verschiedenen Umweltbedingungen aufzuzeigen. 

Diese Austausch-beziehungen wurden auch in einer Kohorte verfolgt, die im Feld über die 

Lebensspanne von 2 Jahren herangezogen wurde. Die zellulären 

Aufrechterhaltungsmechanismen beinhalten die Messungen antioxidanter Schlüsselenzyme 

sowie Schädigungs-Abfuhr-Kapazitäten in verschiedene Gewebe. Oxidative Schädigung an 

Proteine und Lipide sowie das undegradierbare Abfallprodukt Lipofuscin wurden ebenso 

erfasst. Die lebenslange Temperaturerhöhung (5°C höher als die im Feld gemessene 

Temperatur) verstärkten Stoffwechselraten, Reproduktionsaufwand, aber ebenso auch den 

Zuwachs von oxidativen Schädigungen und Mortalitätsraten. Hohe Temperaturen förderten 
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aber eine stärkere Selektion angepasster Individuen, die niedrigere oxidative Schädigung 

und besseres Wachstum aufwiesen. Individuen, die einem potentiellen Räuber (die blaue 

Krabbe: Callinectes sapidus) ausgesetzt wurden, entwickelten dickere Schalen und größere 

Muskeln aber gleichzeitig niedrigere Investition in Reproduktion. Niedriger reprodukiver 

Aufwand, in Kombination mit verringertem Zuwachs von oxidativen Schädigungen, gerade 

im Mantel- und Kiemengewebe, führten zu einer Erhöhung der Überlebensraten. Die 

Untersuchungen der Austauschbeziehungen bei Muscheln, die im Feld aufgezogen wurden, 

ergaben, dass junge und laichreife Muscheln die höchsten Werte zelullärer Schädingung 

(Proteinkarbonyle und Lipidperoxidierte Produkte) aufwiesen. Antioxidative Kapazitäten 

konnten anscheinend die zelluläre Schädingung nicht vermeiden und es scheint dass in A. 

ventricosus die Schädigungsprodukte eher effective entfernt warden, bevor das 

Abfallprodukt Lipofuscin gebildet wird. Junge Muscheln (jünger als ein Jahr) konnten 

besser mit den oxidativen Herausforderungen umgehen, indem sie Lipofuscin-

Akkumulation verhinderten, im Gegensatz zu älteren Individuen (älter als ein Jahr).  

Die Ergebnisse der Arbeit unterstützen evolutionäre Alterungstheorien, die besagen, dass 

schnelles Wachstum und frühe sexuelle Reife in jungen Jahren die zelluläre 

Aufrechterhaltung in alten Tieren beeinträchtigen. Arten können jedoch eine große Vielfalt 

an Strategien besitzen, um mit oxidativen Schädigungen über ihre Lebensspanne hinweg 

umzugehen, welche stark von Umweltbedingungen und Lebensphase abhängen. Dies macht 

Alterung zu einem komplexen Prozess, der von interaktiven intrisischen Prozessen 

innerhalb einer artenspezifischen Umwelt beeinflusst wird. 
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iv.  Abbreviations 
 

CAT  Catalase 

CS  Citrate synthase 

FMR  Feeding metabolic rate 

GSI  Gonadosomatic index 

GI  Gonad index 

NAD+   Nicotinamide adenine dinucleotid (oxidized) 

NADH  Nicotinamide adenine dinucleotid (reduced) 

ODH  Octopine dehydrogenase 

ROS  Reactive oxygen species 

SFG  Scope for growth 

SFT  Simulated field temperature 

SMR  Standard metabolic rate 

SOD  Superoxide dismutase 

TBARS Thiobarbituric acid reactive substances 

 

 





 

1 

 





General introduction 

1 

 

 

 

 

 

 

 

 

              CHAPTER 1: GENERAL INTRODUCTION 



General introduction 

2 

 

General Introduction 

1.1.  Mechanistic and evolutionary theories of aging 

Understanding why some species can attain Methuselah ages while others dwindle in some 

months or years have been a long-standing question in biology (Orzak 2003; Philipp and 

Abele 2010). Aging is a nearly universal feature of multicellular organisms that determines 

the lifespan of species (Krikwood 2005). 

Since the twentieth century, mechanistic (proximate) and evolutionary (ultimate) theories 

of aging have been linked among each other because their interactions and shared questions 

contribute to a better comprehension of aging and the evolution of life spans in 

multicellular organisms (Cohen et al. 2010; McGraw et al.2010). The oxidative stress 

theory is one, if not the most popular mechanistic theory of aging (Kirkwood 2005; Kregel 

and Zhang 2006; Salmon et al. 2010) that has provided an essential role in clarifying 

cellular processes and thus in understanding intrinsic factors that explain how organisms 

age. However, the lack of evidence and the increasing contradictory results have led to the 

question if this theory can truly explain the complex phenomenon of aging. Nowadays, 

researchers are tending to conclude that this theory, at least in its original version, is 

incorrect or at least insufficient (Buffenstein et al. 2008; Perez et al. 2009; Lapointe and 

Hekimi 2010). Oxidative stress is rather beginning to be integrated into evolutionary 

theories. These theories bring strengths in understanding the evolutionary forces that 

shaped the lifespan of species within a specific environment and thus tries to understand 

why organisms age. It is recently that ecologists are giving oxidative stress another meaning 
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by linking it to specific life history traits such as growth and reproduction rather than to 

lifespan.  

The catarina scallop Argopecten ventricosus from the Pacific coast of Baja California Sur, 

México is an excellent species to investigate the links between proximate and ultimate 

approaches that conjunctly may provide a better understanding in the forces that shape the 

life history and the lifespan of this model species. 

 

1.2.  The controversy of oxidative stress as a determinant of aging 

Since 1990s the free-radical theory of aging was regarded as the dominant mechanistic idea 

explaining why organisms age (Speakman and Selman 2011). The theory is based on the 

tenet that oxygen free radicals are spontaneous and natural by-products formed during 

aerobic metabolism within the powerhouse of the cell, the mitochondria (Harman 1956). 

With the increase of oxygen in the Earth´s atmosphere, aerobic species have evolved 

molecular mechanisms that allowed them to use oxygen for a highly efficient energy 

production (ATP) to fuel all biological processes on which they depend (Monaghan et al. 

2009). ATP is produced through a series of redox reactions that involves the transfer of 

electrons along the cytochrome proteins on the inner mitochondria membrane that 

ultimately reduce oxygen to water (Kregel and Zhang 2006; Pamplona and Costantini 

2011). During this process, single electrons react promiscuously with oxygen leading to the 

formation of superoxide radical (O2•-) that can be converted in other ROS such as hydrogen 

peroxide (H2O2) and the hydroxyl radical (•OH) (Muller 2000). Parallel to the innovation of 

using oxygen for energy production, animals have evolved sophisticated and multifaceted 
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antioxidant defense systems to avoid or minimize the inevitable production of ROS 

(McCord and Fridovich 1969). Antioxidants include a network of compartmentalized 

enzymes, primarily superoxide dismutase (SOD), gluthathion peroxidase (GPx) and 

catalase (CAT) and non-enzymatic antioxidants such as vitamins (E, A and C), tripeptides 

(gluthation) and trace metals (selenium). These antioxidants are distributed within the 

cytoplasm and among various organelles and work in a series of integrated reactions to 

convert ROS to more stable molecules eventually oxygen or water. However, the 

antioxidant machinery is not 100% efficient in mopping up ROS and some radicals always 

evade the protection system. When however, the balance between pro and antioxidants is 

disrupted, ROS escape the antioxidant capacities in a greater extend, and oxidative stress 

occurs. Under these circumstances, ROS will cause severe oxidation in proteins, membrane 

lipids and DNA mainly in the formation site, the mitochondria. Peroxidation of membrane 

lipids result in the loss of membrane integrity and homeostasis (Practicó 2002) while in 

proteins, ROS can lead to a decrease in the catalytic activity of enzymes, it can cause the 

protein-protein crosslinkages and protein fragmentation when the backbone is oxidized 

(Berlett and Stadtman 1997). Damaged mitochondria will favor further ROS production 

and increase damage creating a vicious cycle (Andreyev et al. 2005). Therefore, damage 

appears to accumulate slowly with age until it starts to compromise the function of the 

organism at the whole. According to this theory, the reason why animals ultimately die is 

because of the accumulated damage that these oxygen free radicals and their derivates 

cause. In the light of this theory, animals with low antioxidant capacities or higher rates of 

ROS production are expected to accumulate damage at a faster rate and live a 

comparatively shorter life.  
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The oxidative stress theory was immediately attractive because it was suggestive of 

ubiquitous physiological mechanism as to why organisms age and die and why this happens 

at different rates. Up to now, there is no doubt that ROS cause oxidative damage, and many 

advances in the field of aging have shown that oxidative stress (the imbalance between 

antioxidants and prooxidants) plays some sort of role in the aging process. However, to date 

no consistence proof exists that unambiguously identifies oxidative stress as the 

determinant of lifespan (Kregel and Zhang 2006; Buffenstein et al. 2008) and it is still 

questionable if a complex biological phenomenon such as aging can be explained by a 

single process or theory (Kirkwood 2005). One of the flaws of the theory is that oxidative 

stress does not increase with chronological age and that it is rather modulated by life 

history traits such as growth and reproduction throughout animal´s lifespan independent of 

age (de Maghalaes and Church 2006; Cohen et al. 2010). Within this context, ecologist are 

beginning to recognize that oxidative stress might constitute a potential mechanism 

underlying main life history trade-offs (Kim et al. 2009, Costantini 2010).  

 

1.3.  Bivalves and aging 

Bivalves represent a special group within the animal kingdom and a challenge to aging 

theories. This is because this group exhibits a rich diversity of lifestyles with adaptations to 

diverse environmental conditions (Abele et al. 2009). We find for example sessile species 

that are attached to the substratum (oysters, mussels) or that burrow deep into the sediment 

(unioinidae and fresh water mussels) which contrast the active, energetically intensive 

lifestyles characteristic for mostly epibenthic scallops. Further, we find species that inhabit 
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Polar Regions (Antarctic clams and scallops) but also others that can survive to the 

extremely high temperatures of the hot vents such as the scallop Bathypecten and the 

mussel Bathymodiolus (Mullineaux et al. 1998). Hence, bivalves possess a high degree of 

phenotypic plasticity that permits a wide range of responses with respect to growth, age at 

maturation and record lifespan that are suited to different environmental conditions 

(Kirkwood and Austad 2000; Buettemer et al. 2010). 

Reviewing literature data of the life history of bivalves, a trend towards a longer record 

lifespan in cold-water compared to warm-water species and vice versa becomes apparent 

(Philipp et al. 2005 a,b; Philipp et al. 2006). This can be explained to some extent by the 

free radical theory of aging as temperature directly modulates metabolic rates in ectotherms 

and thereby ROS production and consequently oxidative damage accrual. High metabolic 

rates are thought to cause high ROS formation rates and a faster decline in mitochondrial 

function in a temperate compared to a polar mud clam species (Philipp et al. 2005). In 

addition, antioxidant activity is higher in polar than in temperate bivalve species (Regoli et 

al. 2000; Philipp et al. 2005; Camus et al. 2005). These correlates are presumably more 

decisive for life history in marine ectotherms than mammals that posses a great capacity to 

adapt to higher levels of ROS so that higher metabolic rates are not necessarily connected 

to higher ROS production or damage (Costantini 2010). However, although low ROS 

production and high antioxidant capacities seems to be related to a long life in polar bivalve 

species, exceptions to the rule shows that, also in bivalves, the oxidative stress theory of 

aging is not always a straightforward and the only explanation of species specific lifespan. 

Swimming scallops represent an excellent example of exception. When comparing 

antioxidant enzyme activity of a shorter-lived and temperate scallop Aequipecten 
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opercularis (record lifespan 8-10 years) and a longer-lived polar scallop Adamussium 

colbecki (record lifespan > 18 years), the shorter-lived scallop had higher levels of the 

enzyme SOD (Philipp et al. 2006). Moreover, the age pigment lipofuscin and protein 

carbonyl levels (a marker of oxidative damage to proteins) did not show differences with 

age and the latter marker is even higher in the longer-lived species (Philipp et al. 2006). A 

very striking result was that Aequipecten opercularis control ROS production at extremely 

low levels, despites the fact of having higher metabolic rates, a very active lifestyle and a 

short lifespan (Philipp et al. 2006). That means that other life history traits such as growth 

and reproduction might modulate ROS and oxidative damage to a greater extent than 

temperature and lifespan. Moreover, the levels of oxidative damage measurable at a 

specific time of the life do not necessarily have negative physiological consequences for the 

animals. This is because oxidative compounds can be recycled or removed from the cell. 

Cells can be destroyed via apoptosis (programmed cell death), a process that was found to 

be highly active in the scallop A. opercularis (Strahl and Abele 2010). In contrast to 

necrosis, that is the premature death of cells and tissues by external factors such as 

infections, toxins or trauma, apoptosis is a naturally, highly regulated energy consuming 

process in which damaged compounds and cells are fractionated and disposed without 

causing inflammation (Edinger and Thompson 2004; Peter 2011). These findings gave rise 

to the question of how scallops repair or “clean” oxidative damage, how efficient are these 

cellular maintenance mechanisms and how they change in respect not only to age but also 

to life history. 
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1.4.  Oxidative stress as a life history constraint 

Life history studies have been based in how organisms combine definite aspects of their 

lives such as reproduction, growth and cellular maintenance mechanisms and how such 

combinations have evolved (Stearns 1992). The study of life history traits has had at its 

core the idea that energy utilization is the currency that is traded off among life history 

traits (Alonso-Alvarez et al. 2004). Ecologist and evolutionary biologists have recognized 

that oxidative stress vary with developmental schedules such as growth rate and 

reproductive effort (Cohen et al. 2010; Metcalfe and Alonso-Alvarez 2010). This confirmed 

that oxidative stress is a non-energetic player influencing life history traits and that 

oxidative stress can be accelerated or reversed either by sensitizing or repairing and 

removing the damage (Kregel and Zhang 2006). However, the incorporation of oxidative 

stress into life history questions is starting to emerge and further studies within this area are 

needed (Monaghan et al. 2009). For example, the direct link between reproductive effort 

and oxidative stress has mainly been based on changes in antioxidant capacity without 

directly measuring oxidative damage or damage removal mechanisms (Metcalfe and 

Alonso-Alvarez 2010). Up to now, there is lack of evidence of the link between life history 

traits and oxidative stress under realistic environmental conditions (Metcalfe and Alonso-

Alvarez 2010). Further, most conclusions are based on studies of flies, birds and mammals 

and the generality by which oxidative stress impacts on life history evolution remains to be 

fully explored across a range of other taxa (Dowling and Simmons 2009) such as in 

bivalves.  

In this thesis, it was possible to combine these missing links using the short-lived catarina 

scallop as model species. Due to its short lifespan (record lifespan 2 years, Keen 1971), this 
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scallop is an ideal candidate for the aging research as it is possible to monitor changes in 

life history traits such as growth and reproduction related to cellular oxidative processes 

throughout scallops lifetime. Moreover, the explicit knowledge in cultivation of this 

commercially valuable species (Maeda-Martínez et al. 1997) offers the possibility to rear 

scallops directly in their natural environment. 

 

1.5.  Argopecten ventricosus: A short living bivalve model for aging 

studies 

The pacific calico or catarina scallop, Argopecten ventricosus is one of the shortest living 

scallops together with a few other species such as Donax donax (record lifespan: 1 year) 

and Argopecten irradians (record lifespan: 2 years) (Powell and Cummins 1985). The 

lifespan of these species contrasts strongly with lifespan records of some clams such as 

Mercenaria mercenaria and the ocean quahog Arctica islandica that live up several 100 

years (Ziguanov et al. 2000; Wanamaker et al. 2008). Argopecten ventricosus is an 

epibenthic swimming bivalve that generally resides on the mud-sand sediment at depths 

ranging between 1-180 m (Maeda-Martínez et al. 1993, 2001). In shallow bays, catarina 

scallops dwell within eelgrass beds of Zostera marina, which serves as primary substrate 

for the attachment of pediveliger larvae. Even within the eelgrass beds, predator pressure is 

high and an important cause of mortality particularly in young scallops (Ciocco and 

Orensanz 2001; pers. observation) (Figure 1.1).  
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     A)                                                                     B) 

  

                                          C) 

   

Figure 1.1: (A) 7 months old A. ventricosus scallops (size 36 mm) lying on sand bottom in the field 
within sea grass beds and (B) outside sea grass beds. C) Empty shell of scallop within sea grass 
beds probably being eaten by a predator. 
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The catarina scallop is distributed along the Pacific coast from Baja California, México to 

Paita, Perú (Waller 1991). In Baja California, the interactions of the cold California Current 

in winter and the tropical North Equatorial Current during summer provoke a high seasonal 

variation in biophysical settings including temperature and seston quality and quantity 

(Lodeiros et al. 2001; Luch-Belda et al. 2003a). Here, A. ventricosus scallops can attain a 

size of 6 cm within one year (Maeda-Martínez et al. 1997) and the first sexual maturity at 

an early age of only 4 months (Cruz et al. 2000). Two main spawning events, one in spring 

(march-April) and one in summer (August-September) are reported, but mature scallops 

can be found throughout the year (Felix-Pico et al. 1993; Maeda-Martínez et al. 1993, 

2001). 

The fast growth and high reproductive effort of the catarina scallop could be an adaptation 

to the variable environmental conditions combined with high predation pressure. Hence, 

growing fast could shorten the susceptible juvenile period in order to overcome mortality 

by predators and an early onset of reproduction may ensure recruitment of the population. 

According to the life history theory (Kirkwood and Austad 2000), it is more advantageous 

for species living under high predation pressure to allocate energy towards reproduction 

early in life and ensure their recruitment before they are consumed by predators. The 

negative consequence is the deterioration of the soma due to a lack of surplus energy for 

preventing; repairing or removing ROS and the consequent damage (see Figure 1.2). 

Hence, the precocious lifestyle of the catarina scallop could be the cause of scallops’ short 

lifespan. The question is how the catarina scallop deal with the constant oxidative 

“challenge” throughout its lifespan? 
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In fact, bivalves in general may challenge the life history theory, as the trade-offs between 

reproduction, cellular maintenance and survival do not necessarily fit with the general 

theory (Sukhotin and Flyachinskaya 2009). The queen scallop Placopecten magellanicus 

for example, can modulate their energy allocation among life history traits in such a way 

that expenditure for reproduction may not directly impair current growth and cellular 

maintenance or constrain future reproductive output (MacDonald and Bayne 1993). This 

differs from definite growers such as birds, mammals and insects in which growth stops 

more or less after reaching maturity when senescence sets in (Kirkwood and Austad 2000). 

Moreover, it was shown that predation in the queen scallop elicit the development of 

thicker shells, and increase in clapping rates (Lafrance et al. 2003) and so select for traits 

that evade predators. Similar as already observed by fish (guppies), the extrinsic pressure 

can select for intrinsic improvement in performance, which may increase individual 

survival (Reznick et al 2004). This contradicts the theory that high predation will always 

select for a faster physiological deterioration and a shorter lifespan (Williams and Day 

2003, Reznick et al. 2004). Reallocating energy resources into defense mechanisms opens 

the question of how other life history traits such as somatic growth and reproduction can be 

affected and whether these trades-offs influence cellular processes linked to aging. 
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Figure 1.2: Schematic overview of the different possibilities to deal with the oxidative challenge 
and the consequences for life history traits modified after Monaghan et al. (2009). The 
consequences for animal fitness are shown in the boxes at the bottom. The questions represent 
processes that may differ in bivalves from classical models such as birds, mammals and flies. 

 

Growth and survival rates, as well as the age to attain first sexual maturity vary between the 

different A. ventricosus populations living at each site of the peninsula of Baja California. 

Studies by Cruz et al. (1997, 1998, 2000) demonstrated that one population living in the 

Gulf of California (Bahía Concepción) had lower growth, survival rates and later onset of 

first sexual maturity compared to a pacific population living in Bahía Magdalena. When the 

authors transplanted scallops of both populations to the complementary environment, i.e. 

the Bahía Concepción population to Bahía Magdalena and vice versa, they observed that 

the formally “better off” Magdalena population showed a lower performance in the 

Concepción environment compared to the indigenous animals. Simultaneously, the 

Concepción population transferred to Bahía Magdalena grew faster, reproduced earlier and 

had lower mortality rates than in its home area. This indicates that populations are adapted 



General introduction 

14 

 

to the specific environmental conditions in their habitat but growth, survival and maturation 

in other environment can be strongly influenced by extrinsic factors such as food 

concentrations and temperature. The fact that environmental factors can influence life 

history traits in this scallop species gives rise to the following questions: How do changes 

in extrinsic factors such as temperature and predation modulate intrinsic cellular processes 

within a population of A. ventricosus? And how do investments in specific life history traits 

such as growth, reproduction and cellular maintenance shape the intrinsic aging process 

throughout the lifespan of this species? 

 

1.6.  Aims of the thesis 

The aim of the thesis was to obtain a better understanding of intrinsic cellular mechanisms 

and extrinsic environmental factors that can contribute in shaping the life history of an 

ectothermic species. The strategy consisted in creating a single population of animals that 

shared the same chronological age that can be subsequently raised under different 

environmental settings from the beginning to the end of their life. Controlled laboratory 

experiments aimed to pinpoint how two extrinsic factors: predation and temperature, 

modulate the animal´s physiology, life history traits and therefore, the lifespan of 

populations maintained under different environmental conditions. Intrinsic oxidative stress 

parameters were monitored across the lifespan of the cohort in the field in order to analyse 

changes during chronological aging in response to life history traits under natural 

environmental conditions. 
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The specific tasks were: 

1. Analyze in which way temperature and predation modulate the physiology and 

survival rates of the species in a long-term experimental setup under laboratory 

conditions. 

Differences in water temperature and food levels have shown to cause differential growth 

and survival rates and change the time to reach first sexual maturity in A. ventricosus 

populations. The presence of predators can also influence the physiological performance 

and shell morphology in scallops and can impact somatic growth, reproductive effort and 

survival. Up to now, the precise influence of environmental factors under controlled 

laboratory settings is limited to short periods of time and misses the influence throughout a 

population lifespan and different ontogenetic stages.  

Aim: To analyze lifelong changes in animal physiological parameters: somatic and shell 

growth, condition indices and investments into reproduction and changes in shell 

morphology in a controlled laboratory set up. Relate the changes to survival rates in order 

to understand if temperature and predation modulate life history and lifespan of a 

population.  
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2. Analyze if temperature and predation induce intrinsic changes in cellular 

maintainance mechanisms and damage under long-term controlled laboratory 

conditions 

High temperatures can enhance metabolic rates and cellular oxidative damage and might 

affect energetic balance and compromise individual survival. However, to date, there is a 

missing link between energy metabolism, oxidative damage accrual and lifespan within 

individuals of the same species after lifelong exposure to higher temperatures. Further, 

there is scarce evidence about the cellular mechanisms underlying the effects of predators 

not only in bivalves but in animals in general. Only a study in damselflies showed that 

oxidative stress is a cost of predation that could have negative fitness consequences for the 

prey (Slos and Stocks 2008) 

Aim: Analyze metabolic rates and cellular antioxidant defence mechanism against ROS as 

well formation of oxidative damage in different tissues linked to an increase in temperature 

and predation pressure.  

Principal questions: 

(i) Does an increase in environmental temperature enhance metabolic rates and oxidative 

stress throughout the lifespan of a population that affect energetic balance, growth, 

reproduction investments and survival rates within individuals of the same population? 

(ii) How does predation pressure modulate animal performance, growth and reproduction 

patterns and does this implicate changes in cellular processes that alter survival of the 

population? 
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3. Conduct a high-resolution study of aging through the early maturation phase until 

the end of the record lifespan (2 years) of catarina scallops reared under natural field 

conditions.  

Oxidative stress has not only been positively related to the aging process but also to periods 

of intense growth and reproduction. Oxidative stress could thus, constitute a potential 

mechanism explaining life history trade-offs putting in question how these parameters 

change with chronological age within a cohort reared in its natural environment. 

Aim: Examine cellular damage accumulation over scallop’s lifetime by studying 

degradable and undegradable types of oxidative damage as well as cellular defence 

mechanisms that include prevention (antioxidant defence) and removal of cellular damage 

(apoptosis) in order to disentangle if oxidative stress changes with chronological age in the 

catarina scallop. The fact that scallops grow continuously throughout their life and invest 

heavily into reproduction allowed to specifically study the effect of growth and 

reproduction and subsequent recovery on cellular maintenance and oxidative damage in 

different tissues, and to distinguish the effect of chronological age from the effect of 

exhaustive reproduction in field-reared specimens. 

Principal questions: 

(i) Is reproduction and growth traded-off with cellular maintenance mechanisms in this 

species? And how does this species deal with oxidative stress throughout its short lifespan? 

(ii) Is there evidence that the active lifestyle of A. ventricosus is related with higher levels 

of oxidative damage and/or lower levels of cellular defence mechanisms that lead to the 

comparable short lifespan? 
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Material and Methods  

In this section is described the acquisition of a single scallop population that was 

subsequently separated and subjected to different laboratory treatments or maintained in the 

field. All experiments were carried out at the Centro de Investigaciones Biológicas del 

Noroeste (CIBNOR), Baja California Sur, México. Analyses were concluded at the 

CIBNOR as well as at the Alfred-Wegener Institute (AWI), Bremerhaven, Germany. The 

methods to all experimental work are presented in detail in publication 1 and manuscripts 

1-3. Here, I give a summarized and general overview of all methods applied. 

2.1.  The hatchery 

The strategy for the experimental design consisted in acquiring mature A. ventricosus 

scallops from the natural environment that could be transported to the hatchery of CIBONR 

close before they spawn. The aim was to get a substantial number of larvae from the 

spawning of the adults in order to get a cohort from which the exact age is known. 

Subsequently, the cohort was raised and exposed to the different environmental settings. 

Mature A. ventricosus were found in July-August 2007 in the Pacific Site of the Peninsula 

of Baja California, México. Hence, 60 mature and close to ripe scallops (4-6 cm) were 

collected the 27.7.2007 directly from fishermen in Puerto San Carlos. Scallops were 

transported to the CIBNOR following the method of Maeda-Martínez et al. (2000). The 

method consists in transporting scallops out of water in a moist, cooled and aerated 

condition, allowing scallops to maintain their valves closed which diminishes stress caused 

by desiccation or hypoxia. For this, the scallops are packed within a “sandwich” made of 

layers of wet sponge and plywood lids placed inside plastic bags and packed in Styrofoam 
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coolers. Plastic bags were close with rubber bands that can be opened during the 

transportation to allow the incoming of air. Ice packs were placed within the Styrofoam box 

to maintain constant temperature at ~ 20°C.  

Arriving at the CIBNOR, the mature scallops were induced to spawn following the thermo-

stimualtion method, which consist in stimulating sperm and ova release of scallops by 

thermal shock (Uriate 2001). A. ventricosus scallops are found to be more tolerant to 

thermal shock so that even if individuals may be determined to ripe, gametes release does 

not always occur directly following thermal stimulation (Sarkis and Lovelatti 2007). 

Scallops were therefore left over night within a nestier tray suspended within 4 1500L tanks 

with aerated seawater at a salinity of 33-36 ppt and a temperature of 26°C (Figure 2.1).  

 

 

Figure 2.1: Mature A.ventricosus scallops suspended within 1500 L tank to induce spawning. 
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A. ventricosus is a functional hermaphrodite, which liberates sperms and ova into the water, 

where fertilization takes place (Sarkis and Lovelatti 2007). At the next day, an amount of ~ 

7,850,000 ciliated trochophora larvae was obtained. After one day, a thin D-shape shell 

covered the planktonic larvae. The so-called veliger larvae (Figure 2.2A) develop a foot 

and an eyespot after 12 days and becomes pediveliger larvae that is ready to attach to the 

substratum losing the ability to swim (Figure 2.2B). In the laboratory, the pediveliger 

larvae settled in nylon bags (2.3A). Once the pediveliger larvae have settled, they undergo 

metamorphosis within 3-4 days (Figure 2.2C and D). The juveniles release then themselves 

from the primarily substratum, the nylon bags, and began to attach to the walls of the 

cultivation tanks by byssus formation (Figure 2.3B). Until 19 days, pediveliger larvae were 

kept in a 1 500 L tank at a salinity of 33-36 ppt and a temperature of 24-26°C. 
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 A)                                                                       B) 

   

  C)                                                                          D) 

   

Figure 2.2: (A) A. ventricosus veliger larvae (3 days old), (B) pediveliger larvae (12 days old), (C) 
and (D) juvenile scallop (16 and 19 days old respectively) 

100µm 200µm

100µm 
100µm
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  A)                                                                           B) 

  

   C)                                                                      D) 

  

Figure 2.3: (A) Nylon bags that provided a substratum for pedivelifer larvae suspended within 
1500L tanks, (B) Juveniles attached to the walls of the tanks, (C) upwelling system, (D) juvenile 
scallops within sieve of the upwelling system 

 

The trocophora and veliger larvae were fed with the flagellat algae species Isochrisis 

galbana and Pavlova lutheri as they can still not digest the silikat shell of diatomic 

micoraglae. Larvae were daily fed with 8 L of these microalgae in a 1:1 ratio (2.9 x 106 

cells/L for Isochrisis galbana and 3.3 x 106 cells/L for Pavlova lutheri). Every second day, 

100 % water exchange was done and the larvae were sieved to analyze the differences of 

scallops 
attached to the 
wall 
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sizes. At the second day of being hatched, 60 % of the initial spat were retained in a 60 µm 

sieve and were kept. The smaller larvae were discarded. As soon as veliger larvae were 

becoming pediveliver, the diatomae microalgae Chaetoceros calcitrans and Chaetoceros 

gracilis were added to the food mix so that the food mix consisted in 15 L/day of a ratio of 

2.5:1:1.5:1 (108 total cells/L) of Isochrisis galbana, Pavlova lutheri, Chaetoceros 

calcitrans and Chaetoceros gracilis. This microalgal mix has been commonly used in 

mollusk aquaculture (Brown et al. 1997). The diatom C. calcitrans is important for the 

mollusk diet because of the rich energy content (Shamsudin 1992). However, Lora-Vilchis 

and Doktor (2001) showed that the best nutritive values for gross growth efficiency in A. 

ventricosus are achieved when a combined diet of C. calcitrans an I. galbana are supplied 

because of the complementary fatty acid composition containing in both microalgae that 

bivalves cannot synthesize and have to get from the food (Lora-Vilchis and Doktor 2001).  

Of the initial population, 43 % developed to pediveliger larvae and were kept in the tank 

until juveniles began to attach to the walls of the tank. From this moment on, juveniles 

needed to be fed continuously for optimal growth. For this, juveniles were moved to an 

upwelling system where 500 L of a mixed microalgae rich water (100 000 cells/ml) was 

used to feed juveniles ad libitum. Scallops were kept within sieves (500 µm) that were 

suspended in the upwelling system (Figure 2.3C and D). Temperature was kept between 

23-24.5°C and salinity at 33-36 ppt.  

In October 2007, at an age of 3 months and a size of 5-7 mm, the scallop population was 

divided in two groups. One group of approximately 10 000 scallops was transported into 

the field whereas the equivalent number of scallops remained for 3 weeks in the hatchery 
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being transported to the laboratory of mollusk ecophysiology within the CIBNOR for 

laboratory treatments (temperature and predation). 

 

2.2.  Maintenance in the field  

The approx. 10 000 scallops were transported to Rancho Bueno estuary in October 2007 

(Figure 2.4). The field site chosen in the present study represents a beneficial environment 

for A. ventricosus with high chlorophyll concentrations and the optimal temperature 

window for growth (Acosta-Ruiz & Lara-Lara 1998, Sicard-Gonzàlez et al. 2006). Scallops 

were kept in fine mesh bags (2mm) within 20 Nestier trays (55 x 55 x 8 cm) suspended in a 

long-line system for 2 months until reaching an average size of 24 mm (December 2007) 

(Figure 2.5A and C). Subsequently, animals were kept without bags in the trays (Figure 

2.5B and C). The initial stocking density was set at 500 animals/tray (equivalent to 1700 

animals/m2) for optimal growth (Maeda-Martínez et al. 1997) and adjusted to 150, 90 and 

60 animals/tray (495, 297 and 198 animals/m2) after 187, 337 and 480 days (February, July 

and December 2008) in order to keep densities optimal for growth. Every month, dead 

animals were removed and nestier trays were changed to allow proper water and nutrients 

flow through the trays. The scallops were maintained in the field within the nestier trays 

until the end of August 2009 when scallops reached the 2nd year of life. 
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Figure 2.4: Map showing the experimental site in the field (Rancho Bueno). The Rancho Bueno 
estuary was chosen not only because it represents an optimal site for scallops´ growth, but also 
because is better protected from hurricanes compared the open sea. Map created with Ocean Data 
View (http://odv.awi.de 2011). 
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   A)                                                                       B)     

    

                                       C) 

 

Figure 2.5: (A) juvenile scallops kept in fine mesh bags within nestier trays until reaching an age of 
5 months and a size of ~24 mm shell height, and (B) adult scallops maintained in nestier trays until 
reaching an age of 2 years and a size of ~ 70 mm shell height. (C) Nestier trays suspended in a long 
line during 2 years. 
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2.3.  Maintenance in the laboratory  

2.3.1. Scallop maintenance 

The laboratory study started in November 2007. Scallops (7-9 mm shell height) were kept 

in a flow-through system of twelve aquaria (70 x 60 x 16 cm) with a constant water flow of 

210 L day-1, using ~ 630 scallops per aquarium (Figure 2.6). Initial stocking density was ~ 

1500 animals/m2 in order to keep similar initial densities as in the field. Incoming sea water 

was filtered over a sand filter (Jacuzzi 225 L, Little Rock AR USA) and a 1 µm gaft filter. 

The scallops were fed ad libitum throughout the experiment using a 1:1 mixture of 

Chaetoceros calcitrans and Isochrisis galbana delivered by an automated system 

containing a mixing tank and a turbidimeter controlled pump (Hach 1720 Loveland, USA). 

Cell concentrations were monitored using a Coulter Cell Counter (Multisizer 3, Beckham, 

Coulter, Fullerton, CA, USA). Concentrations varied between 60 x 106 and 250 x 106 

cells/L in the mixing tank. Water outflow from each aquarium was daily checked to ensure 

that scallops were fed ad libitum and a concentration of 20 x 103 and 50 x 103 cells/L was 

maintained throughout the experimental time. Salinity was kept at 33-36 ppt similar to 

values found in the field site (Sánchez-Montante et al. 2007).  
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Figure 2.6: Experimental set up in the laboratory showing the micoralgae mixing and supply tank, 
the aquaria and the turbidimter. The turbidimeter controlled the microalgae concentration in the 
supply tank. The different aquaria colors represent the different treatments.Black: simulated field 
temperature treatment (SFT, control group); red: elevated temperature treatment (SFT+5°C); pink: 
predator exposure treatment (SFT + predator) 

 

2.3.2. Temperature treatment 

Of the twelve aquaria, eight were held at simulated field temperature (SFT) and four at 5°C 

above SFT (SFT+5°C). SFT values were deduced from field measurements. For this, a 

temperature logger was attached to one of the nestier trays, which recorded water 

temperature at 60 min intervals (WTA32-5+37, Onset Computer Corp., Bourne MA, USA). 

The temperature logger were collected and replaced during field trips at monthly intervals. 

The water temperature in the SFT treatments was adjusted to monthly average field 
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temperature and controlled using aquarium heaters (Hagen Aquaclear 22952). Thus, the 

temperature in the SFT treatments represents the mean field temperature of the previous 

month. The temperature limit was set at 27 ± 1 °C in the SFT+5°C treatment to prevent 

mortalities linked to high lethal temperature. The SFT treatment was kept at 5°C below the 

SFT+5°C treatment throughout the experiment except in November 2007, May and June 

2008 where only 3-4 °C difference could be adjusted. The SFT experiment lasted from 

November 2007 to October 2008 and the SFT+5°C from November 2007 to December 

2008 (Figure 2.8).  

 

2.3.3. Predator exposure treatment 

The SFT + predator experiment started in April 2008 at a scallop age of 8 months. One blue 

crab (Callinectes sapidus) was introduced in four of the eight SFT aquaria (one crab per 

aquaria). The size of the crabs ranged between 6-9 cm carapax length. Callinectes sapidus 

is a potential predator of A. ventricosus in the fied (Ciocco and Orensanz 2001) and crabs 

induced escape responses in scallops throughout the experiment without any sign of 

acclimation. Crabs were kept in the aquaria 6 h per day for 5 days a week. The crabs´ 

pincers were held together by rubber bands to prevent them from eating scallops. We fed 

the crabs with squid every third night in a separate aquarium (Figure 2.7A, B). This 

experiment lasted from April 2008 to February 2009 (Figure 2.8).  
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 (A)                                                             (B) 

   

Figure 2.7: (A) Maintenance of crabs within a separate aquarium and (B) within experimental 
aquaria for 6 days and 5 h per day. 
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Figure 2.8: Schematic diagram of the experimental protocol and sampling periods. 
 

 

2.4.  Sampling of scallops 

At each sampling date, 20-25 scallops were collected from the field and from each 

laboratory treatments. In 8-10 individuals, whole animal parameters were determined, that 

means metabolic rates, ingestion and excretion rates as well as tissue condition indices. In 

the other 8-10 scallops, biochemical parameters in mantle, muscle and gills were 

determined. The shell height (distance from hinge to distal shell margin) was measured at 

monthly intervals in each treatment. 
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2.5.  Measurement of physiological parameters 

2.5.1. Standard metabolic rate  

Standard metabolic rate (SMR) represents the basal maintenance requirements to keep an 

organism alive (Clark and Fraser 2004). To estimate SMR we measured the metabolic rates 

of resting, unstressed individuals that are not digesting food and are at a stable temperature 

within their optimal range (Rolfe and Brown 1997). The method consists in measuring 

oxygen consumption of animals that were placed in hermetic chambers connected to a 

multi-channel flow-through system (Figure 2.9 and 2.10). Respiration rates were calculated 

from the difference in oxygen between the in- and outflowing water. Following the 

measurements, scallops were dissected and all tissues were dried in order to relate 

metabolic rate to g tissue dry weight. More details of the method for measurement of SMR 

are presented in Manuscript 1, 2, 3. 

 

Figure 2.9: Flow-through respiration system. Oxygen saturated water was pumped into 700 ml 
hermetic chambers (black arrow). Each chamber contained one scallop, or when scallops where too 
small, 3-5 scallops were introduced into one chamber. The difference between in- and outflow 
water (black and red arrow, respectively) represents the oxygen consumed by the scallops.  

Inflowing 
water 

Outflowing 
water 
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Figure 2.10: Oxygen concentration of the water was measured with an oxygen needle optode that 
was connected to the exit of outflow water. Oxygen saturated water from the inflow was injected 
with a syringe through the optode.  

 

2.5.2. Energetic balance and the scope for growth 

Metabolic rate typically increases following the ingestion of food associated with 

physiological activities linked with digestion (Jobling 1981). The total metabolic 

expenditure of these activities is determined as specific dynamic action (SDA). As SDA is 

an important component of organism energy budget, its quantification is valuable to 

determine the scope for growth (SFG). SFG is essentially an energy balance measurement 

of an individual, determined from the difference of the energy absorbed from ingested food 

and the energy expenditure via respiration and excretion. It provides an estimation of the 

production for somatic growth and is a measurement of the quantitative energy status of the 

animal (Widdows 1976, Widdows and Johnson 1988).  

optode
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The physiological rates that integrate the scope for growth, speak ingestion-, respiration- 

and excretion- rates were measured in the same animals within the multi-channel flow-

through system after measurement of SMR. For that, the inflowing water was enriched with 

microalgae during three hours. Three hours after feeding, difference in oxygen between the 

in- and outflowing water were determined again. Ingestion rates were calculated from 

differences in microalgae concentration between the in- and outflowing water. Excretion 

rate was calculated as the difference of nitrogen content in the chambers respective to a 

blank chamber.  More details of the method for measurement of SFG are presented in 

Manuscript 1. 

2.5.3. Condition indices 

The condition index of an individual can be determined by the ratio of total tissue weight 

related to shell weight (Lucas and Beninger 1985). The condition index expresses the 

“fatness” of an individual and is useful to characterize the apparent health of the individual 

(Etim 1997, Sarkis et al. 2006). In addition to the condition index, the proportion of gonad, 

muscle, gill and mantle weight in respect to the total tissue weight were calculated 

separately to determine the condition of each tissue. The gonadosomatic index indicates the 

reproductive status of an individual. Hence, a high gonadosomatic index is indicative for 

mature animals and a low index reflects spend gonads or the initiation of gametogenesis 

(Sarkis et al. 2006). As changes in muscle mass are also associated with gametogenesis, it 

is difficult to assess if changes in the gonadosomatic index reflects changes in gonad or 

muscle weight. To rectify the validity of the gonadosomatic index, gonad and muscle 

weight were also related separately to shell weight. In this case the gonadosomatic index is 

defined as gonad index (publication 1, manuscript 2 and 3). 
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2.6.  Measurement of biochemical assays  

2.6.1. Citrate synthase and Octopine dehydrogenase 

Both enzyme activities were measured in homogenates of muscle tissue at 25°C using a 

spectrophotometer. Citrate synthase (CS) catalyzes the transfer of sulfydryl groups from 

CoASH to 5´,5´-dithio-bis(2-nitro)benzoic acid (DTNB). The absorbance increase of 

DTNB was measured at 412 nm (Sidell et al. 1897).  

Octopine dehydrogenase (ODH) catalyzes the oxidation of NADH to NAD+. The decrease 

of NADH can be followed at 340 nm (Ballantayne et al. 1981). The activities of both 

enzymes were expressed in international units (µmol substrate converted to product min-1 × 

g -1 tissue wet mass). More details of the method for measurement of CS and ODH 

activities are presented in manuscript 2. 

2.6.2. Catalase and Superoxide dismutase 

Both enzyme activities were measured in homogenates of gill, mantle and muscle tissues at 

25°C using a spectrophotometer. Catalase (CAT) converts hydroperoxide to water and 

oxygen (2 H2O2      2 H2O + O2) (Aebi et al. 1984). The method consists in recording 

decrease of H2O2 at 240 nm.  

For the measurement of superoxide dismutase (SOD), the xanthine/xanthine oxidase 

(X/XO) system was used to generate O2
•- which reacts with nitroblue tetrazolium (NBT). 

The inhibition of NBT formation by superoxide dismutase can be detected at 560 nm 

(Susuki 2000). The activities of both enzymes were expressed in international units (µmol 
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substrate converted to product × g -1 tissue wet mass). More details of the method for 

measurement of CAT and SOD activities are presented in manuscript 1, 2, 3. 

2.6.3. Apoptosis 

Apoptosis intensities were determined in homogenates of gill, mantle and muscle tissues 

modified after Lui (2004). The method was assessed using a Caspase-Glo 3/7 assay kit 

(Promega, Madison USA). The assay provides a luminogenic caspase-3/7 substrate that is 

quenched by caspases in the samples´supernatant. The quenched luminogenic substance 

(amino-luciferin) is a substrate for luciferase. The resulting luminescence signal is 

proportional to the amount of caspase activity present in the supernatant. More details of 

the method for measurement of apoptosis intensities are presented in manuscript 3. 

2.6.4. Protein carbonyls and TBARS 

Protein carbonyls and TBARS (lipid peroxides) were measured in homogenates of mantle, 

muscle and gill tissues. Protein carbonyls are formed by the interactions of ROS and 

products of lipid peroxidation (aldehydes) with proteins. The carbonyl groups react with the 

carbonyl specific reagent 2,4-dinitrophenylhydrazine (DNTP). After precipitation with 

trichloroacetic acid (TCA) carbonyls can be measured spectrophotometrically at 360 nm 

(Levine et al. 1990, Stadtman and Levine 2000). Amount of protein carbonyls was assessed 

as nmol mg-1 protein. The protein content was measured in each sample using the Bradford 

method (Bradford 1976).  

Lipid peroxides are known to produce a variety of intermediate substances including 

malondialdehyde (MDA). MDA reacts with thiobarbituric acid (TBA) under acidic pH and 

elevated temperatures (90°C). Lipid peroxides were measured using the generation of 
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MDA/TBA adducts (thiobarbituric acid reactive substances, TBARS) to quantify MDA 

formation at 560 nm and were presented as nmolar equivalents g-1 fresh weight (Persky 

2000). More details of the method for measurement of protein carboyls and TBARS are 

presented in manuscript 1, 2 and 3. 

2.6.5. Lipofuscin 

Lipofuscin is an undegradable age pigment with autofluorescence. Lipofuscin can be 

extracted in a hydrophobic chloroform-methanol solution following extraction method 

modified after Vernet et al. (1988). The fluorescence intensity of each sample was 

determined at an emission maximum of 536 nm for gills, 434 for mantle and 431 for 

muscle (Vernet et al. 1988). Lipofuscin concentrations were expressed as relative 

fluorescent intensities (RFI). More details of the method for measurement of lipofuscin 

concentrations are presented in manuscript 3. 
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3.1.  Publicaton 1: The influence of temperature and presence of 

predators on growth, survival and energy allocation for 

reproduction in the Catarina scallop Argopecten ventricosus 

Citlali Guerra, Alfonso N. Maeda-Martínez, Alfredo Hernandez-Llamas, Maria T. Sicard-

González, Stefan Koenigstein, Doris Abele, Eva E. R. Philipp 

 

Published in Aquaculture Research doi:10.1111/j.1365-2109.2011.02885.x 

 

 

ABSTRACT 

Environmental factors are known to modify the life history of marine ectotherms. In a 16 

month laboratory experiment we investigated the influence of temperature and presence of 

predators on life history parameters including shell growth, survival and the energy 

investment in reproduction and body mass, of the short-lived (~2 years) scallop Argopecten 

ventricosus. In parallel Argopecten ventricosus was maintained in the field at the Pacific 

coast of Baja California, México to compare growth, survival and reproductive effort under 

natural conditions. For the laboratory treatments, scallops were reared at simulated field 

temperatures (SFT), 5°C above SFT and in the presence of predators. Elevated water 

temperatures caused higher growth and gonad production although at the cost of increased 

mortality. Presence of predators induced energy allocation to muscle rather than gonad 

growth, deferred spawning and extended survival. Field scallops exhibited higher growth, 

higher reproductive investment and were able to reproduce twice, whereas all laboratory 
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scallops died after the first spawning. The natural variability of environmental parameters 

such as food and temperature may thus support optimal growth in the field and, when 

animals are protected from predators, reproduction in the second year of life.  

 

Keywords:  Argopecten ventricosus, temperature, predation, energy allocation 

 

INTRODUCTION 

Bivalves offer a rich diversity of lifestyles and adaptations to environmental conditions and 

are ideal model organisms to study the influence of intrinsic and extrinsic variables on life-

history parameters such as growth, reproduction, fitness and senescence (Abele et al. 2009; 

Philipp and Abele 2010). The short lifespan of 2 years (Keen 1971) and the long-standing 

use of the Catarina scallop (Argopecten ventricosus) in aquaculture (Félix-Pico 1993; 

Maeda-Martínez et al. 1997; Sicard-González et al. 1999; Steller and Cáceres-Martínez 

2009) render this species an ideal model to investigate the influence of environmental 

factors on life history parameters in laboratory experiments covering the species lifespan.  

Differences in food levels and water temperatures have been suggested to cause differential 

maturity, growth and survival of A. ventricosus populations when cultivated at different 

sites on the coast of the Baja California Peninsula, México (Cruz et al. 1998; 2000). 

Villalaz (1994) found that gametogenesis in A. ventricosus maintained in controlled 

laboratory conditions occurs primarily at low phytoplankton densities, whereas high 

phytoplankton concentrations increased muscle growth. However, the author did not 

observe a relationship between reproductive condition and water temperature. 
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The presence of predators can also influence growth, reproduction and physiological 

performance of a species. Anti-predator responses, including changes of shell 

morphometrics (length and width) and thickening of different shell sections, such as the 

umbo or the lid, are observed when exposing bivalves or gastropods to waterborne predator 

cues or caged predators (Leonard et al. 1999; Delgado et al. 2002; Cheung et al. 2004). 

Lafrance et al (2003) observed wild scallops (Placopecten magellanicus) to have stronger 

shells and perform a more intense escape response compared to cultured individuals, which 

they attributed to the presence of starfish in the natural environment. If the energy budget 

does not suffice for the mechanical and physiological arms race with the predator, 

reproduction can be altered. Hoverman et al. (2005) showed that the occurrence of 

predators deferred reproduction and accelerated growth of the freshwater snail Helisoma 

trivolvis.  

Although many studies have shown the effect of one or more environmental factors on 

physiological parameters in laboratory experiments, most investigations are limited to short 

periods of time. These studies miss the influence of environmental factors over longer time 

periods and through different ontogenetic stages. Our study presents a long-term 

investigation of the effects of elevated temperature and the presence of predators on growth 

and survival rates, and on the alternating energy investment into reproduction and body 

mass over the lifetime of Catarina scallops. For a better understanding of the natural 

conditions, scallops produced in the same cohort were reared in the field and investigated in 

parallel to the laboratory experiment. 
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MATERIAL AND METHODS 

Brood stock and larvae culture 

Sixty mature adult A. ventricosus were purchased from local fishermen in August 2007 in 

Bahía Magdalena. Animals were transported as described by Maeda-Martinez et al. (2000) 

to the hatchery station of CIBNOR. Spawning of mature scallops was induced by the 

thermal shock method following Uriate et al. (2001). Larvae settlement in the tanks 

occurred naturally. Larvae were maintained at 25 ± 1°C in 1500 L tanks and fed a 1:1 ratio 

of Isochrisis galbana and Pavlova lutheri during their first 13 days. On day 14, the diatoms 

Chaetoceros calcitrans and Chaetoceros gracilis were added to the food mix to an end 

concentration of 3:1:2:1, respectively. After 47 days, the scallops were transferred to tanks 

with a continuous upwelling flow of 5000 L • d-1 using the same microalgae species for 

feeding. In October 2007, the animals reached the harvest size of 5-7 mm shell height 

(Maeda-Martínez 1997). At the time, the spat was divided into 2 groups one of which was 

returned to the field while the other group was kept for laboratory treatments (temperature 

and predation).  

 

Field study 

Approximately 10000 scallops of 5-7 mm shell height were transported to Rancho Bueno 

estuary, in the vicinity of Bahía Magdalena in October 2007 (geographical position: N 

24´19´ 17, 3´´ W 111´ 25´ 37, 3´´). The field site chosen in the present study represents a 

beneficial environment for A. ventricosus with high chlorophyll concentrations and the 

optimal temperature window for growth (Acosta-Ruiz & Lara-Lara 1998, Sicard-Gonzàlez 
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et al. 2006). Scallops were kept in fine mesh bags (2mm) fitting within 20 Nestier trays (55 

x 55 x 8 cm) suspended in a long-line system for 2 months until reaching an average size of 

24 mm (December 2007). Subsequently, animals were kept without bags in the trays. Initial 

stocking density was set at 500 animals/tray (equivalent to 1700 animals/m2) for optimal 

growth (Maeda-Martínez et al. 1997) and adjusted to 150, 90 and 60 animals/tray (495, 297 

and 198 animals/m2) after 187, 337 and 480 days (February, July and December 2008) in 

order to keep densities optimal for growth. 

 

Laboratory study 

The laboratory study started in November 2007. Scallops of 7-9 mm shell height were kept 

in a flow-through system of twelve aquaria (70 x 60 x 16 cm) with a constant water flow of 

210 L • day-1, using ~ 630 scallops per aquarium. Initial stocking density was ~ 1500 

animals/m2 in order to keep similar initial densities as in the field. No density adjustments 

were carried out in the laboratory, as densities were always lower than in the field. 

Incoming sea water was filtered over a sand filter (Jacuzzi 225 L, Little Rock AR USA) 

and a 1 µm gaft filter. Of the twelve aquaria, eight were held at simulated field temperature 

(SFT) and four at 5°C above SFT (SFT+5°C). SFT values were deduced from field 

measurements. A temperature logger recorded water temperature at 60 min intervals 

(WTA32-5+37, Onset Computer Corp., Bourne MA, USA) attached to one of the nestier 

trays. The temperature logger was collected and replaced during field trips at monthly 

intervals and the water temperature in the SFT treatments adjusted to monthly average field 

temperature and controlled using aquarium heaters (Hagen Aquaclear 22952). Thus, the 
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temperature in the SFT treatments represents the mean field temperature of the previous 

month (Fig. 1).  
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Fig. 1: Mean values of temperatures during the experimental period. The monthly average FT was 
simulated in the laboratory 1 months later (see “Material and methods”). SFT, simulated field 
temperatures; SFT+5°C, 5°C above SFT; SFT+predator, SFT with presence of predator and FT, 
field temperatures. 
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Fig. 2: Example of daily temperature fluctuations in the laboratory (black line) and in the field 
(grey line) during two weeks in June 08. Each vertical line represents 1day. 
 
 
Temperatures in the laboratory fluctuated daily by about 3°C with one peak day-1. In the 

field, two distinct peaks within a day were recorded and a wider thermal window of 

oscillation of about 5°C (Fig. 2) was observed. In fall (Aug 2008 – Oct 2008), FTs ranged 

close to species specific lethal temperature of 29°C (Sicard-Gonzáles et al. 1999). During 

this period, the temperature limit in the laboratory was set at 27 ± 1 °C in the SFT+5°C 

treatment to limit mortalities linked to high temperature exposure. The SFT treatment was 

kept at 5°C below the SFT+5°C treatment throughout the experiment except in November 

2007, May and June 2008 where only 3-4 °C difference could be adjusted (Fig. 1).  

The SFT + predator experiment started in April 2008. Predators were introduced in four 

SFT aquaria (one crab aquarium-1). Crabs were kept in the aquaria 6 h day-1 for 5 days 

week-1. The crabs´ pincers were held together by rubber bands to prevent them from eating 

scallops. Crabs were fed squid every third night in a separate aquarium.  
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The scallops were fed ad libitum throughout the experiment using a 1:1 mixture of 

Chaetoceros calcitrans and Isochrisis galbana delivered by an automated system 

containing a mixing tank and a turbidimeter controlled pump (Hach 1720 Loveland, USA). 

Cell concentrations were monitored using a Coulter Cell Counter (Multisizer 3, Beckham, 

Coulter, Fullerton, CA, USA). Concentration varied between 60000 and 250000 cells mL-1 

in the mixing tank and between 20 and 50 cells mL-1 in the outflow water of each aquarium 

throughout the experimental time ensuring that scallops were fed at libitum. Salinity was 

kept at 33-36 ppt similar to values found in the field site (Sánchez-Montante et al. 2007). 

 

Data collection and analysis  

Shell height growth 

Shell height (distance from hinge to distal shell margin) was measured monthly using 

calipers. For SFT scallops, measurements were undertaken from October 2007 to October 

2008, for SFT+5°C from November 2007 to October 2008, for SFT + predator from April 

2008 to October 2008 and for the Field scallops (FT) from October 2007 to October 2008. 

Scallops were randomly selected at each sampling date: Field: 2 animals Nestier tray-1 (a 

total of 40 animals); Laboratory: 10 animals aquarium-1 (a total of 40 animals). The growth 

of scallops was subsequently calculated using the model proposed by Ratkowsky (1986) 

which is an alternate parameterization of the von Bertalanffy growth model with close-to 

linear behavior. This model was shown to be more reliable than the conventional von 

Bertalanffy equation, because it allows nonlinear regressions to converge easily and to 
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conduct tests for parameter invariance more precisely (Hernandez-Llamas & Ratkowski 

2004): 

Ht= hi + (hf – hi) (1-k m-1) / (1-k n-1)      (1) 

where Ht  is the calculated height of scallops at time t, hi the initial height, hf the final 

height, k the growth coefficient, n the number of data points, and m the time modified 

according to: 

m = 1 + (n-1) (t-ti) / (tf - ti)        (2) 

where ti is the initial time and tf the final time.  

 

Shell weight to shell height ratio 

In order to investigate whether the scallops develop heavier shells under predation pressure, 

shells of the SFT and SFT + predator group were used to determine the shell weight/shell 

height ratio.  

 

Survival 

Animal survival in the laboratory was measured by monthly counts of dead animals in each 

experimental aquarium over scallop lifetime: SFT from December 2007 to October 2008 

(150-410 days of age), SFT+5°C from December 2007 to December 2008 (150-480 days of 

age), and SFT + predator from May 2008 to February 2009 (280-540 days of age). Survival 

in the field was calculated in February, July and December 2008 when scallop´s number 

had to be adjusted in the nestier trays (see “Field Study”).  
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Tissue indices  

For gonadosomatic, muscle, mantle, gill and condition indices scallops were sacrificed and 

tissue fresh weight, total fresh weight, as well as shell weight was determined using a 

digital balance (Precisa XT 320M, Precisa Instruments AG, Dietikon, Switzerland). The 

indices were calculated as follows: 

Tissue Index = (weight of component tissue / total tissue weight) * 100 

Condition Index = (total tissue weight / shell weight) * 100 

 

Statistical analysis 

Differences in shell growth parameters between the different treatments were calculated 

with nonlinear regression analysis using GraphPad Prism (version 5.0 for Windows, 

GraphPad Software Inc., San Diego California USA). Significant differences indicate 

differences in growth among treatments using the least restrictive invariance test, analyzing 

the parameters hi , initial height; hf , final height and k, growth coefficient acting together 

(for references of the method see also: Hernandez-Llamas et al (1995), Osuna-García et al 

(2008)).  

Differences in survival between laboratory treatments were assessed with the Kaplan-Meier 

method. Kaplan-Meier survival curves were constructed using the known birth and death 

dates of each individual. This method allows comparison of two or more survival curves 

over time and the calculations take into account censored observations due to samplings for 

analysis. The log rank test (log), as implemented in the program PASW Statistics 18 
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version 18.0.0 (SPSS Inc., Chicago, IL, USA) was used (for references of the method see 

also Motulsky, 1995). One-way ANOVA and Tukey´s post hoc test (unequal sample size) 

or student- t test was used for analysis of indices after testing for normality with 

Kolmogorov-Smirnov-test (GraphPad Prism 5.0 software). Index values were arcsin 

transformed and are presented as back-transformed means.  

 

RESULTS 

Shell growth 

Treatment affected final shell height (hf) (Fig. 3, Table 1). Applying Eq. (1) to growth data 

yielded significant differences between SFT and SFT+5°C as well as between SFT and FT 

treatments (p < 0.0001, Table 1). Exposure to predators did not influence shell growth but 

resulted in significantly heavier shells in October 2008 after exposure to predators for 6 

months (Table 2). 

 

Survival 

Using the Kaplan-Meier model, lower survival rates for the SFT+5°C treatment  compared 

to SFT animals were detected (log, 2
df=1 71.247, P < 0.001) (Fig. 4a). Around October 

2008 (410 days of age), almost all scallops in the SFT and SFT+5°C laboratory treatments 

died after a massive spawning event. The remaining scallops in the SFT+5°C treatment 

lived for another 2 months and the last individuals (2.6 % of initial population) were 

sacrificed in December 2008 for analysis (480 days of age). Individuals in the SFT 
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treatment had a lower survival rate compared to individuals of the SFT + predator treatment 

(log, 2
df=1  30.193, P < 0.001, Fig. 4b). The difference was due to the high mortality 

following the spawning in October 2008 in the SFT treatment. Survival rates before the 

spawning event did not differ between both treatments (χ2 
df = 1 ≥ 0.4 p = 0.5). The last 

scallops of the predator-exposed group were sacrificed in February 2009 (540 days of age). 

We could not compare survival rates of SFT vs FT with the Kaplan-Meyer model because 

of the small number of samplings in the FT treatment. However, in December 2008, when 

all SFT animals were already dead, 10% of the initial population in the field was still alive 

and field scallops lived up to August 2009.   
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Fig. 3:.Shell growth (in height) of A. ventricosus in different treatments.Values are means ± S.E.M. 
N = 40 for each treatment. Fitted growth curves correspond to Eq (1). SFT, simulated field 
temperatures; SFT+5°C, 5°C above SFT; SFT + predator, SFT with presence of predator and FT, 
field.  
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Table 1: Growth parameters of A. ventricosus using Eq. 1.  
 
Treatment hi hf k P Time period 

      

SFT 6.9 ± 1.5 31.9 ± 4 0.93 ± 0.01 < 0.0001 October 07-
October 08 

 
FT 6.9 ± 1.5 51.2 ± 4.4 0.89 ± 0.01  

      

SFT  8.5 ± 1.4 31.9 ± 4 0.98 ± 0.03 < 0.0001 November 07-
October 08 

 
SFT+5°C 8.5 ± 1.4 37.2 ± 1.7 1.0 ± 0.02  

      

SFT  18.3 ± 1.6 31.9 ± 4 0.97 ± 0.1 0.672 April 08-
October 08 

 
SFT+ 
predator 

17.9 ± 2 32.5 ± 2 0.92 ± 0.07  

Significant P-values indicate differences in growth among treatments using the least restrictive 
invariance test (i.e. testing the parameters acting together). N = 40 for each treatment. SFT, 
simulated field temperatures; SFT+5°C, 5°C above SFT; SFT + predator ,SFT with presence of 
predator and FT, field; hi,  initial height (mm); hf , final height (mm); k, growth coefficient 
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              a 

b  

 
 
Fig. 4: Survival analysis using the Kaplan-Meier method and the log-rank test for comparison of 
curves. a) SFT (solid line) vs. SFT+5°C (dashed line) (initial N = ~635). b) SFT (solid line) vs SFT 
+ predator (dashed line) (initial N = ~ 250). SFT, simulated field temperatures; SFT+5°C, SFT 5°C 
above SFT; SFT + predator, SFT with presence of predator.  
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Table 2: Shell weight to shell height ratio of A. ventricosus in different treatments 
 
Treatment April 2008 August 2008 October 2008 

 
SFT 
 

0.144 ± 0.008A  0.14 ± 0.009 0.13 ± 0.012  

SFT + predator  
 

0.15.± 0.009A 0.16 ± 0.01  0.2 ± 0.015*  

* Indicate significant differences between treatments in the respective month (t-test, P < 0.05). 
A Introduction of predators. Values are means ± S.E.M (N = 10-16).  
SFT, simulated field temperature; SFT + predator, SFT with presence of predator. 
 

Tissue indices 

Tissue indices were determined to evaluate the alternating energy investment into 

reproduction [gonadosomatic index (GSI)] and other body mass components (muscle, 

mantle and gill) over time. GSI differed significantly between field-reared and laboratory 

SFT animals (Fig. 5a). The highest GSI within the field treatment was measured in August 

2008 (ANOVA, p < 0.0001) after mean temperatures rose from 22°C to 27°C in only one 

month. The scallops spawned thereafter which is indicated by the decrease in GSI. In the 

SFT group, the highest GSI was observed two months later in October 2008 (ANOVA, p = 

0.0026) simultaneously with the SFT+5°C scallops (ANOVA, p < 0.0001). After reaching 

the maximum gonad index, SFT and SFT+5°C scallops spawned, and almost all animals 

died. Peak gonad indices in FT, SFT+5°C and SFT were 12.57 ± 2.4%, 10.15 ± 1.5% and 

7.09 ± 1.31%, respectively, and significantly higher for FT and SFT+5°C individuals 

compared to SFT scallops (FT vs. SFT: t test, p < 0.001; SFT vs. SFT+5°C: t test, p = 

0.006). In the SFT + predator group, the maximal gonad index was measured in December 

2008 (5.83 ± 1.2%) (ANOVA, p < 0.0001) and was significantly lower than the maximal  
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Fig.5: Gonadosomatic a) Muscle b) Condition c) Mantel d) and Gills e) indices of A. ventricosus in 
the different treatments. Values are means ± S.E.M. (N = 8). Details of statistical differences are 
given in the text. SFT, simulated field temperatures; SFT+5°C, 5°C above SFT; SFT + predator, 
SFT in presence of predator and FT, field. 
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GSI in the SFT group (SFT vs SFT + predator: t test, p = 0.02). Scallops spawned thereafter 

(personal observation) which caused a decrease in GSI. 

Muscle and condition indices followed an inverse pattern to the GSI in all treatments (Fig. 

5b and c). Peak muscle and condition indices were higher in FT individuals compared to 

SFT scallops (muscle index: t test, p < 0.0001; condition index: t test, p < 0.0001) and 

occurred in June 2008 in FT and in August 2008 in SFT scallops. In the SFT + predator 

group, the highest muscle index was observed in August 2008 and condition index in 

October 2008 and both were higher than peak indices in the SFT group (SFT vs SFT + 

predator: muscle index: t test, p < 0.0001, condition index: t test, p = 0.005). No differences 

in peak muscle index between SFT and SFT+ 5°C were found (t test, p = 0.2) but the latter 

group displayed higher maximal condition index (t test, p < 0.0001) in August 2008. 

In the SFT+5°C group, the mantle index increased significantly between April and August 

2008 and decreased in October 2008 (Fig. 6 ANOVA, p <0.0001). The mantle index did 

not vary with time in SFT, SFT + predator and FT group (SFT: ANOVA, p = 0.22; SFT + 

predator: ANOVA, p = 0.09; FT: ANOVA, p = 0.44). This index was significantly higher 

for SFT+5°C and the SFT + predator individuals compared to SFT scallops in August and 

October 2008 (SFT+5°C vs SFT August 2008: t test, p < 0.0001; October 2008: p = 0.0036; 

SFT vs SFT + predator August 2008: t test, p = 0.01; October 2008: p = 0.003). Field 

scallops tented to have lowest mantle indices compare to SFT, but only significantly 

different in August 2008 (Fig. 5d).  
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Differences in gill index were significant when comparing SFT and SFT+5°C scallops in 

August and October 2008 (t test in August: t test p = 0.001; October: t test p = 0.0045) and 

between SFT and FT in April and August 2008 (t test, p < 0.0001, Fig. 5e). 

 

DISCUSSION 

Growth and survival 

In this long-term experiment, we observed increased shell growth (height) in scallops 

exposed 11 months to 5°C elevated temperatures (SFT+5°C: 22.1°C – 27.5°C) compared to 

scallops grown at simulated field temperatures (SFT: 17.2°C - 23.0°C). This contrasts 

results obtained by Sicard et al. (1999), who observed decreased growth in juveniles from 

the same population acclimated for 55 days to higher temperatures (25°C and 28°C) 

compared to a control group maintained at lower temperature (19°C and 22°C). This 

discrepancy arises from comparing short-term with long-term investigations such as the 

present study, in which higher growth for SFT+5°C scallops occurred only after 7 months 

of exposure (from June 2008 on). We propose that the higher mortality in the SFT+5°C 

group from April 2008 on (250 days of age) possibly selected for scallops of better 

physiological condition and stronger growth in this later period of the long-term 

experiment.  

Within the laboratory treatments, we observed an increase in condition index in SFT and 

SFT+5°C between April and August 2008. Thus, scallops in both laboratory treatments 

gained in tissue weight relative to shell weight indicating good general growth conditions. 

However, this index was higher in survivals of the SFT+5°C scallops. Higher tissue weight 
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gain was due to higher mantle and gill growth, while muscle and gonad grew less. Higher 

mantle and gill indices in the SFT+5°C group in August 2008 may afford better oxygen 

uptake (gill and mantle) and food absorption (gill) at the higher temperature, where oxygen 

solubility is decreased and scallop metabolism is higher. Indeed, food absorption rates were 

higher in SFT+5°C animals in April and August 2008 (data not shown).  

The higher condition index in field scallops before maturation, the strikingly higher shell 

growth over the entire study period, and longer survival compared to laboratory SFT 

animals implies that controlled conditions (e.g. temperature control and normalized 

microalgal mixture) are not optimal to sustain physiological status. Sicard González (2006) 

found that oscillating night and day temperatures led to faster growth of the scallop 

Nodipecten subnodosus, and that individuals exposed to thermal fluctuations lived longer in 

spite of earlier onset of reproduction when compared to animals maintained permanently at 

an experimentally determined optimum temperature. In our study, the influence of the tides 

in the field resulted in more pronounced thermal fluctuations compared to the day and night 

oscillations in the laboratory (Fig. 2). In addition, food quality and composition at the 

scallop experimental field site (Rancho Bueno in Bahía Magdalena) are more variable in 

algal species composition (Gárate-Lizárraga et al 2006) compared to the uniform control 

feeding regime in the laboratory. Under field conditions, scallops preferentially allocated 

energy into muscle and gonad rather than in mantle and gill growth compared SFT and 

SFT+5°C scallops. This differential energy investment into tissues in field and laboratory 

scallops may have important implications for growth, reproduction and survival. 

Apparently, ad libitum feeding with a standardized plankton mixture does not present the 

same food quality as the natural algal community of the habitat and indicates variability and 
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diversity to be more important for the scallops' physiological conditions than the food 

quantity.  

Scallops reared in the presence of predators invested significantly more energy into muscle 

than gonad growth (Fig. 5a and b) and developed heavier shells (Table2). Similarly, blue 

mussels, Mytilus edulis, develop stronger byssal attachments, thicker shells and larger 

adductor muscles in the presence of starfish and crab predator signals (Reimer and 

Tedengren 1996; Reimer and Harms-Ringdahl 2001).Thus, predator exposed animals 

appear to invest more energy into defensive mechanisms, which may delay reproduction 

 

Reproduction  

A. ventricosus grown in the field as well as in all laboratory treatments displayed a 

conservative gametogenic cycle, meaning that gametogenesis is fueled by energy stored in 

tissues, mainly the adductor muscle (Luna-Gonzalez et al. 2000). Dependence of the gonad 

energy allocation on muscle mass was confirmed even for the older field animals and 

corroborates earlier studies of A. ventricosus from different sites of Baja California Sur 

(Felix-Pico 1993). Epp et al. (1988) suggested that mantle tissue may also play a role as 

energy storage site for gonad development, and mantle mass declines as gonads mature. We 

observed a slight decrease in mantle index in mature scallops in all treatments which was, 

however, only significant in SFT+5°C scallops.  

Field animals reached maturation in August 2008 concomitantly with a pronounced 

increase in temperature by 5°C between July and August 2008. In marine poïkilotherm 

species, temperature plays an important role through modulation of most physiological 
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processes, including reproduction (Clarke 1987; Lubet 1983; Jalabert 2005). In Bahía 

Magdalena, A. ventricosus is known to reproduce throughout the year with two main 

spawning peaks in March-April and August-September when water temperatures are 19-

23°C and 27-28°C, respectively (Felix-Pico 1993). However, in a laboratory study, Villalaz 

et al. (1994) found no evidence for a direct effect of water temperature on scallop 

reproductive condition. Instead, temperature, together with food abundance as a second 

important parameter, modulates gonad development in mature animals. The authors 

suggested that temperature could be important as both, initiator of gametogenesis and as a 

spawning cue. In the laboratory, the delay in maturation in SFT and SFT+5°C could be 

linked to the more modest increase in temperature by 2°C between July and October 2008, 

and could further reflect the delay in water temperature change in the laboratory, which was 

lagged by 1 month compared with FT. Despites higher investments into reproduction of 

field compared to SFT scallops, (shown by the higher GSI) scallops in the field survived 

and reproduced again in the second year. In contrast, the SFT and SFT+5°C animals 

reproduced virtually to death in October 2008, when almost all individuals died after the 

first spawning.  

Exposure to predators under laboratory conditions delayed maturation for 2 months. The 

effect was not related to temperature, which was the same in the SFT as in the SFT + 

predator treatment. Scallops lived longer but at the costs of a decrease in reproductive 

output, deduced from a lower GSI compared to scallops reared without predators. This 

confirms that predators can modulate prey life history traits such as age and size at 

maturation, reproductive output and mean lifespan (Abrams 1993, Abrams & Rowe 1996, 

Stearns 2000, Beckerman et al. 2007). The optimal investment into life history traits will 
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depend on the environmental conditions that organisms experience during lifetime (Alonso-

Alvarez 2006). When A. ventricosus scallops are sufficiently protected from predators, and 

when food and temperature conditions are favourable, investment into growth but also into 

reproduction is possible. In the present study, field animals were protected in nestier trays 

against direct predator attack and had optimal and diverse feeding conditions. All 

parameters together apparently afford higher growth and repeated reproduction in the field 

group compared to all laboratory treatments. The results corroborate previous studies on 

energy allocation in Placopecten magellanicus (MacDonald and Bayne, 1993) and the 

freshwater clam (Anodonta piscinalis) (Jokela and Mutikainen, 1995). The authors suggest 

that under favourable conditions, animals invest energy into reproduction without cutting 

on growth or maintenance. However, under energy limited conditions, energy investments 

is prioritized for growth and maintenance (Placopecten magellanicus) or for reproduction 

(Anodonta piscinalis) depending on the species. Our results suggest that under limited 

conditions such as in the laboratory, and in presence of a predator, A. ventricosus prioritizes 

energy allocation into muscle growth at the cost of reproduction.  

 

CONCLUSIONS 

Environmental factors shape life-history parameters in scallops. Animals experimentally 

exposed to predators allocate energy to muscle growth and protract spawning. As spawning 

means a major energetic drainage, late spawning simultaneously extends survival compared 

to animals kept without predators. In contrast, higher temperatures induce higher growth 

and enhance investment into gonad production but at the costs of population survival. 
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Further, standardized conditions, such as ad libitum feeding with even a mixed plankton 

culture, cannot appropriately substitute for the natural food quality in the field, which 

apparently reduced the physiological fitness of artificially fed animals held under 

“optimized” laboratory conditions. Thus for optimal scallop culture with high market yield 

(high muscle index) rearing with fluctuating environmental conditions as well as predators 

is recommended.  
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4.1.  Manuscript 1: The impact of long-term exposure to elevated 

temperatures on oxidative stress and scope for growth in the 

Catarina scallop Argopecten ventricosus 

Citlali Guerra, Tania Zenteno-Savín, Alfonso N. Maeda-Martínez, Doris Abele,  

Eva E.R.Philipp  

 

 

ABSTRACT 

In ectothermal animals, temperature has a direct influence on physiological functions. An 

increase in temperature within species tolerance limits can enhance metabolic rates and 

influence individual energetic balance (scope for growth). At a cellular level, the increased 

metabolic rates can lead to elevated production of reactive oxygen species accompanied by 

somatic damage if compensatory mechanisms are not following up. In the present study we 

investigated changes in the energy available for growth (scope for growth) as well as tissue 

specific responses in antioxidant defense and oxidative damage within a population of the 

pacific scallop Argopecten ventricosus from Baja California Sur México exposed to long-

term (5 and 9 months) elevated but sublethal temperatures. Scallops held at 5°C above 

simulated field temperature (SFT+5°C) exhibited higher respiration and higher absorption 

rates after 5 and 9 months of exposure whereas scope for growth was higher only after 9 

months exposure. Oxidative damage (lipid peroxidation = TBARS and protein carbonyls) 

showed controversy results being high after 5 months but lower after 9 months exposure in 
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mantle and gills. The high levels of damage after 5 months exposure occurred despite the 

elevated antioxidant capacities (catalase; CAT and superoxide dismutase; SOD) indicating 

higher oxidative stress in the higher temperature group and that capacities were not 

sufficient to prevent accumulation of oxidative damage. We suggest that individual A. 

ventricosus posses limited capacity for acclimation to constant elevated temperature. 

Temperature tolerance may however be achieved by higher mortality rates in the SFT+5°C 

group, which on the long run, (after 9 months exposure to elevated temperatures), might 

select for the observed “better quality individuals” that exhibit higher scope for growth and 

lower levels of oxidative stress. 

Keywords: Argopecten ventricosus, oxidative stress, scope for growth, temperature  

 

INTRODUCTION 

In marine ectotherms, the ambient temperature directly influences the body temperature and 

thus affects biochemical, cellular and physiological reaction rates (Hochachka and Somero 

2002).  

Physiological traits such as ingestion-, food absorption-, respiration- and excretion rate may 

be affected by an overall increase in biochemical and physiological processes, which 

represents a typical response to elevated temperatures in bivalves (Tremblay et al. 1998 

a,d). The integrated analysis of these physiological traits can provide insights into the 

growth efficiency (scope for growth) and how scope for growth may be disrupted by 

environmental stress (Widdows and Johnson 1988) such as an increase in environmental 

temperature. At the cellular level, an increase in metabolic rates can be accompanied by an 
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enhanced accumulation of cellular oxidative damage. Such damage can occur when 

reactive oxygen species (ROS) generated by mitochondria during aerobic metabolism 

oxidise essential cell constituents including membrane lipids, proteins and DNA and may 

compromise cellular homeostasis and in extreme cases, survival of the individual. In order 

to counterbalance ROS production and minimize tissue damage, aerobic cells are endowed 

with an array of protection and repair mechanisms. Some of these protective mechanisms 

are antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), which 

neutralize ROS into inactive molecules such water and oxygen (Kregel and Zhang 2006) 

before they cause damage. When the balance between ROS production and the antioxidant 

capacity is lost, oxidative damage occurs and damaged products accumulate (Storey 1996; 

Abele et al. 1998). The accumulation of oxidative by-products, such as lipofuscin and lipid 

peroxides, after exposure to temperatures above ambient temperature in limpets, 

protobranch bivalves and mussels illustrates how warming may exacerbate cellular 

oxidative stress in bivalves (Abele 1998 2001; 2002).  

In the scallop Argopecten ventricosus, physiological parameters such as ingestion rates and 

growth (shell height increment) appeared to be optimal at 19-22°C but diminished when 

scallops are maintained 55 days to higher temperatures (25 and 28°) (Sicard-González et al. 

1999). This indicates decrease in physiological homeostasis during exposure to higher 

temperatures. However, it is still not known how scallops deal with oxidative stress. In the 

present study, we investigated whether long-term exposure of scallops to constantly higher 

temperatures of 5°C above the environmental mean but within the species tolerance limits 

(< 29°), is linked to increased metabolic rates and a parallel loss in cellular homeostasis and 

induction of oxidative stress. The alternative view is that thermal tolerance varies after a 
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long-term exposure and scallops undergo acclamatory responses involving long-term 

compensatory adjustments of metabolic functions that allow them to keep their scope for 

growth and oxidative physiology independent of temperature.  

The long-standing use of the catarina scallop in aquaculture (Maeda-Martìnez et al. 2000; 

Sicard-Gonzàlez 2006) enabled us to investigate the effect of elevated temperature over a 

long time-frame within the same cohort of scallops raised in the laboratory.  

 

MATERIAL AND METHODS 

Brood stock and larvae culture 

Sixty mature adult A. ventricosus were purchased from local fishermen in August 2007 in 

Bahía Magdalena. Animals were transported as described by Maeda-Martinez et al. (2000) 

to the hatchery station of CIBNOR. Spawning of mature scallops was induced by the 

thermal shock method following Uriate et al. (2001). Larvae settlement in the tanks 

occurred naturally. Larvae were maintained at 25 ± 1°C in 1500 L tanks and fed a 1:1 ratio 

of Isochrisis galbana and Pavlova lutheri during their first 13 days. On day 14, the diatoms 

Chaetoceros calcitrans and Chaetoceros gracilis were added to the food mix to an end 

concentration of 3:1:2:1, respectively. After 47 days, the scallops were transferred to tanks 

with a continuous upwelling flow of 5000 L • d-1 using the same microalgae species for 

feeding. The juveniles were reared until they reached 5-7 mm shell height and 3 months of 

age. From November 2007 on, scallops were maintained in a flow-through system 

consisting of 8 parallel 70 L-aquaria under constant water flow of 210 L day-1. Sea water 

from the Bay of La Paz was filtered mechanically through a sand filter (Jacuzzi 225 L, 
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Little Rock AR USA) and a 1 µm gaft filter before entering the system. The animals were 

fed ad-libitum throughout the experiment using a 1:1 mixture of Chaetoceros calcitrans 

and Isochrisis galbana delivered by an automated system containing a mixing tank and a 

turbidimeter-controlled pump (Hach 1720, Loveland, CO, USA). Cell concentrations were 

monitored using an electronic cell coulter Cell Counter (Multisizer 3, Beckham, Coulter, 

Fullerton, CA, USA). Concentrations in the mixing tank varied between 60 000 and 250 

000 cells ml-1 and between 20 and 50 cells ml-1 in the outflow water of each of the 8 

aquaria throughout the experimental time, ensuring that scallops were fed ad libitum. 

Salinity was kept at 33-36 ppt., similar to values found in the field site (Sánchez-Montante 

et al. 2007). Of the 8 aquaria, 4 were held at simulated field temperature (SFT), and 4 

aquaria at 5°C above SFT (SFT+5°C) (Fig. 1). We exposed the scallops to simulated 

monthly field temperature in order to follow a natural cycle of variation that was however, 

5°C elevated compared to a control group. Field temperatures were deduced from field 

measurements in the Rancho Bueno estuary (geographical position: N 24´19´ 17, 3´´ W 

111´ 25´ 37, 3´´), located in Bahía Magdalena, Baja California Sur, Mexico where optimal 

temperatures for A. ventricosus growth occurs (Sicard-Gonzàlez et al. 1999). Water 

temperatures in the SFT setups were adjusted to the average water temperature recorded in 

the field during the previous month and the SFT+5°C setup accordingly to 5°C higher 

temperatures. Temperature in each aquaria was controlled using aquarium heaters (Hagen 

Aquaclear 22952) and recorded at 30 min intervals by temperature loggers (WTA32-5+37, 

Onset Computer Corp., Bourne MA, USA). Each aquarium contained an initial number of 

~ 630 scallops. Scallops sampling was conducted in April and August 2008 i.e. after 5 and 

9 months exposure to the respective temperature regime.  



  Manuscript 1 

75 

 

Oct 
07

Nov
 07

Dec
 07

Ja
n 0

8

Feb
 08

Mar 
08

Apr 
08

May
 08

Ju
n 0

8
Ju

l 0
8

Aug
 08

Sep
t 0

8

Oct 
08

Nov
 08

Dec
 08

18

20

22

24

26

28

30
SFT

SFT+5°C
Te

m
pe

ra
tu

re
 (C

°)

 

Fig. 1: Mean temperature pattern in the laboratory aquaria. Scallops were reared at simulated field 
temperatures in the laboratory (SFT) and 5°C above SFT (SFT+5°C). The upper temperature limit 
of A. ventricosus is 29°C (Sicard-González 2006). Grey bars mark the sampling times in April 08 
after 5 months exposure and in August 08 after 9 months exposure to the respective temperatures 
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Scope for growth 

The scope for growth (SFG) is essentially an energy balance measurement of an individual, 

determined from the difference of the energy absorbed from ingested food and the energy 

expenditure via respiration and excretion. It provides an estimation of the production for 

somatic growth and is a measurement of the quantitative energy status of the animal 

(Widdows 1976) (Widdows and Johnson 1988). 

The determination of scope for growth (SFG) was assessed after (Ivelev 1945), (Winberg 

1960) and (Warren and Davis 1967) and resumed in Sicard (2006): 

SFG = AR- (RR + ER)         

where SFG is the scope for growth, AR the absorption rate, RR the respiration rate and ER 

the excretion rate. 

The physiological rates (AR, RR, ER) are converted to energy units (Joules h-1) and 

expressed as Joules g dry weight-1 h-1. 

Previous to the measurements, all animals were kept at the respective treatment temperature 

and salinity in 70 L aquaria with filtered seawater for 2 days until defecation ceased. After 

2 days, animals were placed in 700 ml chambers connected to a multi channel flow-through 

system (60 ml min-1). Animals were allowed to acclimate in the chambers for 2 h in filtered 

seawater at the respective treatment temperature condition. Following acclimation, food 

absorption (AR), respiration (RR) and excretion rates (ER) were then determined in April 

08, and in August 08 for the calculation of scope for growth.  
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Absorption rate measurement: 

After 2 h acclimation period, filtered inflowing seawater was enriched with Isochrisis 

galbana cells to a concentration of 60.000-70.000 cells ml-1.  

The absorption rate was calculated as follows: 

AR= IR × AE 

where IR is the ingestion rate (ingested cells h-1) and AE the absorption efficiency (%). 

After 3 hours feeding, a sample of 10 ml was taken from the outflow water. Samples were 

collected from each chamber and the cells were counted using an electronic cell counter 

(Coulter Cell Counter, Multisizer 3, Beckham, Coulter, Fullerton, CA, USA). Cell 

concentrations were the mean of 3 counts. Ingestion rates per unit time was calculated 

using the following equation: 

IR= [(Cb - Ce)] × F 

where Cb is the cell concentration in blank chamber (cel ml-1), Ce the cell concentration in 

the experimental chamber (cel ml-1) and F the water flux through the chamber (ml h-1). In 

order to relate the ingestion rate to the dry tissue weight, the whole tissue of the individual 

scallops was removed at the end of the experiment and dried for 48 h at 60°C. Ingestion 

rates were expressed as ingested cells in ml g dry weight-1 h-1. Ingestion rates were 

subsequently converted to energetic units using the energetic equivalent for organic matter 

(POM) of 23500 J g-1 (Widows et al. 1979) and the weight of Isochrisis galbana 28.5 pg 

cel-1(Lora-Vilchis and Doktor 2001).  
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The absorption efficiency (AE) was measured using the ratio method of (Conover 1996) 

which represents the efficiency by which organic matter is absorbed from the ingested food. 

It assumes that an animal can absorb the organic matter but not the inorganic fraction. The 

Conover method is based on the ration of ash free dry weight: dry weight of food and 

faeces: 

AE = (F-E) / (1-E) × F         

Where F is the organic content food / dry mass food, E is organic content feces / dry mass 

feces 

The organic content of food and feces is equivalent to their ash free dry mass (AFDM). 

AFDM and dry mass of Isochrisis galbana are 24.7 and 28.5 pg cel-1  respectively and were 

obtained from Lora-Vilchis and Doctor (2001). The AFDM and dry mass of the feces was 

measured by filtering the chamber-water through pre-combusted glass fiber filters (500°C). 

Filters were washed with a 3% ammonium solution to eliminate salts and dried at 65°C for 

24 h for dry mass determination and combusted at 500°C to obtain AFDM. Since unfiltered 

microalgae and feces can be mixed in the chamber, the AFDM of algae not absorbed by 

scallops was calculated and subtracted from total feces AFDM. 

 

Respiration rate measurements 

The respiration rate was determined simultaneously to ingestion rates by calculating the 

difference in oxygen values measured between the in- and out-flowing water in the 

chambers. In April, the animals were too small to reliably measure respiration, so that 8 



  Manuscript 1 

79 

 

replicate measurements of 3-5 equally sized animals were undertaken per treatment. In 

August, physiological rates were measured individually. Care was taken to eliminate all air 

bubbles from the system prior to respiration measurements. Oxygen concentration was 

measured using fiber-optical oxygen optodes of 50 µm diameter (PreSens GmbH, 

Regensburg Germany) calibrated with air bubbled water (100 % O2 = 21 kPa) and water 

saturated with sodium sulfite to deplete oxygen (0 % O2 = 0 kPa). The oxygen consumption 

was measured over 5 min in each chamber and three replicate measurements were made per 

chamber. A blank chamber was run without animals to correct for microbial and microalgal 

respiration. 

The rate of oxygen consumption was calculated as follows: 

RR = (% O2e - % O2b) × F 

were % O2e is the percent oxygen in the experimental chamber and % O2b is the percent 

oxygen in the blank chamber and F is the water flux trough the chamber (ml h-1). Percent 

oxygen was transformed to mmoles of dissolved oxygen in seawater, using known values 

of oxygen solubility according to Benson and Krause (1984) and converted to mg O2 by a 

conversion factor of 33.2 mg mmol-1 (Brey 2001). The respiration rate was expressed as µg 

O2 g dry weight -1 h-1 and transformed to energetic units considering that 1 mg consumed 

O2 is equivalent to 14.1 Joules (Elliot and Davison 1975). 
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Excretion rate measurement 

Excretion rate was calculated as the difference of nitrogen content in the chambers 

respective to a blank chamber. Tree 2 ml samples from the outflow water of each chamber 

were taken in eppendof tubes and stored at -80°C previous to analysis. Ammonium 

concentration (mg NH4 ml-1) was estimated by the phenol hypochlorid method of 

(Solorzano 1969) adapted to microplates by Hernández-López and Vargas-Albores (2003). 

Excretion rate was measured as follows: 

ER = (ACe – ACb) × F 

where ACe is the ammonium concentration in the experimental chamber (mg NH4 ml-1) 

and ACb is the ammonium concentration in the blank chamber (mg NH4 ml-1) and F is the 

water flux trough the chamber (ml h-1). The excretion rate was determined as mg NH4  g dry 

weight-1 h-1 and transformed to energetic units considering that 1 mg NH4 is equivalent to 

7.37 (Logan and Epifanio 1978). 

 

Biochemical analysis 

At each sampling time mantle, muscle and gill of additional 8 to 10 scallops from each 

treatment were dissected, weighed and frozen by immersion in liquid nitrogen for 

biochemical analysis. Tissues were stored at – 80°C until analysis. 
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Antioxidant enzyme assays  

Activities of catalase (CAT), superoxide dismutase (SOD), were measured with 

spectrophotometric assays at 25°C in a Beckman DU 640 spectrophotometer.  

Enzyme assay conditions were as follows: 

CAT and SOD: samples were homogenized by hand with a glass homogenizer on ice in 

1:20 (w/v) in 50 mM phosphate buffer (pH 7.5) containing 1mM EDTA and 1 mM PMSF. 

Homogenates were centrifuged at 15000×g for 15 min at 4°C and the supernatant 

immediately used for CAT and SOD activity measurements. 

Catalase activity (EC 1.11.1.6) was determined after Aebi (1984) by recording the time of 

H2O2 decomposition, resulting in a decrease of absorption from 0.45 to 0.4 at 240 nm (1 

unit). Working solution (20 mM H2O2, 100 mM phosphate buffer) and sample were mixed 

in a cuvette and the change in absorbance was recorded every 15 s for 3 min. Enzymatic 

activity was expressed as units CAT g-1 fresh weight. One unit of catalase is defined as the 

amount of enzyme necessary to reduce 1 µml of H2O2 per min. Results are reported as units 

CAT g-1 fresh weight. Total SOD (EC 1.15.1.1) activity was determined by the method of 

Susuki (2000). The xanthine/xanthine oxidase (X/XO) system was used to generate O2•- 

which reacts with nitroblue tetrazolium (NBT). 1.45 ml Working sodium solution (50 mM 

sodium-carbonate buffer, 0.025 mM NBT, 1mM Xantine, 0.1 mM EDTA), 25 µl XO (0.1 

U ml-1 in 2 M ammonium sulfate) and 25 µl homogenized sample or blank were mixed in a 

cuvette and the change in absorbance at 560 nm recorded for 5 min every 30 sec. One unit 

of SOD is defined as the amount of enzyme necessary to inhibit the reduction of NBT by 

50 %. Results are presented as units SOD per g -1 fresh weight.  
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Oxidative damage measurements 

Lipid peroxides: Lipid peroxides are known to produce a variety of intermediate 

substances including malondialdehyde (MDA). MDA reacts with thiobarbituric acid (TBA) 

under acidic pH and elevated temperatures. Lipid peroxides were measured using the 

generation of MDA/TBA adducts (thiobarbituric acid reactive substances, TBARS, assay) 

to quantify MDA formation. TBARS were measured following the method of Persky et al. 

(2000). Samples were homogenized by hand in a glass homogenizer on ice in a 1:20 (w/v) 

saline solution (0.9%) at pH 7.0. 0.8 M HCl in 12.5% trichloroacetic acid (TCA) was added 

to 250 µl of homogenate prior to the addition of 1% TBA. Samples were incubated for 10 

min in a 90°C water bath, cooled to room temperature and centrifuged at 1500 × g for 10 

min at 4°C. TBARS level in each sample was measured at 535 nm. TBARS concentrations 

were derived from a standard curve and the values expressed as TBARS nmolar equivalents 

per g -1 fresh weight. 

Protein oxidation (carbonyls): The detection of protein carbonyls was carried out after 

Levine et al. (1990). Carbonyls react with the carbonyl specific reagent 2,4-

dinitrophenylhydrazine (DNTP) and, after precipitation with trichloroacetic acid (TCA), 

carbonyls can be measured spectrophotometrically. Samples were homogenized by hand in 

a glass homogenizer on ice in 5 % sulfosalisilic acid and centrifuged at 10000 × g for 15 

min at 4°C. The supernatant was discarded and the pellet incubated at room temperature for 

1 h with 500 µl 10 mM DNTP. Sample blanks contained 500 µl 2 M HCl instead of DNTP. 

During the incubation, samples were mixed every 15 min. After 1 h, 500 µl 20% TCA were 

added to samples and blanks to precipitate the protein and centrifuged at 10000 × g at 4°C 

for 5 min. The protein pellet was washed 3 times with 1 ml ethanol: ethylacetate (1:1), 
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resuspended in 1 ml 6 mM guanidine hydrochloride and incubated for 30 min at 37°C for 

15 min. The samples were centrifuged at 10000 × g at 4°C for 5 min, and the supernatants 

of samples and blanks measured in quartz cuvettes at 360 nm. The amount of carbonyls was 

estimated as the difference in absorbance between samples and blank using a molar 

extinction coefficient of carbonyls ε = 22,000 cm-1 M-1. Amount of carbonyls was assessed 

as nmol per mg-1 protein measured in the same samples using the Bradford method 

(Bradford 1976). 

 

Statistics 

The effect of tissue size on antioxidant enzyme activities, protein carbonyls and TBARS 

was tested by power regression of the respective parameter on tissue wet mass. For the 

effect of size on physiological rates, (clearance, respiration and excretion rate) whole 

animal dry weight was used. Statistical analyses were performed with GraphPad Prims 5 

Software (La Jolla, California, USA). One-way ANOVA with post-hoc test was used to test 

for differences in antioxidant enzyme activity (SOD and CAT), tissue damage (protein 

carbonyls and TBARS), between different tissues of same treatment and sampling date. 

Unpaired t test was used to indicate differences within same tissue and treatment but 

different sampling dates. Prior to any analysis, data were tested for normality and 

homogeneity of variance and if assumptions were not met, analyzed by non parametric 

ANOVA (Kruskal-Wallis) or t-test (Mann-Whitney tests).  
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RESULTS 

Scope for growth (SFG) 

The individual ingestion rate (ml h-1), oxygen consumption rates (mg O2 h-1) and excretion 

rates (mg NH4 h-1) were shown to depend on tissue size. The size dependency of each 

physiological rate can be described by the power function: 

Clearance rate: 4.53 × W 0.87      r2 = 0.87      N = 32 

Respiration rate: 3.4 × W 0.82      r2 = 0.80      N = 32 

Excretion rate: 3.7× W 0.4      r2 = 0.45      N = 32 

In order to remove the size effect between both groups (SFT and SFT+5°C), each rate was 

corrected according to: 

Rate = Rate´(Wmean/W)b 

where Rate and Rate´ are corrected and observed values respectively, W is the observed 

individual tissue wet mass, Wmean the mean tissue dry mass of the all animals (1 g) and b 

the calculated scaling coefficient for each rate. 

A common scaling coefficient was calculated for both sampling times (after 5 and after 9 

months exposure) as no significant differences were found between the scaling coefficients 

of each sampling times in any of the rates.  

Each physiological rate was then converted to energy equivalents (J h-1) in order to 

calculate the scope for growth. 
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The excretion rate was similar between SFT and SFT+5°C treatments and the two time 

points (April and August) (Table 1) and did not affect SFG. Absorption and respiration 

rates had a greater influence on SFG and both rates were significantly higher at elevated 

temperatures at both sampling times (Table 1). In April, energy expenses (respiration rates) 

ranged 2.4 times higher and energy absorbed by food (absorption rates) 1.4 higher in 

SFT+5°C compared to SFT scallops (Table 1). The high energy expenses however resulted 

only in a slightly and insignificant elevated SFG in the SFT+5°C relative to the SFT group 

after 5 months of high temperature exposure. In August, the energy expenditure by 

respiration was 1.4 and the absorption rate 1.5 times higher in the SFT+5°C compared to 

the SFT group (Table1). The somehow lower energy expenditure by respiration in the 

SFT+5°C in August resulted in a higher SFG in the SFT+5°C compared to the SFT group.  

 

Biochemical analysis 

Neither CAT, SOD activity nor TBARS or protein carbonyl concentrations showed 

significant size dependence in muscle, mantle or gill tissue within the different treatments. 

Hence, the uncorrected data were used for the analysis of differences between treatments 

and sampling time. 

 

Antioxidant capacities 

In April, scallops exposed to SFT+5°C had higher CAT and SOD activities in mantle 

muscle and gill tissues compared to SFT group (Kruskal Wallis, p < 0.05) (Fig. 2A, B). 
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Capacities of both antioxidant enzymes increased in mantle and gills of the SFT treatment 

between April and August, whereas in the SFT+5°C group, CAT and SOD activities in 

these tissues remained unchanged (CAT gills) or even decreased (CAT mantle and SOD 

mantle and gills). CAT and SOD capacities in muscle ranged higher in the SFT+5°C group 

in both sampling times (Mann-Whitney t-test < 0.05). 

 

Oxidative damage markers 

Protein carbonyls and TBARS concentrations followed a similar pattern as antioxidant 

capacities. Hence, the SFT+5°C group had the highest protein carbonyls concentrations in 

all tissues in April (Kruskal Wallis, p < 0.05) (Fig. 2C). TBARS concentrations were also 

higher but reached significance only in gills (Kruskal Wallis, p < 0.05) (Fig. 2D). Between 

April and August, protein carbonyls and TBARS levels in mantle and gills increased in 

SFT scallops and decreased in SFT+5°C (Mann-Whitney t-test p < 0.05). In muscle, protein 

carbonyls remained higher in the SFT+5°C group in both sampling dates (Mann-Whitney t-

test p < 0.05) while no differences in muscle TBARS concentrations between SFT and 

SFT+5°C neither for April nor for August were found. 
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Table 1: Absorption rate (AR), respiration rate (RR), excretion rate (ER) and scope for growth (SFG) of A. ventricosus expressed as J h-1 for a 
standard animal of 1 g under simulated field temperatures in the laboratory (SFT) and 5°C above SFT. Values are means ± SD. Lower case letters 
represent significant differences between the two sampling times within the same treatment and capital letters are used for differences between 
different treatments among animals of the same sampling time (t test P < 0.05).  

 AR (J-1 h-1) RR (J-1 h-1) ER (J-1 h-1) SFG (J-1 h-1) 

 SFT SFT+5°C SFT SFT+5°C SFT SFT+5°C SFT SFT+5°C 

April 18.4 ± 3.4a A 26.2 ± 6.4aB 10.9 ± 3.2a A 25.8± 5.2aB 0.035 ± 0.002aA 0.032 ± 0.009aA 4.7 ± 1.6aA 5.2 ± 2.6aA 

August 41.6 ± 5.3bA 62.5 ± 7.4bB 29.9 ± 3.5bA 40.6 ± 4.2bB 0.032 ± 0.009aA 0.056± 0.04aA 13.9 ± 5.2bA 24.7± 3.9bB 
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Fig. 2: Enzyme activity of (A) catalase (CAT), (B) superoxide dismutase (SOD) (units g-1 fwt), (C) 
protein carbonyls (nmol mg-1 protein) and (D) TBARS content (µmol g -1fwt) in mantle, muscle and 
gill tissues of A. ventricosus in April and August 2008. Scallops were reared at simulated field 
temperatures in the laboratory (SFT) and 5°C above SFT (SFT+5°C) Values are means ± SD (N=8-
10). Different letters indicate differences between different treatments within same sampling date 
and tissue (ANOVA, p < 0.05). Asterisks (*) indicate differences within same tissue and treatment 
but between different sampling dates (t test, p < 0.05).  
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DISCUSSION 

The exposure of A. ventricosus to elevated but subcritical temperatures (SFT+5°C) for 5 

months enhanced individual metabolic rates which is reflected by the higher respiration and 

absorption rates relative to the control group (SFT). According to the rate of living theory 

(Pearl 1928), increased energetic demands conjunctly increase ROS production and 

enhance accrual of somatic damage which may compromise future survival in a sense of 

“living fast, dying young" (Speakman et al. 2002). Indeed, concomitant to the elevated 

metabolic rates, scallops exhibited higher concentrations of protein carbonyls and TBARS 

(lipid peroxidation) in gills, mantle and muscle tissues and also higher mortality rates as 

shown in our previous analysis of growth rates and mortality using the same group of 

scallops (Guerra et al. 2011). Scallops may compensate the higher ROS production by 

increasing their antioxidant capacities; however, it seems that the increase in two key 

antioxidants (SOD and CAT) in the SFT+5°C group failed to counterbalance the damaging 

effects of ROS.  

In A.ventricosus, absorption rate was high enough to support growth without utilizing own 

energy reserves shown by the positive scope for growth after 5 months of warm exposure. 

However, even with the enhanced absorbtion rates in SFT+5°C scallops, scope for growth 

was similar compared with the control group (SFT). This may happen when energy 

expenditure by respiration exceed the energy absorbed by food leading to a lower energy 

output and thus, lower growth efficiency related to the high respiration rates. It is possible 

that the high metabolic requirements to enhance cellular maintenance mechanisms such as 

antioxidants, compromised energy available for growth even if higher antioxidant 

capacities failed to counterbalance the oxidative damage. 
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Altogether, it seems that A. ventricosus possess a low capacity to adapt to elevated 

temperatures so that a constant increase by 5°C, even if temperature is kept below the 

critical temperature for this species, will exacerbate oxidative stress in a variety of tissues. 

As shown in other invertebrates, high temperatures affect mitochondrial functionality and 

exacerbate ROS production leading to damage in mitochondrial proteins and lipids (Abele 

et al. 2002; Heise et al. 2003; Abele and Puntarulo 2004). Together with high-energy 

expenditure by respiration, this can decrease energy production and affect the individual 

growth efficiency. The intertwined relation of high susceptibility to oxidative stress and a 

relative low energy efficiency could finally have contributed to higher mortality rates at 

elevated temperatures as previously reported (Guerra et al. 2011). 

As we found that temperature was directly linked to metabolic rates in A. ventricosus, we 

would have expected that the seasonal temperature elevation of 4°C in the SFT and in the 

SFT+ 5°C group from April to August 2008 (5 to 9 months exposure) further accelerates 

energy metabolism and intensifies oxidative damage in both treatments. We also expected 

to observe a higher impact in the SFT+5°C group. In the SFT scallops, indeed respiration 

rates as well as protein carbonyls and lipid peroxides increased in gill and mantle tissue 

despite the enhanced capacities of SOD and CAT in these tissues. It is worth noting 

however, that time may have conjunctly influence the parameters so that it is not possible to 

discern whether the changes observed in the SFT group between April and August are due 

to the increase in temperature, an increase in scallops age or due to a combination of both 

factors. Interestingly, oxidative damage in the SFT+5°C scallops showed the inverse 

pattern compared to the SFT group despite a similar increase in temperature. Hence, in 

August, after 9 months exposure to constant elevated temperatures, SFT+5°C exhibited 
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lower levels of protein carbonyls and TBARS in mantle and gill in respect to the previous 

sampling and also in respect to the SFT group. Concomitant, capacities of SOD and CAT 

were lower in mantle and gill after 9 months exposure indicating that there was a lower 

need to fight off ROS in these tissues. Further, different as after 5 months exposure, 

SFT+5°C scallops also exhibited a higher scope for growth compared to SFT scallops. The 

higher scope for growth was attributed to a relative lower energy expenditure by respiration 

compared to the previous sampling while keeping high food absorption rates. This 

corroborates results in the scallop Argopecten purpuratus in which respiration rate was the 

major component that affected scope for growth (González et al. 2002) The somehow 

improved physiology of the SFT+5 °C scallops after 9 months exposure to the elevated 

temperatures is difficult to explain. One reason for this improvement may be the significant 

higher mortalities in the SFT+5°C group compared to SFT scallops between April and 

August (Guerra et al. 2011) which could have provoke a stronger selection of scallops with 

better physiological condition, i.e., individuals with less oxidative damage, higher energy 

efficiency and reduced requirements for antioxidant protection.  

From an ecological point of view, A. ventricosus might in general have a low capacity to 

endure long-term elevated temperatures but high mortalities can counterbalance such 

negative temperature effects by natural selection of less affected individuals; however, 

selection may result only at cost of population densities. 
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ABSTRACT 

Predation is an ecological factor that is known to impact physiological processes such as 

metabolic rates, growth and reproduction, and may also influence a prey´s susceptibility to 

oxidative stress. We investigated how prolonged exposure to predators modulates 

metabolic rate, tissue specific antioxidant defense and oxidative damage in the short-lived 

(2 years maximum lifespan) epibenthic swimming scallop Argopecten ventricosus. Scallops 

exposed to predators featured lower standard metabolic rates and lower antioxidant defense 

levels (superoxide dismutase and catalase), but also lower oxidative damage (protein 

carbonyls and TBARS = lipid peroxidation) in gills and mantle compared to predator-free 

individuals. In swimming muscle however, antioxidant levels and oxidative damage were 

higher in predator-exposed scallops. When predator-exposed scallops were on the verge of 

spawning, levels of oxidative damage increased in gills and mantle in spite of a parallel 
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increase in antioxidant defense in both tissues. Pre-spawning, levels of oxidative damage 

increased also in swimming muscle whereas antioxidant capacities in this tissue decreased. 

Post-spawned scallops recuperate antioxidant capacities and oxidative damage levels 

similar to those before maturation. Our results suggest that predator exposure and 

reproduction modulate antioxidant defense and oxidative damage in a tissue specific 

manner. While predators induce oxidative damage in scallop’s adductor muscle but not in 

mantle and gill tissues, reproduction increases oxidative damage levels in all somatic 

tissues. Nevertheless, oxidative damage seemed to be transient as scallops exhibit resilience 

capacities after spawning. 

Keywords: Argopecten ventricosus, oxidative stress, predation, reproduction 

 

INTRODUCTION 

Sublethal effects of predation risk can markedly shape the morphology and life history of 

the prey on the individual and population level (Luttbeg and Kerby 2005). Exposure to sea 

star predators, or even to their chemical signals, induces for example a violent escape 

response of swimming and jumping movements in scallops (Thomas and Gruffydd 1971; 

Thompson et al. 1980; Grieshaber et al. 1994; Tremblay et al. 2006; Schmidt et al. 2008). A 

chronic exposure of animals to the presence of predators in their natural habitat can be 

anticipated to result in higher basal swimming activity and oxygen turnover. Although there 

is no strict relationship between the rate of oxygen reduction in mitochondria and the 

production of reactive oxygen species (ROS) (Buttemer et al. 2010), accelerated ROS 

production during strenuous exercise was found to increase oxidative stress in fish and 
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mammals (Ji 1993, 1999; Asami et al. 1998; Aniagu et al. 2006, Power and Jackson 2008 

for review). Superoxide (O2
•-), hydrogen peroxide (H2O2) and hydroxyl radicals (HO•) can 

oxidize and damage cellular constituents, such as membrane lipids, proteins and DNA. 

Antioxidants such as superoxide dismutase (SOD) that catalyses the dismutation of O2
•-  to 

H2O2 and catalase (CAT) which catalyses the reaction of H2O2 to water and oxygen, 

mitigate the oxidative damage to some extent (Storey 1996; Abele and Puntarulo 2004). 

Although escape swimming in scallops is eventually fueled by anaerobic glycolysis, higher 

ROS production may increase during phases of increased oxygen uptake when recovering 

from exhaustive swimming (Guderley and Poertner 2010). If ROS are not counterbalanced 

by cellular maintenance mechanisms, repeated escape swimming and recovery may result 

in the accumulation of oxidative damage with negative fitness consequences for the prey. 

Detailed studies that pinpoint the link between predator exposure and oxidative stress in 

marine ectotherms are however missing. In the only two studies addressing this topic in 

ectotherms to date, Slos and Stocks (2008) found increased oxidative stress in damselflies 

(Enallagma cyathigerum) after 5 days exposure to predators, which they attributed to the 

higher metabolic rates and lower investment in antioxidant defense. In a second study with 

the damselfly Lestes viridis, 10 days exposure to predator risk however led to an increase in 

antioxidative defense mechanisms, that depended on food levels and sex (Slos et al. 2009). 

So far, it is not really understood whether and by which mechanisms sublethal exposure to 

predators induces oxidative stress in marine ectotherms. 

Increased oxidative stress has also been proposed to be one of the costs arising during 

reproduction (for review see Constantini 2010). Accumulation of oxidative damage and 

decrease in antioxidant protection as a cost of reproduction have been demonstrated in 
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different species such as fruit flies, birds, sheep, and also in bivalves (Wang et al. 2001; 

Alonso-Alvarez et al. 2006, 2007; Bize et al 2008; Nussey et al. 2009; Soldatov et al. 

2008). In bivalves, the initiation of gametogenesis as well as the spawning event is strongly 

governed by environmental conditions (Vahl 1985; MacDonald and Bayne 1993; Jokela 

and Mutikainen 1995) with temperature and food availability being the major modulators 

(Barber and Bayne 1983). As gametogenesis and environmental factors can modulate 

oxidative stress parameters, it is difficult to disentangle the sole oxidative costs of 

reproduction. 

In the present study, we investigated the tissue specific response of cellular oxidative 

defense and damage parameters, respiration rate and metabolic enzyme activity to predator 

presence in A. ventricosus. The short lifespan (2 years) (Keen 1971) and the long-standing 

use of the Catarina scallop in aquaculture enabled us to study the effect of predator 

exposure over several months within the same population of scallops. The long-term 

experiment include a reproductive cycle under controlled temperature and feeding 

conditions that allowed us to disentangle environmental effects from reproductive costs on 

the different parameters.   

 

MATERIALS AND METHODS 

Experimental animals and culture conditions 

Argopecten ventricosus larvae were obtained and reared in the hatchery as described in 

detail in Guerra et al. (2011). Briefly, larvae were obtained from spawn of wild scallops and 

juveniles reared for 3 months in the hatchery until they reached 5-7 mm shell height. 
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Thereafter, scallops were maintained in a flow-through system consisting of 8 parallel 70 

L-aquaria under constant water flow of 210 L day-1 and a salinity of 33-36 ppt. Each 

aquarium contained an initial number of ~ 630 scallops. Temperature in the aquaria was 

adjusted each month to natural conditions in the field to mimic seasonal temperature 

changes (Fig.1). Field temperatures were recorded at the Rancho Bueno estuary 

(geographical position: ´24°19´17,3´´N, 111°25´37,3´´W) located in Bahía Magdalena, 

Baja California Sur, Mexico, where optimal temperatures for A. ventricosus growth have 

been reported to occur (Sicard-Gonzàlez et al. 1999). The temperature in each aquaria was 

controlled using aquarium heaters (Hagen Aquaclear 22952) and recorded at 30 min 

intervals using temperature loggers (WTA32-5+37, Onset Computer Corp., Bourne MA, 

USA). The animals were fed ad-libitum using a 1:1 mixture of Chaetoceros calcitrans and 

Isochrysis galbana. The first sampling was performed at the end of April 2008 at an 

experimental temperature of 17°C when scallop mean shell height was 24 ± 5.3 mm. After 

this initial sampling, the blue crab Callinectes sapidus, which is a potential predator for A. 

ventricosus in their natural environment (Ciocco and Orensanz 2001), was introduced into 

the “predator-exposed treatment” i.e. in 4 of the 8 aquaria (one crab per aquarium). The 

crabs´ pincers were held together with rubber bands to prevent the crabs from eating the 

scallops. The crabs were fed squid every third night in a separate aquarium. Introducing C. 

sapidus into the aquaria immediately enhanced swimming activity in the scallops (personal 

observation). The effect prevailed throughout the entire 4 months of experimental period 

without observable signs of habituation in the scallops. The remaining 4 aquaria were 

maintained at the same temperature and feeding conditions as in the predator-exposed 

aquaria but without predators (predator-free treatment). After 4 months (August 2008), 
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predator-exposed and predator-free scallops were sampled again at an experimental 

temperature of 21.3°C.  
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Fig. 1: Temperature pattern regulated in the laboratory. Arrows indicate time-points of sampling. 

 

To investigate changes in oxidative stress during reproduction, it was planned to take 

samples of immature, pre-spawning and post-spawned individuals of both groups. 

However, the animals of the predator-free treatment spawned earlier than the predator-

exposed group, and all animals in the predator-free group died directly after spawning. In 

contrast, in the predator-exposed scallops we did not observe increased post-spawned 

mortality and 8% of the initial population remained alive until the end of the experiment in 

February 2009. In this group, additional samplings were possible in December 2008 for 

pre-spawning and in February 2009 in post-spawned scallops. Temperature during this time 

span was kept at 22-23°C in order to discern differences in oxidative stress parameters 

related solely to reproduction (Fig. 1).  
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During each sampling, two to three scallops were taken from each of the 4 replicate aquaria 

and dissected into mantle, adductor muscle, gills and gonads. Tissues were weighted and 

mantle, adductor muscle and gills frozen in liquid nitrogen for biochemical analysis. 

Further 6-8 animals per aquarium were used for metabolic rate measurements. 

 

Gonad index 

The gonad index (GI) was determined on each sampling date and was calculated as follows: 

(gonad weight/ total shell weight) × 100 (see Lucas and Beninger 1989; Sarkis et al. 2006). 

A high GI is indicative of mature gonads and a lower GI reflects the onset of gametogenesis 

or spent gonads.  

 

Enzyme assays  

Activities of CAT, SOD, CS and ODH were measured spectrophotometrically at 25°C in a 

Beckman DU 640 spectrophotometer. Enzyme assay conditions were as follows: 

CAT and SOD: Samples were homogenized by hand with a glass homogenizer on ice in 

1:20 (w/v) in 50 mM phosphate buffer (pH 7.5) containing 1 mM EDTA and 1 mM PMSF. 

Homogenates were centrifuged at 15000 × g for 15 min at 4°C and the supernatant 

immediately used for CAT and SOD activity measurements. 

CAT activity (EC 1.11.1.6) was determined after Aebi (1984) by recording the time of 

H2O2 decomposition, resulting in a decrease of absorption from 0.45 to 0.4 at 240nm (1 

unit catalase). Working solution (20 mM H2O2, 100 mM phosphate buffer) and sample 
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were mixed in a cuvette and the change in absorbance was recorded every 15 s for 3 min. 

Enzymatic activity was expressed as units CAT g-1 fresh weight. One unit of catalase is 

defined as the amount of enzyme necessary to reduce 1 µml of H2O2 per min. Results are 

reported as units CAT g-1 fresh weight. Total SOD (EC 1.15.1.1) activity was determined 

by the method of Susuki (2000). The xanthine/xanthine oxidase (X/XO) system was used to 

generate O2
•- which reacts with nitroblue tetrazolium (NBT). Working solution (50 mM 

sodium-carbonate buffer, 0.025 mM NBT, 1mM X, 0.1 mM EDTA), XO (0.1 U ml-1 in 2 

M ammonium sulfate) and 25 µl homogenized sample or blank were mixed in a cuvette and 

the change in absorbance at 560 nm was recorded for 5 min every 30 sec. One unit of SOD 

activity is defined as the amount of enzyme necessary to inhibit the reduction of NBT by 

50%. Results are presented as units SOD g-1 fresh weight.  

 

CS and ODH: Samples were homogenized by hand in a glass homogenizer on ice in a 1:10 

(w/v) buffer solution (50 mM imidazol, 1 mM EDTA, 1 mM reduced glutathione). 

Homogenates were sonicated 4 × 1 5 sec in a Branson Sonifier 450 (output control 4, duty 

cycle 40 %) at 0°C and centrifuged at 5000 × g for 15 min and 4°C. CS activity was 

measured after Sidell et al. (1987) by recording the absorbance increase of 0.25 mM 5´,5´-

dithio-bis(2-nitro)benzoic acid (DTNB ) in 75 mM Tris HCl (pH 8.0), 0.4 mM acetyl CoA 

and 0.4 mM oxalacetate at 412 nm. Activity was calculated using the extinction coefficient 

(ε412) of 13.61 mM-1 cm-1 and expressed as units g-1 fresh weight. ODH activity was 

measured after Ballantyne et al. (1981). The decrease of NADH oxidation by ODH was 

recorded at 340 nm. 10-25 µl of supernatant were added to a measuring buffer containing 

100 mM triethanolamine (pH 7.0), 30 mM pyruvate, and 55 mM arginine and the reaction 
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followed for 10 min. ODH activity was calculated using ε340 = 6.32 mM-1 cm-1 and 

expressed as units g-1 fresh weight. 

 

Tissue damage 

Lipid peroxides (TBARS): Lipid peroxides are known to produce a variety of 

intermediate substances including malondialdehyde (MDA). MDA reacts with 

thiobarbituric acid (TBA) under acidic pH and elevated temperatures. Lipid peroxides were 

measured using the generation of MDA/TBA adducts (thiobarbituric acid reactive 

substances, TBARS) to quantify MDA formation. TBARS were measured following the 

method of Persky et al. (2000). Samples were homogenized by hand in a glass homogenizer 

on ice in a 1:20 (w/v) saline solution (0.9 %) at pH 7.0. 0.8 M HCl in 12.5 % trichloroacetic 

acid (TCA) was added to 250 µl of homogenate prior to the addition of 1 % TBA. Samples 

were incubated for 10 min in a 90°C water bath, cooled to room temperature and 

centrifuged at 1500 × g for 10 min at 4°C. TBARS levels in each sample were measured at 

535 nm. TBARS concentrations were derived from a standard curve and the values 

expressed as TBARS nmolar equivalents g-1 fresh weight. 

Protein oxidation (carbonyls): The detection of protein carbonyls was carried out after 

Levine et al. (1990). Carbonyls react with the carbonyl specific reagent 2,4-

dinitrophenylhydrazine (DNTP) and, after precipitation with TCA, carbonyls can be 

measured spectrophotometrically. Samples were homogenized by hand in a glass 

homogenizer on ice in 5 % sulfosalicylic acid and centrifuged at 10000 × g for 15 min at 

4°C. The supernatant was discarded and the pellet incubated at room temperature for 1 h 
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with 10 mM DNTP. Sample blanks contained 2 M HCl instead of DNTP. During the 

incubation, samples were mixed every 15 min. After 1 h, 20 % TCA were added to samples 

and blanks to precipitate the protein and centrifuged at 10000 × g at 4°C for 5 min. The 

protein pellet was washed 3 times with 1 ml ethanol: ethylacetate (1:1) resuspended in 6 

mM guanidine hydrochloride and incubated for 30 min at 37°C for 15 min. The samples 

were centrifuged at 10000 × g at 4°C for 5 min, and the supernatants of samples and blanks 

measured in quartz cuvettes at 360 nm. The amount of carbonyls was estimated as the 

difference in absorbance between samples and blank using a molar extinction coefficient of 

carbonyls (ε = 22,000 cm-1 M-1). Amount of carbonyls was assessed as nmol mg-1 protein 

measured in the same samples using the Bradford method (Bradford 1976). 

 

Measurements of standard and fed metabolic rate (SMR; FMR = SDA, specific 

dynamic action)   

Oxygen consumption of 6-8 individual animals per treatment was measured with 50 µm 

diameter fiber-optical oxygen optodes (PreSens GmbH, Regensburg Germany) in 700 ml 

chambers connected to a multi-channel flow-through system (60 ml min-1). In case the 

animals were too small for reliable respiration measurements, 8 replicate measurements of 

3-5 equally sized animals were undertaken per treatment.  

Prior to respiration measurements, A. ventricosus were maintained without food for 2 days, 

to eliminate effects of feeding on metabolic rates. Shells were cleaned from epibionts. 

Before starting the SMR measurements, animals were allowed to acclimate in the chambers 

for 2 h in filtered seawater at the respective temperature and salinity condition. Experiments 
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had been previously run to assure that this time was sufficiently long to allow the animals 

to accommodate to the measuring system. Oxygen optodes were calibrated using air-

bubbled water (100 % O2 = 21 kPa) and water saturated with sodium sulfite to deplete 

oxygen (0 % O2 = 0 kPa). Respiration rate was calculated from the difference in oxygen 

values measured between the in- and outflowing water 3 times over 5 min each. A blank 

chamber was run without animals to correct for microbial respiration. After SMR 

measurements, fed metabolic rate (FMR), which includes the energy expenses (oxygen 

consumption) for burning ingested food, was determined. For this measurement, filtered 

inflowing seawater was enriched with Isochrysis galbana to a concentration of 60000-

70000 cells ml-1. Oxygen consumption was measured again 3 h after feeding. After the last 

measurement, scallops were dissected, and soft tissue dry mass determined after 2 days at 

60°C. Percent oxygen was transformed to micromoles of dissolved oxygen in seawater, 

using known values of oxygen solubility, according to Benson and Krause (1984), and 

converted to mg O2. Oxygen consumption of the predator-free and predator-exposed 

scallops sampled at the same time was expressed as the oxygen consumption per g of tissue 

dry weight (mg O2 h-1 g-1 dw).  

The size effect on respiration rates of the predator-exposed scallops sampled at different 

time points was corrected and expressed for a standard scallop of 1 g dry mass using a 

power regression:  

VO2 = VO2´ (Wmean/W)b 

where VO2 and VO2´ are corrected and observed values respectively, W is the observed 

individual tissue wet mass, Wmean the mean tissue dry mass of the all animals (1 g) and b 
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the calculated scaling coefficient for each rate (Sukhotin et al. 2000). The scaling 

coefficient of b = 0.59 was derived from the log-log linear regression between oxygen 

consumption and whole animal dry weight ranging from 0.45 to 1.96 g dry mass. In 

contrast to the respiration rates, the different enzyme activities and oxidative damage 

parameters were not found to be dependent on body mass and were therefore calculated 

without correction.  

 

Statistics 

Data were tested for normality (Kolmogorov-Smirnov test) and homogeneity of variance 

(Bartlett's test for equal variances) prior to analysis and if necessary LOG-transformed. In 

the graphs or tables data are displayed as non-logarithmic values. Two-way ANOVA, 

followed by a Bonferroni post test, was used to test for tissue-specific differences in 

antioxidant and metabolic enzyme activity, oxidative damage parameters, muscle mass, 

shell size, as well as respiration rates between the predator-exposed and predator-free 

treatment measured in April and August. One-way ANOVA (Kruskal-Wallis test for non-

Gaussian distribution) with Tukey´s post-hoc test (Dunn´s test) was used to test for 

differences in tissue-specific antioxidant enzyme activity, oxidative damage, metabolic 

enzymes and respiration rates in immature, pre-spawning and post-spawned scallops. In 

case of some rare cases when homogeneity of variances could not be achieved by 

transformation, a t-test with Welch´s correction was performed to test for significant 

differences between two treatments or time points. Statistical analyses were performed with 

Graph Pad Prism 5 Software (La Jolla, California, USA) and related software given on 
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http://www.graphpad.com/quickcalcs/posttest1.cfm for additional Bonferroni post test 

following two-way ANOVA in case of significant interaction.  

 

RESULTS 

Effect of predators on oxidative stress parameters, muscle capacities and metabolic 

rates 

Antioxidant capacities and oxidative damage   

After 4 month of treatment, the activity of both antioxidant enzymes, SOD and CAT (Fig. 

2A) as well as the concentration of both oxidative damage markers, protein carbonyls and 

TBARS (Fig. 2B), were higher in gills and mantle tissue of predator-free compared to 

predator-exposed scallops. The opposite was found in the swimming muscle: predator-free 

scallops had lower catalase activity and slightly but not significantly lower SOD activity, as 

well as lower concentrations of protein carbonyls and TBARS compared to predator-

exposed scallops. Compared to the first measurement in April, the values of the different 

parameters were higher in gill and mantle tissue in the predator-free scallops measured in 

August. In the predator-exposed scallops, values remained unchanged or even decreased in 

theses tissues with time. Again, the opposite pattern was found for the adductor muscle 

tissue (Fig. 2A, B). 
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Fig. 2: (A) Enzyme activity of catalase (CAT) and superoxide dismutase (SOD) (units g-1 fwt) in 
gills, mantle, and muscle of A. ventricosus kept without predators (predator-free group) and with 
predators (predator-exposed group) for a time period of 4 months (April-August 2008). Values are 
means ± SD (N = 6-8 per group). * indicates significant differences between scallops reared without 
and with predators (p < 0.001 ** and p < 0.05 *), and # (p < 0.05) between the sampling in April 
and August within the respective treatment. 

 



  Manuscript 2 

107 

 

0 4
0.0

0.2

0.4

0.6

0.8

1.0

0
5
10
15
20
25
30

predator-free
predator-exposed

**gills
#

#

0 4
0

10

20

30

0
5
10
15
20
25

**

mantle

#

#

TB
A

R
S

 ( μ
m

ol
 g

-1
 fw

t)

April August
0.0

0.2

0.4

0.6

0.8

1.0

0
5
10
15
20
25
30*

muscle #

B

0 4
0

2

4

6

8

10
**gills #

0 4
0

2

4

6

8
**

mantle

#

P
ro

te
in

 c
ar

bo
ny

ls
 (n

m
ol

  m
g-1

 P
ro

te
in

)

April August
0

2

4

6

8

**

muscle

#

#

 

Fig. 2: (B) protein carbonyls (nmol mg-1 protein) and lipid peroxidation levels (TBARS, µmol g -

1fwt), in gills, mantle, and muscle of A. ventricosus kept without predators (predator-free group) and 
with predators (predator-exposed group) for a time period of 4 months (April-August 2008). Values 
are means ± SD (N = 6-8 per group). * indicates significant differences between scallops reared 
without and with predators (p < 0.001 ** and p < 0.05 *), and # (p < 0.05) between the sampling in 
April and August within the respective treatment. 
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Muscle mass, metabolic enzymes and metabolic rates 

Muscle mass (g-1 fresh weight) was higher in the predator-exposed than predator-free 

scallops following 4 months exposure to predators, but shell sizes (shell height) were the 

same (Table 1). CS activities as marker for aerobic capacities in muscle were higher in 

predator-free compared to predator-exposed scallops (Fig. 3A), whereas the opposite was 

found for ODH activity, a marker of anaerobic capacity (Fig. 3B). From April to August, 

CS activities increased in predator-free scallops and remained stable in predator-exposed 

individuals. The opposite was found for ODH where activities increased in predator-

exposed scallops and even decreased in predator-free individuals. Standard metabolic rate 

(SMR) was significantly higher in predator-free compared to 4 month predator-exposed 

scallops, whereas fed metabolic rate (FMR) was the same in both groups (Fig. 4). 

 

Table 1: Adductor muscle weight (g-1 fwt) and shell height (mm) of A. ventricosus kept without 
predators (predator-free group) and with predators (predator-exposed group) for a time period of 4 
months (April-August 2008). Values are means ± SD (N = 10-16). * indicates significant 
differences between scallops reared without and with predators (p < 0.05). # marks significant 
differences between the sampling in April and August within the respective treatment (p < 0.05).  

                 April               August 

 Predator-

free 

Predator-

exposed 

Predator-

free 

Predator-

exposed 

Muscle (g-1fwt) 0.36 ± 0.19 0.30 ± 0.11 0.79 ± 0.25# 1.16 ± 0.35*# 

Shell height (mm) 24.9 ± 4.45  23.3 ± 2.54 30.1 ± 1.94 30.9 ± 3.0 
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Fig. 3: (A) Citrate synthase (CS) and (B) octopine dehydrogenase (ODH) activities (units g-1 fwt) in 
the adductor muscle of A. ventricosus without predators (predator-free group) and with predators 
(predator-exposed group) for a time period of 4 months (April-August 2008). Values are means ± 
SD (N = 8-9 per group). * indicates significant differences between scallops reared without and with 
predators (p < 0.001 ** and p < 0.05 *), and # (p < 0.05) between the sampling in April and August 
within the respective treatment. 
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Fig. 4: Weight specific standard metabolic rates (SMR) and fed metabolic rates (FMR) in A. 
ventricosus kept without predators (predator-free group) and with predators (predator-exposed 
group) for a time period of 4 months (April-August 2008). Values are means ± SD (N = 6 per 
group). * indicates significant differences between scallops reared without and with predators 
(Mann-Whitney t-test p < 0.05) and # (p < 0.05) between the sampling in April and August within 
the respective treatment.  

 

Effect of reproduction on oxidative stress parameters and metabolic rates 

Antioxidant capacities and oxidative damage  

The effect of reproduction on antioxidant enzyme activities, cellular damage and metabolic 

rates could only be investigated in predator-exposed scallops, because the predator-free 

scallops died after the first spawning before samples could be taken. Mortality did not 

increase during spawning in the predator-exposed group, which allowed us to sample pre-

spawning and post-spawned individuals of this group. In the predator-exposed group, the 

gonad index peaked in December 2008 (pre-spawning) and was lowest in April (immature), 

August (immature) 2008 and February 2009 (post-spawned) (Fig.5). 
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Significant differences in oxidative stress parameters between immature, pre-spawning and 

post-spawned scallops were observed in all three investigated tissues. In gill and mantle 

tissue, antioxidant enzymes and oxidative damage markers reached maximum levels when 

animals were on the verge of spawning (corresponding with the peak in GI) and declined 

again after the spawning event (Fig. 6A, B, C, D). In contrast, in the adductor muscle 

activities of both enzymes were lowest in pre-spawning specimens and increased again in 

post-spawned scallops (Fig. 6A, B). Protein carbonyl levels in muscle tissue did not 

significantly change throughout the reproductive cycle (Fig. 6C). TBARS levels in muscle 

however were significantly higher during peak GI, also compared to values in gill and 

mantle tissue, and decreased in post-spawned scallops to lower values than in immature 

animals (Fig. 6D).  
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Fig. 5: Gonad- index (GI) of Argopecten ventricosus exposed to predator.  
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Fig. 6: (A) Catalase (CAT) and (B) superoxide dismutase (SOD) activities (units g-1 fwt), (C) 
protein carbonyl (nmol mg-1 protein) and (D) lipid peroxidation levels (TBARS, µmol g-1 fwt) in 
gills, mantle and muscle of predator-exposed A. ventricosus scallops. Reproductive stages were 
deduced from the GSI in Fig 5. Values are means ± SD (N= 6-8). * indicate differences between 
pre-spawning from immature and post-spawned; # indicates differences between immature and 
post-spawned within each tissue. Differences are set at p < 0.001##/** and p < 0.05 #/*. 

 

Metabolic enzymes and rates 

Respiration rates were temperature independent but influenced by the reproductive state. 

Lowest SMR and FMR were measured in scallops on the verge of spawning (= pre-

spawning) (Fig. 7). After spawning, SMR and FMR returned to pre-maturation levels. 

Activities of the metabolic enzymes CS and ODH followed the pattern of the respiration 
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rates with lower activities in pre-spawning animals followed by higher activities again in 

post-spawned individuals (Fig. 8). 
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Fig. 7: Standard metabolic rates (SMR) and fed metabolic rates (FMR) of immature, pre-spawning 
and post-spawned Argopecten ventricosus exposed to predators expressed in mg O2 h-1 corrected for 
a standard scallop of 1 g dry mass. Values are means ± SD (N= 6-8). * indicate differences between 
pre-spawning from immature and post-spawned (p < 0.05)  
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Fig. 8: (A) Citrate synthase (CS) and (B) octopine dehydrogenase (ODH) activities (units g-1 fwt) in 
the adductor muscle of immature, pre-spawning and post-spawned A. ventricosus under predator 
exposure. Values are means ± SD (N= 6-9 per group). * indicate differences between pre-spawning 
from immature; + indicates differences between pre-spawning from post-spawned individuals and # 
indicate differences between immature and post-spawned. Differences are set at p < 0.001++/**/## 
and p < 0.05 +. 
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DISCUSSION 

Effect of predators on oxidative stress parameters, muscle capacities and metabolic 

rates 

The results from our study show that long-term exposure (4 months) of Argopecten 

ventricosus to the predator Callinectes sapidus leads especially to changes in growth and 

biochemical composition of the adductor muscle. Predator-exposed scallops invested more 

into antioxidant capacities compared to predator-free individuals. Elevated antioxidant 

activities in predator exposed muscle tissue could however not prevent protein and lipid 

oxidation. This indicates that predator exposure might have increased burst swimming, 

causing oxidative stress in the muscle. 

Scallops escaping from predators perform intensive valve clapping, brought about by 

repeated contraction of the swimming muscle (Thomas and Gruffydd 1971, Tremblay et al. 

2006). Burst swimming in scallops is fueled by anaerobic metabolism starting with the 

hydrolysis of arginine phosphate and followed by anaerobic breakdown of glycogen 

(Bailey, et al., 2003; Chih, et al., 1983). Anaerobic ATP production in the scallop muscle is 

driven by octopine dehydrogenase (ODH), which catalyses the formation of octopine to 

restore the electron acceptor NAD+ needed for glycolysis (Hochachka and Somero 1984). In 

the present study, predator-exposed scallops had 31 % bigger muscles and 33 % higher 

ODH levels compared to predator-free scallops, which are indicatives for induced 

swimming activity in scallops. 

Several studies in invertebrates (Magwere et al 2006, Yan et al 2000) and vertebrates 

(Aniagu et al. 2006, Bejma and Li, 1999, Cooper et al. 2002, Reid 2001) have shown that 
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vigorous muscle contractions can lead to increased oxidative damage. The results are 

however not consistent and although strenuous physical activity cause an elevation of 

metabolic activity, oxidative damage does not necessarily increase in proportion (for review 

see Constantini 2010). It is difficult to obtain direct confirmation for ROS generation and 

oxidative damage production in in-vivo exercise studies with scallops. Short-term 

exhaustive exercise in the queen scallop Aequipecten opercularis triggered by 3 subsequent 

experimental sea star “attacks”, did not result in significant accumulation of lipid peroxides, 

but decreased the concentration of reduced glutathione (GSH) (Philipp et al. 2008). This 

decrease may indicate increased ROS levels in exercising scallop swimming muscle, 

whereas apparently, only “chronic” exposure to predators, which stimulates repeated escape 

swimming, overwhelms the muscle´s radical buffering capacities. This may lead to the 

observed accumulation of oxidative damage products in A. ventricosus with 4 times higher 

protein carbonyls and 2 times higher TBARS concentratiosn compared to predator-free 

scallops, despite simultaneously induced antioxidant defenses (SOD and CAT). ROS 

generation during exercise can further “trigger” the up-regulation of antioxidant enzymes 

(Gomez-Cabrera et al, 2008, Powers and Jackson 2008). This may contribute to explain 

why predator-exposed scallops had higher CAT and slightly higher SOD activities as 

compared to predator-free scallops.  

The adductor muscle is the most voluminous organ in A. ventricosus (~ 50 % of total soft 

tissue, Guerra et al. 2011). Lower muscle CS activities and thus aerobic capacities can 

contribute to explain the lower whole animal SMR in predator-exposed compared to the 

predator-free scallops. The similar FMRs in both groups speak for the capacity to increase 

oxygen consumption rates to a greater extent in predator exposed than predator-free 
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scallops, as soon as food becomes available. Thus, SDA dependent increase in oxygen 

consumption is more conspicuous in predator-exposed specimens with a higher energy 

allocation to muscle, which metabolizes more food and consumes more oxygen to enhance 

growth and swimming activity (see Pauly 2010). Given these results, it seems rather the 

burst swimming activity to cause the higher oxidative damage in the adductor muscle than 

changes in metabolism, especially as the main respiratory organs, gill and mantle tissue, 

show even lower oxidative damage compared to predator-free individuals.  

 

Effect of reproduction on oxidative stress parameters and metabolic rates 

The energetic and oxidative costs of reproduction have been suggested to represent a 

constraint in animal´s life history evolution (Dowling and Simmons 2009). To date, these 

costs have been studied principally in birds, mammals and flies (Wang et al. 2001, Alonso-

Alvarez 2006, Bergeron et al. 2011) but the generality by which oxidative stress impacts on 

reproduction remains to be fully explored across a range of other taxa such as bivalves. 

Here we show that in A. ventricosus, reproduction markedly increases antioxidant defense 

as well as oxidative damage. In mussels (Perna perna) enhanced antioxidant capacities in 

parallel with an increase in cellular damage (TBARS = lipid peroxidation products) in 

mature compared to immature individuals where already observed (Wilhelm Filho et al. 

2001). However, mussel reproduction in that study coincided with higher summer 

temperatures, and it was not altogether clear whether higher oxidative stress was mainly 

due to thermal or reproductive stress, or to a combination of both. In the present study, we 

aimed to disentangle the effects of temperature and reproduction on oxidative metabolism 
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by controlling temperatures in a narrow range (between 22-23°C) during maturation. 

Increased oxidative damage in all investigated tissues in A. ventricosus individuals on the 

verge of spawning can be attributable to the reproductive effort. In gills and mantle, SOD 

and CAT activities were increased at peak gonad index but failed to counterbalance the pre-

spawning oxidative damage in the scallops' respiratory tissues. This suggested that 

maturation and spawning mainly influence organs directly linked to oxygen uptake (mantle 

and gills) and food absorption (gills). As respiratory organs, these tissues may be 

susceptible to an increase in energy demands, such as during the reproductive months 

(Shumway et al. 1988; Thompson and MacDonald 2006). The oxidative damage in mantle 

and gill may have accumulated during the process of gonad maturation and highest levels 

are measured despite the lower metabolic rates close before spawning. The lower metabolic 

rates (SMR and FMR) in scallops immediately before spawning (pre-spawning = spawning 

within the next days) compared to immature and post-spawned animals may be attributed to 

lower energy demand on the verge of spawning when compared to the period of gonad 

build-up as already found in Placopecten magellanicus (Kraffe et al. 2008). In contrast to 

gill and mantle, antioxidant activities were lower in the adductor muscle during peak GI. 

During this time of gonad growth, the scallop muscle mass is used as energy reserve for 

gonad development (Guerra et al. 2011, Barber and Blake 1991; Brokordt et al. 2000a, b). 

The energy mobilization from adductor muscle towards the gonads conjunctly decreased 

activity of the metabolic enzymes CS and ODH, which are likely to diminish muscle 

metabolic capacities and the recuperation after burst swimming. Conjunctly to the decrease 

in CS and ODH in muscle, an absence of antioxidant induction and increased oxidative 

damage was observed for A. ventricosus.  
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Interestingly, after spawning, oxidative stress parameters in predator-exposed scallops 

returned again to the lower levels of immature scallops. Further, no increased post-

spawning mortality was observed and scallops reinitiated muscle growth after spawning 

(see Guerra et al. 2011). This indicates that protein carbonyls and lipid peroxidation 

products (TBARS) are transient and that they can be efficiently removed or recycled after 

spawning. Unfortunately, no tissue samples could be taken from the predator-free group, to 

investigate whether or not this pattern is restricted to the predator-exposed individuals. 

Assuming that the relation of reproduction and oxidative damage is predator-independent, it 

still remained unresolved at what extent the observations represents a true biological 

phenomenon as parameters are measured in a controlled laboratory environment where 

food and temperature are kept constant. We are conducting a complementary study, using 

the same cohort of scallops but reared under natural environmental variability in the field 

and protected from predators. With this complementary study, we aim to disentangle if 

there is a general trend of reproduction modulating oxidative stress parameters as shown in 

the present study that is not restricted to the predator-exposed individuals from the 

laboratory. 

 

CONCLUSIONS  

Our study shows that prolonged exposure to the predator Callinectes sapidus enhances 

muscle growth in the scallop Argopecten ventricosus, but also causes higher oxidative 

damage in this tissue. The lower damage in gills and mantle in predator-exposed scallops 

indicates that predators specifically influence muscle oxidative properties without affecting 
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the other tissues and supports that the effect is based on enhanced ROS formation during 

frequent burst swimming periods.  

A drastic increase in oxidative damage parameters especially in gills and mantle of scallops 

on the verge of spawning could be attributed to reproduction and corroborates other studies, 

which indicate that reproduction directly inflicts somatic damage and overwhelms 

antioxidant capacities. Oxidative damage is however transient and can be removed from 

cells in post-spawned scallops indicating that scallops possess repair or removal 

mechanisms to deal with high oxidative stress following reproduction. 
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scallop Argopecten ventricosus reared in its natural environment 

Citlali Guerra, Tania Zenteno-Savín, Alfonso N. Maeda-Martínez, Eva E.R. Philipp,  
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ABSTRACT  

Increase in oxidative damage and decrease in cellular maintenance is often associated with 

aging, but, in marine ectotherms, both processes are also strongly influenced by somatic 

growth, maturation and reproduction. In this study, we used a single cohort of the short-

lived catarina scallop Argopecten ventricosus, to investigate the effects of somatic growth, 

reproduction and aging on oxidative damage (protein carbonyls, TBARS and lipofuscin) 

and cellular maintenance mechanisms (antioxidant activity and apoptosis) in scallops, 

caged in their natural environment. The concentrations of protein carbonyls and TBARS 

increased steeply during the early period of fast growth and during reproduction in one-

year-old scallops. However, oxidative damage was transient, and apoptotic cell death 

played a pivotal role in eliminating damage in gill, mantle and muscle tissues of young 

scallops. Animals were able to reproduce again in the second year, but the reduced intensity 

of apoptosis impaired subsequent removal of damaged cells. Compared to longer-lived 
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bivalves, A. ventricosus seems more susceptible to oxidative stress with higher tissue-

specific protein carbonyl levels. Superoxide dismutase activity and apoptotic cell death 

intensity were higher in this short-lived scallop than in longer-lived bivalves. The life 

strategy of this short-lived and intensely predated scallop supports rapid somatic growth 

and early maturation at young age over cellular maintenance in second year scallops. 

 

INTRODUCTION 

Bivalves are useful models to study the influence of environmental variables on life history 

parameters such as growth, reproduction and longevity. This molluskan class offers a rich 

diversity of lifestyles and adaptations to specific environmental conditions in which 

different species have evolved distinct aging strategies (Abele et al. 2009; Philipp and 

Abele 2010).  

The catarina scallop, Argopecten ventricosus, is an active swimmer with an energy 

intensive lifestyle. It is one of the shortest-lived scallops, with a maximum lifespan 

potential (MLSP) of only 2 years (Keen 1971), characterized by fast growth and high 

reproductive output (Maeda-Martínez et al. 1993, 1997). Under favorable conditions, 

catarina scallops attain sexual maturity at an age of 4 months, and mature animals are found 

throughout the year in the populations around Baja California Sur, México (Cruz et al. 

2000; Maeda-Martìnez et al. 2001). High predation pressure, especially in young scallops 

(Abrams and Rowe 1996; Ciocco and Orensanz 2001), may select for genetic and 

physiological adaptations that support fast growth, shorten the juvenile period, and allow an 

early age of maturation that facilitates recruitment before predation strikes in the young 
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animals. According to the free-radical theory of aging (Rubner 1908; Pearl 1928; Harman 

1956), the high metabolic rates necessary to support such an active lifestyle are 

incompatible with a long lifespan because of an anticipated accumulation of oxidative 

damage that would compromise cellular functioning (Beckman and Ames 1998). Oxidative 

damage is caused by reactive oxygen species (ROS) such as superoxide (O2
•-), hydrogen 

peroxide (H2O2,), and the hydroxyl radical (HO•), produced mainly within the mitochondria 

as by-products of aerobic metabolism (Sohal 2002; Kujoth et al. 2005). Cellular protection 

mechanisms, which include the activity of antioxidant enzymes such as superoxide 

dismutase (SOD) and catalase (CAT), detoxify ROS before they cause oxidative damage. 

ROS formation and oxidative damage are, however, not only critical for cellular 

functioning and homeostasis, but can also play a role in cellular redox signaling and in the 

induction of apoptosis (Márquez 2007; Terahara and Takahashi 2008, Matés et al. 2008, 

Eisenberg-Lerner et al. 2009). Apoptosis is a highly regulated cellular self-disintegration 

program by which damaged cells are eliminated to avoid inflammation and cancerous 

developments (Edinger and Thompson 2004). This highly conserved mechanism is also 

present in mollusks (Sokolova 2009; Kiss 2010). Hence, the excessive and progressive 

accumulation of oxidative damage and loss of cellular integrity in many organisms may not 

only be linked to an increase in ROS production or a decrease of the antioxidant protection, 

but also to a progressive decrease of cellular degradation and renewal mechanisms over 

lifetime (Tomey and Ortega 2000, Philipp and Abele 2010).  

Oxidative stress has not only been related to the aging process, but also to periods of 

intense growth and breeding, and may constitute a potential mechanism explaining life 

history trade-offs (Costantini 2010). Accumulation of oxidative damage and decrease in 
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antioxidant protection during periods of intense growth and reproduction have been 

demonstrated in different species such as fruit flies, birds, sheep, and also in bivalves 

(Wang et al. 2001; Alonso-Alvarez et al. 2006, 2007; Bize et al. 2008; Nussey et al. 2009; 

Soldatov et al. 2008). Further, in ectotherms such as bivalves, investment into reproduction, 

somatic growth and cellular maintenance varies over lifetime and is strongly governed by 

environmental conditions (Vahl 1985; MacDonald and Bayne 1993; Jokela and Mutikainen 

1995) with temperature being one of the major modulators (Barber and Blake 1983).   

In the present study, we studied a single cohort of scallops through the early maturation 

phase and two subsequent spawning events, to identify the effects of aging and 

reproduction on oxidative stress parameters. Due to its short lifespan, its repeated spawning 

and its availability in aquaculture in Baja California Sur, México, the catarina scallop A. 

ventricosus allowed us to conduct a high-resolution study of oxidative stress over lifetime. 

We examined these short-lived scallops for tractable cellular aging, involving oxidative 

damage to proteins and membrane lipids, and fluorescent age pigment (lipofuscin) 

accumulation, as well as changes in antioxidant enzyme activities and the capacity to 

eliminate damaged cells by apoptosis. The fact that scallops invest so heavily into 

reproduction (Baber and Blake 1991) allowed us to specifically study the effect of 

reproduction and subsequent recovery on cellular maintenance and oxidative damage in 

different tissues, and to distinguish the effect of aging from the effect of exhaustive 

reproduction in field-reared specimens. 
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MATERIAL AND METHODS 

Experimental animals and culture conditions 

Argopecten ventricosus larvae were obtained and reared in the hatchery as described in 

detail in Guerra et al. (2011). Briefly, larvae were obtained from spawn of wild scallops and 

juveniles were reared for 3 months in the hatchery until they reached 5-7 mm shell height. 

Thereafter, approximately 10000 scallops were transported to Rancho Bueno estuary, in the 

vicinity of Bahía Magdalena in October 2007 (geographical position: 24°19´17,3´´N, 

111°25´37,3´´W). The field site chosen in the present study represents a beneficial 

environment for A. ventricosus with high chlorophyll concentrations and an optimal 

temperature range for growth (Acosta-Ruiz and Lara-Lara 1998; Sicard-Gonzàlez et al. 

2006). Scallops were kept in fine mesh bags (2 mm) fitted within 20 Nestier trays (55 x 55 

x 8 cm) suspended in a long-line system for 2 months until reaching an average size of 24 

mm (December 2007). Subsequently, animals were kept without bags in the Nestier trays 

(10-15 cm water depth). Initial stocking density was set at 500 animals/tray (equivalent to 

1700 animals/m2) for optimal growth (Maeda-Martínez et al. 1997) and adjusted to 150, 90 

and 60 animals/tray (495, 297 and 198 animals/m2) after 187, 337 and 480 days (February, 

June and December 2008) in order to keep optimal densities for growth.  

Scallops were first sampled in April 2008 at an age of 8 months. Further samplings were 

conducted at 2 month intervals until the last survivals (6 animals) were sampled at an age of 

2 years in August 2009. Surface water temperature at the cultivation site was measured 

during each sampling time with a hand-held thermometer. In addition, a temperature logger 

(WTA 32-5+37) that recorded water temperature at 60 min intervals was attached to one of 
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the Nestier trays at a depth of 10-15 cm. The temperature logger was recollected and 

replaced during field trips at monthly intervals. 

Six to twenty animals were retrieved at each sampling time and their shell height (distance 

from hinge to distal shell margin) was determined to the nearest 0.01 mm using calipers. 

The animals were then transported 114 km to CIBNOR in La Paz as described by Maeda-

Martínez et al. (2000). In the laboratory, animals were cleaned of epibiota and placed in 70 

L aquaria with filtered seawater (1 µm). Water temperature was kept at field temperatures 

measured during collection and held at a salinity of 33-36 ppt. In October 2008, only shell 

height measurements could be taken as animals died during the transportation.  

 

Gonad and muscle index 

The gonad and muscle index (GI and MI) were determined on each sampling date. Both 

indices were calculated as follows: (gonad or muscle weight/ total shell weight) × 100 (see 

Lucas and Beninger 1989; Sarkis et al. 2006). A high gonad index is indicative of mature 

gonads and a lower GI reflects the onset of gametogenesis or spent gonads. At 12 months 

of age, scallops were close to spawning, with some specimens already spawning during the 

transport from the field to the laboratory. Spawning animals were excluded from 

measurements. 
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Biochemical analysis 

One the day after collection, 4-8 scallops were sacrificed and gills, mantle, adductor muscle 

and gonad tissues dissected. The tissues were weighted and mantle, adductor muscle and 

gills frozen in liquid nitrogen for biochemical analysis.  

 

Enzyme assays  

Catalase and Superoxide-dismutase 

CAT and SOD activities were measured spectrophotometrically at 25°C in a Beckman DU 

640 spectrophotometer.  

Samples were homogenized by hand with a glass homogenizer on ice in 1:20 (w/v) in 50 

mM phosphate buffer (pH 7.5) containing 1 mM EDTA and 1 mM PMSF. Homogenates 

were centrifuged at 15000 × g for 15 min at 4°C and the supernatant immediately used for 

CAT and SOD activity measurements. 

CAT activity (EC 1.11.1.6) was determined after Aebi (1984) by recording the time of 

H2O2 decomposition, resulting in a decrease of absorption from 0.45 to 0.4 at 240 nm (1 

unit catalase). Working solution (20 mM H2O2, 100 mM phosphate buffer) and sample 

were mixed in a cuvette and the change in absorbance was recorded every 15 s for 3 min. 

Enzymatic activity was expressed as units CAT g-1 fresh weight. One unit of catalase is 

defined as the amount of enzyme necessary to reduce 1 µmlo of H2O2 per min. 

Total SOD (EC 1.15.1.1) activity was determined by the method of (Susuki 2000). The 

xanthine/xanthine oxidase (X/XO) system was used to generate O2
•- which reacts with 
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nitroblue tetrazolium (NBT). Working solution (50 mM sodium-carbonate buffer, 0.025 

mM NBT, 1mM X, 0.1 mM EDTA), XO (0.1 U mL-1 in 2 M ammonium sulfate) and 25 µL 

homogenized sample or blank were mixed in a cuvette and the change in absorbance at 560 

nm was recorded for 5 min every 30 sec. One unit of SOD activity is defined as the amount 

of enzyme necessary to inhibit the reduction of NBT by 50 %. Results are presented as 

units SOD g-1 fresh weight.  

 

Apoptosis 

Apoptosis was assessed via the caspase-3 and -7 activity modified after Liu et al. (2004). 

Frozen samples of gills, mantle and muscle were ground in liquid nitrogen and 

homogenized with a glass homogenizer (Nalgene, USA) in lysis buffer (100 mM HEPES, 

pH 7.5; 5 mM MgCl2 1 mM EGTA and 1 µg mL-1 each leupeptine, pepstatin and 

aprotinine), with 1:100 (w/v) for gills and mantle and 1:50 (w/v) for muscle. Homogenates 

were centrifuged for 15 min at 15000 × g and 4°C and apoptosis intensities in supernatants 

were determined as caspase-3 and -7 activities using a Caspase-Glo 3/7 Assay kit 

(Promega, Madison, USA). The assay provides a luminogenic caspase-3/7 substrate, 

diluted in a reagent optimized for caspase activity, luciferase activity and cell lysis. Equal 

volumes of reagents and supernatant were added to a white-walled 96-well plate and 

incubated at 25°C for 1 h. The proluminescent substrate was quenched by caspases in the 

supernatant, where it formed a substrate for luciferase. The resulting luminescence signal is 

proportional to the amount of caspase activity present in the supernatant. Samples were 

analyzed using a Multilabel Reader LB 941 TriStar (Berthold Technologies GmbH & Co. 
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KG, bad Wildbad, Germnay) which gave luminescence readings as relative light units 

(RLU). Protein concentrations were determined in the supernatant according to Bradford 

(1976) and apoptosis intensities expressed as RLU mg-1 protein. 

 

Tissue damage 

Lipid peroxides (TBARS)  

Lipid peroxides are known to produce a variety of intermediate substances including 

malondialdehyde (MDA). MDA reacts with thiobarbituric acid (TBA) under acidic pH and 

elevated temperatures. Lipid peroxides were measured using the generation of MDA/TBA 

adducts (thiobarbituric acid reactive substances, TBARS, assay) to quantify MDA 

formation. TBARS were measured following the method of Persky et al. (2000). Samples 

were homogenized by hand in a glass homogenizer on ice 1:20 (w/v) in a saline solution 

(0.9%) at pH 7.0. 250 µL of 6 % HCl (1 M) in 12.5 % trichloroacetic acid (TCA) was 

added to 250 µL of homogenate prior to the addition of 500 µL of TBA (1%). Samples 

were incubated for 10 min in a 90°C water bath, cooled to room temperature and 

centrifuged at 1500 ×g for 10 min at 4°C. TBARS levels in each sample were measured at 

535 nm. TBARS concentrations were derived from a standard curve and the values 

calculated as TBARS nmolar equivalents g-1 fresh weight. 
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Protein carbonyls  

The detection of protein carbonyls was carried out after Levine et al. (1990). Carbonyls 

react with the carbonyl specific reagent 2,4-dinitrophenylhydrazine (DNTP) and, after 

precipitation with TCA, carbonyls can be measured spectrophotometrically. Samples were 

homogenized by hand in a glass homogenizer on ice in 5 % sulfosalisilic acid and 

centrifuged at 10000 × g for 15 min at 4°C. The supernatant was discarded and the pellet 

incubated at room temperature for 1 h with 10 mM DNTP or 2 M HCl (sample blanks) and 

mixed every 15 min. After 1 h, 20 % TCA were added to samples and blanks to precipitate 

the protein and centrifuged at 10000 × g at 4°C for 5 min. The protein pellet was washed 3 

times with 1 mL ethanol: ethylacetate (1:1) resuspended in 6 mM guanidine hydrochloride 

and incubated for 30 min at 37°C for 15 min. The samples were centrifuged at 10000 × g at 

4°C for 5 min, and the supernatants of samples and blanks measured in quartz cuvettes at 

360 nm. The amount of protein carbonyls was estimated as the difference in absorbance 

between samples and blank using a molar extinction coefficient of carbonyls (ε = 22,000 

cm-1 M-1). Amount of protein carbonyls was assessed as nmol mg-1 protein measured in the 

same samples using the Bradford method (Bradford 1976). 

 

Fluorescent age pigment, lipofuscin 

Lipofuscin contents were determined by an extraction method modified after Vernet et al. 

(1988). Frozen gills, mantle and muscle tissues were ground in liquid nitrogen and 

homogenized (1:20 w/v) in chloroform-methanol solution (2:1 v/v). The homogenate was 

mixed with 100 mM MgCl2 (1 mL per each 4 mL of chloroform-methanol) solution. After 
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10 min centrifugation at 2000 × g and 0°C, the chloroform phase was collected and mixed 

with distilled water (1 mL per 4 mL initial chloroform-methanol). After 10 min at 2000 × g 

and at 0°C, the chloroform phase was again collected and could be measured in the 

fluorometer. An emission spectrum was obtained at an excitation wavelength of 350 nm. 

The fluorescence intensity of each sample was determined at an emission maximum of 536 

nm for gills, 434 for mantle and 431 for muscle. According to Hill and Womersley (1991), 

lipofuscin concentrations were expressed as relative fluorescent intensities (RFI) using 0.1 

µg quinine sulphate per mL 1N H2SO4. 

 

Standard metabolic rate 

Standard metabolic rates (SMR) of 6-8 animals were measured at each sampling event 

except of August 2009 as not enough animals remained alive to conduct both SMR and 

biochemical analyses. SMR estimates maintenance requirements of resting, unstressed 

organisms that are not digesting food and are at a stable temperature within its optimal 

range (Rolfe and Brown 1997). Oxygen consumption of individual animals was measured 

with fiber-optical oxygen optodes of 50 µm diameter (PreSens GmbH, Regensburg 

Germany) in 700 mL chambers connected to a multi-channel flow-through system (60 mL 

min-1). Prior to respiration measurements, A. ventricosus shells were cleaned from epibionts 

and animals maintained without food for 2 days, to eliminate effects of feeding on 

metabolic rates. Before starting the SMR measurements, animals were allowed to acclimate 

in the chambers for 2 h in filtered seawater at the respective temperature and salinity 

condition. Experiments had been previously run to assure that this time was sufficiently 
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long to allow the animals to accommodate to the measuring system. Oxygen optodes were 

calibrated using air-bubbled water (100 % O2 = 21 kPa) and water saturated with sodium 

sulfite to deplete oxygen (0 % O2 = 0 kPa). Respiration rate was calculated from the 

difference in oxygen values measured between the in- and out-flowing water over 5 

minutes. Three replicate measurements were made per individual at each sampling time. A 

blank chamber was run without animals to correct for microbial respiration. 

After the last measurement, scallops were dissected, and soft tissue dry mass determined 

after 2 days at 60°C. Percent oxygen was transformed to micromoles of dissolved oxygen 

in seawater, using known values of oxygen solubility according to Benson and Krause 

(1984) and converted to mg O2, expressed as the expected rate for a standard scallop (2 g 

mean dry mass). 

 

Statistics 

The effect of tissue size on antioxidant enzyme activities, apoptosis, protein carbonyls, 

TBARS, lipofuscin and metabolic rates was tested by power regression of the respective 

parameter on wet tissue mass (antioxidants, apoptosis, protein carbonyls, TBARS 

lipofuscin) or whole animal dry tissue mass (metabolic rates). One way ANOVA (Kruskal-

Wallis test for non-Gaussian distribution) with post-hoc Tukey´s (Dunn´s) was used to 

analyze the effect of age on tissue-specific antioxidant enzyme activity, oxidative damage, 

lipofuscin content, apoptosis intensities and metabolic rate. All data were tested for 

normality and homogeneity of variance prior to analyses.  
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RESULTS 

Field temperature 

Monthly field temperature means, minimal and maximal values are shown in Fig. 1. In both 

years (October 2007-August 2009), water temperature followed a seasonal cycle with 

decreasing temperatures from October to March, followed by a steady increase between 

April and September. The greatest monthly temperature variability was recorded in July of 

both years with temperatures varying over 14°C. The smallest monthly variability was 

recorded in February 2008 and 2009 with temperatures varying in a range of 4°C during 

one month. 
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Fig. 1: Water temperature at the field site Rancho Bueno between October 2007 and August 2009 
over A. ventricosus lifetime (age in months). Each line represents the maximal, the mean and the 
minimal surface water temperature measured at monthly intervals (water depth: 10-15 cm). The 
lowest and the highest temperature variability within one month were recorded in February and 
July, respectively. Squares indicate temperatures at sampling dates.  
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Somatic growth, shell height, muscle and gonad index  

The gonad index (GI) reached peak values in August 2008 and June 2009 at an age of 12 

and 22 months (7.24 and 7.69 % GI respectively) (Fig. 2A). Minimum GI values were 

recorded at 16 and 18 months of scallop age (2.44 and 1.92 % GI respectively) during 

winter (December 2008 to February 2009). The muscle index showed the inverse pattern to 

GI (Fig. 2A). Scallops more than doubled their somatic weight between 8 and 12 months of 

age (0.88 g to 2.1 g dry weight). Thereafter, somatic weight increased continuously but at a 

lower rate than in the first year (Fig. 2B). Shell height followed the same pattern as somatic 

weight (Fig. 2B).  
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Fig. 2: (A) Muscle (MI) and gonad (GI) index of A. ventricosus, calculated as % muscle or gonad 
weight to empty shell weight.(B) Change in A. ventricosus somatic tissue: tissue dry weight without 
gonad (g dry weight), and scallop size: shell height (mm), over lifetime. Data are presented as 
means ± SD (tissue dry weigh, MI and GI: N = 6-8; shell height N= 6-20). The slopes of tissue dry 
weight as well as shell height differed significantly between the first and the second year (tissue dry 
weight p = 0.03; shell height p = 0.004 ANCOVA). Tissue dry weight 1st year = - 1.099 × age + 
0.35 r2 = 0.45; 2nd year = 0.32 × age + 0.13 r2 = 0.54. Shell height 1st year = 19.27 × age + 2.5 r2 = 
0.51; 2nd year = 37.51 × age + 1.47 r2 = 0.44. Grey underlay highlight maturation periods.  
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Enzyme activities 

Antioxidant enzymes 

Figs. 3A, B and 4A, B show CAT and SOD enzyme activity in gill, mantle and muscle 

tissues of field reared A. ventricosus. CAT activity was higher in gills, followed by mantle 

and lowest in muscle (ANOVA p < 0.0001), whereas SOD activity did not differ between 

tissues. CAT activity decreased significantly with size (tissue wet mass) in all tissues. The 

size dependence can be described as a power functions for each tissue: 

CAT (gills): 2.73 × W -0.42      r2 = 0.2      N = 56 

CAT (mantle): 2.74 × W -0.64      r2 = 0.2      N = 59 

CAT (muscle): 2.02× W -0.54      r2 = 0.14      N = 59 

In order to remove the size effect, CAT activity was corrected according to:  

CAT = CAT´(Wmean/W)b                                              Eq. (1) 

where CAT and CAT´ are corrected and observed values respectively, W is the observed 

tissue wet mass, Wmean the mean tissue wet mass of the whole data calculated for a 

standardized animal with mean tissue weight of 1.4 g for gills, 2.5 g for mantle and 4.4 g 

for muscle, and b the calculated scaling coefficient for each tissue (gills = -0.42; mantle = -

0.64 and muscle -0.54).  

Standardized CAT activity in gills and mantle was highest at 12 months of age when 

animals were close to spawning, which was significant only in gills (Kruskal-Wallis p < 

0.0001; Dunn´s p < 0.05). In gills, mantle and muscle, CAT activity reached the lowest 
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values in old scallops when compared to the youngest animals (Kruskal-Wallis p < 0.0001; 

Dunn´s p < 0.05, Fig. 3A, B). SOD activity in gills and mantle did not follow a clear pattern 

with increasing scallop size or age. Only in muscle, SOD activity was significantly lower in 

24 compared to 8 month old scallops (Kruskal-Wallis p < 0.0001; Dunn´s p = 0.05, Fig. 

4A, B). 
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Fig. 3: Catalase (CAT) activity in (A) gills and mantle and (B) muscle of A. ventricosus over 
lifetime. CAT activity decreased significantly with size (tissue wet mass) and therefore values was 
standardized to the average mean tissue fresh weight of 1.4 g for gills, 2.5 g for mantle and 4.4g for 
muscle using a power function (see text). Data are presented as means ± SD (N = 4-8). * 
Significantly different from 8 months old scallops (Kruskal-Wallis p < 0.0001; Dunn´s p < 0.05) 
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Fig. 4: Superoxide dismutase (SOD) activity in (A) gills and mantle and (B) muscle of A. 
ventricosus over lifetime. Data are presented as means ± SD (N = 4-8). * Significantly different 
from 8 months old scallops (Kruskal-Wallis p < 0.0001; Dunn´s p < 0.05). 
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Apoptosis 

Intensities of apoptotic cell death measured as caspase 3 and 7 activity in gill, mantle and 

muscle tissues of scallops are shown in Fig. 5A, B. Relative intensities were within the 

same range in all tissues. Highest intensities were measured at 12 months of age in all 

tissues. Thereafter, apoptotic intensities decreased markedly until 16 months of age and 

then remained low throughout the rest of the lifetime (Kruskal-Wallis p < 0.0001; Dunn´s, 

p < 0.05). 
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Fig. 5: Apoptosis intensities in (A) gills and mantle and (B) muscle of A. ventricosus over lifetime. 
Data are presented as means ± SD (N = 4-7). * Significantly different from 8 months old scallops 
(Kruskal-Wallis p < 0.001; Dunn´s p < 0.05). 
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Tissue oxidative damage 

TBARS, protein carbonyls and lipofuscin 

Figs. 6A, B and 7A, B display the concentrations of TBARS and protein carbonyls in 

different tissues of A. ventricosus. TBARS concentrations were similar in all tissues 

whereas protein carbonyl values were higher in gills than in mantle and muscle (ANOVA p 

< 0.001). Only in muscle, TBARS concentration decreased with increasing size. This 

relation can be described by the power function: 

TBARS (muscle): 1.12 × W -0.59     r2= 0.11     N= 56  

Size correction was performed in the same way as described for CAT activities (Eq. 1) 

using the scaling coefficient of -0.59 and the mean muscle wet mass (4.4 g). Only in 

muscle, standardized TBARS concentrations were slightly increased in 12 month old 

scallops. In all three tissues, TBARS concentration decreased at 16 months of age and 

levels remained lower in the second compared to the first year (Kruskal-Wallis p < 0.001; 

Dunn´s < 0.05) (Fig. 6A, B). Protein carbonyls in gills, mantle and muscle peaked at 12 

months of age (Kruskal-Wallis p < 0.0001; Dunn´s p < 0.05). Only in gills, protein 

carbonyls increased again during the second year, but levels were not significantly different 

between the youngest and the oldest scallops (Fig. 7A, B).  
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Fig. 6: Lipid peroxide (TBARS) concentration in (A) gills and mantle and (B) muscle of A. 
ventricosus over lifetime. TBARS concentration in gills and mantle are expressed as µmol g -1 wet 
mass while concentration in muscle was standardized to a mean tissue fresh weight of 4.4 g (see 
text). Data are presented as means ± SD (N = 4-7). * Significantly different from 8 months old 
scallops (Kruskal-Wallis p < 0.001; Dunn´s p < 0.05). 
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Fig. 7: Protein carbonyl concentrations in (A) gills and mantle and (B) muscle of A. ventricosus 
over lifetime. Data are presented as means ± SD (N = 4-8). * Significantly different from 8 months 
old scallops (Kruskal-Wallis p < 0.0001; Dunn´s p < 0.05). 

 

Lipofuscin 

Lipofuscin content was highest in gills with lower concentration in mantle and muscle 

(ANOVA p < 0.0001) (Fig. 8A, B). During the last two months of lifetime, lipofuscin 

concentrations increased pronouncedly in all tissues. In gills and mantle, values measured 
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in 24 month old scallops were significantly higher than during the first measurement at 8 

months of age (Kruskal- Wallis p < 0.005, Dunn´s p <0.05). 
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Fig. 8: Lipofuscin content in (A) gills and mantle and (B) muscle of A. ventricosus over lifetime. 
Data are presented as means ± SD (N = 4-6). * Significantly different from 8 months old scallops 
(Kruskal-Wallis p < 0.005; Dunn´s p < 0.05). 
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Standard metabolic rates 

Whole animal respiration vs. size increased with the power function:  

VO2 = 0.1× W 0.68      r2= 0.5     N= 54  

Oxygen consumption was standardized according to Eq. (1) to mean scallop dry mass (2 g) 

using the scaling coefficient (0.68), in order to exclude the effect of size. Standardized 

oxygen consumption was higher in the youngest (8 months) compared to old scallops (22 

and 24 months) (Kruskal-Wallis < 0.05; Dunn´s p < 0.05, Fig. 9A). In order to see whether 

there is a relationship between metabolic rate and seasonal water temperature, size 

corrected metabolic rates were plotted against mean monthly field temperatures at which 

the oxygen consumption measurements were conducted (Fig. 9B) and no temperature 

dependence of metabolic rates observed. In contrast, reproductive state seems to influence 

oxygen consumption to a greater extent. Metabolic rates were higher during the periods of 

gonad-build up than in scallops that were close to spawn or in post-spawned animals (Fig. 

9B).  
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Fig. 9: Respiration rates (mg O2 h -1 standard animal-1) of A. ventricosus (A) over lifetime and (B) at 
mean field temperatures at the respective sampling event. Open triangles indicate oxygen 
consumption in 10 and 20 months old scallops, during the period of gonad build up. Open 
rectangles indicate oxygen consumption in 12 and 22 months old scallops, that were close to spawn. 
Circles indicate immature or post-spawned animals (8, 16, 18, 24 months of age). Oxygen 
consumption rates were standardized to a mean tissue weight of 2 g dry weight using a power 
functions (see text). Values are presented as means ± SD (N= 6-8). * Significantly different from 8 
months old scallops (Kruskal-Wallis p < 0.05; Dunn´s p < 0.05). 
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DISCUSSION 

Reproduction and the susceptibility to oxidative stress in A. ventricosus 

Protein carbonyl concentrations in gills, mantle and muscle, and TBARS levels in muscle 

increased steeply during the first reproductive event at 12 months of age and decreased 

again following spawning. This dramatic increase in oxidative damage in mature scallops 

coincided with the peak in apoptotic intensity in gills, mantle and muscle. The high levels 

of oxidative damage as well as the steep increase in apoptosis intensities illustrate the high 

costs of reproduction and the need to remove damaged and potentially hazardous cells in 

first year animals. The link between apoptosis and oxidative damage is not surprising, as 

ROS and related oxidative damage products are ascribed an important role in initiating 

apoptotic pathways (Ushida 2007, Mátes 2008). A specific function of apoptosis lies in the 

regulation of germline development; especially with respect to the elimination of residual 

or damaged cells in testis and ovaries after gametogenesis. This was already demonstrated 

for teleost fish (Callard et al. 1993; Wood and Van der Kraak 2001; Terrones et al. 2004). 

Interestingly, our data for A. ventricosus indicate apoptotic mechanisms to be enhanced in 

gills and mantle, tissues not directly involved in reproduction. As suggested by Soldatov et 

al. (2008) in a study of blue mussels, respiratory and filtering organs support increased 

respiration linked to gametogenesis, which may enhance ROS production and oxidative 

damage in these tissues. In A. ventricosus, elevated oxygen consumption indicates 

enhanced energy demand as scallops begin to grow gonads which decrease again shortly 

before spawning. Protein carbonyl concentrations in mantle and gills increased during this 

time of intensive growth and gonad development in spite of the induction of antioxidant 
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enzymes, especially in the gills. Gills seem especially affected by enhanced oxygen uptake, 

which raised protein carbonyl levels to 4-times higher values than in mantle and muscle.  

Absence of antioxidant enzyme induction and oxidative damage marker accumulation in 

muscle of mature scallops may relate to the function of this tissue during the reproductive 

cycle. During maturation, scallop muscle mass is used as energy reserve for gonad 

development (Barber and Blake 1991; Guderley and Pörtner 2010), which explains the 

inverse relationship of gonad and muscle index in A. ventricosus (Fig. 2A). In a laboratory-

reared subgroup from the same scallop population, we showed that the energy mobilization 

from adductor muscle towards the gonads conjunctly decreases activity of the metabolic 

enzymes citrate synthase and octopine dehydrogenase (Guerra et al. in prep.) which is 

likely to diminish the capacity for escape swimming as shown for other scallops (Brokordt 

et al. 2000 a, b). This decrease seems to be accompanied by an absence of antioxidant 

induction and increased oxidative damage as observed for A. ventricosus. 

 

Reproduction has a temperature independent effect on metabolic rate and oxidative 

stress parameters 

In the first year, gonad maturation occurred during a period of rapid and pronounced rise in 

ambient temperature. We were therefore not sure, whether or not some of the oxidative 

stress effects observed during this reproductive period was due also to thermal stress 

(Viarengo et al. 1991, Power and Sheehan 1996, Wilhelm Filho et al. 2001). Aerobic 

metabolic rates were, however, not exclusively, or to a major extent, dependent on 

temperature in our scallop culture, which may be due to the scallops being kept in and even 
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above their thermal optimum range (16-25°C, Sicard-González et al. 1999), where 

temperature has only little (optimum) or even a negative (above optimum) effect on 

respiration (Poertner et al 2002). In fact, a major increase in oxygen consumption in 8 to 10 

months old scallops occurred before temperatures began to rise steeply, to cover costs of 

gonad growth, as earlier reported for Argopecten irradians (Bricelij 1987). In this short-

lived (~ 2 years) bay scallop a significant increase in oxygen uptake was associated with 

gamete production.  

 

Trade-off between reproduction, cellular maintenance and aging in A. ventricosus 

A. ventricosus reproduces and grows fast in the first year of lifetime (Maeda-Martínez et al. 

1997). Afterwards, somatic growth in A. ventricosus is reduced as more energy is allocated 

to gonad development (Villalaz 1994). In this study, somatic growth diminished after the 

first year, while investment into gonad development remained similar in the first and 

second year of scallop lifetime (GI of 7.69 % in the second compared to 7.24 % in the first 

year). Assessment of GI is, however, only a rough approximation of the reproductive effort, 

and larval quality and quantity need to be measured in both years to assess whether the 

second reproductive effort is equally successful as the first one. 

Diminished somatic growth in the second year was moreover connected to reduced somatic 

maintenance (decrease in apoptotic intensity and CAT activity). Specifically the decrease in 

apoptotic cell removal may relate to a prolonged prevalence of defective cells and cell 

components that can exacerbate oxidative damage. Oxidized proteins and lipids can build 

cross linkages, forming lipofuscin that can hardly be degraded and, consequently, 
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accumulates in the cell (Terman and Brunk 2004). Enhanced accumulation of age pigment 

granula in the cells can be interpreted as stocking of garbage that compromise cellular flux 

processes and physiological functioning, including mitochondrial energy production (Kurz 

2007, 2008). Indeed, lipofuscin increased steeply within the last two months of scallop 

lifetime and was the only stress/age marker that was finally higher in older compared to 

young scallops. Contrary, protein carbonyls and lipid peroxides remained low even 

following maturation in the second year. Both markers, thus, respond to acute oxidative 

stress occurring during enhanced metabolic activity as already found in fish (Kammer et al. 

2011), and slower metabolism and presumably lower ROS production in the second year 

may explain the lower levels of oxidative damage at the second half of scallop lifetime. The 

fact that lipofuscin content increased in the late survivors reflects reduced investments into 

cellular waste removal in old specimens, and indicate that the lack of cellular renewal may 

be actually more important for damage accumulation than an increase of prooxidative 

processes at the end of life (see also Yin and Chen 2005).    

 

Levels of antioxidant activity and oxidative damage differ between short-lived A. 

ventricosus and longer-lived bivalves 

The oxidative stress theory of aging predicts that the differences in the rate of aging among 

species are attributable to the differences in oxidative damage accrual (Harman 1956, Perez 

et al. 2009). Hence, one of our hypotheses was that the active lifestyle characterized by the 

early onset of reproduction, fast growth, and swimming activity of A. ventricosus results in 

a short lifespan, caused by fast accumulation of oxidative damage. Indeed, A. ventricosus 
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exhibit higher absolute protein carbonyl concentrations in mantle and gills when compared 

to longer-lived bivalve species, which however, cannot be attributed to a low investment 

into cellular defense mechanisms as, at least, apoptosis intensities and SOD activity, are 

also higher in A. ventricosus (Table 1). High SOD activities in mantle and gills correspond 

to the higher metabolic rates of A. ventricosus compared to the longer-lived bivalves 

(Philipp et al. 2005, 2006 Begum et al. 2009). SOD detoxifies superoxide (O2•-), the first 

ROS product formed in mitochondria, and the activities of this enzyme are known to be 

strongly correlated to species metabolic rates (Abele and Puntarulo 2004; Abele et al. 

2007). Nevertheless, high SOD activities do apparently not compensate the resulting 

oxidative damage and, indeed, elevated activity of only one antioxidant enzyme is not 

sufficient to prevent oxidative damage accumulation (Costantini and Verhulst 2009, Horak 

and Cohen 2010). In contrast to SOD, CAT activity in A. ventricosus is in the same range 

compared to the longer lived (~ 8 years) and also actively swimming scallop A. opercularis 

but 6 times lower than in the long-lived (~ 400 years) quahog A. islandica (see Table 1). 

Further, CAT but not SOD activity declines steeply in older bivalves (Sukhotin et al. 2002; 

Philipp et al. 2005; Ivanina et al. 2008; Abele et al. 2008) indicating that the decreased 

protection against cellular H2O2 formation may be a major cause for age related oxidative 

stress. 

The accumulation rate of the irreparable damage that remains after all repairing and 

removal mechanisms have acted, may be more essential to disentangle real differences in 

aging rate between species. Whereas A. ventricosus control lipofuscin levels in young 

animals and accumulate this age pigment only in the oldest scallops, in the longest-lived 

bivalve known so far, the ocean quahog Arctica islandica, lipofuscin concentrations 
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increased between young (5-11 years) and older (110-192 years) animals (Strahl et al. 

2007), but reached a steady-state within the older (110-192) age class. It is worth noting 

that no older specimens between 200 and 400y are available and is still questionable if 

lipofuscin maintain the seady state levels also until the end of the quahog´s lifespan. The 

ocean quahog is characterized by constancy of cellular maintenance mechanisms 

(antioxidant activity and apoptosis rates in all tissues except for the heart) up to at least 

200y of lifetime, and it keeps the accumulation of protein carbonyls low also following 

sexual maturation (Abele et al. 2008; Strahl and Abele 2010). This contrasts the life 

strategy in short lived A. ventricosus that supports cellular maintenance, reproduction and 

fitness during the first year at the costs of fast damage accumulation (steep increase in 

lipofuscin) in last survivors. A. ventricosus is therefore a good example for the evolutionary 

theory of aging, which predicts that efficient somatic maintenance conserves organismal 

fitness only as long as there is another reasonable chance to survive and reproduce in the 

wild (Kirkwood and Austad, 2000). Ridgway et al. (2010) already described the inverse 

relationship between developmental schedules (time to maturity and growth rate) and 

longevity in different bivalves. In A. ventricosus, high predation pressure in the field 

apparently supports selection of early fitness at the cost of rapid aging after the second 

reproductive event. 
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Table 1:. Comparison of aging parameters between bivalve species with different lifestyles 
and maximum lifespan.  

 A.ventricosus A. opercularis A. islandica M. arenaria 

Maximum 

lifespan 
~2 years1 ~ 10 years2 ~ 350years3 ~ 13 4 

Lifestyle swimming swimming burrowing burrowing 

Earliest age at 

sexual maturity 
4 months 5 1 year 6 7 years 7 1 year 8 

Investigated age 

range 
8 months - 2years 1-5 years 7-192 years 2-8 years 

Location Baja California 

Sur (Pacific Coast)

Isle of Man 

 (Irish Sea) 

Iceland 

 (Atlantic Ocean) 
The Netherlands

SOD     

mantle 5681.1 ± 1674.3 379 ± 169 9 658.2 ± 364.2 10 956.3 ± 194.2 12 

gills 5720.1 ± 1380.5 / 810 ± 406.510 / 

CAT     

mantle 393.4 ± 121.6 384 ± 699 2330.5 ± 452.410 136.5 ± 44.112 

gills 622.7 ± 158.5 / 3526.2 ± 740.310 / 

Protein 

carbonyls 
    

mantle 2.4 ± 0.7 1.0 ± 0.19 0.58 ± 0.46 11 1.1 ± 0.312 

gills 7.7 ± 1.6 / 1.14 ± 0.54 11 / 

Apoptosis     

mantle 491.5 ± 292.5 209.9 ± 126.4 10 73.7 ± 51.810 / 

gills 451± 289.6 570.5  ± 236.710 326.3 ± 146.1 10 / 

muscle 383.1 ± 270.9 487.9 ± 571.610 47.8 ± 39.210 / 
1) Keen 1971, 2) Ansell et al. 1991, 3) Wanamaker et al. 2008, 4) Strasser 1999, 5) Cruz et al. 
2000, 6) Aravindakshan 1955, 7) Thorarinsdottir and Steingrimsson 2000, 8) Coe and Turner 
1938, 9) Philipp et al. 2006, 10) Strahl and Abele 2010 (age range for apoptosis: 7-148 years, 
age range for CAT and SOD: 29-141), 11) Strahl et al. 2007 (age range for protein 
carbonyls: 110- 192years), 12) Philipp et al. 2005. 
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CONCLUSIONS 

In conclusion, we have shown that oxidative damage does not increase steeply and 

continuously throughout the short lifespan of the scallop A ventricosus. The short-term 

markers of oxidative damage, protein carbonyls and TBARS, increase transiently in 

response to enhanced growth rates and reproduction events in the first and to a lesser extent 

in the second year of life. Antioxidant capacity did not fully counterbalance ROS 

formation, and oxidative damage accumulation in mantle muscle and gill tissues during 

gonad maturation in the first year, which may however be necessary to trigger the removal 

of damaged cells through programmed cell death. The decrease in apoptosis intensities and 

in CAT activity during the second year of life indicate aging in second year scallops and 

may be causal for the observed rapid accumulation of the undegradable fluorescent age 

pigment, lipofuscin, in the last survivors. Altogether, this seems to be part of the life 

strategy of A. ventricosus favoring rapid growth and early maturation at young age over 

cellular maintenance and longevity in old scallops. 
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General discussion 

Within this synoptic discussion, I will highlight the central findings of publication 1 and of 

the manuscripts 1-3. In the first part of the discussion, I focus on the link between oxidative 

stress and aging in A. ventricosus. Then I concentrate in the specific extrinsic (temperature 

and predation) and intrinsic (reproduction) factors that influence individual life history 

traits and population lifespan and discuss if oxidative stress plays an underlying modulatory 

role. In the last part, I discuss the limitations of long-term laboratory studies and highlight 

the importance of conducting field experiments within an ecological meaningful context.  

 

5.1.  Is oxidative stress a driver of aging in Argopecten ventricosus? 

The oxidative stress theory of aging has been one of the dominant mechanistic theories 

explaining how multicellular organisms age and why they die (Speakman and Selman 

2011). Despite substantial correlative evidence among antioxidant capacities, oxidative 

damage accrual and aging, the role of oxidative stress as a determinant of lifespan is still a 

matter of debate (Buffenstein et al 2008). 

The high absolute levels of protein carbonyls conjunctly to a high metabolic rate and the 

short lifespan of A. ventricosus compared to other bivalve species (manuscript 3) in part 

support the oxidative stress theory of aging. However, the fine-tune analysis of oxidative 

stress throughout the lifespan of A. ventricosus reveal that young (1 < year) A. ventricosus 

scallops acquire more TBARS (lipid peroxidation products) and similar protein carbonyls 

in gill, mantle and muscle tissues compared to the old individuals (> 1 year) (manuscript 3). 

Moreover, the increase in the antioxidant capacities did not appear to prevent the 
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accumulation of damage in this species weather if oxidative stress is induced by thermal 

stress, swimming activity or reproduction (manuscript 1, 2 and 3). In the contrary, levels of 

antioxidants tend to be rather positively related with levels of oxidative damage 

independent of environmental factors or reproductive strage. These results are in conflict 

with the oxidative stress theory that predicts that the steep increase in oxidative damage 

accrual is linked to a precipitated loss of antioxidant capacities in short lived species. The 

fact that antioxidant capacities and oxidative damage may react in an orchestrated manner 

as observed for A. ventricosus is in line with recent findings that proposed that it is 

certainly a selective advantage of organisms to counterbalance ROS and to protect cells 

against oxidative stress by inducing antioxidant capacities. However, a complete 

neutralization of ROS is not desirable (Buffenstein 2008; Horak and Cohen 2010; 

Pamplona and Costantini 2011). This is because ROS and certain amounts of oxidative 

damage are necessary to induce a stress response in the cells, which ultimately activates 

other processes that are also primordial to maintain cellular homeostasis. Contrary to the 

traditional view that cells of longer-lived species are better protected by high antioxidant 

capacities, the higher levels of SOD in A. ventricosus when compared to longer-lived 

species (manuscript 3) may be related to relative higher respiration rates, compared to 

respiration rates of 59 bivalve species (Figure 5.1) and the need to dismutate superoxide 

radicals to H2O2.  
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Figure 5.1: Temperature adjusted (10°C) mass specific respiration rates (MSR J/J/d) versus body 
mass M (J) modified after Begum et al. 2009. Black dots represent MSR from the longest-lived 
bivalve (Arctica Islandica record lifespan ~400 y N = 234). Grey dots represent MSR from 58 
bivalve species (N= 3583) and red dots MSR of A. ventricosus reared in the field over the study 
period October 2007-August 2009 (N = 54). Respiration rates in A. ventricosus were measured at a 
temperature around 20°C (manuscript 3). We used a Q10 of 2.06 to estimate our data at 10°C. To get 
the Q10, respiration rates of a standard bivalve was calculated at 10°C and at 20°C using linear 
regression of log (MSR) on log (M) over the data of the 59 bivalve species represented by the grey 
and black dots and the straight line. The parameters of the linear regression are described in Brey 
(2001). Body mass was converted to Joules (J) (1 mg dry weight = 22.3 Joules, Brey 2001) and 
respiration rates to Joules per day (J/d) (1 mg O2 = 14.1, Joules Elliot and Davison 1975). 

 

It was previously reported that H2O2 can initiate a variety of signaling cascades and it is the 

most important signaling radical (Foman et al. 2010). The generation of H2O2  by SOD, an 

enzyme that is known by its fast catalytic velocities (109 M-1 s-1 Forman et al. 2010), as well 

as the subsequent enzymatic degradation by catalase, and gluthation peroxidase makes this 

radical a suitable second messenger. The decrease of catalase in the older individuals did 

not directly lead to an increase in levels of oxidized proteins or lipids but the decrease of 
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this antioxidant could be an indicator of a deregulation in signaling pathways. In fact, 

recent studies suggest that the disruption of signaling processes in the cell is more likely to 

serve as a pacemaker of the aging process (Buffenstein 2008; Metcalfe and Alonso-Alvarez 

2010). In mammals, transcription factors such as NFkB and NFk2 are known to be regulated 

by their fine tuning oxidation that allow them to bind in DNA and coordinate a variety of 

“stress” genes that finally induce antioxidant responses, marshal inflammatory responses, 

and resistance to infections and diseases (Martindale and Holbrook 2002; Lane 2003; 

Safdar et al. 2011). Furthermore, the oxidation of special lipids such as the mitochondrial 

lipid cardiolipin triggers programmed cell death (apoptosis) (Mcmillin and Dowhan 2002). 

In A. ventricosus, apoptosis clearly appeared to be an elemental cell maintenance 

mechanism for elimination of excessive oxidative damage (manuscript 3). Apoptosis 

intensities in mantle, muscle and gills are comparable to intensities found in the short lived 

scallop A. opercularis (recorded lifespan ~ 8 years), which in that species, are combined 

with high cell proliferation rates (Strahl and Abele 2010). High rates of cellular removal 

and renewal in scallops that have a higher scope of activity and high lifetime metabolic 

rates may be more important than antioxidant protection in order to conserve cellular 

homeostasis compared with sessile and less active bivalve species that exhibit lower 

turnover rates (manuscript 3, Strahl and Abele 2010). According to Yin and Chen (2005), it 

is the remaining oxidation products after all repairing and removal mechanisms have acted, 

e.g the non-degradable cross-linkages such as lipofuscin and non-enzymatic glycation, that 

may strongly contribute to a vicious cycle that increasingly interferes with cellular 

functioning (lysosomal autodigestive capacity) and affect cellular homeostasis (Terman and 

Brunk 2004; Jung 2010). Even if protein carbonyls and TBARS concentrations ranged at 

higher or similar levels in young compared to old A. ventricosus individuals, reduced 
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apoptotic intensities during the second year of scallops´ lifetime, lowered their removal 

capacity indicating that old individuals have a lower tolerance threshold for “cleaning” 

oxidative damage. Indeed, lipofuscin was the only marker that accumulated steeply in the 

last survivors (at 20-24 months of age). It is worth noting that lipofuscin increased only just 

at the end of scallop lifetime so that only when the very oldest (24 months of age) 

individuals are compared to the youngest (8 months of age) individuals, a significant 

difference in tissue specific lipofscuin concentration can be detected (manuscript 3). This 

reflects the fact that A. ventricosus scallops succeed to keep waste accumulation at a steady 

state level over the most part of their life despites their short lifespan and active lifestyle 

and support surprising findings of the short-lived scallop, Aequipecten opercularis. Indeed, 

A. operularis exhibits a marginal decrease in mitochondrial functions (assessed as low and 

constant mitochondrial H2O2 generation rates) with age (Philipp et al. 2006). The author 

suggested that high mitochondrial functions allow the queen scallop to “keep as fit as 

possible and evade extrinsic mortality from predators as long as possible” (Philipp 2006). 

In that study however, no queen scallops older than 5 years could be obtained because of 

stock over-exploitation in the Irish sea. Hence, it remained unknown if mitochondrial 

function is affected in the very oldest individuals (Philipp 2006). In contrast, A. ventricosus 

scallops could have been raised until the end of the record lifespan known for this species 

(~ 2 years) in a predator-free environment. Under these conditions, it was possible to 

demonstrate that in this species, but maybe also in other scallop species, only if last 

survivors of a population are included an increase in lipofuscin becomes evident. This 

situation is often not given in field studies due to the impracticability to sample the oldest 

specimens and to discern physiological parameters across all age classes (Abele et al. 

2009).  
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In light of the results obtained for A. ventricosus as model species, I conclude that oxidative 

damage does not accumulate inexorably regardless of time of life. In the young scallops, 

damage is transient and should be eliminated through processes such as apoptosis before 

the undegradable cross-links (lipofuscin) start to build and accumulate. Thus, I suggest that 

for the process of aging, it is less important to determine whether animals have low or high 

levels of oxidative damage but rather how animals deal with these damage products and the 

implications that certain accumulation has for the whole individual. In accordance with this 

idea, old (> 1 year) A. ventricosus scallops do not accumulate more oxidative damage 

products but they rather fail to remove these oxidized products allowing formation and 

accumulation of lipofuscin within the cells. Lipofuscin represents only one of the results of 

aging but the disruption of signaling pathways by destabilization of redox processes during 

aging may lead to other negative effects on homeostasis. Even if it would be too anticipated 

to make a direct link between the increase of lipofuscin and scallops´ lifespan, lipofuscin 

certainly contributes to loss of cellular redox homeostasis and is an indicator of aging.  

As Argopecten ventricosus showed to have a great flexibility in how it deals with oxidative 

challenges over time in its natural environment, the question arising is how extrinsic 

(temperature, predation) and intrinsic (reproduction) factors modulate tissue specific 

oxidative stress patterns and to which extent this is linked with individual survival. In order 

to answer these questions, experiments were conducted under controlled laboratory 

conditions where changes can be attributed to the specific independent variables: 

temperature, predation and reproduction.  
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5.2.  Temperature, metabolic rate and the rate of living  

Argopecten ventricosus, and ectotherms in general, cannot regulate their body temperature 

in accordance with surrounding water temperature. As a result, A. ventricosus increased the 

metabolic rates conjunctly with the exposure to constantly elevated but sublethal 

temperatures, so that respiration and food absorption rates ranged over 20-50 % higher in 

warm exposed individuals compared to the control group (manuscript 1). Concomitantly to 

the higher respiration rates, warm exposed scallops exhibited also higher mortality rates 

(Publication 1). This notion can be incorporated into the rate of living theory (Pearl 1928) 

in which is proposed that the duration of life varies inversely to the rate of metabolic rates 

in the sense of “living fast dying young” (Speakman et al. 2002).  

The experimental design in this thesis circumvents one major critic of previous tests of the 

theory, specifically the failure to simultaneously determine metabolic rate conjunctly with 

lifespan within individuals of the same species and under the same environmental 

conditions (Speakman et al. 2002). To achieve this aim, metabolic rates were 

experimentally increased and impact on lifespan was assessed in different experimental 

groups. Our initial prediction was that an acceleration of the rate of living would inevitably 

increase the oxidative damage accrual compromising cellular homeostasis in a great extent 

leading to the enhanced mortalities (Pearl 1928; Harman 1956). Indeed, the high damage 

accrual measured in mantle, muscle and gill tissues after 5 months exposure may have 

contributed to the higher mortalities observed in warm exposed scallops. According to 

Salmon et al. (2010), oxidative stress has little impact in modulating the aging process and 

determining lifespan under natural and favorable conditions. However, under stressful and 

unfavorable conditions, as in our temperature experiment, the ability to resist oxidative 
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stress might be reduced which compromise cellular homeostasis and individual survival to 

a greater extent.  

Even if there is a conspicuous link, it would be incorrect to conclude that the elevated 

oxidative damage found in scallops after 5 months exposure is attributed to the elevated 

metabolic rates per se. In situations where oxygen is available, energy supply and demand 

is balanced and mitochondria are well coupled, oxidative phosphorylation proceeds more 

rapidly at higher metabolic rates. This is accompanied by a rapid fall of the membrane 

potential and even a reduction of superoxide formation and no increase in ROS induced 

oxidative damage relative to the oxygen consumption (Buettemer et al. 2010). Higher 

metabolic rates may go hand in hand with excessive ROS production if oxygen solubility is 

decreased; a situation that can happen at elevated temperatures where oxygen shortage may 

induce hypoxic conditions and exacerbate oxidative stress (Abele et al. 1998; Poertner et al. 

2002; Abele and Puntarulo 2004). In the present study, a lack of oxygen is less possible 

explanation as scallops exposed to elevated temperatures where constantly aerated and 

exhibited a higher mantle and gill index compared to the control group, which may afford 

better oxygenation of tissues (publication 1). Increase in ROS production may occur if the 

higher respiration rates overwhelm the kinetic capacities of mitochondrial enzymes and 

promote excessive ROS generation leading to dysfunctional mitochondria and the excessive 

oxidative damage. Antioxidant capacities in mantle, muscle and gill tissues increased as 

response to the accelerated cellular metabolism at elevated temperatures however, 

antioxidant capacities obviously failed to counterbalance excessive ROS-production.  

Another consequence of thermal stress in A. ventricosus is the lower energy allocation for 

growth (scope for growth) relative to the oxygen consumed. The relative low scope for 
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growth in warm exposed scallops is related to the higher energy expenses by respiration 

rates in relation to the energy absorbed by food (preliminary chapter). Enhanced expression 

of energy costing antioxidants may have reduced energy investments for growth under 

thermal stress. During exposure to higher temperatures, the costs associated with cellular 

maintenance and growth requires temperature compensation of metabolic rate-limiting 

enzymes to support the flux of electrons through the respiratory chain of mitochondria and 

supply the energy demands (Lesser and Kruse 2004). Lesser and Kruse (2004) showed that 

mussels (Modiolus modiolus), enhance concentration of the mitochondrial rate-limiting 

enzymes citrate synthase, and activity of cytochrome c oxidase while keeping the same 

level of antioxidant protection during a decrease in temperature. This was suggested as a 

strategy to prevent excessive ROS production and to allow mussels to keep a close to 

steady-state of energy production (ATP) independent of temperature variation.  

The dysfunctional mitochondria and the lack of compensatory capacities of rate limiting 

metabolic enzymes could be the missing link between the higher respiration rates and the 

higher oxidative damage in warm exposed A. ventricosus scallops. In fact, in Arctic and 

Antarctic bivalves the increase in ROS induced oxidative damage is related to damaged and 

uncoupled components of the mitochondrial respiratory chain (Abele et al. 1998b, 2002, 

Heise et al. 2003). For A. ventricosus, the functional state of mitochondria, as well as the 

evaluation of metabolic rate-limiting enzymes still has to be investigated. 

Even if mortality rates were higher at elevated temperature, a small proportion (2.6 %) of 

the initial population exposed to higher temperatures, lived longer compared to the control 

group (publication 1). Interestingly, after 9 months of warm exposure, A. ventricosus 

exhibited lower levels of protein carbonyls and lipid peroxides in gill and mantle tissues in 
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respect to the control group despites the continuous elevation of temperature (Manuscript 

1). An explanation is that higher mortality rates measured at elevated temperatures selected 

strongly for individuals with better physiological condition so that the older age classes 

include “better quality” individuals i.e individuals with less oxidative damage formation or 

scallops that indeed could compensate the elevated temperatures. Hence, during the lifelong 

exposure to elevated temperatures two periods could be distinguished: The first period, 

which compose the time until 5 months exposure, where susceptible individuals are in 

abundance and a second period after 9 months exposure where all susceptible individuals 

already died. In this case, high mortalities at elevated temperatures counterbalanced such 

temperature effect by natural selection of the least susceptible specimens. This would not 

only explain the inconsistent levels of oxidative damage, but also the higher condition 

index and the higher scope for growth that was measured after 9 months but not after 5 

months exposure in respect to the control group (publication 1 and manuscript 1). 

In conclusion, a long-term exposure to higher but sublethal temperatures can potentially 

select for more stress tolerant animals with better physiological condition, lower oxidative 

damage and higher scope for growth. These factors can contribute to the longer lifespan of 

some individual within a population of A. ventricosus scallops. The longer lifespan comes 

however at the costs of a decrease in population densities due to higher mortality rates in 

“low quality” or more susceptible animals. From an ecological point of view, mortality 

rates induced by thermal stress could lead to considerable consequences for population 

dynamics. In fact, A. ventricosus stocks in the field show irregular pulses of high 

abundance followed by periods of scarcity or collapse (Maeda-Martínez et al. 1993) which 

are typical for short living species and are classified as “spasmodic stocks” (Orensanz et al. 
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2006). The variations are partially linked to drastic temperature fluctuations for example by 

increasing temperatures during El Niño events. Such a drastic increase in temperature in 

1991 as found in Bahía Concepción, in the Gulf of California, México for example, led to 

catastrophic mortalities of A. ventricosus in this zone (Maeda-Martínez et al. 1993). 

Together with the intense fisheries, this resulted in the collapse of the Bahía Concepción 

population between 1991-1993 (Félix-Pico et al. 1997). 

 

5.3.  The link between predation, reproduction and survival  

The precocious lifestyle of A. ventricosus in its natural environment is thought to be linked 

to the high predation pressure attributed mainly by fishes (Ballistidae, Tetradontidae), 

gastropods (Muricanthus), and crabs (Callinectes, Cronius) (Ciocco and Orensanz 2001). 

Predation is suggested to be an important factor that determines the fast growth rate and the 

early onset of reproduction, which however cannot be combined with a long lifespan. 

Although this assumption would explain why this scallop is so short-lived, I clearly found 

the opposite pattern, means that scallops that are reared in presence of a potential predator 

Callinectes sapidus exhibit lower mortality rates and a longer lifespan compared to scallops 

that are reared under the same conditions but in a predator-free environment (publication 

1). Hence, I suggest that in A. ventricosus scallops, higher rates of predation selected for 

higher performance and a longer intrinsic lifespan as already posit in critical studies by 

Williams and Day (2003) and Reznick et al. (1990, 2001, 2004). Indeed, scallops that were 

exposed to a predator exhibited enhanced swimming performance reflected by the bigger 

adductor muscles and higher ODH levels compared to predator-free scallops (Manuscript 

2). The enhanced swimming behavior in scallops is powered by muscle contractions, which 
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are fueled mainly by the breakdown of glycogen to octopine that is catalyzed by ODH 

(Bailey 2003). Moreover predator-exposed scallops exhibited thicker shells without 

compromising shell growth (shell height increment) compared to the predator-free group 

(publication 1). At the cellular level, the lower content of protein carbonyls and lipid 

peroxides in mantle and gill tissues in predator-exposed scallops speaks for better cellular 

maintenance. Only in faster growing and more active muscle tissues of the predator-

exposed scallops, oxidative damage appeared to be elevated. However, the higher oxidative 

damage in muscle did not compromise individual performance (swimming capacity) or 

survival, which suggests that consequences of oxidative damage for the whole organism 

have a tissue-specific basis. In the laboratory, where individuals were exposed to predators 

but could not be eaten because the crab´s pincers were held together, the improvements in 

physiological performance and cellular maintenance in gills and mantle can translate into 

longer survival rates (see also Reznick 2004). 

In A. ventricosus the physiological improvement could be sustained by diversion of 

resources away from reproduction (deduced by the lower gonadosomatic index GSI). 

Indeed predator-exposed scallops delayed spawning by 2 months compared to predator-free 

individuals and also reached a 25% lower peak gonadosomatic index (Publication 1). 

Hence, by definition, scallops were not really fitter when reared with predators because 

reproductive effort, an important parameter that defines fitness, was decreased. Due to the 

high energetic cost of reproduction, the observed delay in spawning and decrease in 

reproductive effort may have attributed to the longer lifespan in the predator-exposed group 

in addition to the improvement in physiological performance and tissue specific cellular 

maintenance.  
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Altogether, the results point out that if reproduction effort decreases because of an 

enhanced ability to resist predators, the increase in lifespan will come only at the cost of 

reproduction and recruitment. A. ventricosus scallops exposed to predators may reproduce 

for longer time because they live longer but would reproduce less frequently and with lower 

gamete output. As a corollary, any extra investment in durability would not be beneficial 

for this species because this implicates a reduction in future population density.  

Lifespan is a by-product of a complex life history that evolved under particular 

environmental conditions. An increase in both analyzed environmental factors: temperature 

and predator exposure may prolong population lifespan in A. ventricosus, which may 

however lead to negative implications for population dynamics in this short living species 

as it may decrease reproduction output (predation) or population densities (temperature) 

and affect future recruitment.  

 

5.4.  The cost of reproduction  

The cost of reproduction is a fundamental selective force that shapes life history trajectories 

in organisms (Stearns 1992). Scallops in general are known to invest so heavily into 

gametogenesis and spawning, that reproduction represents a major stress (Barber and Blake 

1991). In A. ventricosus, gonadal maturation is fueled by energy diverted from other tissues 

principally from the adductor muscle (publication 1 and manuscript 3). The energy 

mobilization from adductor muscle towards the gonad reduces muscle metabolic capacities 

(manuscript 2) which have been shown to compromise the escape response and recovery 

after burst swimming in other scallops (Brokordt et al. 2000 a,b). Moreover, after 
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spawning, A. ventricosus scallops exhibit a steep decrease in physiological condition 

(deduced by the condition index) (publication 1). Hence, after gonadal maturation and 

spawning, individuals are more vulnerable to mortality and more susceptible to predation 

(Blake and Moyer 1991, Brokordt et al. 2000 a, b). In A. ventricosus, high investments into 

reproduction are not only paid in form of energy allocation to gonad and energy drainage 

after spawning but are also connected to the peak increase in protein carbonyls and lipid 

peroxides in scallops´ muscle, mantle and gill tissues. Mantle and gill tissues are not 

directly involved in gametogenesis but maintain high metabolic rates to support energy 

demands at this period. Gametogenesis in the field occurred at the period of a steep increase 

in water temperature (manuscript 3) so that the effects of temperature could mask the 

resulting oxidative damage in muscle, mantle and gill tissues. However, under controlled 

temperature conditions in the laboratory, oxidative damage reflected a temperature-

independent correlation with gametogenesis indicating that in A. ventricosus, mainly 

maturation modulates oxidative damage formation (manuscript 2).  

The reproductive strategy in short lived bivalves such as A. ventricosus differs from the 

strategy of longer-lived species that do not exhibit peak reproductive periods and rather 

budget energy investments in low but persistent gametogenesis (Strahl and Abele. 2010). A 

study by Cardoso et al. (2009) showed that a long-lived clam can use gonads not only for 

reproduction but also for energy storage while a short-lived clam spawns completely 

releasing all the energy in form of gametes. These findings points towards the fact that 

longer-lived bivalves benefit from minimizing the cost for current reproduction and may 

prevent the peak increase in oxidative damage and the necessity to enhance energy-costing 

mechanisms such as apoptosis to remove the damage (see Fig. 5.2).  
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Figure 5.2: A simplified illustration of the relationship among reproductive investments, oxidative 
costs and cellular maintenance in long (a), compared to short lived species (b). 

 

It is certainly true, that broadcast spawning in scallops may compromise survival. However, 

it is questionable if the peak increase in oxidative damage is involved. In fact, apoptosis is 

triggered parallel to oxidative damage in mantle, muscle and gill tissues that afford the 

elimination of damaged cells (manuscript 3).  

Interestingly, the oxidative cost of reproduction is not constant throughout A. ventricosus´ 

lifetime and depends on the age class that is studied. In A. ventricosus, the steep increase in 

metabolic rates accompanied by the transient accumulation of protein carbonyls and 

TBARS related to gametogenesis are only observed during the first year of scallop’s 

lifetime. A diminished reproductive effort does not explain these differences, as the gonad 

index was similar in both consecutive years (manuscript 3). This is different to some 

mammals and birds where the relationship between litter size and oxidative damage (or 
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susceptibility to oxidative stress) seems to be age-independent (Bize et al. 2008, Bergeron 

et al. 2011). It is possible that in A. ventricosus, the prevention in oxidative damage is 

related to the lower metabolic rates and growth in the second year, which could be also 

linekd to the diminished gamete production and larvae quality that is not obvious by 

measuring only the gonad index (Román et al. 2001).  

 

5.5.  The controversy between laboratory and field conducted 

experiments 

In the present study, all scallops were hatched at the same time from the same spawning 

event so that all individuals had the same chronological age, and experienced the same 

breeding conditions in the hatchery until an age of 3 months. Compared to the control 

group that remained in the laboratory at simulated field temperatures (SFT group), the 

group that was subsequently reared and maintained in the field, reached 1.5 times higher 

shell size after 1 year, 3 times better physiological condition (deduced by the condition 

index) and invested 2 times more energy into reproduction (deduced by the GSI). 

Moreover, 50 % of the initial stock survived to the second year and scallops reproduced 

again. Contrary, the SFT group reared in the laboratory literally reproduced to death after 

the first spawning event at the end of their first year when all animals died directly after 

spawning. Only when predators were introduced, post-spawning mortality did not occur 

which may be due to changes in energy investments such as reproduction. These results 

indicate that standardized laboratory conditions are not optimal and cannot appropriately 
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substitute for the natural conditions in the field so that long-term laboratory maintenance 

can be anticipated to reduce physiological condition in scallops. 

The fast growth observed in the field scallops occured mainly within the first 2 months 

after release in the field while the spat that remained in the laboratory continued to grow at 

a constant but lower rate. Bivalves can exhibit sudden compensatory growth when 

environmental conditions become favorable which allow them to reach their optimal 

physiological size at a given age (Broekhuisen 1994). Consequently, field animals were 2-

times bigger than scallops in the laboratory at the respective time of reproduction and 

probably were more robust and less susceptible to energetic drainage after spawning. 

Hence, even if the reproductive effort was higher (shown by a 20 % steeper increase in 

GSI), field scallops kept a 20 % higher condition index before spawning and even though 

post-spawning mortality also occured in the field, it did not compromise the survival of the 

whole population, as for the laboratory cohort. This reflects that the environmental 

conditions experienced during the early stages have a substantial impact on future life 

history trajectories such as reproductive output and survival. In scallops, gametogenesis is a 

genetically controlled process, which depends on the interactions between exogenous and 

endogenous factors (Barber and Blake 1991). However, a minimum age and size has to be 

reached before the beginning of gametogenesis (Barber and Blake 1991). Hence, the fast 

growth can be a selective advantage in order to attain early sexual maturity in this scallop, 

which is primordial to ensure recruitment in the field before falling prey to predators.  

From these results, I conclude that standardized conditions in the laboratory e.g ad libitum 

feeding with a mixed and “appropriate” microalgal culture for scallop growth, cannot 

substitute the natural conditions in the field. It was already shown in mussels that after 
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acclimation to laboratory conditions, scope for growth decrease markedly caused by a 

decrease in food ingestion rates, which authors describe as “not surprising due to the 

obvious differences between field and laboratory conditions in terms of food quantity and 

quality” (Mubiana and Blust 2007). Similar, A. ventricosus also has a marked lower scope 

for growth and ingestion rates in laboratory vs. field read animals (Table 5.1). Additionally 

to the lack of food variability, the less variable temperatures may not be necessarily more 

favorable (Publication 1). This was already shown in a comparative study with lion spawn 

scallop (Nudipecten subnodosus) (Sicard-González et al. 2006) where oscillating day and 

night temperatures led to a faster growth an longer survival rates in spite of their earlier 

onset of reproduction when compared to scallops maintained at an experimentally 

determined constant optimal temperature.  

 

Table 5.1: Absorption rate (AR), and scope for growth (SFG) of A. ventricosus expressed as J h-1 
for a standard animal of 1 g under simulated field temperatures in the laboratory (SFT) as well as in 
the field. Values are means ± SD. Lower case letters represent significant differences between 
treatments. (t-test P < 0.05).  

 AR (J h-1) SFG (J h-1) 

 April 2008 August 2008 April 2008 August 2008 

SFT  18.4 ± 3.4a 41.6 ± 5.3 a 4.7 ± 1.6 a 13.9 ± 5.2 a 

Field 27.41± 4.9 b 61.7 ± 6.4b 16.3 ± 6.2b 28.3± 5.4b 

 

Laboratory studies offer a variety of advantages. For example, it is easier to control biotic 

and abiotic parameters in such as way that findings are more likely to be due to the 

independent variable. Moreover, they are easy to replicate due to the exact conditions being 
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controlled. However, keeping animals in the laboratory may influence physiological 

processes so that it’s hard to know which results might be generalized and which might be 

particular to the laboratory environment (see review Cohen et al. 2010). For example, under 

the energy-limited conditions from the laboratory, predators may have stronger effect in 

modulating the trade-offs between somatic growth, reproduction and survival as under field 

conditions.  

I support the idea that is an increasing appeal for conducting experiments in the field 

(Nussey 2009; Costanini 2010, Mecalfe and Alonso-Alvarez 2010; Bergeron 2011) mainly 

in studies that have the approach to understand physiological processes within a more 

meaningful ecological context. 
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Conclusions and perspectives 

This study provides a comprehensive picture on cellular oxidative processes throughout the 

life stages of the short living scallop Argopecten ventricosus. The aim was to obtain a better 

understanding of extrinsic and intrinsic factors that can contribute in shaping the life history 

of an ectothermic marine species and to examine the role of oxidative stress in modulating 

aging and longevity.  

Despite substantial evidence that suggest that reduced reactive oxygen radical formation, 

low oxidative damage accrual and increased antioxidant capacities are general 

characteristics of some long lived bivalves (reviews by Abele 2009 and Bodnar 2009), the 

data obtained for A. ventricosus speak against a simple link between antioxidant capacities, 

oxidative damage accrual, and life span. The strikingly higher enzymatic capacities of SOD 

in A. ventricosus when compared to longer-lived species indicate that antioxidant capacities 

are not always related with a long lifespan. In A. ventricosus, high SOD activities may 

certainly counterbalance superoxide radical formation, but it appeared that oxidative 

damage is rather efficiently eliminated by high apoptotic activity. To go further in these 

findings, it will be important to investigate the way scallops deal with oxidative damage by 

measuring DNA integrity, protein stability as well as other repairing mechanisms and 

systems that degrade oxidative damage such as proteolytic activity. Moreover, it would be 

promising to focus in the roles of redox signaling pathways. In mammals, it has been 

shown that the disruption of redox signaling pathways (e.g. reduction/oxidation of 

transcriptional factors) are linked to a plethora of negative physiological consequences 

ranging from metabolic disturbances to modulation of “stress genes” expression which may 
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play a pivotal role in the aging process (Buffenstein 2008; Leloup et al. 2011). Bivalves 

have a low ontogenetic complexity when compared to mammals so that the interplays 

between signaling pathways, genetic triggering and physiological responses might be less 

complex, might adjust more rapidly and might depend strongly on environmental changes.  

The possibility to rear A. ventricosus scallops in its natural environment until the end of 

species record lifespan allowed us to address that despites scallops short lifespan, oxidative 

damage did not increase steeply with aging. Scallops accumulate the undegradable oxidized 

products (lipofuscin) just at the end of their lifetime. This finding brings into question if 

other bivalve species, that show rather constant levels of damage accrual in different age 

classes, would also show a decline in cellular homeostasis just at the end of their lives or is 

this pattern only found in scallops? To date comparative data of “old” individuals of 

different bivalve species are missing in order to have a comprehensive picture of changes in 

physiological and cellular functions throughout the later lifespan of short but also of long 

lived species.  

The fact that protein carbonyls and TBARS ranged highest in pre-spawning animals and 

lowest in post-spawned individuals within the first year, suggest that these cell damage 

markers are transient and modulated by life history traits such as reproduction and growth. 

The fine tune analysis over two consecutive years and reproduction periods allowed 

discerning that the oxidative stress of reproduction is lower in the second compared to the 

first year. The question is: Do the prevention of peak oxidative damage during the second 

reproductive year come at the expense of a decrease in fecundity? Changes in larval quality 

and quantity with age are important determinants that give a more detailed picture about the 

fecundity and fitness of individuals (Sukhotin and Flyanchinskaya 2009). A deeper analysis 
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of larvae quality and quantity in both consecutive years would give insights into 

understanding changes in fitness and reproductive senescence. Within this context, it would 

be also promising to compare oxidative damage accrual in relation to fecundity over 

lifetime in other bivalve species in order to compare life history strategies depending on 

species and lifestyles.  

Under thermal stress in the laboratory (temperature elevation), respiration rates, oxidative 

damage accrual (protein carbonyls and TBARS) and mortality rates were elevated. A. 

ventricosus could be an interesting model for the question of how scallops “handle” 

temperature changes in their environment. In this aspect, it would be relevant to examine 

mitochondrial functionalities of a scallop species that is adapted to a temperate environment 

but which can also experienced fast and important temperature fluctuations. It would be 

also promising to investigate conjunctly if scallops exposed to the high temperatures also 

failed to repair or remove the damage, which would corroborate more precisely to a failure 

in cellular homeostasis and to higher mortalities. Interestingly, the high mortalities in the 

warm exposed group seemed to select for scallops of better physiological condition opening 

the question if high, but sub-lethal temperatures, may serve as a selection mechanism for 

individuals under cultivation. 

The exposure to predators revealed that phenotypic plasticity in A. ventricosus scallops 

permits allocation of energy to swimming muscle and development of thicker shells to 

evade predators. Reallocation of energy to muscle growth, however constrained 

reproduction as indicated by the deferment and the lower investment into gametogenesis. 

As spawning means a major energetic drainage, the lower reproductive effort may have 

prevented post-spawned mortalities. One question that arises is if the observed trade-offs 
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are restricted to the laboratory conditions. It was evident that the standardized conditions in 

the laboratory could not appropriately substitute the natural environment in the field, which 

was reflected by the lower growth, condition index and reproduction effort in laboratory-

reared scallops. Under the energy limited conditions from the laboratory, predators may 

have exerted a stronger effect in modulating the trade-offs between muscle growth, 

reproduction and survival. The question is: Would an increase an increase in physiological 

condition (swimming performance/shell thickness) also constrain reproduction under the 

favorable field conditions? Or are the trade-offs found in the laboratory only valid under 

conditions of limited resource availability/quality? Even if very ambitious, it is necessary to 

conduct experiments in the field in order to define the biological relevance of physiological 

and cellular processes within a more meaningful ecological context. 
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