Weather and Synoptic Situation during Winter Weddell Sea Project 1986 (ANT V/2) July 16—September 10, 1986

Werner Rabe

Ber. Polarforsch. 40 (1987) ISSN 0176-5027

.

, t

х х х х

List of Contents

Summary

1.	Intr	oduction		1
	1.1.	General		1
	1.2.	Daily we	ather charts	3
	1.3.	Radioson	de data and three hourly	
		weather	observations	3
2.	Dail	ly weather	charts, radiosonde plots and visual	
	wea	ther observ	vations (16.07 10.09.1986)	5
3.	Syn	optic discu	ssion	120
	3.1.	Introduct	tion	120
	3.2.	Mean sur	rface pressure chart	
		16.07 1	0.09.1986	120
	3.3.	Synoptic	periods, mean pressure charts,	
		movemen	nts of pressure centers	121
		3.3.1.	High continent, wedge Weddell Sea	
			16.07 20.07.1986	121
		3.3.2.	High peninsula, low $60~\mathrm{S}$ and $20~\mathrm{W}$ to $20~\mathrm{E}$	
			21.07 24.07.1986	122
		3.3.3.	Weddell Sea depression	
			25.07 03.08.1986	123
		3.3.4.	High peninsula, low Halley Bay	
			04.08 07.08.1986	124
		3.3.5.	Weddell Sea depression	
			08.08 12.08.1986 and 13.08 17.08.1986	124
		3.3.6.	Low eastern Weddell Sea, moving east slowly	
			18.08 24.08.1986	125
		3.3.7.	Weddell Sea depression	
			25.08 27.08.1986	126
		3.3.8.	High Greenwich Meridian	
			28.08 30.08.1986	126
		3.3.9,	Weddell Sea depression	
			31.08 10.09.1986	127
4.	Con	clusions		128

,

۲

Appendix: WMO code tables for SYNOP data

x

Summary

ς.

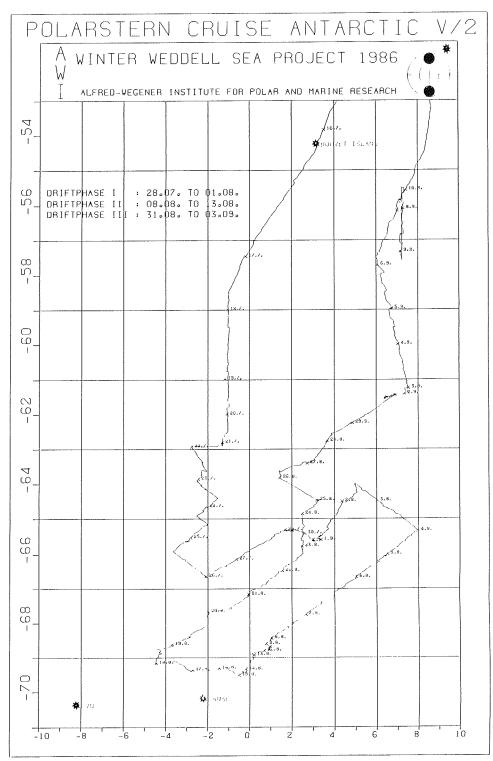
The meteorological situation during the cruise of RV POLARSTERN into the deep Antarctic ice pack in winter 1986 is described. Handmade analyses of surface pressure charts over the Atlantic sector of the Southern Ocean, radiosonde data and three hourly weather observations give an overview for each day from 16 July to 10 September.

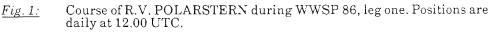
Typical periods in development and behaviour of synoptic systems are discussed, and mean surface pressure charts and storm tracks are presented.

`

ς.

1. Introduction


1.1. General


The pack ice zone of the Southern Ocean is one of the least explored regions of the earth. Allthough the great importance of this area for oceanic and atmospheric circulations as well as for the biological and biochemical processes within and beneath the ice is well known, little data is available, especially in winter. The Alfred-Wegener-Institute für Polar and Marine Research initiated a winter expedition to the Weddell Sea, called WWSP 86 (Winter Weddell Sea Project 1986). This expedition was divided in two legs. The first one started end of June 1986 in Bahia Blanca (Argentine) and ended on 20. September 1986 in Cape Town (South Africa). The course is plotted in fig. 1.

Besides of a large number of scientific personnel, a meteorological group from the Seewetteramt in Hamburg participated and was responsible for synoptic services. Routine observations of meteorological surface and upper air data as well as forecasts for ship, helicopters and support of other groups in meteorological questions were the main tasks.

This atlas is based on material produced during the cruise by this synoptic group. The charts and data were revised afterwards and are presented to give an overview of the synoptic situation. The atlas has the following content:

- daily surface pressure charts
- daily radiosonde plots
- three hourly weather observations
- mean surface pressure charts for
 - the whole period of the leg
 - special synoptic periods
- tracks of pressure systems
- description of the synoptic situation
- some conclusions.

Υ.

ς.

2

x

1.2. Daily weather charts

The analyses of the charts are handmade and based on synoptic observations of Antarctic, South American and South African stations as well as ships as far as available. Data from 10 drifting buoys launched from RV POLARSTERN, two others in the Weddell Sea from the British Scott Polar Research Institute and satellite images formed a second set of useful material. Especially the buoy data, which are normally not available in such a number, and the continuous interpretation of satellite images make the present charts of a high accuracy, keeping in mind that it is a data sparse area, nevertheless.

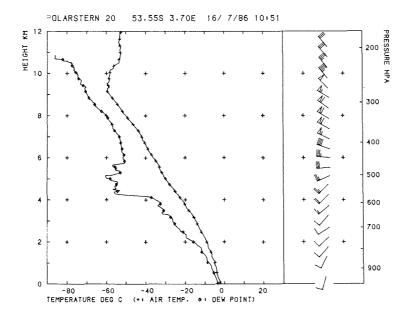
Comparisons with objective analyses of the European Center for MediumRange Weather Forecasts (ECMWF) in Reading, UK, and of the British Meteorological Office in Bracknell, which were received on board, too, showed deviations from time to time, which may be explained by missing the information contained in the satellite images. The quality of the analyses and, as a consequence, of the predicted fields became better, when all buoys from RV POLARSTERN were launched, and six hourly radiosonde data were delivered via the Global Telecommunication System for worldwide use.

In this context it must be mentioned that numerical products from these global prediction models were a reliable source for medium-range planning of weatherdependent projects. Their improving quality due to a denser data coverage proves the importance of such a drifting buoy network.

1.3. Radiosonde data and three hourly weather observations

Radiosondes were launched every six hours. As far as available the midnight and noon ascents are plotted. The Vaisala MicroCora system used with RS 80 sondes calculates winds by the Omega navaid signals which track the sonde. Due to poor signals in surface layers, the winds beneath 1000 meters are of low quality most of the time, but should be accurate to 1 m/s above this level.

Three hourly weather observations include visual information, like clouds and significant weather. Several WMO codes necessary to interpret the data are provided in the Appendix.


χ.

2. Daily weather charts, radiosonde plots and SYNOP weather observations (16 July - 10 September 1986)

x

× ×

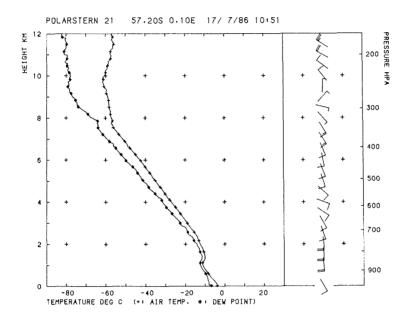
TIME	POSI	TION	PRESS.	WI	ND	TEM	MPERATURE		CLOUDS			DS		VIS	WE	AT	HE
UTC h	¥	λ	hPa	deg	kts	AIR *C	DEW PT	WATER C	N	Nh P	9	_ C,	н ^С н	km	ww	W	, w
3	52.15	4.9E	987.6	230	17	4	-4.5	1.2	9	1				10.00	02	1	1
6	52.65	4.4E	987.2	230	16	-1.3	-3.9	.9	9	1				10.00	02	7	Z
9	53.25	4.05	986.8	230	10	-2.3	-3.4	3	7	7 Z	6	0	0	1.00	10	7	4
12	53.85	3.6E	986.5	200	9	-2.4	-3.2	4	6	6 1	6	0	0	2.00	44	7	- 4
15	54.45	3.2E	986.3	180	9	-2.3	-3.7	3	7	72	8	0	0	4.00	15	8	7
18	54.95	2.6E	986.6	990	1	-2.4	-4.0	5	8	33	6	ı	1	10.00	26	8	-7

,

6

`

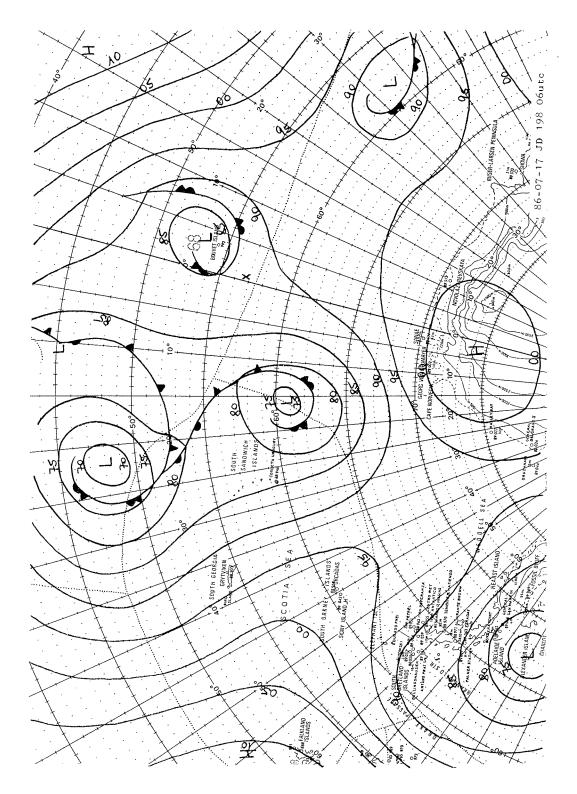
•


٦

7

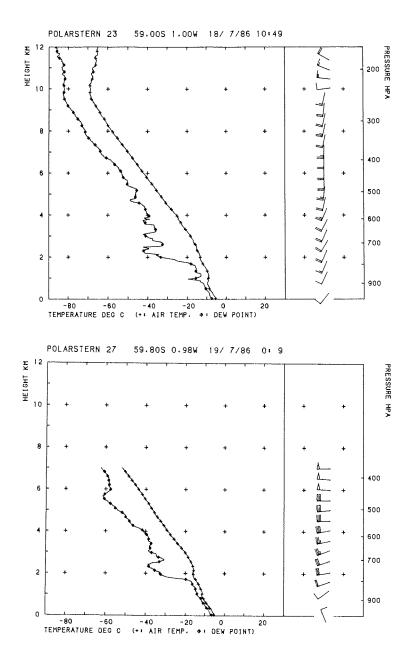
`

17.	JULI	1986
1/.	3013	1400


TIME	POSI 4		PRESS.	WI	ND		PERAT							WE		HEF
h			hPa	deg	kts	·c	-rc	°C					km	1		•••
3 9 12 15 18	58.45 56.75 57.05 57.45 58.05 58.55	1.0E .6E .2E .1W .6W 1.0W	987.3 987.8	80 150 150 160 160 990	9 7 11 7 2	-3.4 -3.5 -3.6 -3.7 -3.9 -3.6	-4.5 -5.7 -6.7 -7.2 -8.3 -5.9		998779	/ 83 44 74	/ 0 0	/ 2	10.00 10.00 20.00 20.00 20.00 4.00	02 02 02 15 02 70	8 8 8 8	2 2 2 2 2

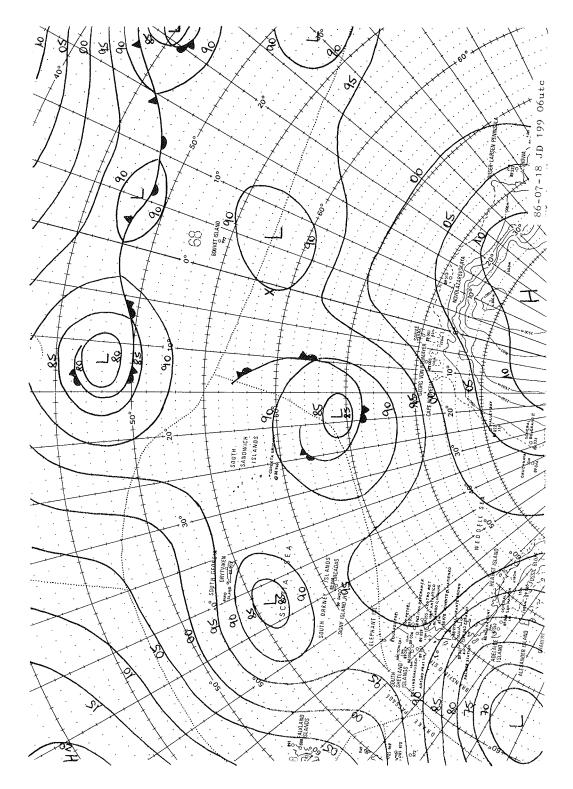
、

8


1

, , , ,

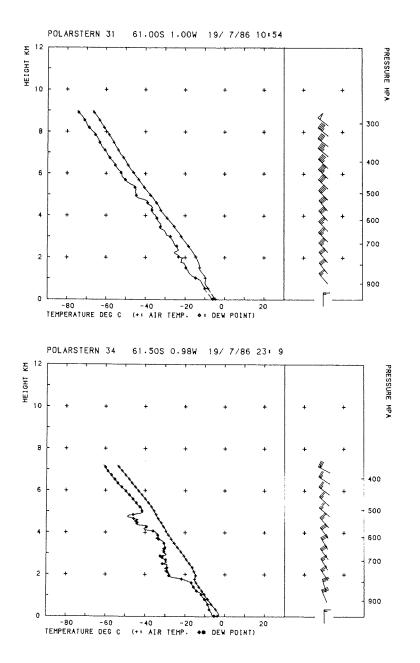
•


LOUDS ԻՉ Հեգ Հեգ	VIS km	WEATHE www.w
ո գ շ _ա գ		ww W, W ₂
/ 1 8 / / 2 6 0 0 1 6 0 0 /	10.00 10.00 4.00 4.00 10.00	02 / / 02 2 2 70 8 7 26 8 7 16 8 2 02 8 2
	2600	2 6 0 0 4.00

`

10

•

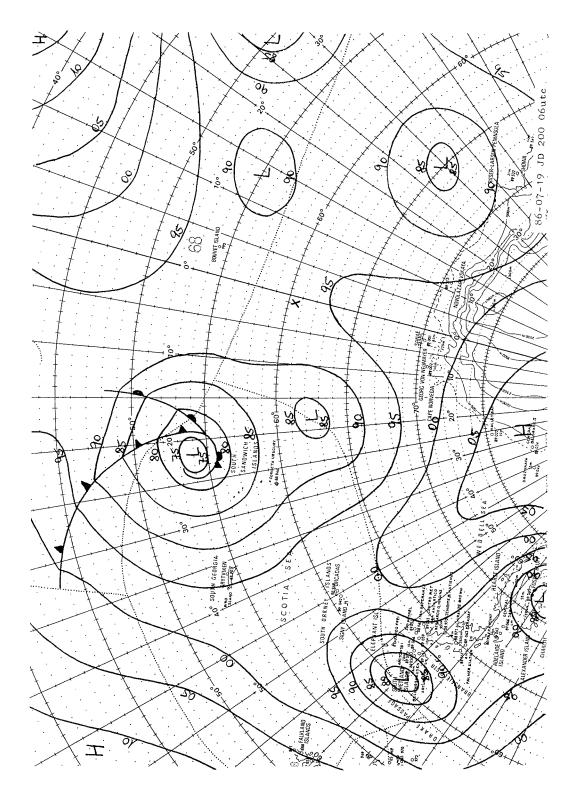

x

ς.

11

v

								19	JULI	198	6
TIME UTC	POS V	TION x	PRESS.	WIND					OUDS Դ Գ Շալ Գալ	1	WEATHER
3 6 9 12 15 18	60.3S 60.5S 60.8S 61.0S 61.0S 61.2S	L.OW L.OW 1.OW 1.IW 1.OW 1.OW	993.1 993.2 993.2 993.0 992.3 992.3	310 10 340 8 350 12 10 12 340 15 350 17	-5.2 -5.1 -5.0 -4.9 -4.0 -4.0	-6.7 -6.3 -5.8 -5.8 -5.3 -5.3	-1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	9 / 0 9 7 7 2 7 4 2 8 6 3 6 6 3		10.00 10.00 4.00 4.00 10.00 10.00	02 / / 02 0 0 10 1 1 02 2 2 02 2 2 77 2 2

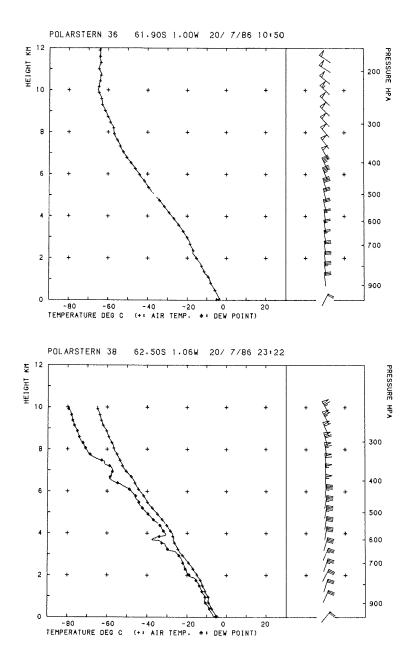


x

`

12

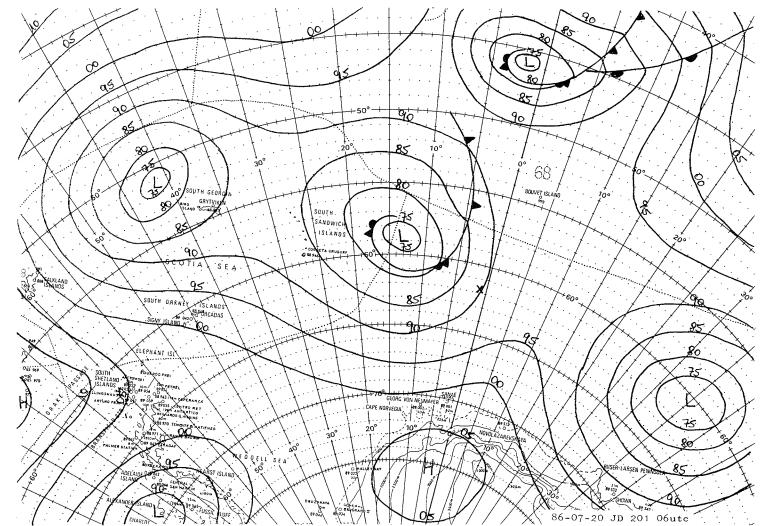
•


.

.

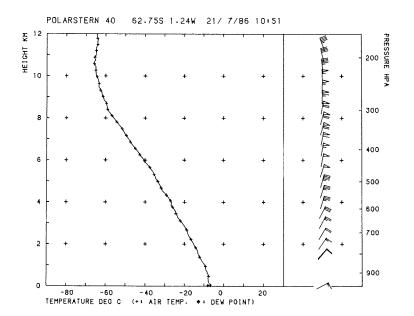
13

`


										S).J	UL	I	198	6		
TIME	POS	TION	PRESS.	WI	ND	TEM	CLOUDS					VIS	WE	HER			
UTC	Ŷ	λ	hPa	deg	kts	AIR °C	DEW PT	WATER C	N	Nh	h (2,0	с <u>н</u> Сн	km	~~	w	′₁ ₩2
3 6 9 12 15 18	61.55 61.55 61.65 62.05 62.05 62.05	1.0W 1.0W 1.0W 1.0W 1.0W	990.0 989.1 987.2 986.2 986.2 983.1	360 10 20 30 30 30	17 18 18 17	-4.0 -4.3 -3.6 -3.6 -3.1 -3.1	-5.2 -5.4 -4.7 -4.3 -3.9 -4.1	-1.9 -1.9 -1.9 -1.9 -1.8 -1.7	9 3 9 8 8 9	3 8 8	/ 3 8 2 1 6 3 6 /	. /	2 / /	10.00 10.00 2.00 1.00 2.00 10.00	02 02 77 77 77 02	77777	/ 1 2 2 2 2 2

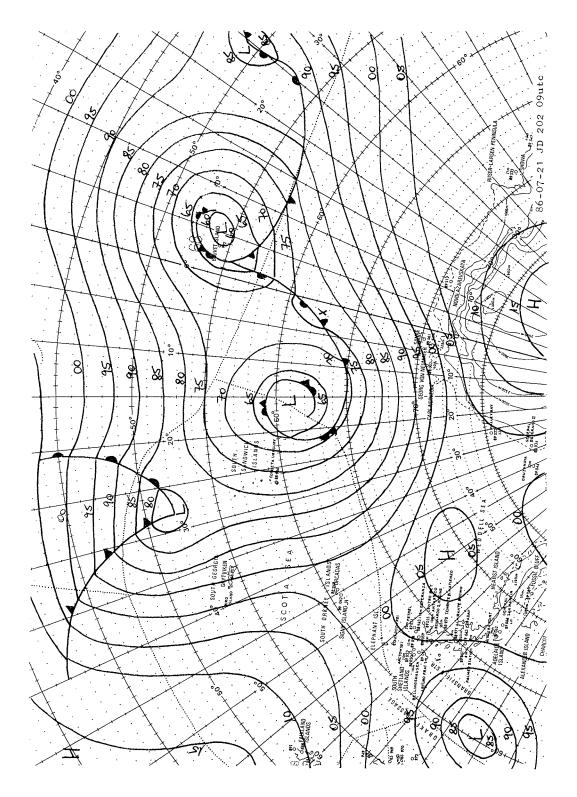
`

14


ς.

-

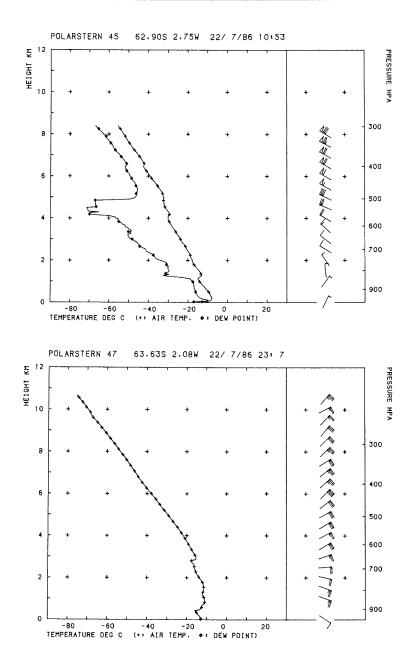
21.JULI	1986


						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				_		_						
TIM	ε	POSI	TION	PRESS.	WI	ND	TÉM	PERAT	URE	ŀ	Сι	_C	UD)S	VIS	WE	AT	HER
UT	C	¥.	λ				AIR	DEW PT	WATER	N	N.	h	G	C _H C	-	ww	W	, w,
h				hPa	deg	kts	ъ.	°C	°C				-		km			
3	6	2.55	1.10	978.8	40	18	-5.6	-6.4	-1.9	9		1			1.00	72	7	z
6	0	2.55	1.18	977.2	50	16	-5.6	-6.2	-1.9	9		1			2.00	72	7	2
9	6	2.65	1.2₩	977.0	60	19	-6.2	-6.8	-1.9	8	8	3	6	11	Z.00	171	7	2
1.2	6	2.85	1.3W	976.8	70	19	-7.0	-7.7	-1.9	8	8	3	6	11	10.00	71	7	7
15	6	Z.85	1.3₩	976.2	70	14	-8.5	-9.3	-1.9	8	8	1	6	11	2.00	71	7	7
18	6	2.85	1.38	976.0	60	10	-9.3	-10.1	-1.8	8	8	z	6	11	4.00	71	7	7
															1			
L															1			

×

`

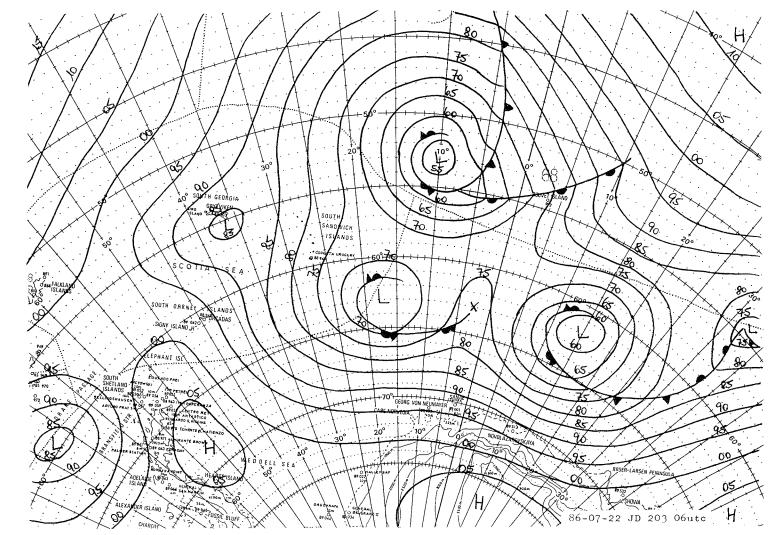
`

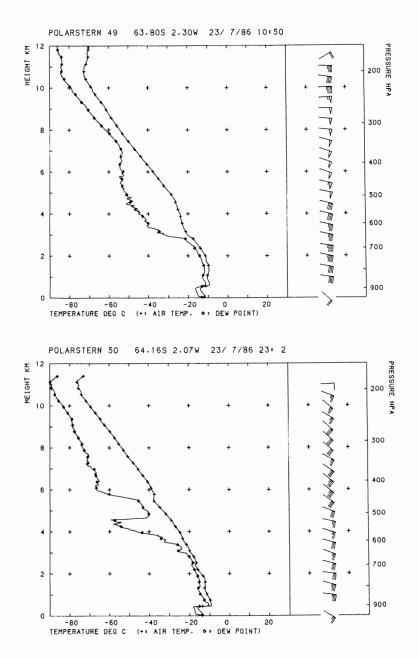

.

`

17

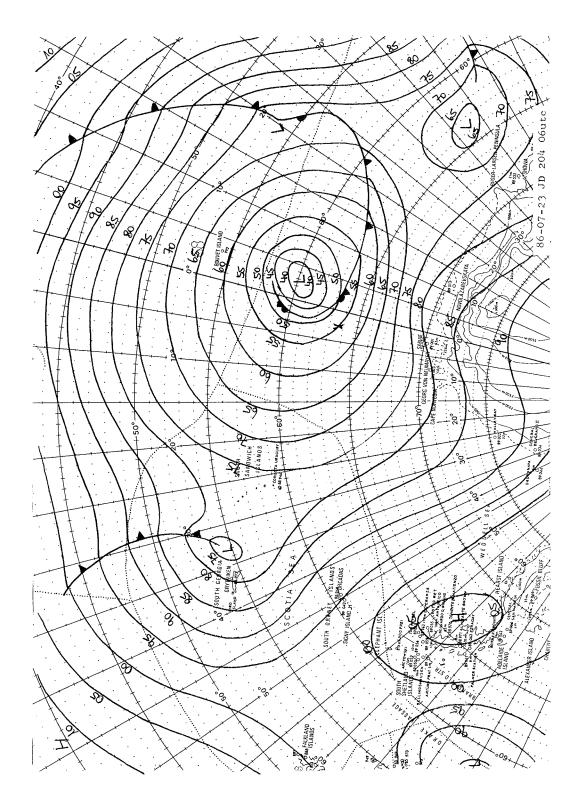
.


TIME	POSI	TION	PRESS.	WIN	10	TEM	PERAT	URE	CLOUDS	VIS	WEATHER
UTC	φ	λ				AIR	DEW PT	WATER	N N _h h C _L C _H C _H		ww W ₁ W ₂
h			hPa	deg	kts	·C	•C	•C		km	
3	62.95	2.00	976.0	360	4	-10.8	-11.5	-1.7	98/6//	1.00	7377
6	02.95	2.68	976.0	60	4	-12.3	-L2.4	-1.6	884611	4.00	72 7 7
9	62.95	2.78	975.1	60	3	-11.3	-12.1	-1.7	115800	10.00	0277
12	62.95	2.78	974.2	40	3	-14.3	-14.9	-1.7	215302	10.00	02 1 1
15	63.25	2.5H	972.0	20	6	-16.5	-16.7	-1.9	634802	4.00	71 1 1
18	63.45	2.2N	969.0	20	5	-15.3	-13.9	-1.7	9 /	4.00	71 7 1
1										1	
											1


.

18

N

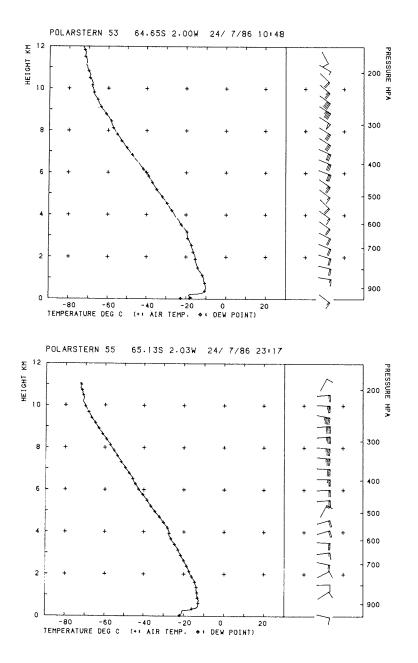

										23.J	ULI	198	16	
TIME	POSIT	ION	PRESS.	WIN	٩D	TEM	PERAT	URE	C	LOUD	DS	VIS	WEA	THE
UTC	ų	λ					DEW PT		N N	ր ն	CM CH		ww '	w, w
h			ħΡa	deg	kts	•C	•C	·c				km	L	
3	63.65	2.24	957.0			-11.7				1		4.00		11
0	63.65	2.28	954.8			-11.9		-1.7	9	1		4.00	71	7 2
12	63.8S	2.3W 2.4W	952.3 952.0			-12.5				1		.50	73	7 2
15	63.95	2.5%	952.2			-10.9			8 8	sí 6	11	1.00	71	7 2
16	64.0S	2.3W	953.3	120	21	-11.6	-12.1	-1.7	9	1		4.00	71	7 2
													1	

`

20

`

.

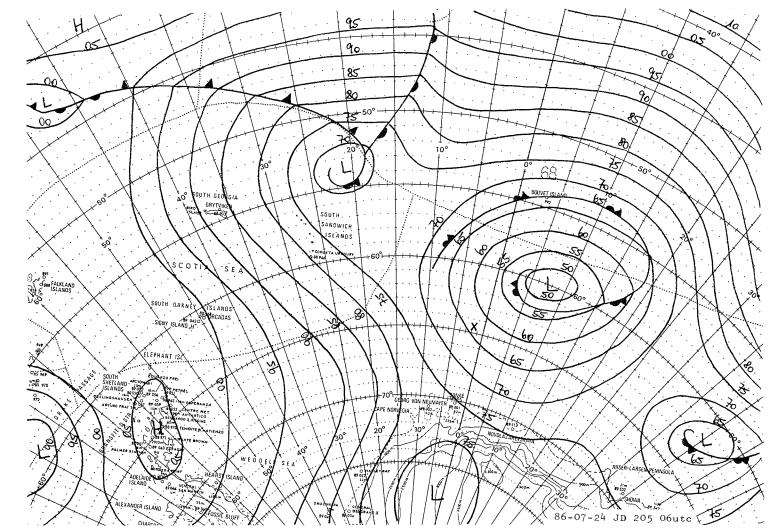

`

21

•

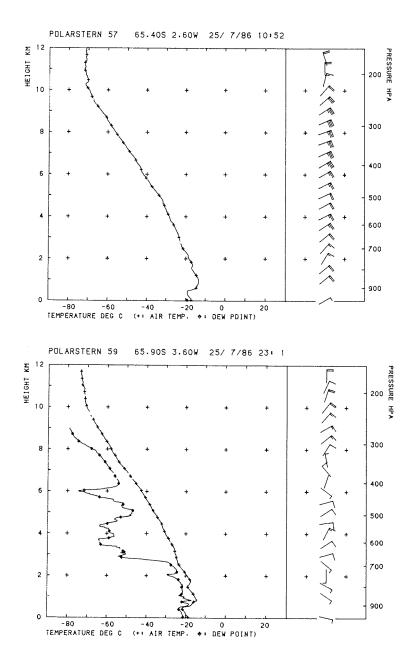
24. JULI	1985

TIME	POSI	[ION	PRESS.	WI	٩D	TEMPERATURE			CLOUDS	VIS	WEATHER
UTC	Ŷ	λ	hPa	deq	kts		DEW PT.	WATER	N Nh h CL CH CH	km	ww W5 W2
3 6 9 12 15 18	64.35 64.55 64.75 64.75 64.75 64.75 64.85	1.8# 1.7₩ 2.0₩ 2.0₩ 2.2₩ 2.1₩	960.9 962.8 965.1 967.0 968.2 970.1	130 130 130 120 120	21 22 18 16 15	-14.6 -17.1 -18.3 -18.4 -19.8 -20.3	-15.1 -17.9 -21.8 -20.6 -20.7	-1.9 -1.9 -1.9	114800 09 09	4.00 10.00 20.00 20.00 20.00 20.00	02 1 1 02 1 1



.

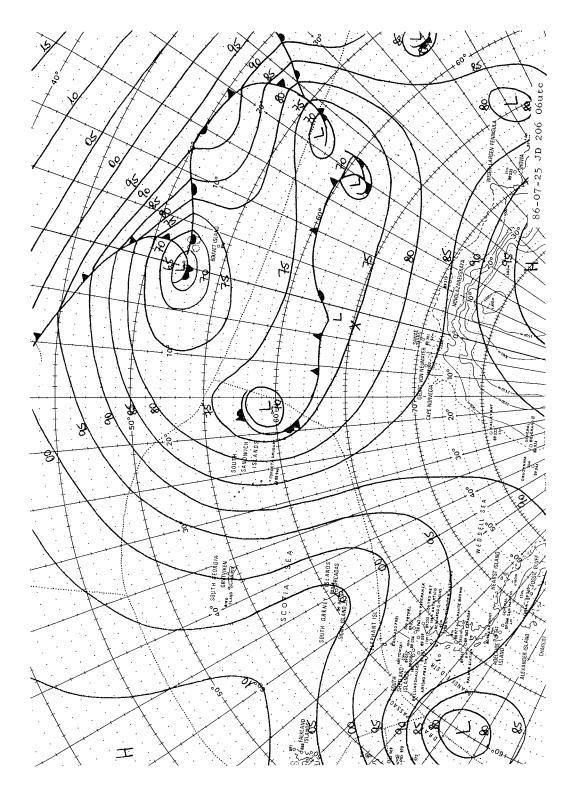
`


22

.

25.JUL I	1936

TIME	POSI	TION	PRESS.	WI	٩D				CLOUDS	VIS	WEATHER
UTC		λ	hPa				DEW PT		N N _h Ի C _L C _H C _H		ww W1 W2
		~~~~	nea	deg	kts	·c		.с		km	I
3	65.25	2.14	975+1	80	9	-20.5	-21.6	-1.9	9 /	10.00	1 1 50
0	65.25	5.TK	975.3	80	7	-18.4	-20.4	-1.9	9 /	10.00	70 7 1
9	65.35	2.4₩	976.2	70	8	-17.7	-19.7	-1.9	881611	Z.00	71 7 2
1.2	65.5\$	2.78	977.0	60	10	-17.2	-19.1	-1.9	882611	4.00	0272
15	65.65	3.0W	977.0	100	5	-17.3	-19.3	-1.9	8816//	2.00	70 7 2
18	65.65	3.18	976.9	80	6	-16.9	-19.7	-1.9	9 /	10.00	0272
1											



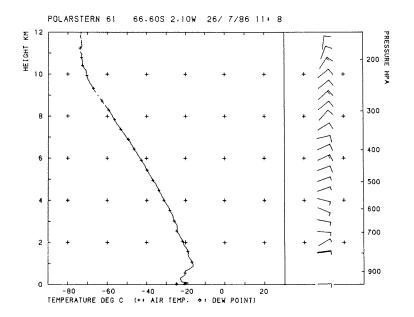

、

24

٩

Ň




۰,

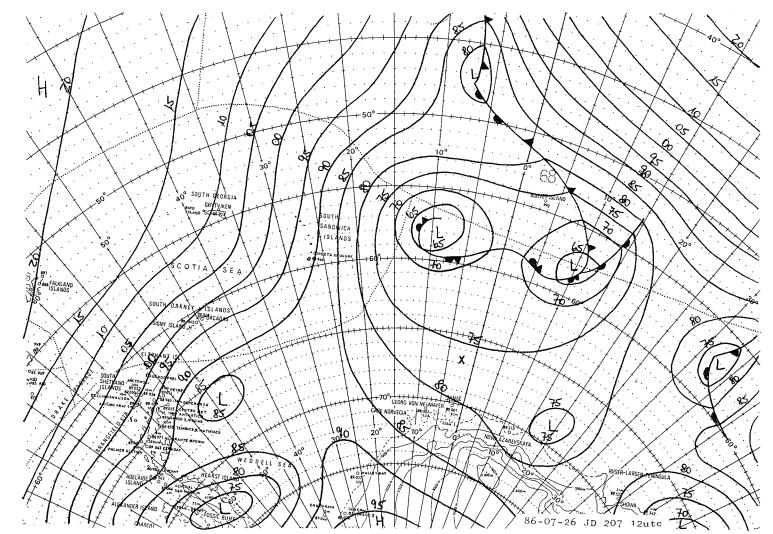
25

۰.

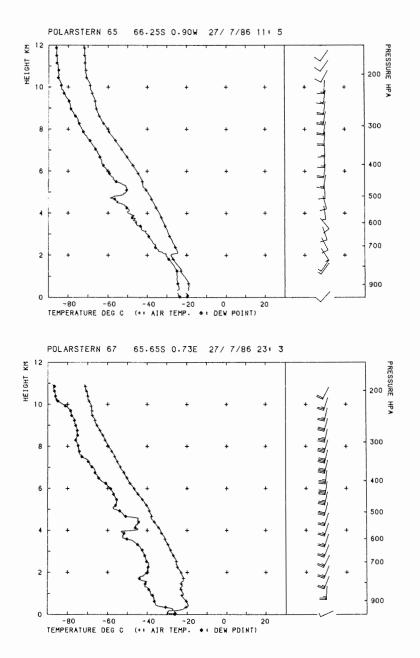
`

										26,	JULI	198	5		
TIME	POSI	TION	PRESS.	WIN	٩D	TEM	PERAT	URE	C	LOL	IDS	VIS	WEA	đ٢	Ð
UTC h	ų	λ	hPa	deg	kts	AIR °C	DEW PT. "C	WATER °C	N N	, h (	ն ՇալՇա	km	**	w,	W ₂
3 9 12 15 18	60+25 66+35 66+45 66+65 66+75 66+75	3.0W 2.7W 2.5W 2.1W 2.1W 2.1W	977.2 977.0 976.3 976.1 975.8 975.3	990 990 990 130 140 150	2 2 4 5	-20.0 -21.3 -20.5 -21.3 -21.2 -21.2 -22.6	-23.7 -23.4 -23.4 -25.3	-1.9 -1.9 -1.9 -1.9 -1.9 -1.6 -1.9	8			10.00 10.00 20.00 10.00 4.00 4.00	02 02 02 02 02 02	7 7 7 7	2 2 2 2




ν.

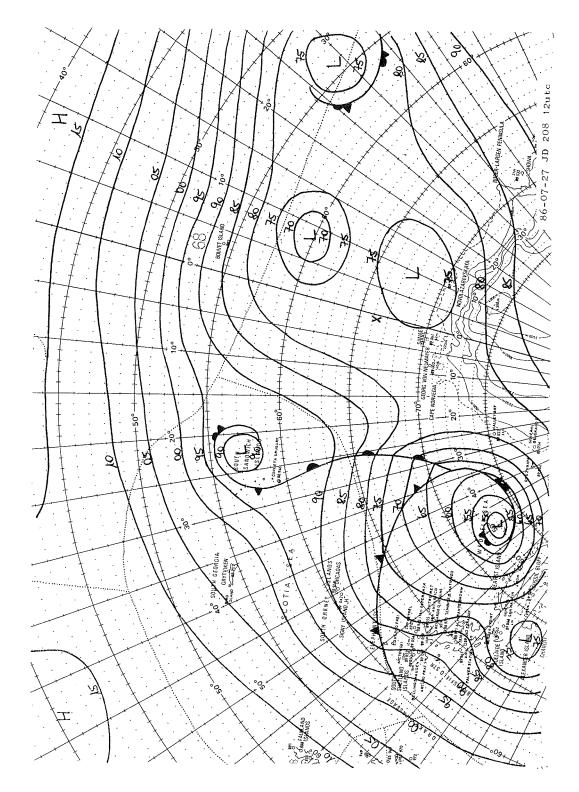
ν.


.

۰

.



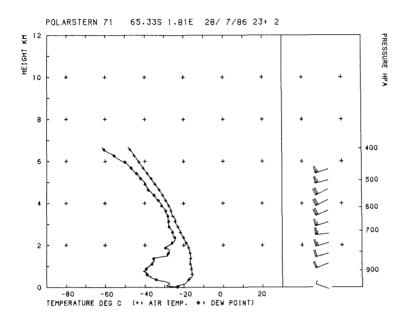

										27	• 11	JLI	[	191	56		
TIME	POSI	۲ION ک	PRESS.	WIN	ID		PERAT						с.	VIS	WE4		
h			hPa	deg	kts	-c	•c	.с		"				km		· .	
j 6 9 12 15 18	60.55 66.35 66.35 66.25 66.05 65.95	1.6H 1.0W 1.1W .7W .3W .2W	974.2 974.0 975.0 976.0 977.0 979.0	300 170 220 210	15 6 10 8	-20.0 -19.4 -19.5 -19.6 -21.4 -24.5	-23.1 -23.2 -22.3 -24.6	-1.9 -1.9 -1.9	9 8 8	/ 8 2 8 3 8 4 9	6 8	///	111	2.00 4.00 4.00 10.00 10.00 10.00	70	7	22222



`

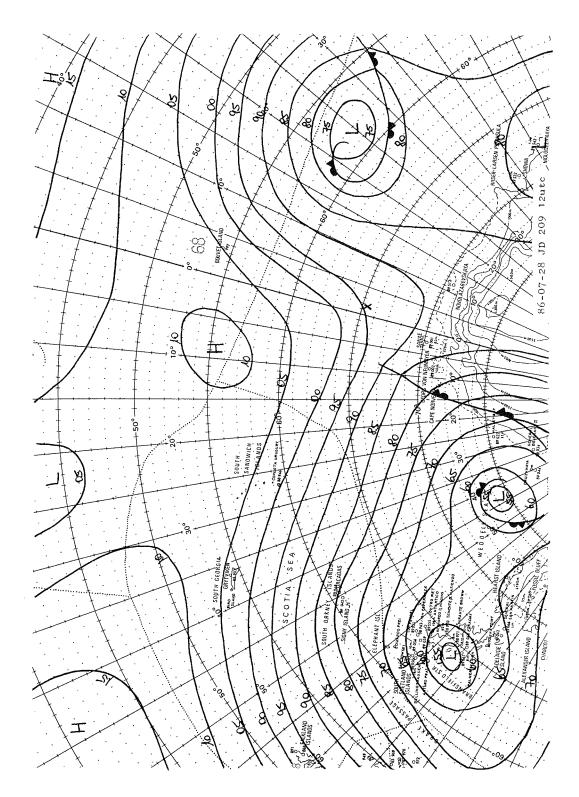
28

ς.




ς.

29

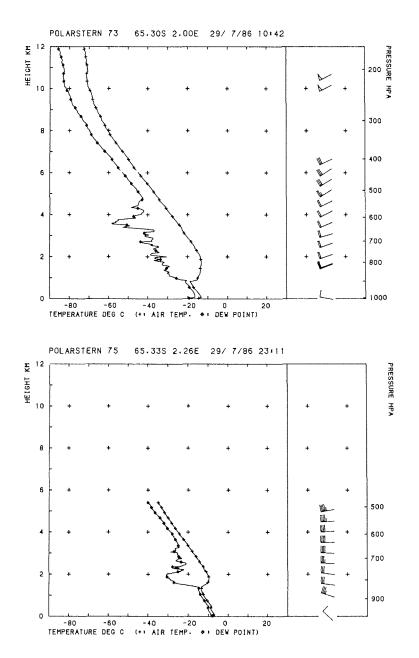

۰,

									2	8.JL	JĻI	193	6		
TIME utc	POSI 4		PRESS.	WIN dea		AIR	PERAT			000 ო ფ		V!S	WEA		
3 6 9 12 15 18	55.55 55.45 65.35 65.35 65.35 65.35	1.2E 1.5E 1.6E 1.7E 1.7E 1.8E	985.2 987.2 990.0 992.1 996.0 997.1	240 240 230 220 230	12 14 13 14	-26.0 -25.8 -25.8 -25.8 -25.8 -25.8 -25.2	-30.0 -30.7 -30.5 -29.0 -28.9	-1.9 -1.8 -1.8 -1.8 -1.9 -1.8	9 9 0 6 6 4 3 9		/ / 0 2	10.00 10.00 20.00 4.00 20.00 10.00	70	711	2 1 1 1



`

•

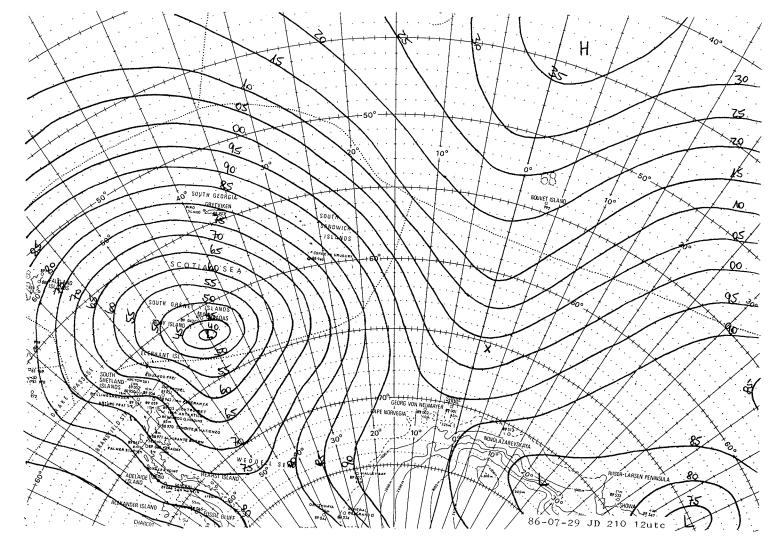



•

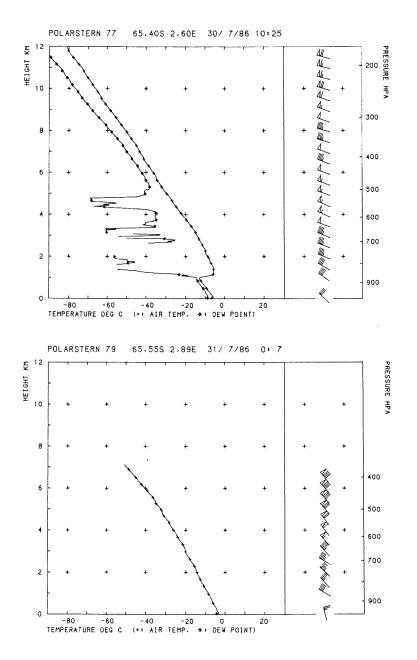
31

٠

UTC y	OSITION	PRESS.	WIND							
	1		WILLIO .	I LEM	PERAT	URE	CL	OUDS	VIS	WEATHER
h	<u>^</u>	hPa	deg kts	AIR °C	DEW PT.	WATER C	NN	ո գ շագ	km	ww W1 W2
3 65. 6 65. 9 65. 12 65. 15 65. 18 65.	3S 1.9E 3S 2.0E 3S 2.0E 3S 2.1E	1003.0 1004.0 1005.0 1005.0 1005.2 1005.0	270 14 270 15 280 8 280 10 280 12 290 14	-17.8 -15.8 -13.5 -12.7	-21.9 -19.5 -17.8 -16.2		88 88	/ 2 6 / / 3 6 / / 3 8 / / 3 6 / /	10.00 10.00 10.00 10.00 10.00 4.00	02 / / 02 2 2 02 2 2 02 2 2 70 7 2 02 7 2



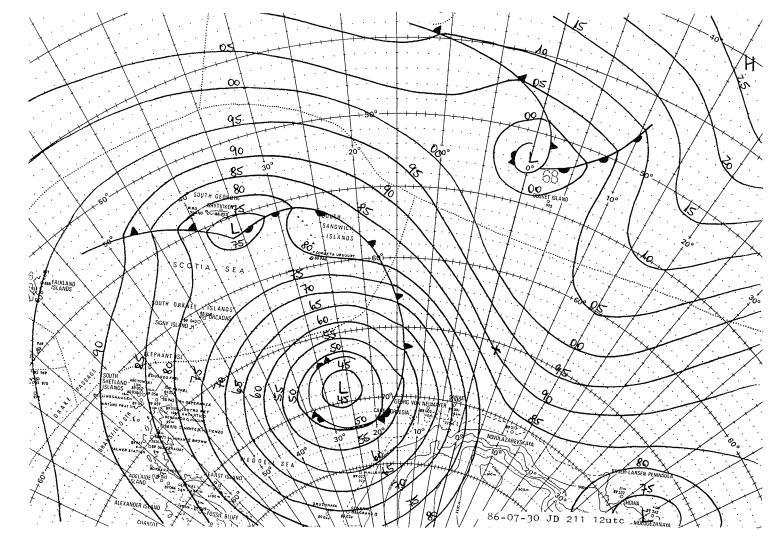

۰.


•

32

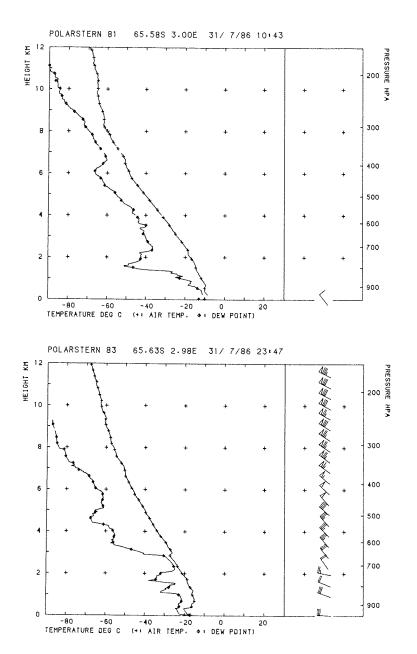
v




									30.	JU	ιI	198	5		
TIME utc	POSI	TION	PRESS.	WIN	ID		PERAT		CLO				WE		
ħ			hPa	deg	kłs	.c	'C	·c				km			-
3 9 12 15 18	65.35 65.35 65.45 65.45 65.45 65.45 65.55	2 • 4E 2 • 4E 2 • 5E 2 • 6E 2 • 7E 2 • BE	999.0 996.3 993.9 991.2 987.0 983.0	320	15 20 33 31	-7.9 -7.2 -6.5 -7.4 -7.0 -6.3	-8.2 -9.5 -8.7 -9.8 -9.7 -8.5	-1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	/ 33 82 33 /	8 8 6	     	4.00 4.00 10.00 10.00 10.00 10.00	02 02 02 02 02 02 02	27777	2 2 2 2 2 2
							l						L		

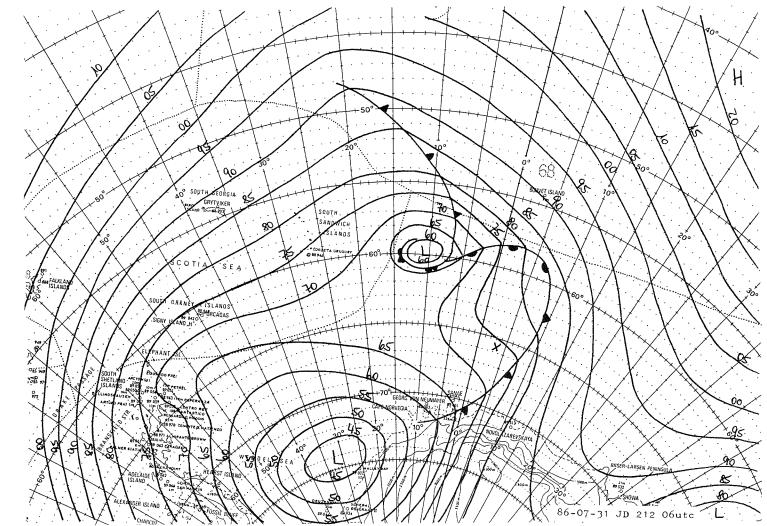


Υ.


•

34

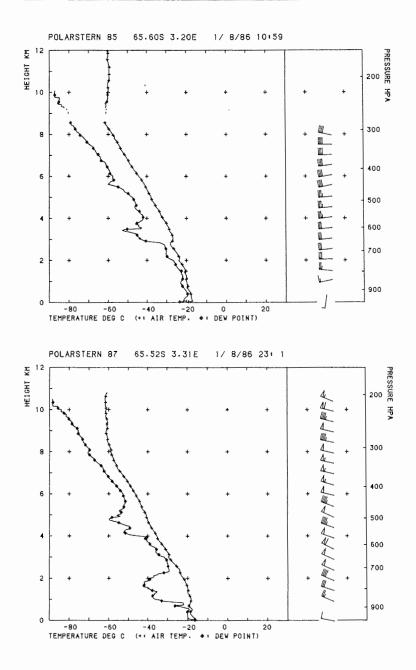



sε

										3	1.	19 E I	198	6		
TIME UTC	POSI	TION X	PRESS,	WI	NO		PERAT		N	-		JDS ୯.ଜ.ଜ		WE **		HER W2
h			hPa	deg	kts	•C	.c	.c					km			
3 9 12 15 18	05.65 65.65 65.65 65.65 65.65 65.65	3.0E 3.0E 3.0E 3.0E 3.0E 3.0E 3.0E	975.0 975.9 976.2 976.0 973.3 969.1		13 10 11 11	-11.2 -10.9 -13.1	-14.0	-1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	9 0 7 7 9	7 5 7	4	900 830 300	19.00 10.00 20.00 20.00 10.00	02 02 02 02 02 02	1 1 1 2	1 1 1 2
L						l		1						1		



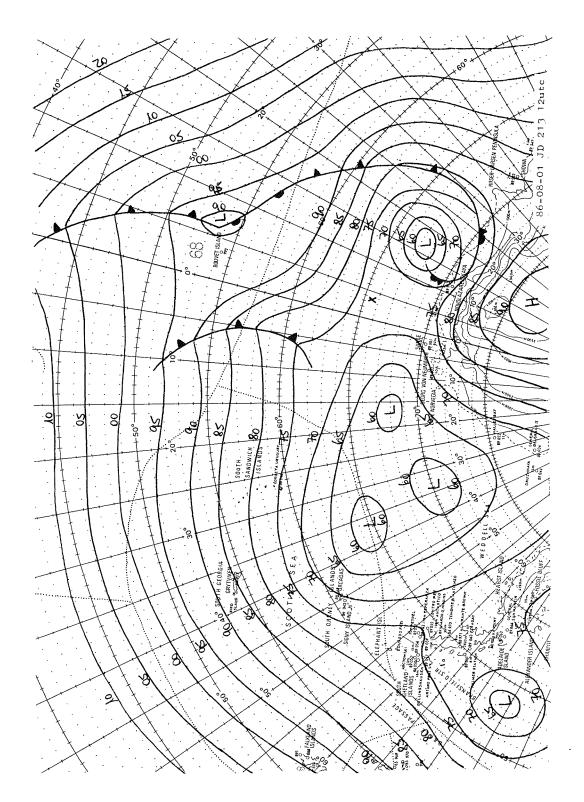
`


36



1,000001 1,000	L.AUGUST	1986
----------------	----------	------

۰,


									217000001		•
TIME	POSI	TION	PRESS.	WI	١D		PERAT		CLOUDS		WEATHER
UTC	*	λ	hΡα	deg	kts		DEW PT.	WATER C	NN, Ի Ը Cµ Ըվ	km	ww ₩ ₁ ₩ ₂
3 6	05.65	3.2E 3.2E	971.0	270	21	-21.9	-25.2	-1.9	9 / 9 /	4.00	0272
9 1 2	65.65 65.65	3.2E 3.3E	972.8 973.2	310 50	7	-19.5	-23.2 -23.0	-1.9 -1.9	774800	10.00	0272 0272
15 18	65.65 65.65	3.3E 3.3E	975.2	280 340		-18.0		-1.9		20.00	02 1 1 02 1 1



`

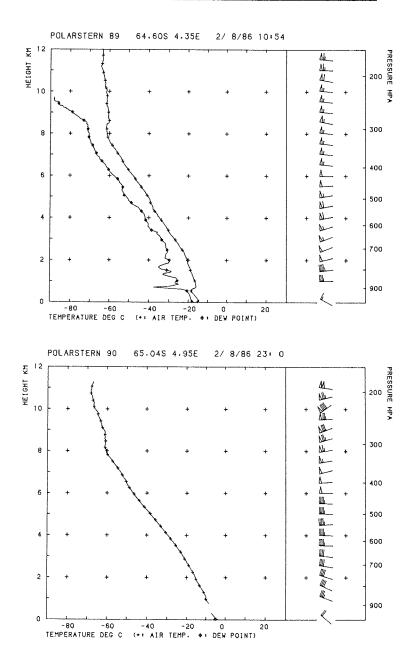
38

`



χ.

`


39

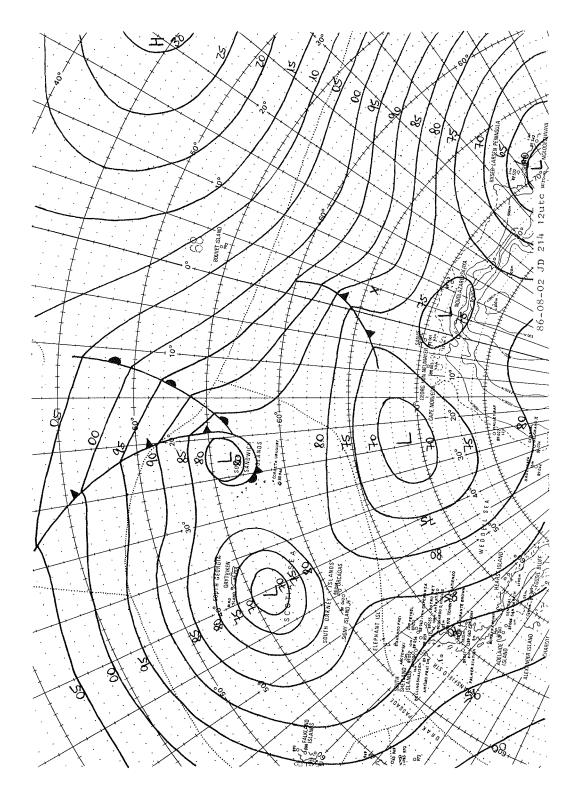
'n

AUGUST	1986

г

TIME UTC h	POSI V	TION x	PRESS.	WI deg	ND kts		PERAT		CLOUDS NN _h Ի Շլշ _պ Շ _պ		WEATH ** W,	
3 6 9 12 15 18	65.15 65.05 64.85 64.55 64.55 64.45	3.8E 3.9E 4.2E 4.4E 4.4E 4.8E	982.0 984.0 985.3 986.2 985.0 983.0	280 270 290 300	24 21 19 15 14	-20.5 -19.2 -17.2 -14.6 -14.4	-22.8 -22.1 -19.8 -18.6	-1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	885611	1.00 4.00 4.00 20.00 10.00 4.00	027 027 027 027 027 0227 0227 0227 0227	2 2 2 2 2




× .

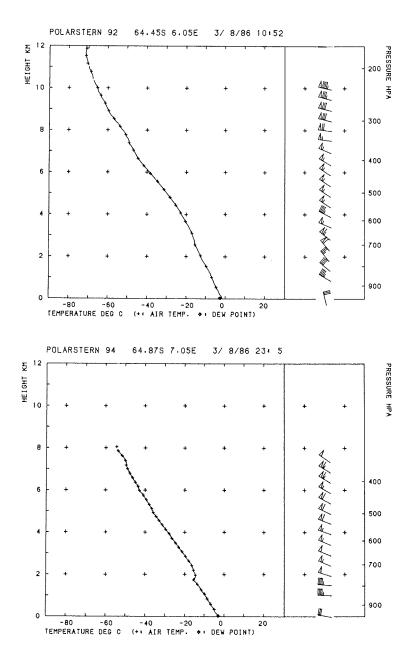
x

40

`

•




.

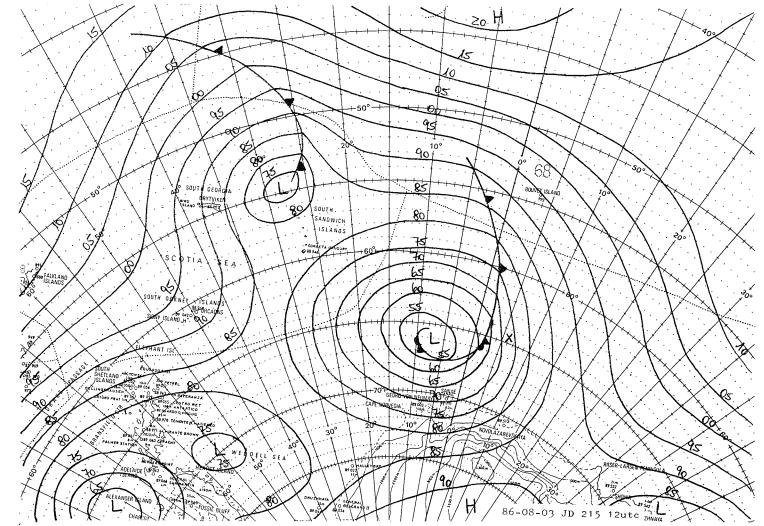
`

41

v

											3.4	UG	UST	198	6		
TIME utc	POSI •	TION x	PRESS.	WIN deg	ND kts		PERAT			CL N			н Сн	-	WE		HER W2
3 6 9 12 15 18	64.15 64.35 04.35 64.55 64.65 64.75	5.2E 5.6E 5.6E 6.0E 6.3E 6.6E	983.2 982.1 982.1 973.3 968.3 964.2	320 320 320 340 340 340	20 21 21 37 37	-2.3 -2.1 -2.1 -2.1 -2.1 -2.1 -1.9	-4.b -4.1 -3.2 -3.2 -2.4	-1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	9 9 8 8 8	8 8	/ / / 2 6 2 6 2 6		///	4.00 4.00 4.00 .50 .50 10.00	02 71 71 73 73 71	7	




•

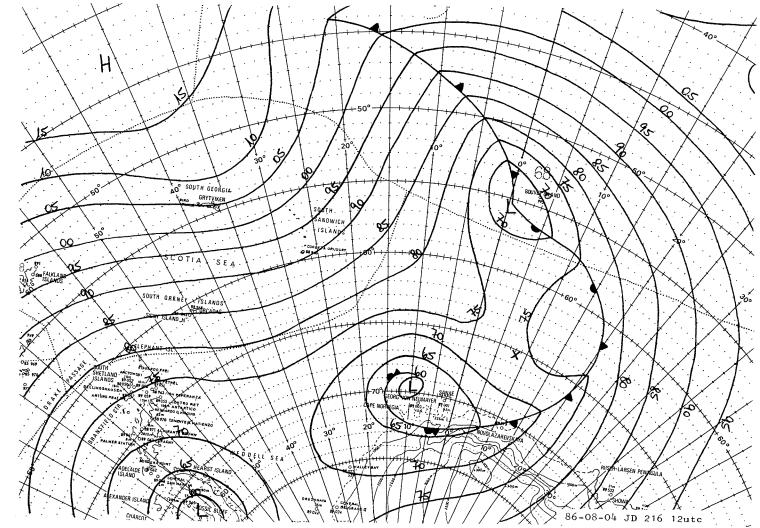
ì


,

42

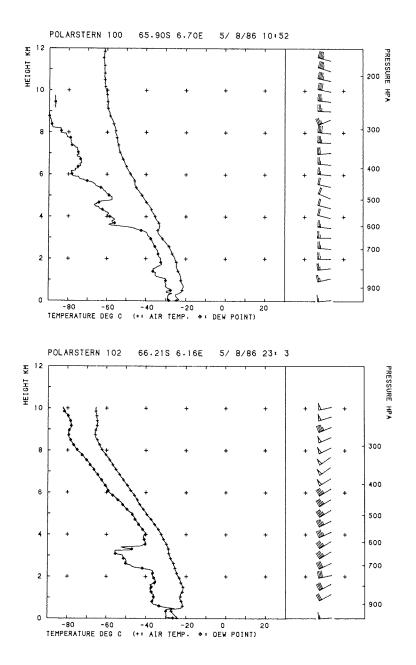
`




										4	• A U	ICUST	198	6		
UTC	POSIT 7	10N x	PRESS.	WIN	-	AIR	PERAT	WATER		ՇԼՕ Կ հ		)S Հայ Հայ		WE/		
6 6 9 6 12 6 15 6	5.0S 5.2S 5.4S 5.3S 5.3S 5.3S	7.3E 7.6E 7.9E 8.0E 8.0E 8.0E	hPa 973.0 975.9 976.0 974.9 973.3 974.1		20 9 1 6	-15.0 -16.6 -16.5 -15.8 -16.5 -16.8	-19.8 -19.5 -19.6 -20.5	·C -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9	9 9 7 8 5 9	/ / 7 3 8 8 3 9 /	8 0 8	// 1/ 10	km 4.00 20.00 20.00 20.00 10.00	02 02 02 02 01 02	7 7 7 7	2222



×.


44

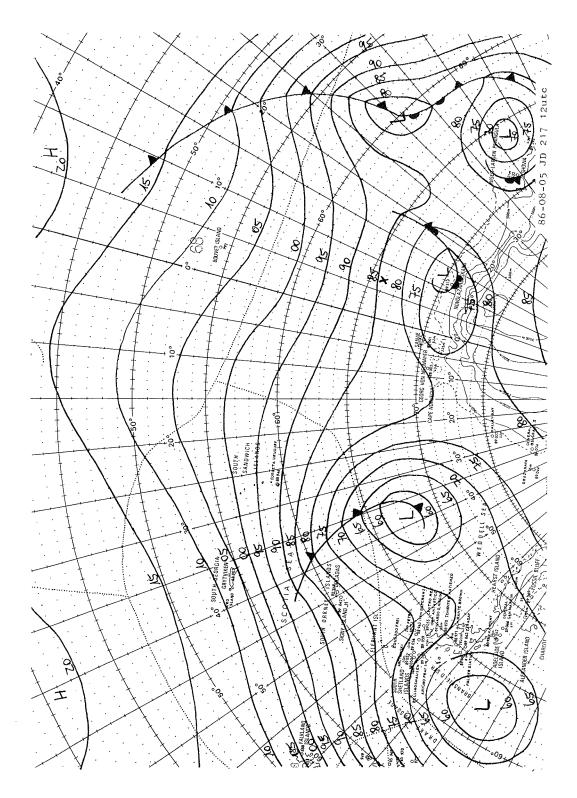
,



5.	AUGUST	1986

TIME	POSI	TION	PRESS.	WI	٩D	TEM	PERAT	URE		CLOUDS	VIS	WEAT	HER
UTC		λ				AIR	DEW PT.	WATER	N	N _h հ Շլ Շ _M	G.	ww 14	ι, ₩2
h			hΡa	deg	kts	-c	-c	·с			km		
3	65.75	7.25	980.0	250	15	-22.0	-25.3	-1.9	9	1	10.00	02 /	1
6	65.85	7.OE	981.2	270		-24.7	-28.5	-1.9	9	/	10.00	02 7	1
9	65.95	6.85	982.8	260			-29.0	-1.9	0	9	10.00	28 1	1
12	65.95	6.6E	984.2	310		-24.7		-1.9	0	9	20.00	02 4	1
15	66.15	6.5E	986.0			-25.2	-29.1	-1.6	0	9	10.00	02 0	0
18	66.25	6.2E	987.3	280	21	-26.1	-29.0	-1.8	9	/	10.00	02 7	۱.




Υ.

46

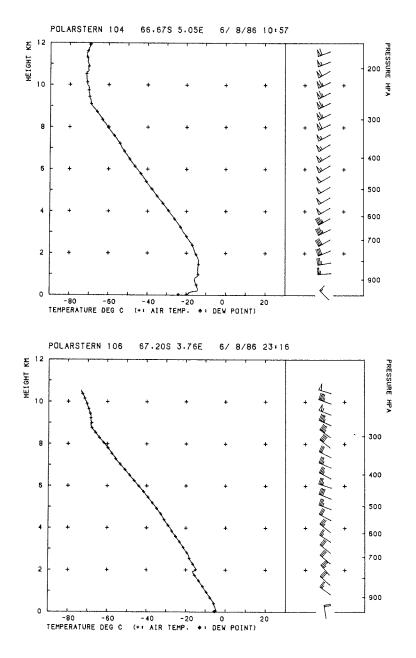
Υ.

٠,





,

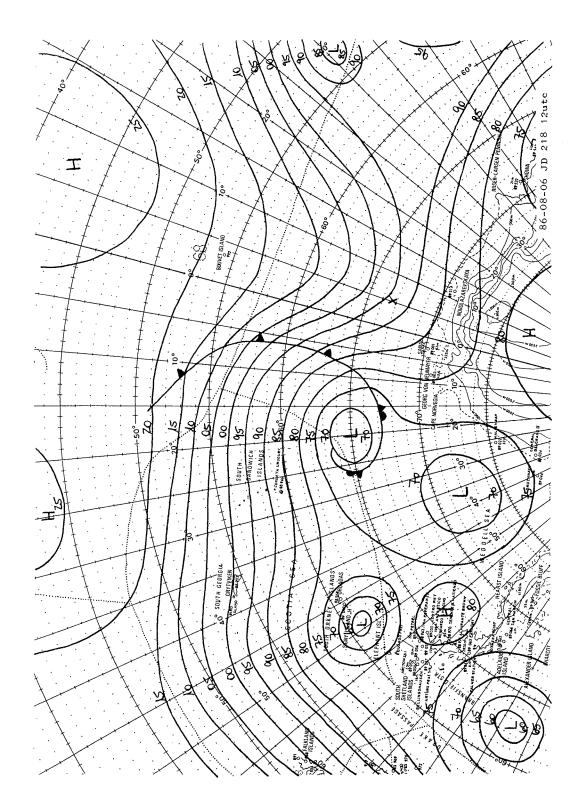

•

47

•

,

			_								6./	LU G	UST	198	5		
TIME	POSI	TION	PRESS.	WI	٩D		PERAT			CL	0	JOS		VIS	WE	AT	HE
UTC h	*	X	hPa	deg	kts	AIR °C	DEW PT. C	WATER C	N	N,	h (	રવ	н ^С н	km	ww	w,	W2
3 9 12 15 18	66.45 66.55 66.75 66.75 66.75 66.95	5.7E 5.4E 5.0E 5.0E 5.0E 4.5E	993.2 993.9 994.1 993.2 991.1 989.3	280 300 340	15 16 12 13	-27.4 -26.4 -22.4 -19.1 ~13.0 -7.8	-31.3	-1.8 -1.7 -1.8 -1.8 -1.8 -1.8 -1.8		8 8 8	1 0	5 / 5 /		10.00 10.00 1.00 1.00 2.00 4.00	02 02 77 71 71 70	7777	2 2 7 7 7
					-												



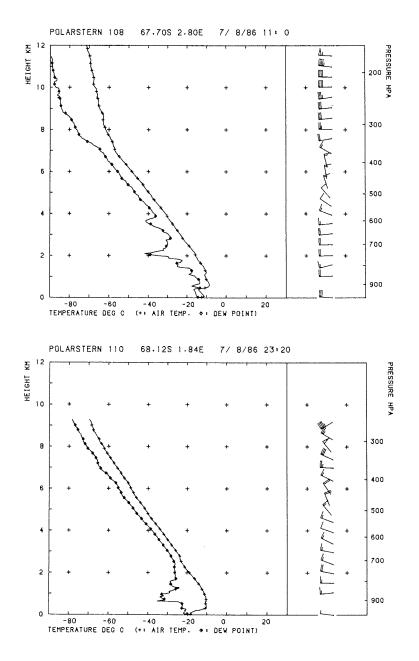

x

48

٦

۰




Ň

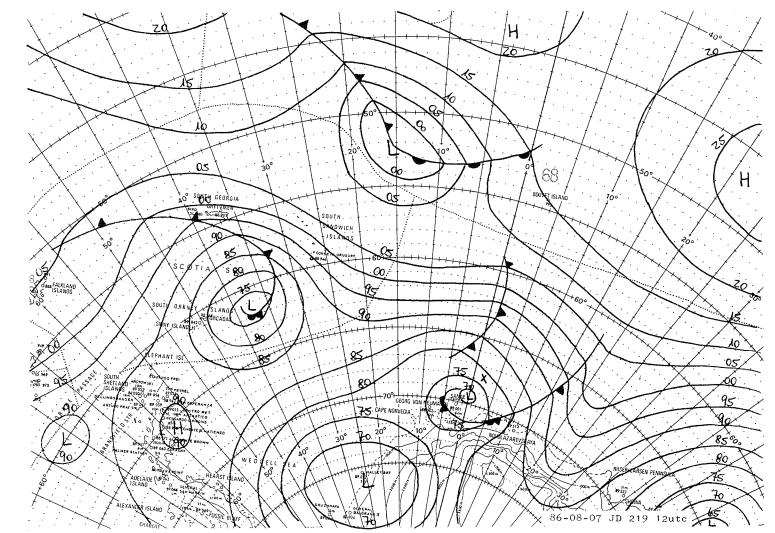
49

۰,

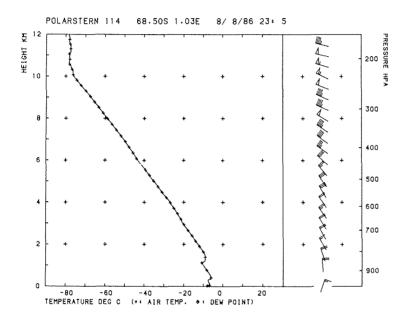
•

										7.	AUC	ust	198	36	
TIME	POSI	TION	PRESS.	WIND		PERAT					JDS		-		ATHER
UTC h	*	λ	hPa	deg kts	AIR °C	DEW PT.	WATER C	N	M	h	գշ	н С <u>н</u>	km	**	w, w ₂
3 9 12 15 18	67.35 67.45 67.55 67.75 67.75 67.95	3.7E 3.4E 3.2E 2.7E 2.7E 2.5E	978.6 974.3 975.2 978.6 981.9 984.2	340 17 340 15 280 32 280 23 280 25 280 21	-12.0	-6.2 -10.7 -14.8 -14.7	$ \begin{array}{c} -1.8 \\ -1.3 \\ -1.8 \\ -1.8 \\ -1.8 \\ -1.8 \\ -1.8 \\ -1.8 \\ -1.8 \\ \end{array} $	9 8 5 6 8 9	8 8 2 8	3	6 / 6 / 5 3 6 /		2.00 1.00 2.00 10.00 2.00 4.00		
L			L	L			L							I	




•

.

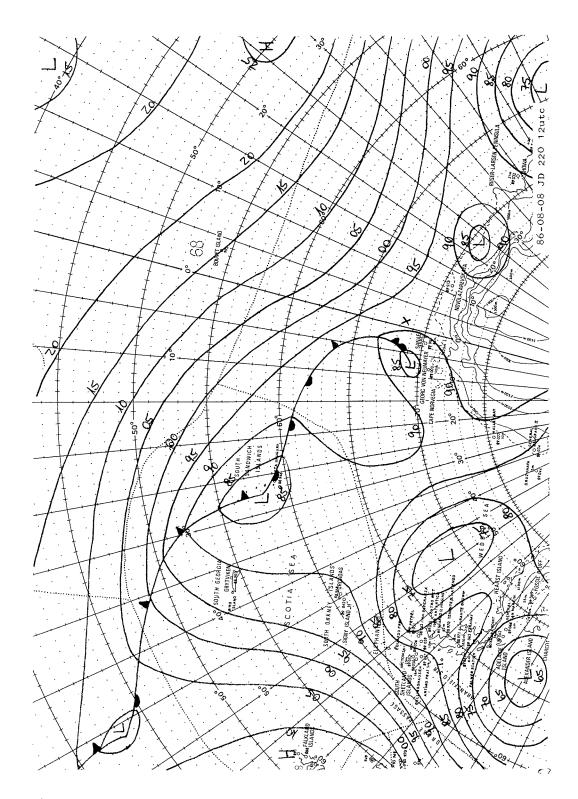

50

`

`



											8.	a U G	US T	198	6		
TIME	POSI	TION	PRESS.	WI	٩D	TEM	PERAT	URE	_	CL	.01	JDS	;	VIS	WE	ATI	HEF
UTC	¥	λ	hPa	deg	kts	AIR °C	DEW PT	WATER C	N	Nh.	h (	i C	н C _H	km	**	W ₁	W2
3 6 9 12 15 18	08.25 68.35 68.45 68.45 68.45 68.45 68.45	1.6E 1.3E 1.2E 1.1E 1.1E 1.1E	988.2 990.2 992.0 992.0 991.2 989.9		6 6 8	-19.0 -20.0 -19.8 -15.6 -11.0 -7.1	-23.9 -22.8 -18.0	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	8 8		2.1	5 / 5 / 5 /	1	4.00 10.00 4.00 4.00 2.00 2.00	02 02 02 70 71 70	/ 1 7	/ 1 1 2




`

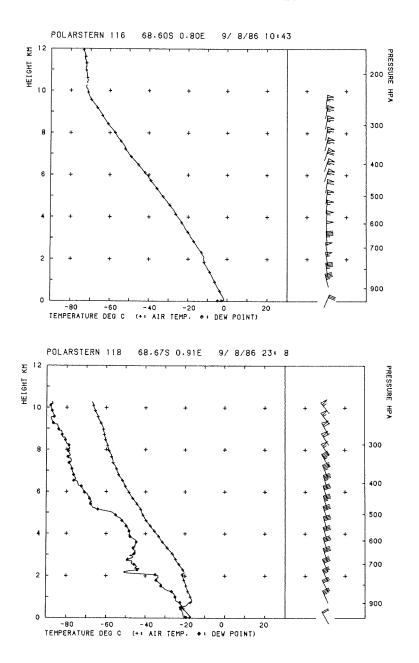
52

`

ν.



53


v

Ň

AUGUST	1986

,

TIME	POSI	ION	PRESS.	WI	٩D	TEM	PERAT	URE	CLOUDS	VIS	WEA	THER
UTC	Ŷ	λ	ħΡa	deg	kts		OEW PT. C	WATER C	NN, h C, CHCH	km	ww \	W, W ₂
3 6 9 12 15 18	68.65 68.65 68.65 68.65 68.65 68.65	.9E .9E .8E .8E .9E .9E	984.1 980.2 975.1 974.0 978.9 982.2	60 40 360 350		-4.7 -3.1 -2.4 -10.1	-6.9 -5.0	-1.8 -1.8 -1.8 -1.8	8 8 2 6 / / 8 3 2 6 / / 8 8 3 8 / / 7 7 2 6 0 0	2.00 2.00 2.00 4.00 1.00 4.00	73 71 22 22	7 / 7 7 7 7 7 7 7 7 7 7 7 7



•

54

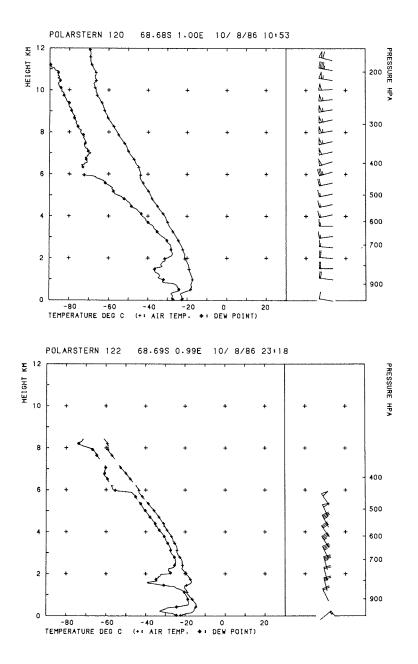
۰.

v



,

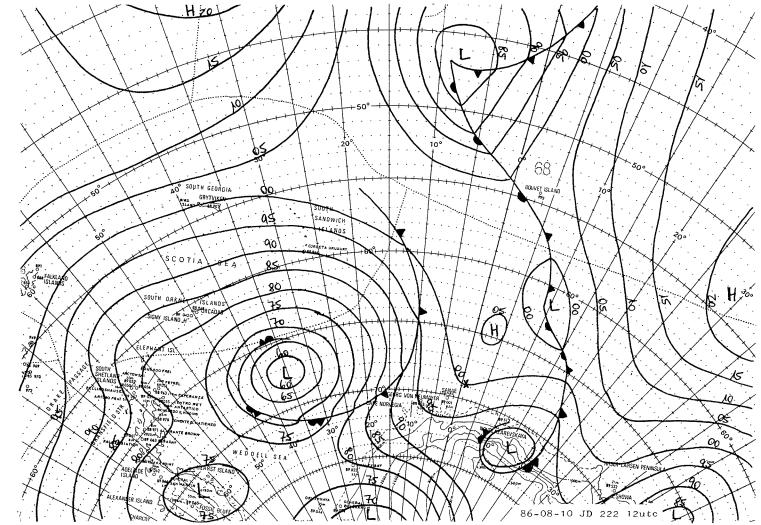
`


55

•

10.AUGUST	1986

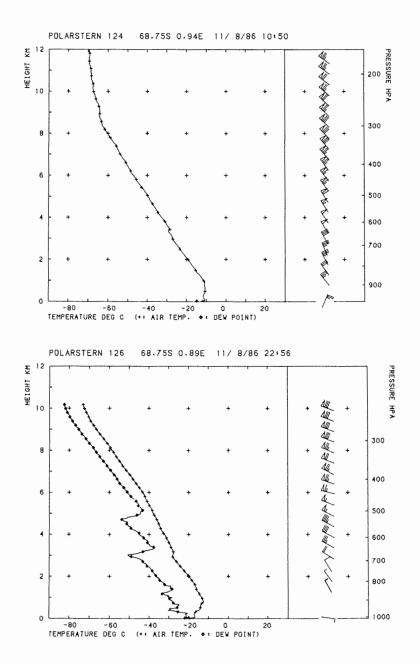
.


TIME	POSI	TION	PRESS.	WIN	4D	TEM	PERAT	URE		сι	.0	υο	s	VIS	WE	AT	HER
UTC	Ψ	x	hPa			AIR °C	DEW PT.		N	N,	h	૬	CM C		**	w,	W2
			11-0	deg	kts	ι u	.c	.c						km			
3	68.75	1.0E	993.0	330	18	-19.6	-23.4	-1.7	9		1			4.00	70	7	1
6	68.75	1.0E	995.0	320	15	-21.1	-24.6	-1.8	3		1			4.00	1 71	7	ż
9	68.75	1.0E	997.5	310	10	-22.1	-26.0	-1.8	3	з	ż	5	0 0	4.00	77	7	ĩ
12	68.75	1.0E	1000.1	290	9	-23.2	-27.8	-1.8	0		9			10.00	02	7	1
15	68.75	1.0E	1001.2	990	1	-24.4	-29.4	-1.8	6	2	4	5	0 2	10.00	03	7	ī
18	68.75	1.0E	1002.2	20		-25.2		-1.8	9		i			10.00	02		
1														1			



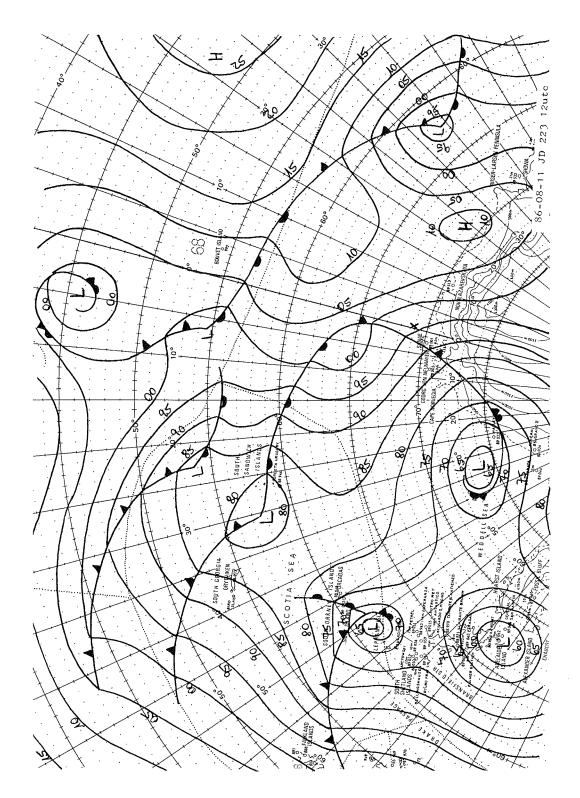
56

'n


Ň



11. AUGUST	1986


、

TIME	POSIT	ION	PRESS.	WI	10		PERAT		CLOUDS			THER
UTC	Ŷ	λ	hPa		1.4-		DEW PT.	WATER C	NNh h C C M C H	km	ww 1	w ₁ w ₂
h 3	68.75	•9E	1000.0	deg 40	kts 		-21.5		9 /	2.00	71	7 2
6	68.75	•9E	998.2	40	24	-15.5	-13.5	-1.8	9 /	2.00	71	77
12	68.85	•95	997.2	10	23	-13.2	-13.6	-1.8	8816//	2.00		777777
15 18	28.83 28.83	.9E	1000.2			-10.6		-1.8	8826//	.50		72
					2.5						1	
											L	

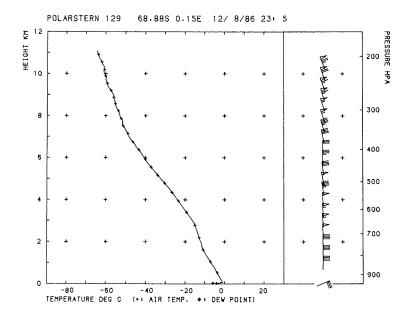


58

`



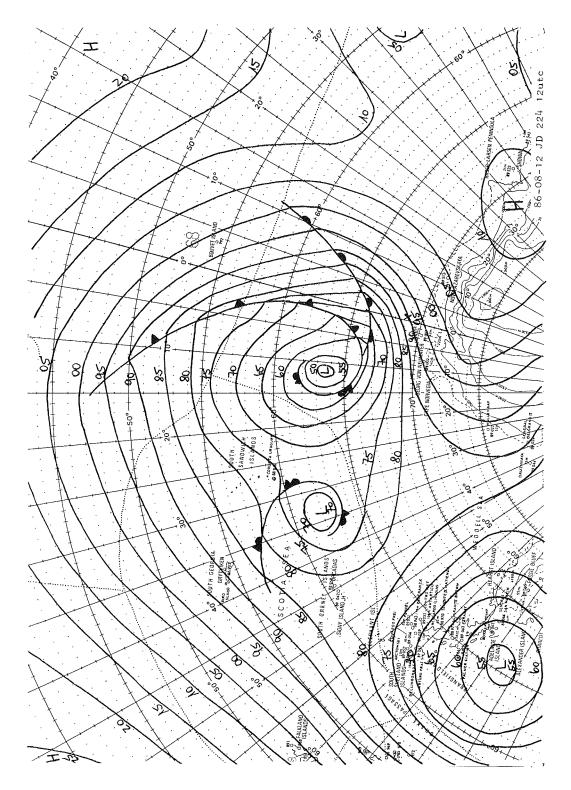
,


`

59

,

12.AUGUST	1986


-												-	
•	ТІМЕ	POSI	TION .	PRESS.	WI	٩D		PERAT		CLOUDS	VIS	WEA	THER
	UTC	ų	λ				AIR	DEW PT.	WATER	NN, h G, C _H G,		ww \	N, W,
L	h			hPa	deg	kts	·c	•c	.c		km		
	3	68.85	•9E	1008.2	80	17	-21.3	-24.5	-1.8	9 /	10.00	02	11
	6	64.85	• 9E	1004.0	80	22	-16.8	-20.0	-1.8	9 /	10.00	02	Z 2
	9	68.85	• 9E	997.1	80	32	-11.1	-14.2	-1.3	8816//	. 20	75	77
	12	68.85	•78	990.6	70	35	-8.8	-10.6	-1.0	882611	.20	73	77
	15	68.85	•7E	978.0	80	53	-9.1	-11.0	-1.8	9 /	.00	39	77
	18	68.85	.4E	967.3	80	59	-9.9	-11.9	~1.8	9 /	.00	39	77
								}					
1								{				1	

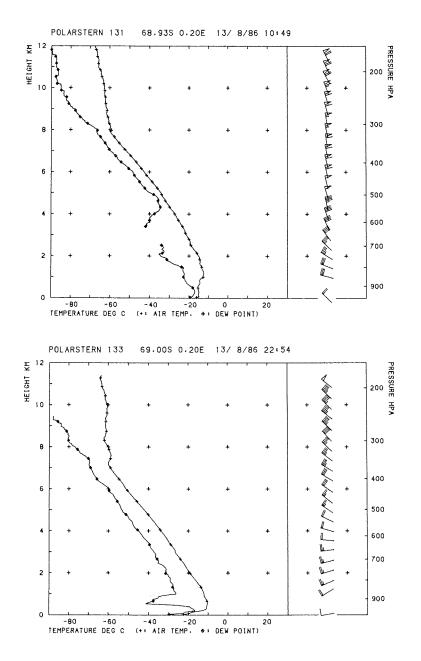


、

60

•

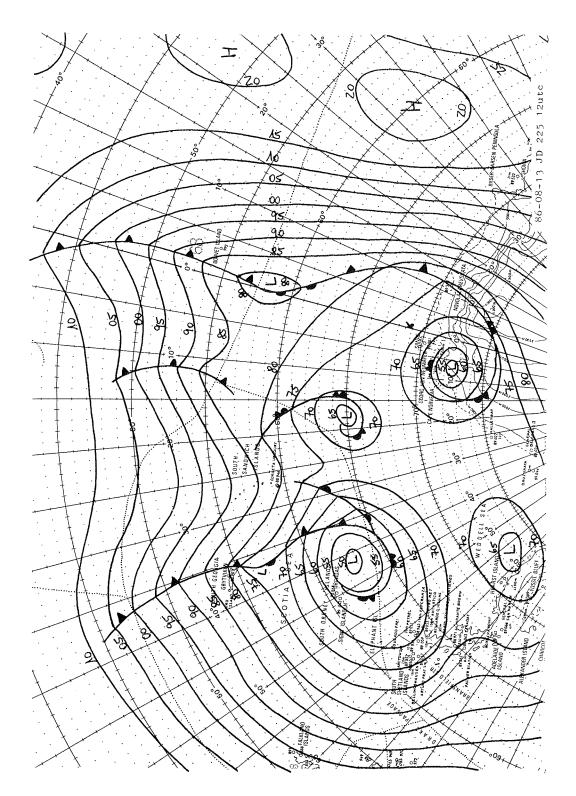



`

61

`

13.AUGUST	1986
121400021	1,00

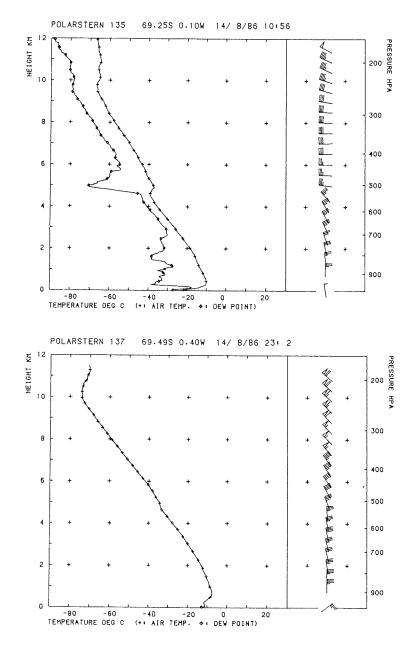

TIME	POSI	FION	PRESS.	WI	٩D	TEM	PERAT	URE		сι	.01	JD	s	VIS	WE.	ATI	HER
UTC	ų	λ	hPa	deg	kts	AIR "C	DEW PT.	WATER C	N	N,	h (	દ	CH CH	km	**	W ₁	w ₂
3 6 9 12 15 18	68.95 68.95 68.95 68.95 68.95 68.95 68.95	• 2E • 2E • 2E • 2E • 2E • 2E • 2E	950.5 956.0 965.1 973.0 980.2 985.6	320 310 290	25 20 17 16	-2.2 -10.8 -15.1 -16.2 -17.6 -19.3	-18.0 -19.3 -21.2	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8			5	8	30 02 02	10.00 4.00 10.00 10.00 20.00 20.00	02 70 02 03 02 02	/ 7 7 1 1	



`

62

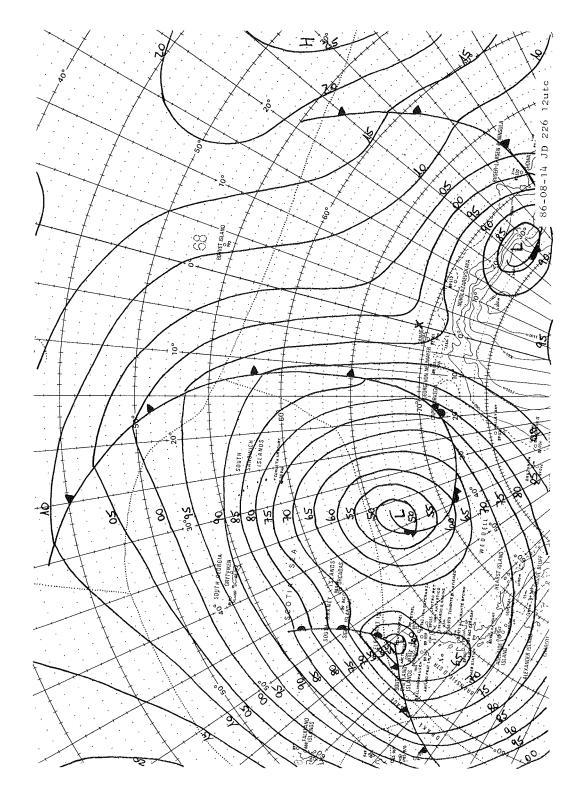
,




ι.

63

ν.


TIME	POSI	FION	PRESS.	wir	٩Þ	TEM	PERAT	URE		CL	οι	IDS	5	VIS	WE	ATI	HEF
UTC h	*	λ	hPa	deg	kts	AIR "C	DEW PT	WATER °C	Ν.	*	h (	ર ૦	н Сн	km	**	W ₁	Wz
э 6 9 12 15 18	59,15 69,25 69,25 69,35 69,35 59,45	.0E .0E .0W .1W .2H .3H	997.3 999.0 999.1 1000.2 998.2 996.2	360 50	5 10 8 15	-21.8	-26.8 -26.1 -25.9 -24.2	-1.3 -1.8 -1.8 -1.8 -1.8 -1.3 -1.3	9 9 2 7 7 9	2 3 3	6	i 0 5 3 5 3	z	10.00 10.00 20.00 20.00 10.00 10.00	02 02 03 03 02	2 1 1 2	2 1 1 2

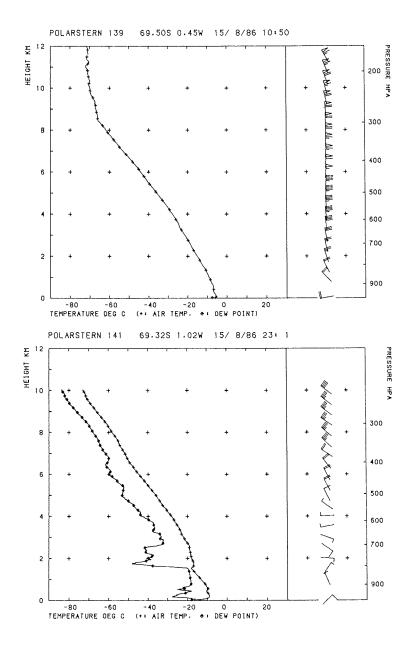


`

64

`

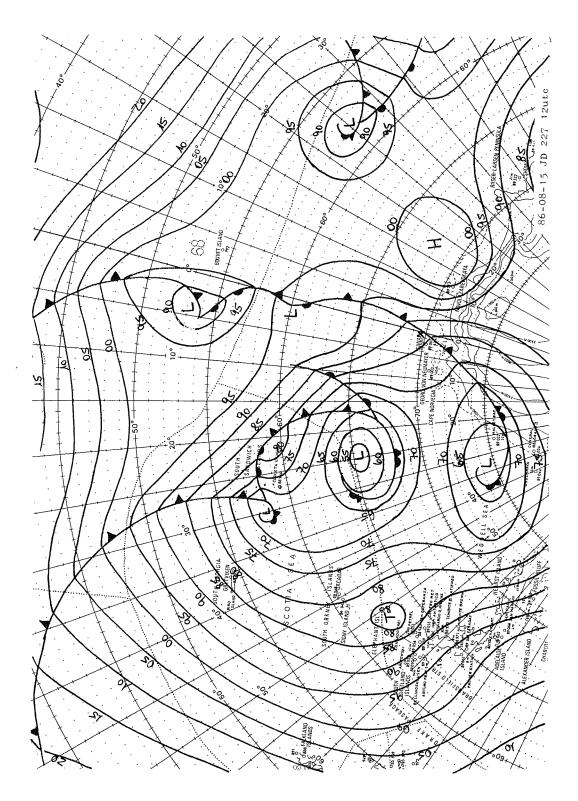



•

x

65

`


TIME	POSITION		PRESS.	WIN	٩D	TEMPERATURE				CLOUDS					VIS	WEATHER			
urc	Ŷ	λ					DEW PT.	WATER	N	Nh.	h i	દ	сы с	÷		**	Ψ,	₩2	
h			hPa	deg	kts	.с	•C	·c							km				
3	b9.5S	.48	986.0	50	29	-7.5	-9.5	-1.8	9		1				2.00	71	7	1	
6	69.5S	.48	982.0	40	32	-5.5	-7.5	-1.8	9		1				2.00	73			
9	69.55	.5₩	980.0	40	32	-5.1	-7.4	-1.8	8	8	2	6	11		1.00			7	
12	69.55	•5 H	982.6		19				8	8	2	6	11	1	2.00		7		
15	69.55	•5W	987.6				-13.5	-1.8	4	1	6	5	0 5		20.00		7		
10	69.45	.7н	940.3	330	6	-13.6	-16.8	-1.8	0		9				20.00	02	7	1	
																1			



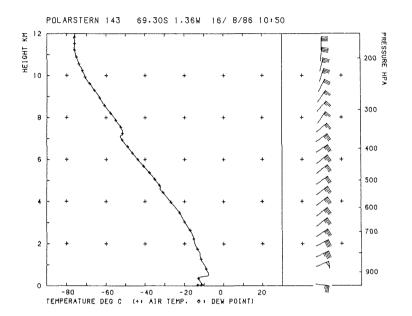
`

66

'n



۰.


•

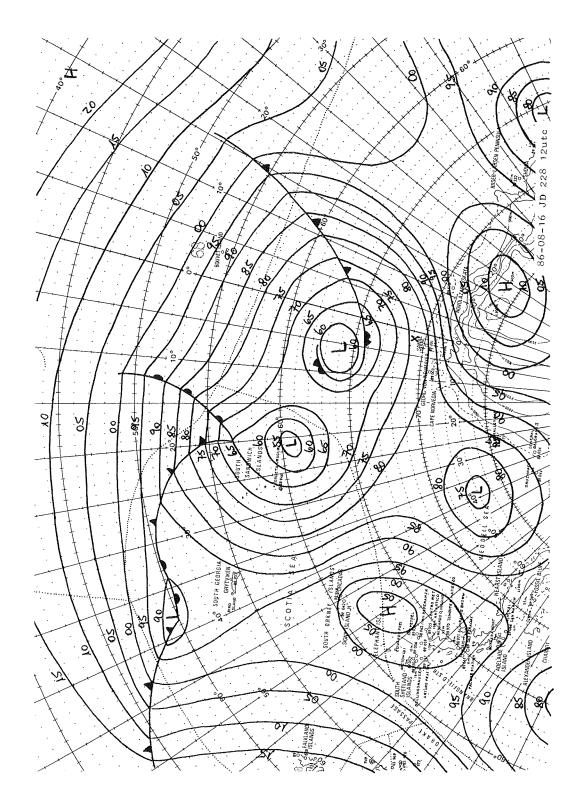
67

•

'n

										16	<b>.</b> Al	GUST	1986			
TIME UTC	POSITION		PRESS.	WIND				PERATURE DEW PTI WATER		CLOU NN D C			VIS kmt	WEATH www,		
3 6 9 12 15 18	69.35 69.35 69.35 69.35 69.35 69.35	1.2W 1.2W 1.3W 1.4W 1.6W 1.8H	988.2 984.2 981.2 977.5 974.1 972.0	100 100 100	12 27 41 44	-17.1 -12.3 -12.3 -11.9 -12.0 -12.1	-14.2 -14.2 -14.2 -13.9	-1.8		/ / 8 1 8 1 8 2 /	5 5 6	///////////////////////////////////////	2.00 2.00 2.00 1.00 1.00 .50	02 71 73 73 73 73	77777	2 2 2 7




、

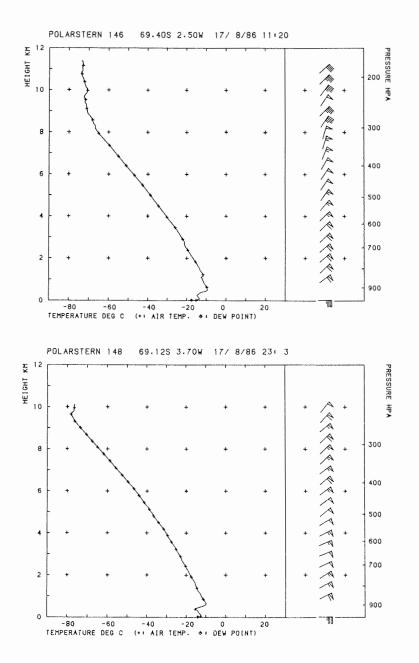
.

68

.

•

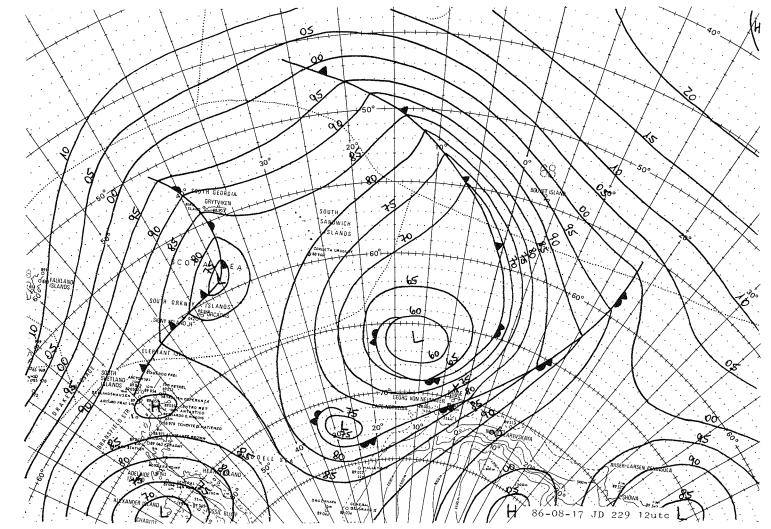



•

•

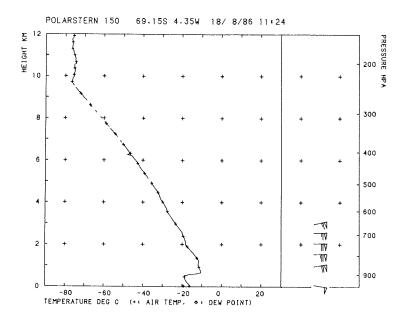
69

r


	_						_			17.	AUGU	ST	198	5					
TIME UTC b	POSI V	TION ۱	PRESS.	WIND TEMPERATURE AIR DEW PT WATER N M deg kts 'C 'C 'C 'C												WEATHER			
3 9 12 15 18	69.45 69.45 69.55 69.45 69.25 69.15	2.3W 2.3W 2.5K 2.6H 3.1W 3.6W	974.1 973.0 975.8 974.1 971.2 971.2	80 60 90 80	45 34 47 54	-12.5 -12.7 -15.1 -14.0 -11.9 -10.9	-14.7 -16.9 -16.2	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8	9 9 7 8 9 9	/ / / / / / /	60 6/	0/	.50 .50 2.00 2.00 .00 2.00	73 73 71 73 39 73	7777	7 7 7 7 7			



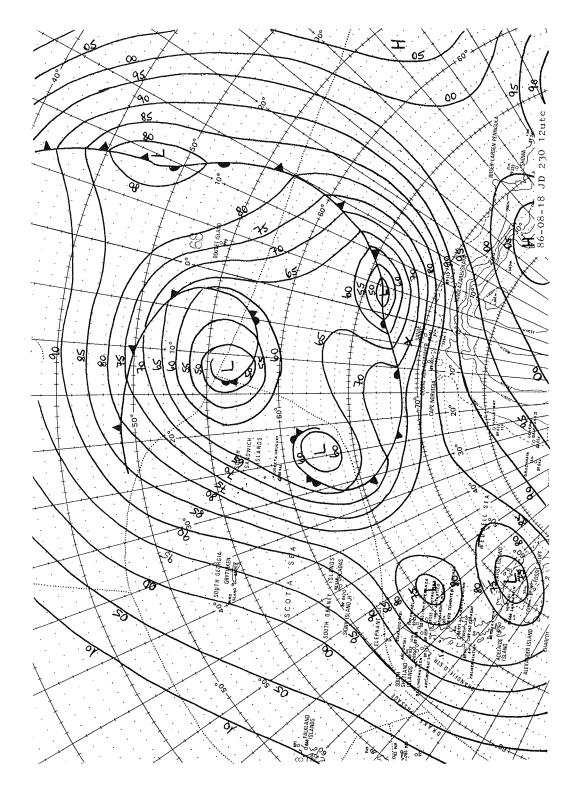
、


70

`



18.AUGUST	1986


	POSI	TION	PRESS.	WI	٩D		PERAT			LOUDS	1	WE.		
ь			hPa	deg	kts		10EW P1.	*C	N 04	, ո <b>ն ն</b> ագն	km	**	<i>"</i> "	<b>*</b> 2
3 6 9 12 15 18	69.15 09.15 09.25 69.25 69.15 68.95	4.1W 4.1W 4.3W 4.4N 4.5W 4.3W	971.0 969.8 970.5 970.0 968.3 965.2	100 100 100 100	45 47 47 48	-15.9	-17.6 -18.3 -19.8 -19.9	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	999799	/ / / /	.50 4.00 2.00 2.00 .05 .50	71 71 71	7 7 7 7 7 7	,7 7 7 7 7

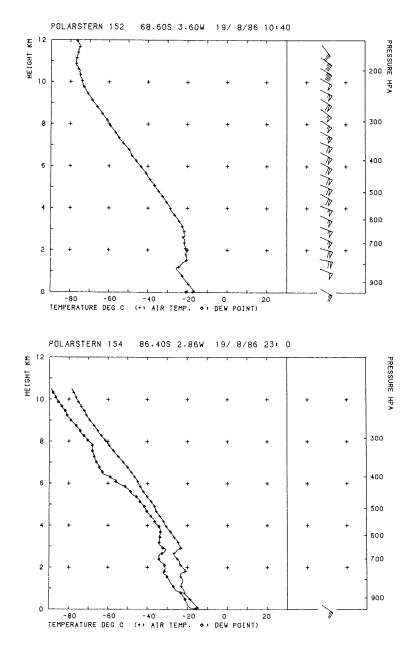


x

`

•



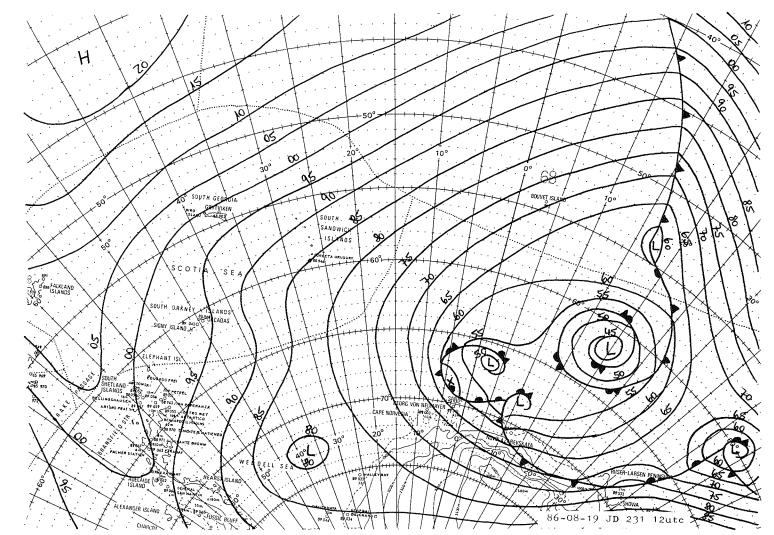

.

•

73

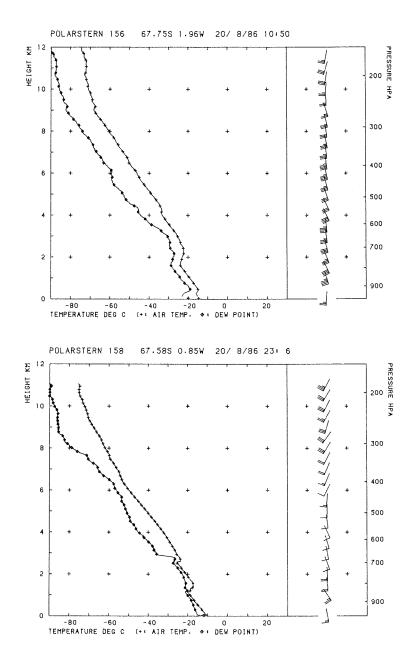
ς.

										19	۰. AI	ugus	T 197	36		
TIME utc h	P0\$1 9	TION x	PRESS.	WIN deg		AIR	PERAT				ວບເ ເ	DS c _m c	VIS km	WE **	ATH Wi	
3 6 9 12 15 18	04.85 68.75 68.75 68.65 68.65 68.65 68.55	4.4W 4.3X 3.8X 3.7W 3.5W 3.0W	963.1 962.2 961.6 961.1 962.3 963.6	110 120 120	38 36 36 23	-18.0 -18.1 -17.7 -17.4 -17.1 -16.7	-20.6 -20.4 -20.7 -20.4	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	9 9 8 8 8 3	8	6 6 8	/ / / / / /	.50 .50 1.00 2.00 4.00 4.00	73 71 70 22	7 7 7 7 7 7	Z Z 2 Z




•

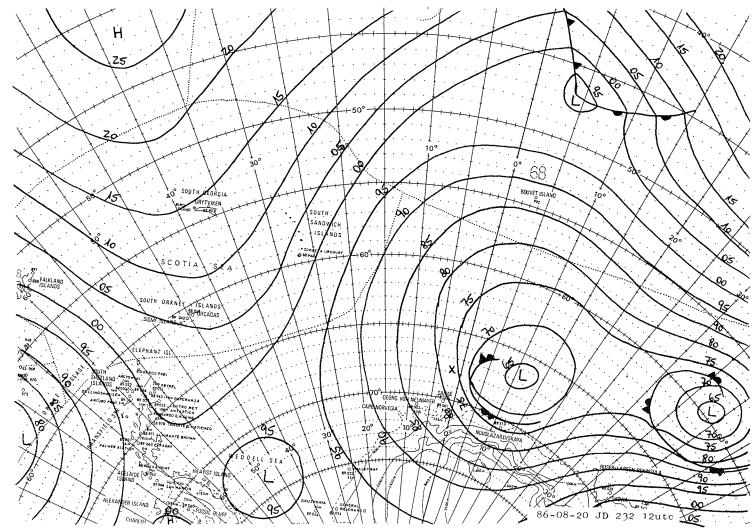
`


74

•



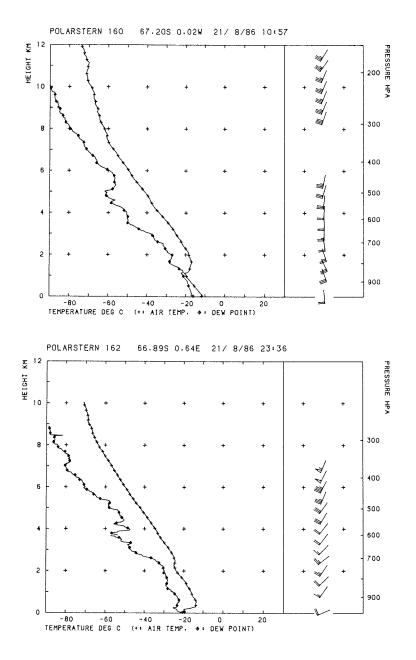
20.AUGUST	1986


TIME	POSI	TION	PRESS.	WI	40	TEM	PERAT	URE		с١	_0	UC	)S		VIS	WE	ATł	HER
UTC		λ				AIR	DEW PT		N	Nh.	h	գ	C.	Сн		**	Ψ,	W2
ħ			hPa	deg	kts	51	•C	-c							km			
1	21.60	2.11	972.2	140	26	-15.6	-20.5	-1.8	9		4				10.00	50	7	1
6	08.05	1.8₩	973.0	160	33	-13.6	-19.2	-1.8	6	6	4	5	0	Ũ.	10.00	02	2	2
4	67.95	1.98	975.1	180	31	-15.5	-20.4	-1.3	3	3	5	5	0	0	10.00	01	2	2
12	67.75	1.98	976.Z	170	32	-15.3	-20.8	-1.8	3	2	6	0	3	Z	20.00	02	1	1
15	67.65	2 • 0 W	978.2	180	30	-13.0	-18.3	-1.8					1	1	20.00	02	l	1
10	67.65	1.9₩	980.2	200	2 O	-1Z.8	-17.4	-1.8	8	8	2	8	7	1	20.00	02	1	l
																1		



`

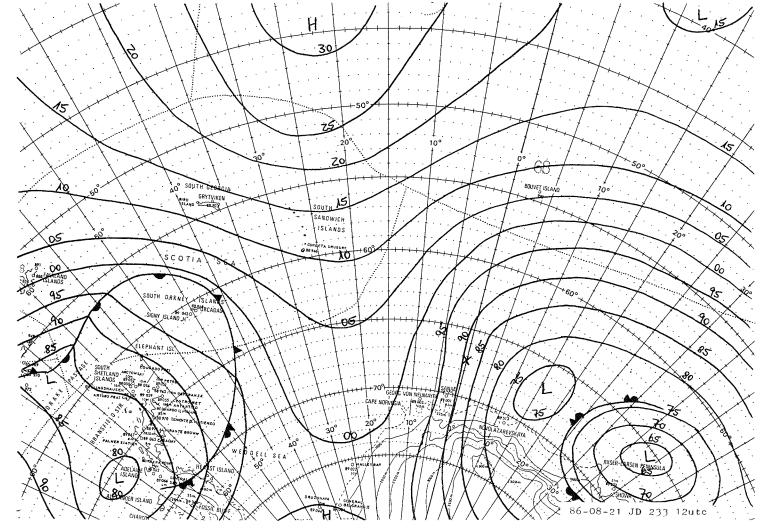
76


ς.



21.AUGUST	1986
21.AUGUST	1986

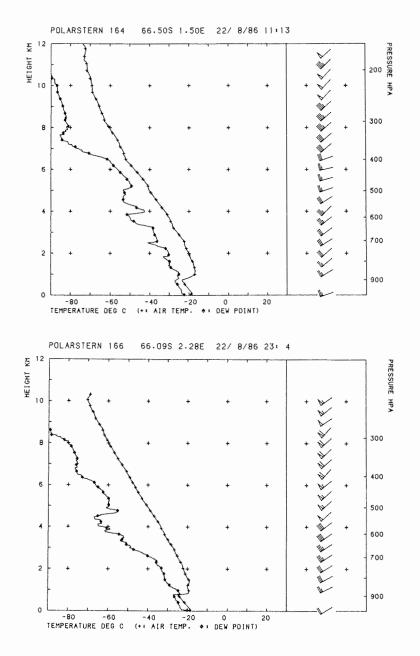
,


TIME	POSI	[ION	PRESS.	WIND TEMPERATURE						CLO	UDS	VIS	WE	٩TH	1ER
UTC	Ŷ	λ	ħΡa	deg	kts	AIR °C	DEW PT. C	WATER C	NN	<b>⊾</b> ከ	<u>Գ</u> Շագ	km	**	w,	w ₂
3 6 9 12 15 18	57.55 67.45 67.45 67.25 67.15 67.15	.9W .6W .4N .0H .1W .1W	985.9 987.1 989.0 989.8 992.0 994.0	190 170 180 200	20 22 25 18	-12.4 -12.2 -12.9	-17.8	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8	9 9 7 8 0 0	/ / 7 5 8 4 9 9	800 6//	10.00 10.00 10.00 20.00 20.00	02 02 01 02 02 02	2 2 2 1	/ 2 2 1



`

78


ν.

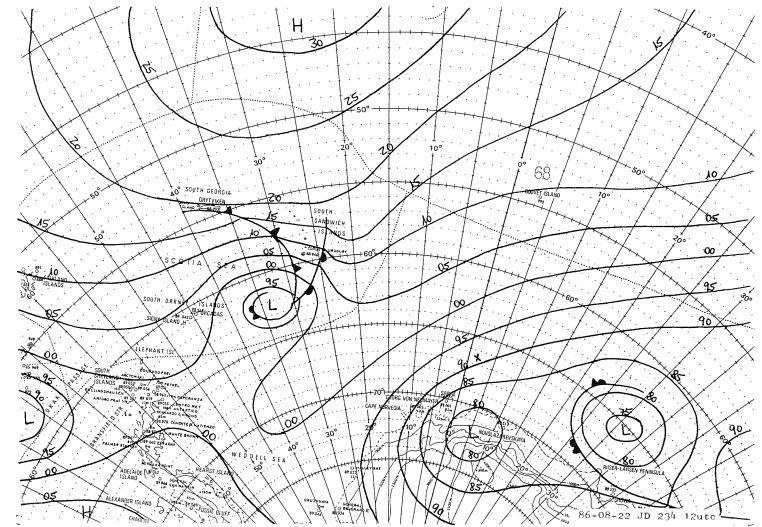


2.AUGUST	1986

.

	TIME	POSI	TION	PRESS.	WI	٩D		PERAT		CLOUDS	VIS	WEATHER
	UTC		λ							N Nh h Cլ Cµ Cµ		** ¥, ¥2
1	<u>h</u>			hPa	deg	kts	°C	°C	.с		km	
1	3	28.00	• 9E	994.9	24 C	24	-17.5	-21.6	-1.8	9 /	4.00	02//
	6	06.75	1.16	993.8			-17.5		-1.8	9 /	4.00	71 7 2
	9	66.65	1.36	993.2			-19.4		-1.8	324802	20.00	01 2 2
	12	66.55 66.45	1.5E 1.7E	993.0			-19.9		-1.8	663800	2.00	02 1 1
1	18	66.35	1.96	992.8			-18.5		-1.8	773800	2.00	02 1 1
		00.73	1.90	142.0	230	7.4	-1/./	-20.9	-1.8	8838//	4.00	02 2 Z
											1	1
t											I	

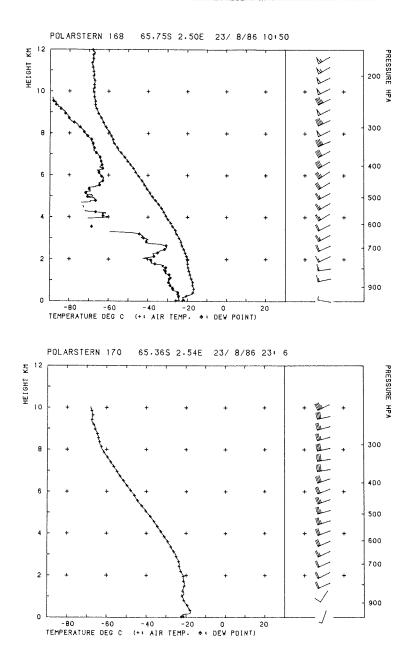



`

80

、

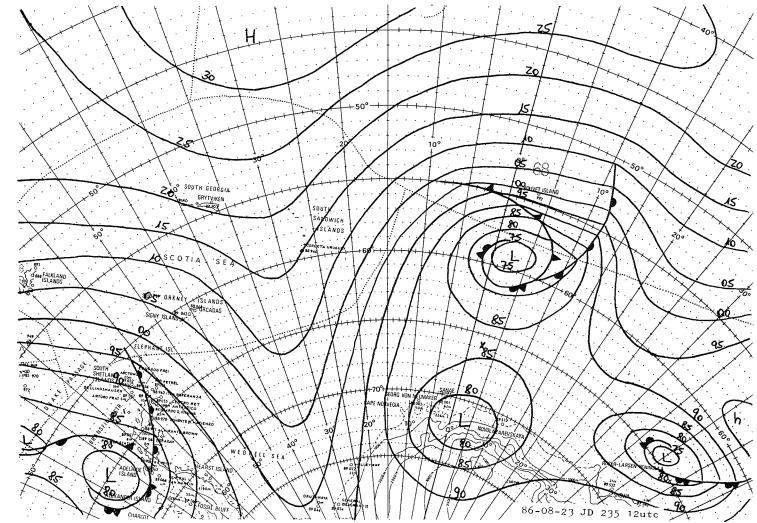
.


.

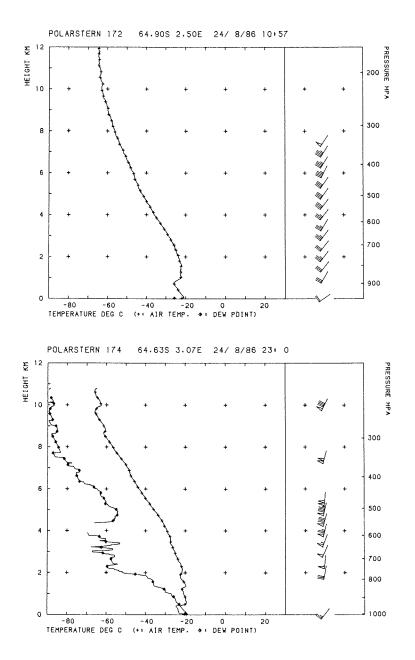


.

23. AUGUST	1986
------------	------

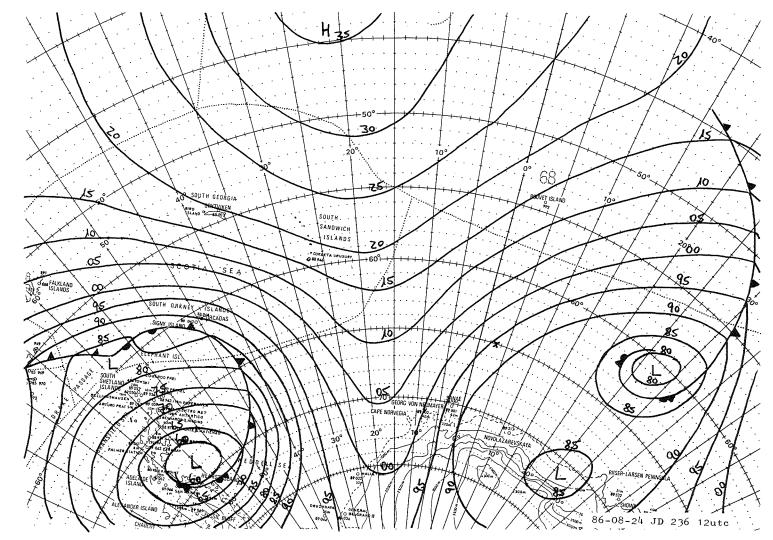

TIME	POSI	TION	PRESS.	WI	٩D	TEM		C١	0	JD	s	VIS	WE	ATH	ER		
UTC h	Ŷ	λ	ħΡa	deg	kts	AIR °C	DEW PT.	WATER 'C	N	N,	h (	ì	с _н сн	km	**	w,	w2
3 6 9 12 15 15 18	66.05 65.95 65.85 65.85 65.65 65.55	2.5E 2.5E 2.5E 2.5E 2.5E 2.6E 2.4E	990.3 989.2 987.8 987.0 985.5 985.5 986.0	270 290 280 270 990 990	11 8 4 3	-20.1 -21.7 -22.4 -22.2 -21.4 -21.9	-25.1 -25.8 -24.0 -23.5	-1.8 -1.3 -1.3 -1.8 -1.8 -1.8 -1.8	6	50666	9 1 1	0 6 6	0 0 0 2 0 0 0 0 0 0	10.00 10.00 20.00 2.00 2.00 4.00	02 02 10 10	1 1 2	2 1 1 2




,

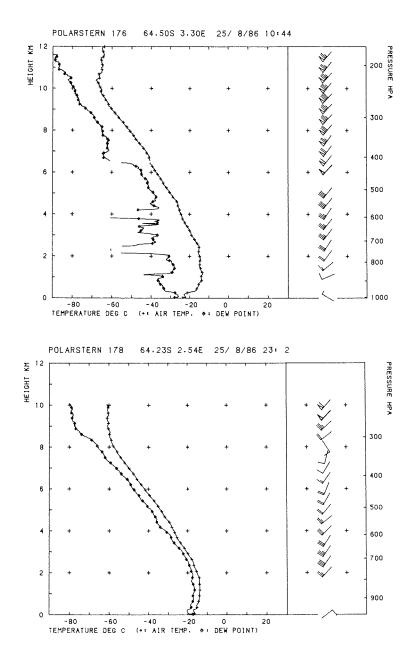
82

۰




										2	4 <b>.</b> A	UGU	is t	198	6		
TIME utc h	POSI Y	TION ک	PRESS.	WIN deg	ID kts	AIR	PERAT				0U • จ	DS c"	Ç,		WE)		
3 6 9 12 15 18	05.15 65.05 64.95 64.95 64.85 64.85	2.5E 2.5E 2.5E 2.5E 2.5E 2.6E 2.8E	989.8 991.0 993.0 995.0 995.9 997.8	220 220	9 16 24 27	-18.1	-24.8	-1.8	9 9 8 7 7 9	8 7 7	/ 4 6 4 8 4 8 /	/ 0 0		10.00 10.00 4.00 20.00 10.00 10.00	02 02 02 02	/ 2 2 2 2 2 2 2 2 2	2 2 2 2 2



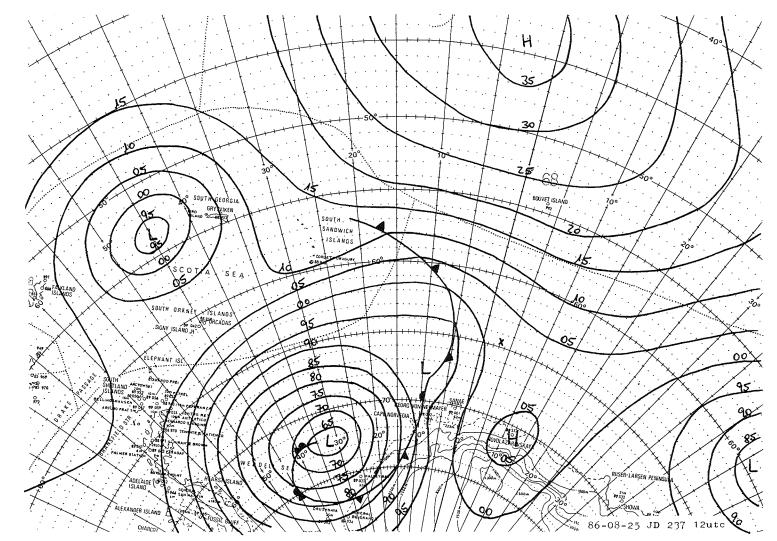

`

84



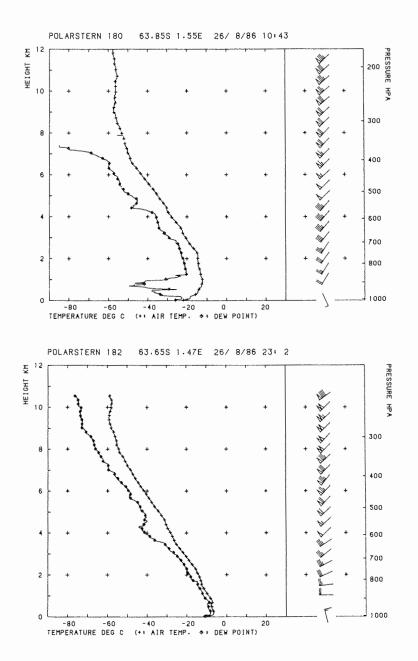
.

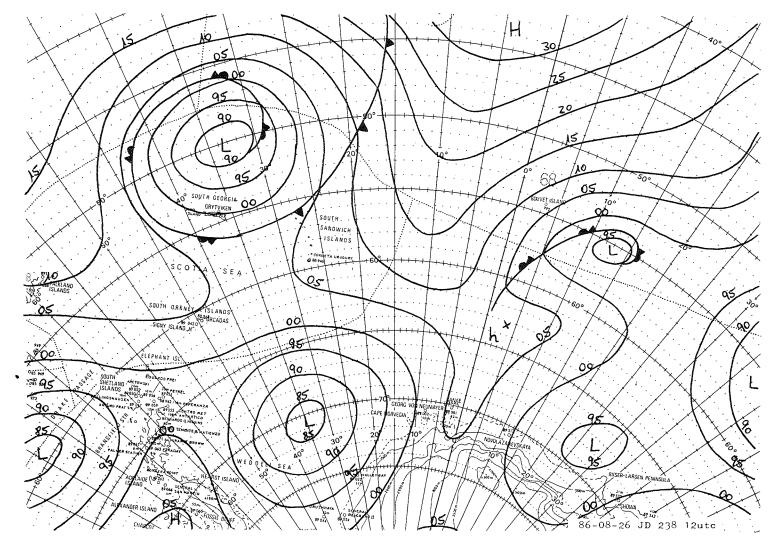
·										2	5 <b>.</b> A	UGL	IS T	193	6		
TIME UTC h	POSI *	TION X	PRESS.	Wil deg	ND kts		PERAT			CL Nh		DS _C	G,	-	WE **		
3 6 9 12 15 18	64.65 64.65 64.55 64.55 64.45 64.35	3.1E 3.1E 3.2E 3.2E 3.1E 2.8E	1006.2 1006.3 1005.3 1003.9 1001.3 998.2	260 280 310 330	13 9 8 10	-23.6 -24.1 -23.3 -21.7	-25.0 -27.2 -27.8 -28.2 -25.0 -23.0	-1.8 -1.8 -1.8	9 1 2 8	0	90	0 0 / /	5	10.00 10.00 20.00 20.00 10.00 2.00	02 02 02 02 02 71	2 1 1	2111



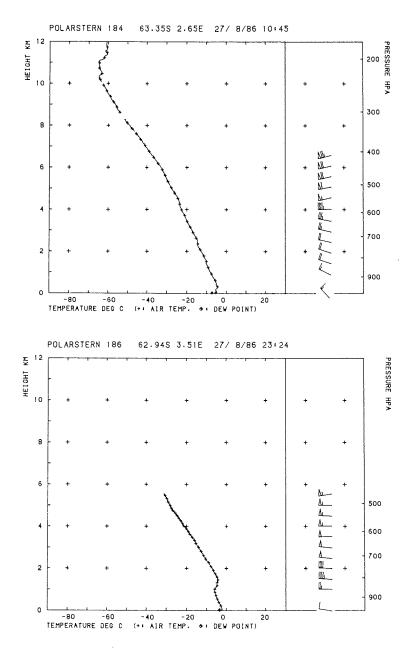

.

.


86


`



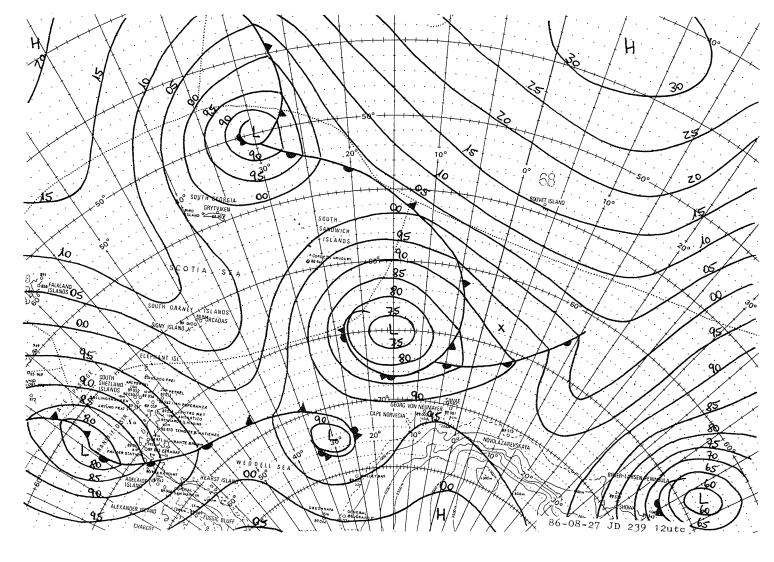

26. AUGUST	198

TIME	POSI	TION	PRESS.	WI	٩D		PERAT		CLOUDS		WEATHE	ΞR
UTC	φ	λ				AIR	DEW PT.	WATER	NN, nG, CuG,		ww W, W	¥2
h			hPa	deg	kts	•C	°C	.с		km		
3	64.15	2.16	999.4	130	11	-17.8	-21.9	-1.8	9 /	10,00	02 7 /	1
6	64.0S	1.98	1003.0	150	11	-19.5	-24.1	-1.8	9 /	20.00	02 7 2	2
9	63.95	1.78	1006.3				-24.1	-1.8	0 9	20.00	02 1 1	1
12	÷3.85	1.5E	1008.0	140			-25.0	-1.8		Z0.00	0210	
15	63.65	1.5E	1009.0	990			-24.2		109002	20.00	02 0 0	
18	03.65	1.48	1008.3	990	2	-18.4	-21.9	-1.8	774800	50.00	03 0 0	0





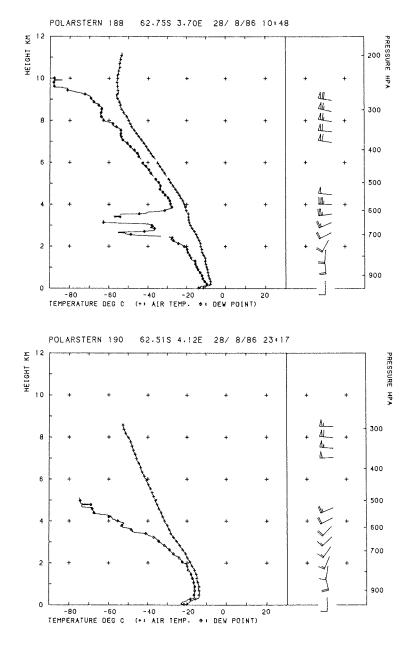
TIME	POSI ¥	TION	PRESS.		AIR	PERAT	WATER	CLOUDS NN, n. C. C., C.,		WEATHER
h 3 9 12 15 18	03.55 63.55 63.55 63.45 63.35 63.35	1.9E 2.3E 2.3E 2.7E 3.1E 3.1E	hPa 1002.2 1000.3 997.3 994.0 988.6 983.3	deg kts 280 18 300 13 310 14 310 14 340 14 10 11	*C -6.6 -5.5 -5.4 -5.7 -5.9	*C -8.1 -8.0 -7.8 -7.4 -7.7 -7.0	°C -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	9 / 9 / 8 8 1 6 / / 8 8 1 6 / / 8 8 2 6 / / 8 8 1 6 / /	km 2.00 2.00 4.00 2.00 2.00 2.00	71 / / 73 7 2 70 7 2 70 7 2 71 7 2 71 7 2 71 7 2




ς.

`

90

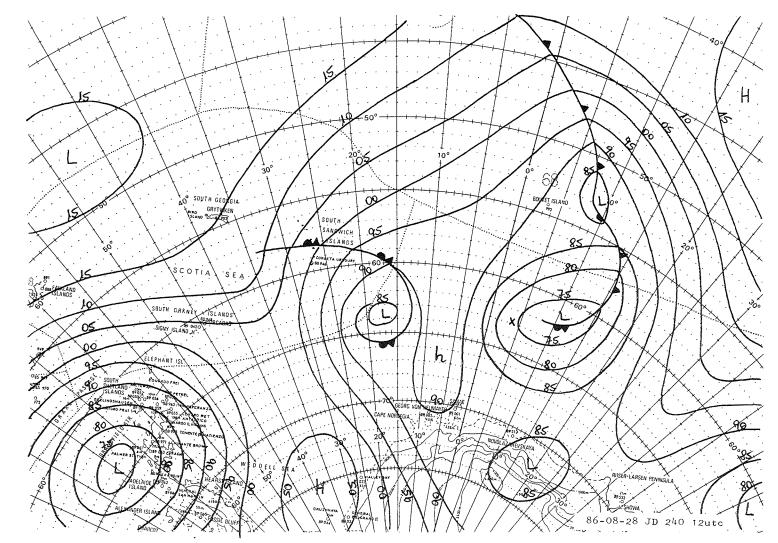

`



28.AUGUST	1986

•

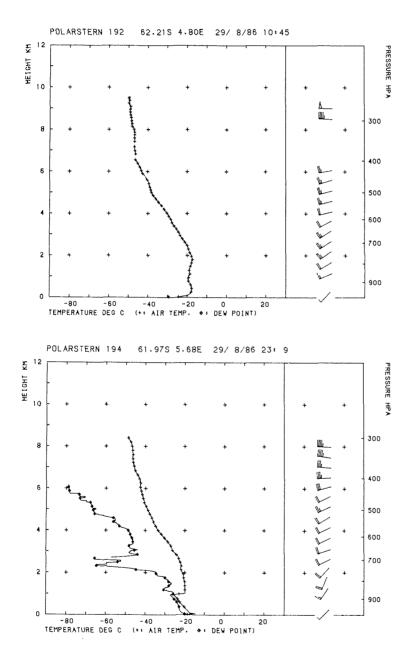
TIME	POSI	TION	PRESS.	WI	٩V		PERAT			CLO			-	WE,		
UTC h	¥	λ	ħPa	deq	kts		DEW PT.	WATER C	N	N _h h	i G	С  Сн	km	**	w,	W2
3 6 9 12 15 15 18	62.95 62.95 62.85 62.85 62.85 62.75 62.65	3.6E 3.6E 3.7E 3.7E 3.7E 3.9E	973.0 974.0 975.3 977.0 979.1 9d1.8	170	10 9 10	-2.7 -5.8 -10.3 -11.3 -13.6 -14.4	-12.7	-1.8 -1.7 -1.7 -1.7 -1.7 -1.7 -1.8	7	/ 5 4 5 3 6 2 8 1	6	0 Z 0 Z	4.00 10.00 20.00 2.00 10.00 2.00	02 02 02 10 02 71	7 2 2 2 2	2 2 2 2 2




`

92

v

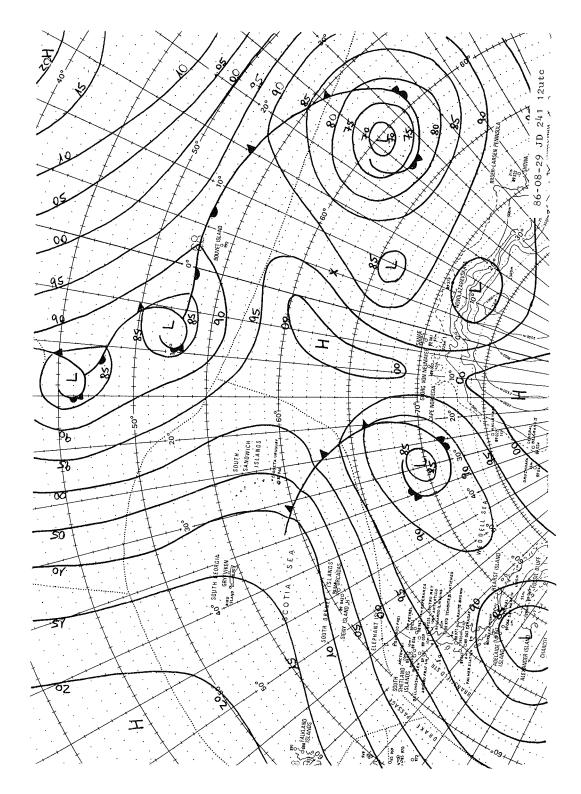

. ``



29.AUGUST 1986

۰.

TIME	POSI	TION	PRESS.	WIN	ID	TEM	PERAT	URE		CL	οų	05	5	VIS	WE	ATł	ER
UTC	ų	λ					DEW PT	WATER	N I	<b>∿</b> ⊾ i	h C	ιC	H CH		**	Ψ,	W2
h			hPa	deg	kts	.c	°C	.C						km			
3	62.45	4.5E	989.2	200	11	-22.8	-27.3	-1.8	9		1			10.00	02	1	1
6	62.25	4.88	991.0	210	10	-25.0	-29.0	-1.8	9		1			10.00	02	2	z
9	62.25	4.8E	992.2	230	6	-26.6	-30.7	-1.8	0		9			20.00	02	0	0
12	62.25	4.8E	993.9	220		-23.4		-1.8	0		9			20.00	02	2 0	0
15	62.15	5.2E	994.3	220			-26.1	-1.8	5	4	2	8 1	2 0	10.00	03	17	1
18	62.15	5.48	995.0	230	5	-20+2	-23.3	-1.8	8	8	з	6,	11	10.00	02	27	1
1																	
						L		L									



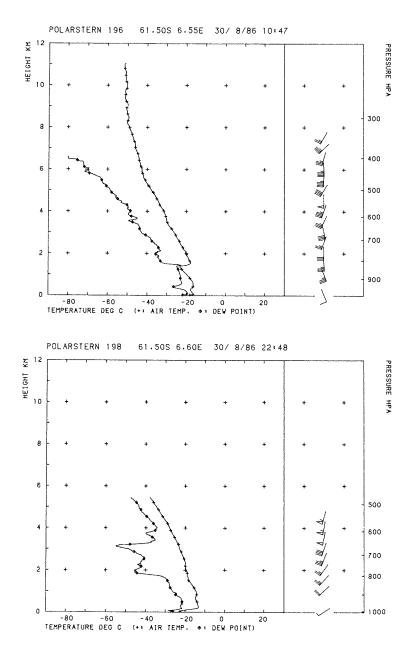

94

`

Υ.

,

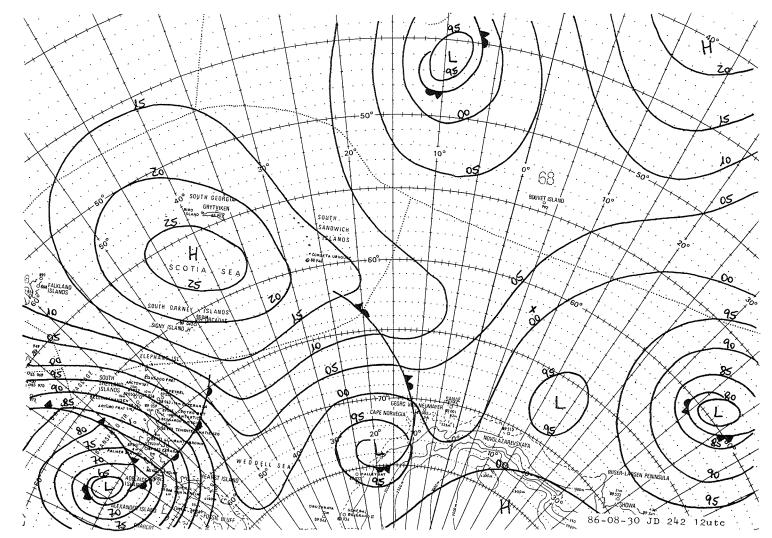



`

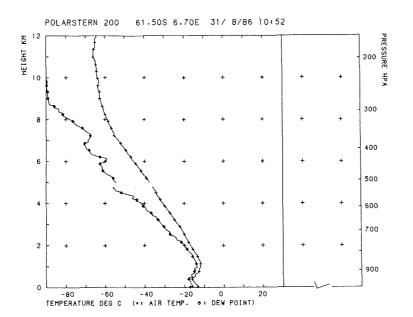
95

۰.

30.AUGUST 1936


	TIME	POSI	TION	PRESS.	WI	٩N	TEM	PERAT	URE		СL	01	JDS	;	VIS	WE	AT	HER
	UTC	φ	λ				AIR	DEW PT	WATER	N	N.	h (	રવ	G		ww	W,	W2
l	h			hPa	deg	kts	.c	'C	°C				÷.,		km			•
-[	٤	61.75	6.26	990.2	220	14	-17.9	-21.3	-1.3	9		7			10.00	02	7	7
	6	61.55	6.7E	997.9	210	14	-18.6	-22.2	-1.8	8		1			10.00	02	2	z
	9	61.45	7.0E	999.0	190	9	-20.5	-23.6	-1.8	4	4	4	8 0	0	20.00	02	ı	L
	12	61.55	6.5E	1001.0	170	9	-16.2	-19.9	-1.8	8	8	1	6 /	1	2.00	10		
	15	61.55	6.58	1002.3	200		-14.5		-1.8	7	7	3	6 0	0	20.00	02		
	18	61.55	6.5E	1004.0	180	10	-19.3	-23.0	-1.8	0		9			20.00	02	1	1
					1											1		




`

96

,



										31	 JGU	IS T	198	5		
TIME utc	POSI •	TION x	PRESS.	WII deg		AIR	PERAT			CL N, F			VIS الاس	WE **		₩γ
3 6 9 12 15 18	61.55 61.55 61.55 61.55 61.55 61.55 61.55	6.6E 6.6E 6.6E 6.7E 6.7E 6.8E	1005.0 1003.2 1001.7 1000.3 998.8 997.4	260 260 300 240 230	6 9 9 12 12	-20.1 -18.8 -16.6 -13.9 -15.0 -15.3	-23.2 -20.4 -17.7 -19.1	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8	8	7 4 8 3 8 3	0///		L0.00 10.00 20.00 10.00 L0.00 10.00	02 70 02 02 02 02 02	7777	2 2 2 2

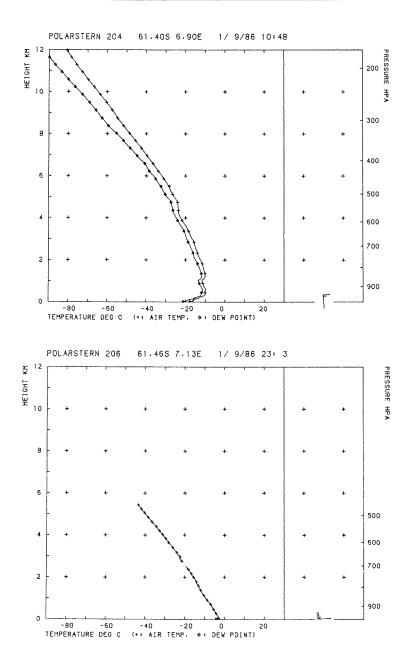


Ň

98



ì

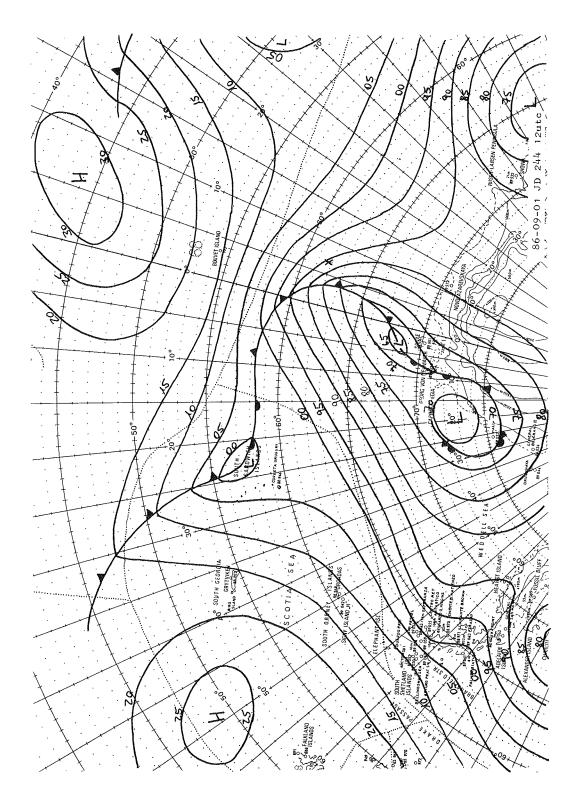

•

99

×.

1.56	PTEMBER	1985

TIME	POSI	POSITION I		RESS. WIND		TEM		LO				WEATHER				
UTC	4	λ					DEW PT	WATER	ΝŅ	h	રવ	ж Сн		ww	Ψ,	₩z
	01.45	6.95	hPa		kts	°C	.C	-1.8	9				km 10.00	02	7	
6	61.45	6.9E	997.3			-20.8		-1.8		ź	8 (	0 (	10.00	02		
9	61.45	6.9E	995.0			-20.8		-1.8	33	3	6 )	ι/	10.00		2	
12	61.45 61.45	6.95	989.2			-16.2		-1.5	88				4.00		2	
18	61.55	6.9E 7.0E	981.9 976.3	340 290			-11.2	-1.8					1.00	71		ž
														1		



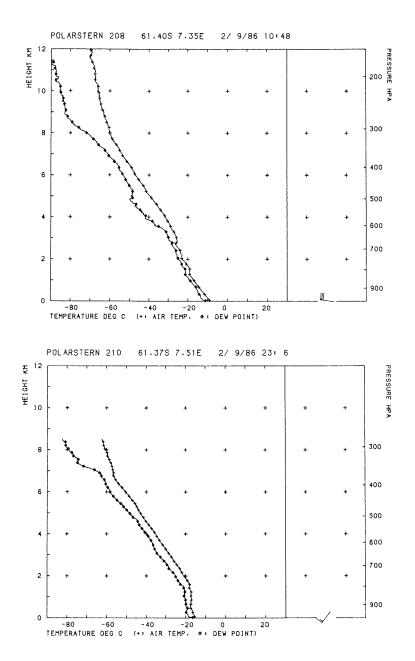

,

100

,





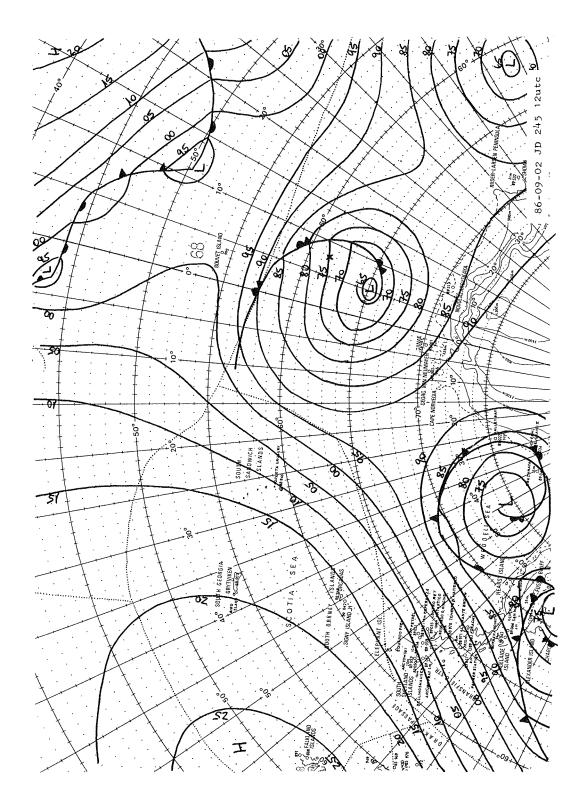

`

101

`

2.	SE	PTE	88 E	R	1936

TIME	POSI	TION	PRESS.	WIN	٩D	TEM	PERAT	URE		СL	.00	JDS	3	VIS	WE	VEATHER			
UTC	¥.					DEW PT		N Nh		ե, հ Շլ։		in Ch		**	w,	w,			
h			hPa	deg	kts	·C	•C	.c						km	<u> </u>				
3	61.45	7.26	975.0	270	26	-3.5	-5.4	-1.8	9		1			10.00	0 z	Z	2		
•	61.45	7.25	975.8	270	30	-4.3	-6.4	-1.8	9		1			10.00	02	2	2		
9	61.45	7.3E	975.0	260	30	-6.5	-8.3	-1.8	8	8	2	6 /	1	2.00	71	7	2		
12	61.45	7.4E	975.0	240	27	-11.5	-13.8	-1.8	8	8	2	6 /	1	2.00	71	- 7	1		
15	61.45	7.48	974.0	250	18	-13.7	-15.8	-1.8	8	9	3	6 /	1	2.00	10	7	Z		
18	61.45	7.4E	973.3	280	26	-16.7	-19.9	-1.8	8	8	3	6,	11	4.00	02	7	2		
1							l								1				




۰,

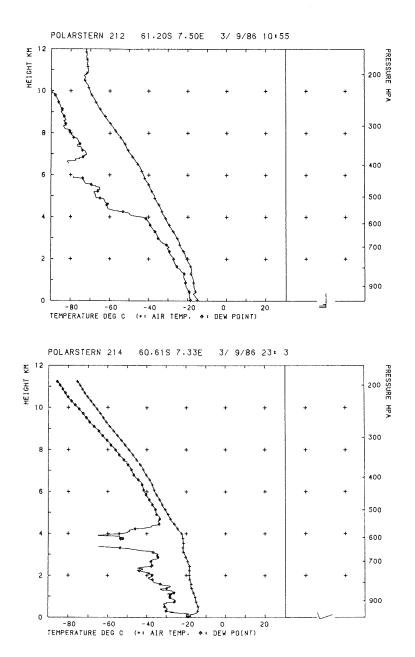
N

102

`



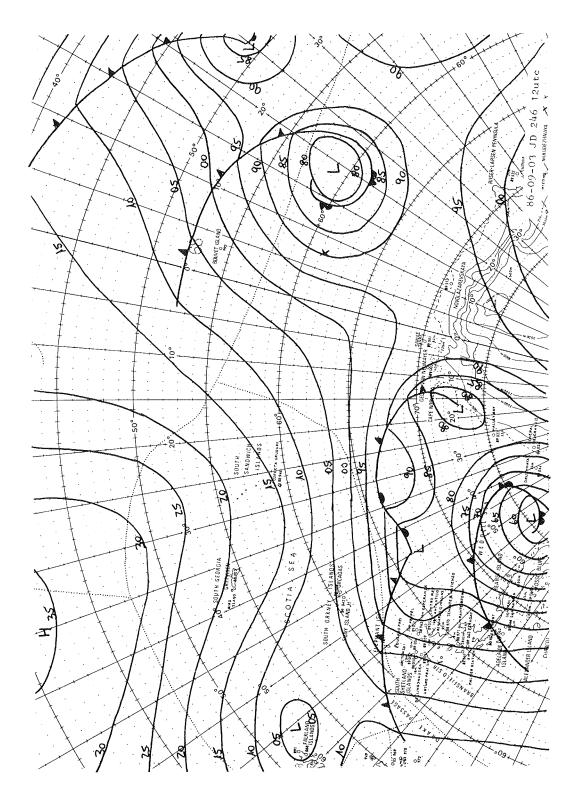
•


103

•

κ.

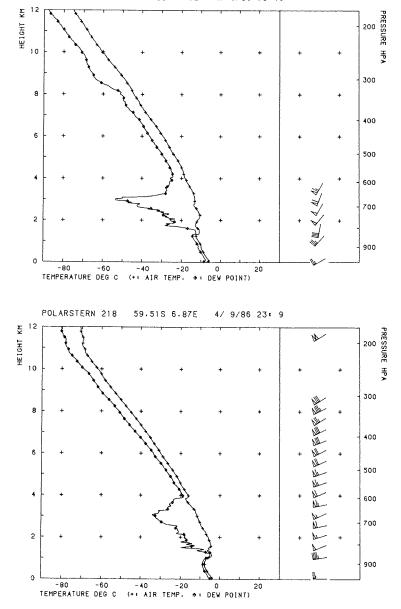
3.5E	PTEMBER	1986


TIME	POSITION		PRESS.	WI	٩D	TEMPERATURE				С						WEATHER		
UTC	÷	λ	ħΡa	deg	kts		DEW PT.	WATER *C	N	Nh	h	વ	с _м с	-	km	ww	W	W2
3 6 9 12 15 18	61.35 61.35 61.35 61.25 61.15 61.05	7.5E 7.5E 7.5E 7.5E 7.5E 7.5E 7.4E	979.2 981.0 985.7 989.9 993.9 997.0	240 220 180 170 200	20 21 25 25 15	-12.9 -12.1 -13.6 -15.4 -14.4	-16.2	-1.3 -1.8 -1.8 -1.8	8	8	ź	6	//		4.00 10.00 4.00 10.00 20.00 20.00	02 02	2 2 1 0	2 2 1 0



,

104


Ň

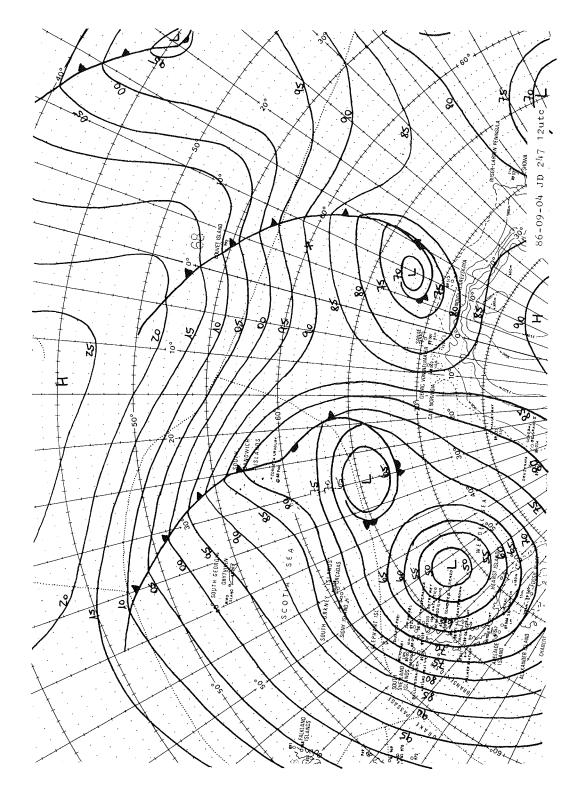


,

105

TIME	POSI	TION	PRESS.	WIN	٧D	TEM	(	CLO	UD	s	VIS	WE/	٩TH	Ð		
UTC h	Ŷ	λ	hPa							<b>h</b> h	દ	с <b>ы</b> сч	km	**		
3 9 12 15 18	60.55 60.45 60.25 60.05 59.95 59.85	7.3E 7.2E 7.1E 7.1E 7.1E 6.9E	998.1 993.5 989.1 989.8 991.2 992.0	300 280	27 34 31 28	-16.0 -14.4 -9.6 -6.1 -4.7 -4.9		-1.8 -1.8 -1.8 -1.8 -1.8 -1.8	8 8	/ 81 83 83 83	6	11	4.00 2.00 2.00 4.00 4.00 4.00	02 71 71 02 02 02	7777	22222




,

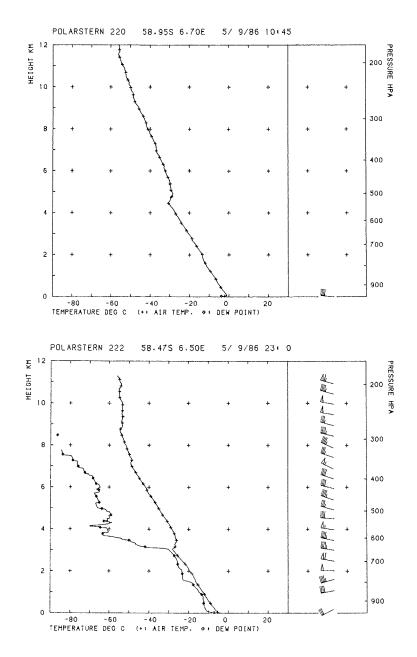
POLARSTERN 216 60.005 7.10E 4/ 9/86 10:46

106

•

•

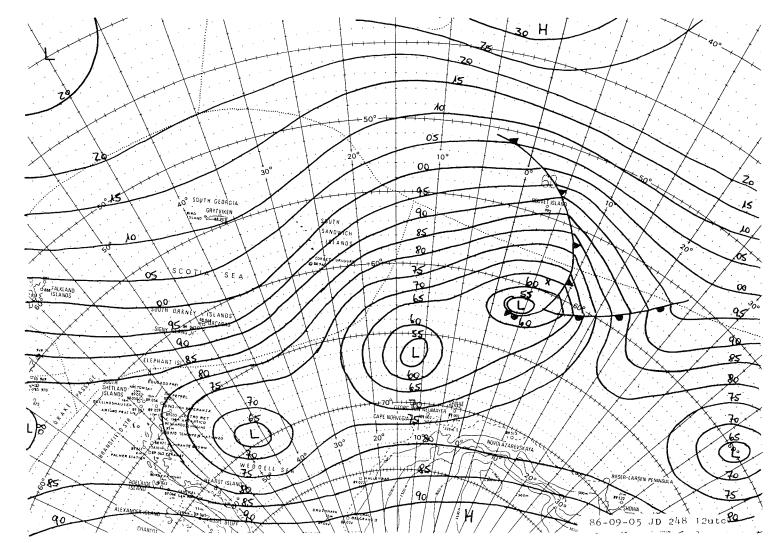



.

107

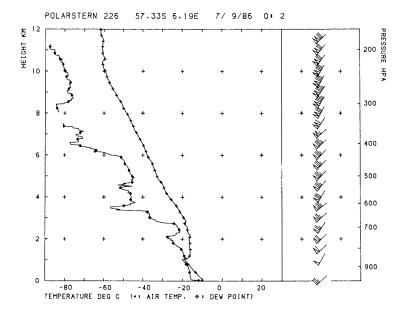
、

5.SEPTEMBER 1986


TIME	POSI	TION	PRESS.	WIND		PERAT		CLOUDS		WEATHER
UTC	Ÿ	Y	۶Pa	deg kts		DEW PT.	WATER C	N Nh h Cլ Cµi Cµi	km	ww W1 W2
3 6 9 12 15 18	59.45 59.35 59.15 59.05 58.95 58.75	6.8E 6.8E 6.7E 6.7E 6.8E 6.8E	981.3 972.5 965.3 966.0 964.4 967.9	310 22 310 30 270 43 270 41 250 47 260 48	-4.4 -2.3 -1.7 -2.3 -2.3	-6.2 -4.0 -3.6 -4.0	-1.8 -1.8 -1.3 -1.8	9 / 8 8 2 6 / / 8 8 2 6 / / 8 8 3 6 / / 8 8 2 6 / / 8 8 2 6 / / 8 8 4 6 / /	1.00 2.00 2.00 4.00 4.00 4.00	73 7 2 71 7 2 71 7 2 71 7 2 71 7 2 71 7 2 71 7 2 02 7 2

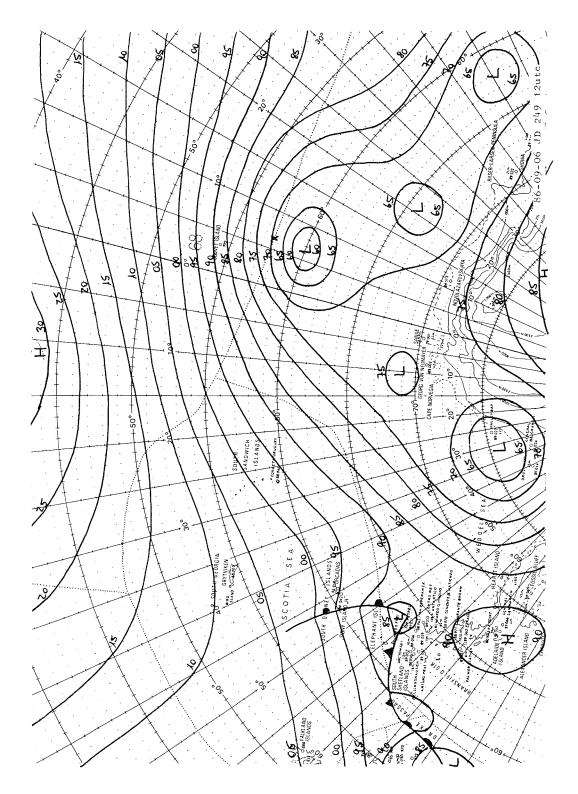


.


108

,




6.58	PTEMBER	1936

TIME	POSI	TION	PRESS.	wi	ND	TEM	PERAT	URE	CLOU	DS	VIS	WEA	THER
UTC h	¥	λ	hPa	deg	kts	AIR			NNhhG				¥, ₩2
3 6 9 12 15 18	58.25 58.05 57.95 57.75 57.55 57.55	6.3E 6.2E 6.4E 6.1E 6.0E 6.0E	966.9 967.8 967.6 970.0 973.3 976.6	240 240 250 240	49 50 51	-8.3 -10.6 -10.9 -11.1 -11.3 -10.9	-14.5 -14.7 -14.0	-1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	8846		4.00 4.00 10.00 4.00 4.00	02 71 71 02 02 02	72 72 72 72 72



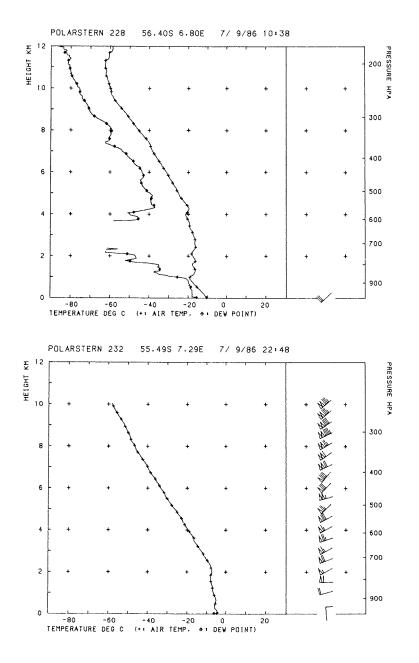
`

110



. X

`


111

.

.

7.SEPTEMBER 1986

TIME	POSIT	FION	PRESS.	WIN	4D	TEM	PERAT	URE	C	LOU	JDS	5	VIS	WEA	J۲	IER
UTC	Ŷ	λ	hPa	deq	kts	AIR °C	DEW PT. C	WATER C	N N,	h (	તે (	с <mark>н</mark> Сн	km	<b>*</b> *	₩,	W2
3 9 12 15 18	50.95 50.85 56.55 56.25 55.95 55.95	6.5E 6.6E 6.7E 6.9E 7.1E 7.1E	983.8 985.3 988.5 991.7 994.4 994.8	230 220 230 230 220 240	35 37 31 28	-8.7 -9.8 -10.3 -9.3	-15.0 -14.0 -14.1 -15.2 -13.8 -12.7	-L.8 -1.4 -1.8	8 3 2 6		3 8 5	0 Z	4.00 10.00 20.00 20.00 20.00 10.00	02 02 01 02 02 02	2 1 1 1	2 1 1



,

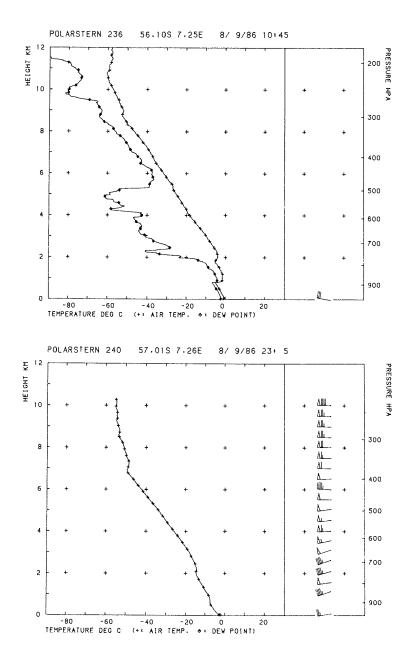
•

112

ì

•

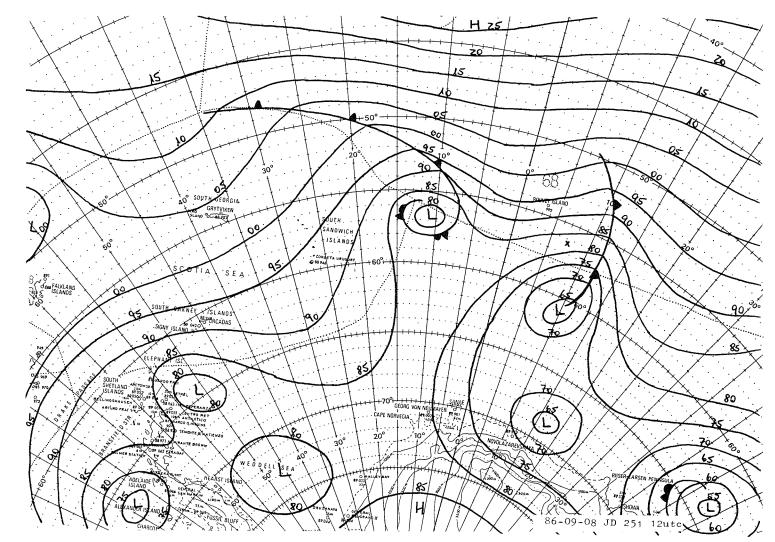



、

•

113

Ň


		PTER	BER 198	0	35R 1966									
TIME utc	POSI ∳						CI NN	LOU[ ჩ დ		VIS	WEATHE			
h			ħΡa	deg k	ts	.c	٠C	°C				km	E	-
3 6 9 12 15 18	55.7S 55.8S 55.9S 56.1S 56.4S 56.5S	7.3E 7.2E 7.4E 7.3E 7.3E 7.3E	986.8 986.3 985.1 983.6 980.8 976.2	270 2 270 3 280 3 270 2 290 2 300 2	2285	-1.1 9 -1.3	-2.5 -2.9 -2.3 -3.1 -2.9 -2.2	-1.5 -1.6 -1.7 -1.8 -1.8 -1.8	9 9 8 8 8 2 8 8 8 8	3626	// 1/ //	4.00 2.00 2.00 4.00 2.00 2.00 2.00	10 10 68 10 10 68	2 2 7 2 7 2 7 2 7 2



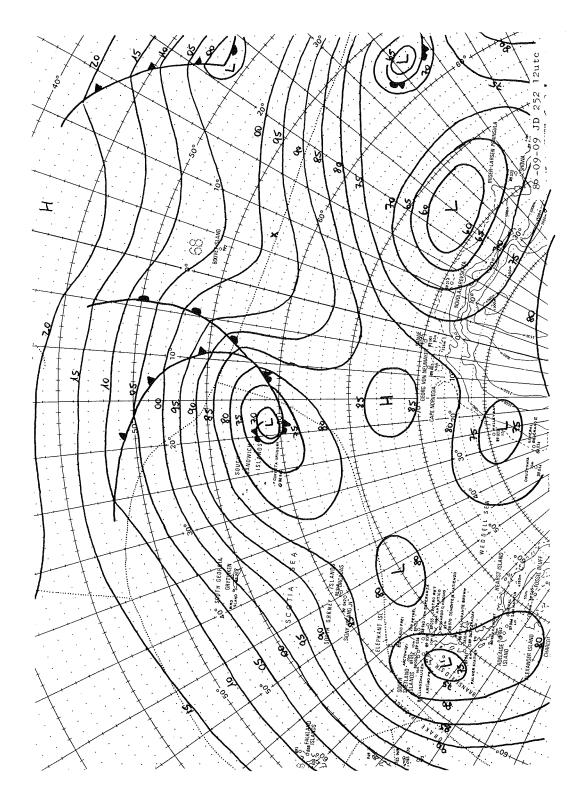
-

`

114



9.	SE	PTE	÷88≘	8	198/	


TIME	POSIT	ION	PRESS.	WIN	10		PERAT				ου				WE	ATH	ER
UTC h	Ŷ	λ	ħΡa	deg	kts	AIR ℃	DEW PT. C	WATER *C	ΝŅ	4 1	n G	CH	Сн	km	**	Ψ, '	w ₂
3 6 9 12 15 15	57.35 57.55 57.45 57.35 57.05 56.85	7.2E 7.2E 7.3E 7.2E 7.2E 7.2E 7.3E	983.6 989.2 995.1 998.6 1001.0 1001.2	210 210 230 260	26 25 24 16	-17.8 -18.2 -17.0	-18.6 -21.9 -21.0 -21.7 -19.6 -17.7	-1.8 -1.8 -1.8	6 2 5 3	2 5 3	/ 3 5 5 5 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6	0	0 0	20.00 20.00	02 02 02 02	7 7 1 1 1	2 1 1 1



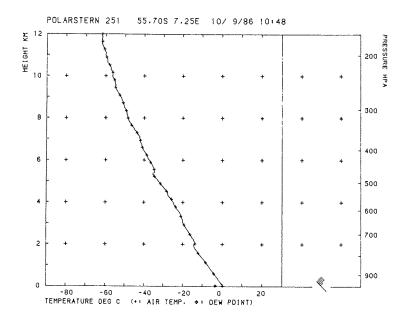
'n

`

116

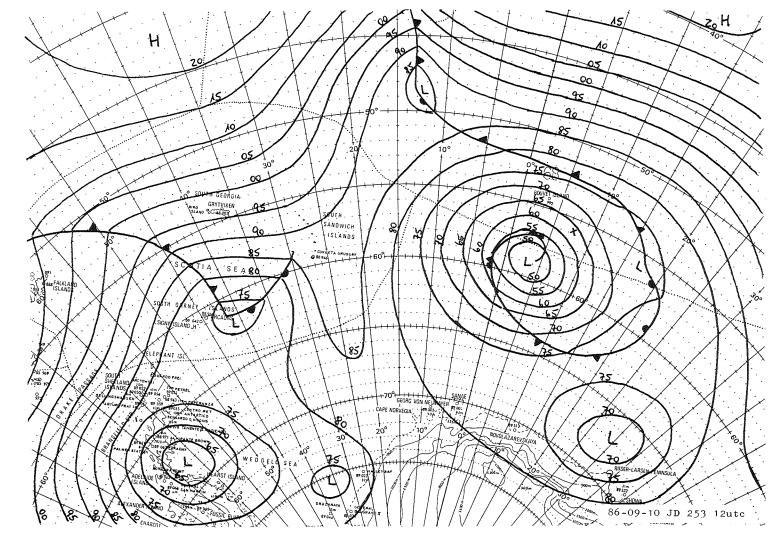


Ň


`

`

117


10.	SE	PTEMBER	1986

TIME UTC	POSI		PRESS.			WIND							.0U		5 14 Gu		WE		HER ₩,
h			hPa	deg	kts	ъ	·c	°C				-		km			•		
3 6 9	56.15 50.05 55.95	7.2E 7.3E 7.1E	976.5 768.4 964.4	10 320 330		-2.8 8 5	-4.3 -2.5 -1.3	-1.8 -1.8 -1.8	9 9 6	6	1 3	A (	0 0	4.00 4.00 10.00	02	7 7 7	z		
12 15	55.6S	7.4E 7.7E	963.4	310 310	46	2	-3.2	-1.2	7	7 8		8 ( 6 )	0 0	10.00		2			
1.8	55.05	7.9E	962.8	300		7	-3.2	7		8		6 /	, ,	4.00		7			



ĸ

.



# 3.1. Introduction

To calculate mean surface pressure fields, the daily weather charts are covered by two grids of 5 by 5 degrees distance. Both grids differ by 2.5 degrees in latitude and longitude. The boundaries are 75W and 45E in longitude and 45S and 80S in latitude; east of the Greenwich meridian, the southern boundary is 75S, in view of the unreliable analysis over the Antarctic continent.

Due to the high variability of synoptic systems there is no great value in the discussion of long term mean surface pressure charts. Rather, we intend to compare short term intervals under the aspect of synoptic scale variability, i.e. days with similar meteorological conditions.

In addition to mean surface pressure charts, corresponding storm tracks (single line arrow) and movements of high pressure systems (double line arrow) give a closer view on the dynamics over the Weddell Sea area.

For each synoptic interval the tracks are shown, giving the position marked by a crossed circle. To add more information the marking is supplied with two numbers showing the date in the upper position and the center pressure beneath. In each track chart the whole track of a system is plotted to show the total history of it. Tracks not falling into the synoptic interval are marked by interrupted lines. It must be mentioned that the positions plotted are transferred directly from the daily weather charts. So the length of one arrow does not show a daily movement, necessarily. The time interval must be confirmed by looking into the particular daily weather chart.

# 3.2. Mean surface pressure chart 16 July - 10 September 1986

The chart shows three low centers. The absolute minimum is at the grid point 72.5S and 37.5W with a center value of 981.1 hPa. The second one is located near 67.5S and 17.5W with 981.9 hPa. The third low in the eastern part seems to have its center east of the calculated area. North of 60S there is a zonal flow with a weak trough at 10W and a weak wedge at 45W.

As mentioned above this chart is not very meaningful in synoptic terms. Calculations with this pressure field would not allow simulations of meridional transports of heat and momentum. The discussion below will show absolutely reversed conditions in pressure gradients and locations of pressure centers.

The selection of time intervals with similar synoptic conditions does not fit with weather periods observed on board RV POLARSTERN, necessarily. Most of the time the beginning and end of an interval is determined by the life cycle of a dominating pressure system, e.g. a Weddell Sea depression or a blocking high.

Before starting to describe weather phases in more detail, the important role of the South American continent and the Antarctic peninsula for the weather over the Atlantic sector must be brought back in mind. From the northern hemisphere the impact of mountain ranges on the dynamics of the westerly flow is well known. Due to the distribution of land- and watermasses on the southern hemisphere, the Andes and - as their southern continuation - the Antarctic peninsula are the only meridionally oriented mountain ranges within the westerly flow. The presence of the Weddell Sea basin with its western boundary formed by the peninsula proves to be the special feature of this geographic area responsible for the weather over the Atlantic sector of the southern ocean and perhaps the whole circulation around Antarctica. Due to the channelling effect of the peninsula and the presence of a favourite pressure field (e.g. Weddell Sea depression) cold air from the continent can flow far north and increase baroclinic instability, meeting with warm air of suptropical origin. So the Scotia Sea is a favourite site for cyclogenesis for dynamic as well as thermodynamic reasons.

# 3.3. Synoptic periods, mean pressure charts, movements of pressure centers

# 3.3.1. High over the continent, wedge over Weddell Sea

#### 16 July - 20 July 1986

The continental high with a wedge into the Weddell Sea dominates this period. The low activity is relatively weak, no central pressure under 973 hPa is observed. The mean circulation is opposite to the Weddell Gyre and should slow it down a litte. This constellation does not support developments in the Scotia Sea because of missing lee effects and missing cold air supply from the continent. The operation area of RV POLARSTERN south of Bouvet Island is situated right in the frontal zone north of 60S and is passed by some lows without any significant wind.

## 3.3.2. High over peninsula, low 60S and 20W to 20E

#### 21 July - 24 July 1986

The mean surface chart shows a huge depression with a center near 60S and 05E. A small but nevertheless important high over the peninsula initiated this development. The high built up due to strong advection of warm air ahead of the stationary low over the Bellingshausen Sea, shown in the period before. On the eastern side of this high cold air out of the Weddell Sea area moved northward and formed a baroclinic zone over the Scotia Sea, supporting the deepening of a low, which started on July 18th southwest of South Georgia and became stationary at 62S and 18W. On the rear of this system the southerly flow increased. So a second wave moving eastwart north of South Sandwich Islands met even stronger baroclinic conditions, deepened and slowed down after reaching hurricane force near 60S and 05E.

The investigation area of RV POLARSTERN was influenced by both systems. Obscured sky and snowfall prevailed, with northeasterly winds in the beginning of this period. Later, when the second development reached hurricane force just northeast of RV POLARSTERN the winds turned to easterly and southeasterly directions. Although the hurricane center passed the ship relatively close, the observed winds did not match the actual pressure gradient, which is confirmed by buoy data. One reason might be icing of anemometers. But the same phenomenon was observed by Ackley and Hibler (1983) when they compared actual with geostrophic winds derived from Australian pressure analyses over Antarctic sea ice. They found discrepancies of about 50%, nearly the same magnitude observed here. Looking into other cases of this cruise, this overestimation of actual wind speeds by geostrohpic calculation does not hold in the same way. A closer look considering boundary layer aspects in connection with air mass analyses should bring a better understanding.

## 3.3.3. Weddel Sea depression

## 25 July - 3 August 1986

The mean surface pressure chart from this period looks similar to the longterm one. The mean facts shown are the low center in the central Weddell Sea and a belt of low pressure right north of the continental ice shelf. North of 65S we have a nearly zonal flow with a weak trough at 25W. Looking into the track chart, we see that this trough is caused by waves moving out of the area around south Sandwich Islands while deepening and turning southeast to the shelf ice edge.

On July 26th a low crosses the peninsula relatively far south while deepening rapidly and turning right. This low assumes a steering function under two aspects. First, advection of cold continental air is initiated and continued to the north. Second, a westerly flow causes leewaves at the nothern part of the peninsula. Both reasons together form most favourable conditions around south Shetland Islands for developments with rapid deepening. This occurs at July 28/29th. With a center pressure of 938 hPa this hurricane turns southeast, later south due to dynamic reasons. It takes over the steering function of the southern low, but in more northeasterly position just northwest of Halley Bay. At its rear, cold air is still led northward causing new storms to develop which turn to the shelf ice edge. As a whole, the steering system moves from the southern Weddell Sea slowly northeastwards, later at the end of this period eastward.

In contrast to the mean chart, which shows a zonal flow north of 65S, wide ranges of meridional transport of air masses occur. This time intervall was chosen to show a whole life cycle of a Weddell Sea depression. Better results in estimating the meridional transports should be expected when dividing the period at July 30th.

In the beginning, the area of operation of RV POLARSTERN is still influenced by the slowly eastward moving pressure system of the period before. A mainly easterly flow with some weak disturbances prevails. After a short high pressure influcence the winds turn to westerly and northwesterly directions on July 29/30th and warm air is led into the area, reaching about minus 5°C. On August 3rd winds reach gale force due to the continuous eastwards moving of the steering Weddell Sea depression. On this day temperature rises up to minus 2°C for a longer period.

# 3.3.4. High over peninsula, low Halley Bay

## 04 August - 07 August 1986

Strong advection of warm air in the area west of the peninsula builds up a high which is marked by a wedge shown in the mean surface pressure chart. At 30 W a strong frontal zone is formed. A low moving rapidly south from the area of South Orkney at August 5th assumes the role as a steering center. The results are similar tracks of storm centers as in the period before, hitting the shelf ice edge near Neumayer/Sanae. In contrast to the intervall of 25 July - 3 August 1986 the center values are much higher. This indicates unfavourable constellations in the upper level flow. Although cold air on the rear of the steering center is led northwards, this effect is compensated by subsidence due to negative vorticity advection within a ridge/rear system of upper flow over Scotia Sea. Lows without exception fill up while moving through this area.

RV POLARSTERN operates north of the belt of low pressure most of the time. Northwesterly flow prevails turning to north on August 6th, with a remarkable advection of warm air (minus 27°C to minus 4°C) ahead of a frontal system which crosses the area on August 7th.

## 3.3.5. Weddell Sea depression

#### 8 August - 12 August 1986 and 13 August - 17 August 1986

Both intervals have similar developments. The first period starts with weakening high pressure due to missing advection of warm air west of the peninsula. Although the Halley Bay low existing in the period before weakened, it is still strong enough to initiate an advection of cold air northwards due to the leading effect of the peninsula. Increasing baroclinic conditions and favourate upper air flow form a hurricane east of south Shetland Islands and regenerate the Weddell Sea depression. The result is a similar development like in the period from 25 July - 3 August 1986.

The period from 13 August - 17 August 1986 reacts like that from 4 August - 7 August 1986. The steering center moves in a region northwest of Halley Bay and a high builds up over the peninsula.

The investigation area of RV POLARSTERN is influenced by a well defined change between advection of cold and warm air. A characteristic variation between minus 4°C and minus 25°C within two or three days is observed. The main wind direction varies from northwest to east with an extended period of wind speeds with gale force, from August 12th to 18th even hurricane force.

# 3.3.6. Low over eastern Weddell Sea, moving east slowly

## 18 August - 24 August 1986

This period terminates the regime of the Weddell Sea depression. Later on, high pressure influence dominates over the Central Weddell Sea. This fact is clearly shown by the mean surface pressure chart, having a ridge from the subtropic high to the continental high over Antarctica.

The steering center is related to the hurricane northeast of Sanae on August 18th, which moves northeast. So the low crossing the peninsula on August 18th fails to regenerate the Weddell Sea system because it runs into an area with a ridge/rear constellation of upper flow, which is supposed to create subsidence due to advection of negative vorticity.

The steering center becomes quasi-stationary near Novolazarevskaja; the main track of low centers is along 60S eastward to 40E. The end of this period is initiated by a low, which crosses the peninsula on August 23rd.

The investigation area of RV POLARSTERN during this period is influenced by the slowly eastward moving low. The winds calm down from hurricane force and turn to mainly southeasterly directions afterwards. Since the beginning of this period, variability in advection of different air masses is no longer observed. Cold air from the continent dominates.

# 3.3.7. Weddell Sea depression

## 25 August - 27 August 1986

The mean surface pressure chart shows some differences to earlier Weddell Sea depressions, having an additional low center northeast of South Georgia and a wedge from the continental high to the area east of Sanae.

The reason might be the more northerly track of the low crossing the peninsula on August 23rd. Looking into earlier crossings the track was more southerly and had a more southerly component. The consequence is a southwesterly flow over the peninsula, which does not create lee effects. Waves observed earlier, with rapid deepening in the South Shetland area, are not possible. While the Weddell Sea depression fills up slowsly, waves to the north of the steering center have a track too for north to involve cold air from the continent. To the same extend as no cold air is led northward, warm air does not penetrate far south.

High pressure prevails in the beginning in the investigation area of RV POLARSTERN. On August 27th a frontal system crosses the ship with temperatures rising to minus 3°C. The ships position was, however, at 63.5S and 3.5E; the warm air did not reach the continent.

## 3.3.8. High over Greenwich Meridian

## 28 August - 30 August 1986

This constellation resembles a blocking situation and enhances meridional air exhange. A high pressure ridge connecting the subtropical with the continental high weakens the lows moving east into the Weddell Sea. A trough extends from 45S and 10W to the quasi-stationary system around 60S and 30E.

Weather around RV POLARSTERN is dominated by a southwesterly flow with advection of cold air.

## 3.3.9. Weddell Sea depression

#### 31 August - 10 September 1986

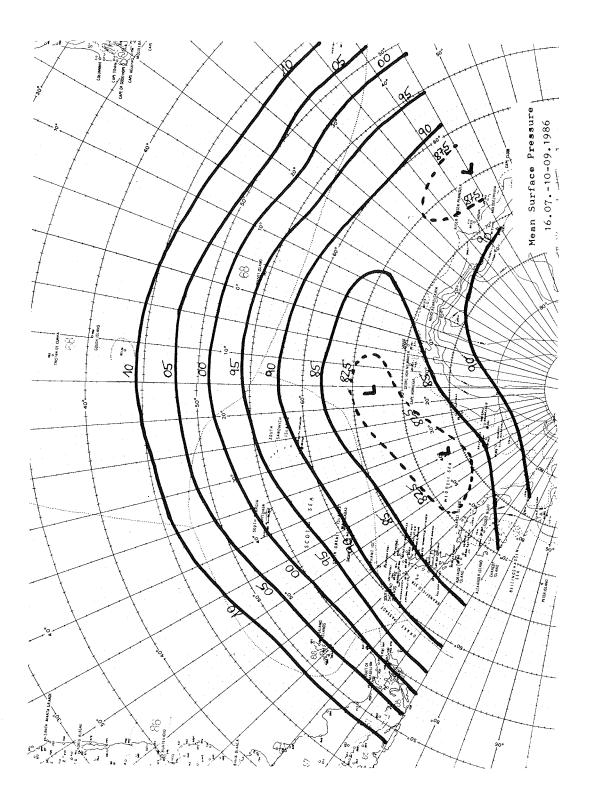
The previous development is terminated by a low crossing the peninsula on August 30th. Like an earlier track in the period from 25 August - 27 August 1986 it crosses the peninsula too far north and with an enhanced westerly component, preventing intense lee effects in northern parts. A comparison with the period 8 August - 17 August 1986 shows the differences. Earlier we had two secondary low centers east of Bransfield Strait and at 65S and 35W. East of them, a long range northwesterly to northerly flow transports warm air and subtropical origin far south to the shelf ice edge. This feature is missing in the September period. A belt of low pressure is extending all around the shelf ice front in a distance of approximately 300 nautical miles. North of it we have a nearly westerly flow, which prevents meridional exchange. This fact is confirmed by the storm tracks too. In the example of the earlier Weddell Sea depression, the tracks turned south to the region around Neumayer/Sanae and moved slowly east along the shelf ice front. In the September event, the tracks lay between 60S and 65S.

The investigation area of RV POLARSTERN was situated between 62S and 55S. As seen in the storm track charts, the ship operated right in the main frontal zone with frequent gale winds reaching hurricane force on September 6th and 10th.

## 4. Conclusions

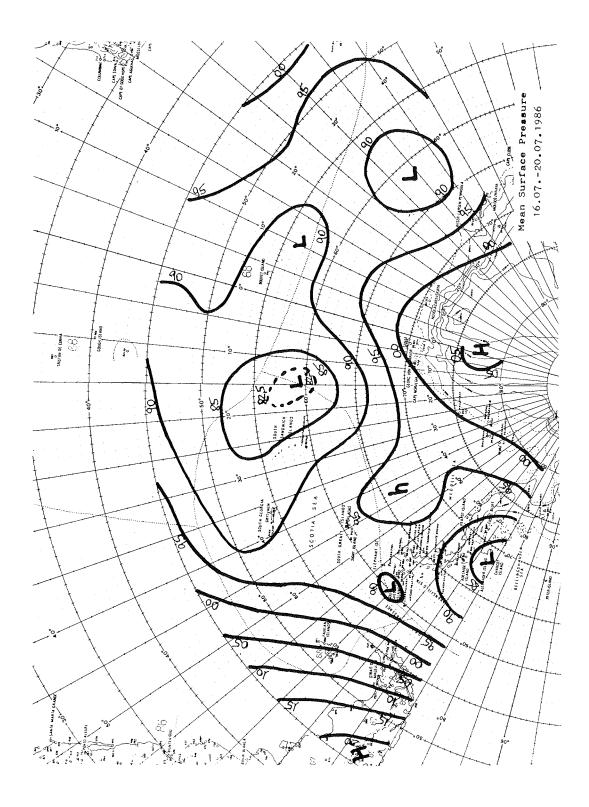
The meridional mountain chain on the southern hemisphere, the Andes and its southerly continuation, the Antarctic peninsula, are the only barrier in the westerly flow. They play a significant role in the dynamics of cyclogenesis due to lee effects. In addition, the orographic effect on the eastern side of the peninsula forces cold air masses from the Antarctic continent far into the north. Thus, the area of the eastern sector of the southern Atlantic is a favourable site for rapid and intense cyclogenesis. Developments in this area play a major role for the synoptic situation at least in the investigated area.

The most significant system is the Weddell Sea depression, which ought to have a forcing impact onto the Weddell Gyre. It shows in the overall average pressure distribution (16 July to 10 September). However, long term pressure charts do not and cannot give a satisfying description of the synoptic events; they are not useful to simulate dynamics of sea ice, because they do not consider the high variability of pressure systems with the consequence of missing meridional air mass exchange.


Looking at the investigated period as a whole, it shows two different phases. From end of July to mid of August, in the area around the Greenwich Meridian, a large variability of the meridional exchange of heat and momentum occurs. Subtropical air masses advance south to the shelf ice front, while cold air from the continent penetrates to the north. These events repeat with a significant time scale of two to three days. In contrast to these observations no large-scale meridional transport occurs in the second phase.

An explanation for this change can be given from the synoptic viewpoint considering the behaviour of the dominating Weddell Sea depression in connection with orographic effects east of the Andes and the Antarctic peninsula.During the first period Weddell Sea depressions were initiated by a low crossing from the Bellingshausen Sea southwest to south over the peninsula into the southern Weddell Sea. This constellation is followed by orographically triggered lee waves at the northern part of the peninsula, which deepen rapidly and turn south, regenerating the steering system in the Weddell Sea. The typical track of waves north of it is from Scotia Sea south-eastwards to the area Neumayer/Sanae. Further on, they are led by the shelf ice front to the east, slowing down and filling. That means a more or less continuous change in the advection of warm and cold air around Greenwich Meridian as described above.

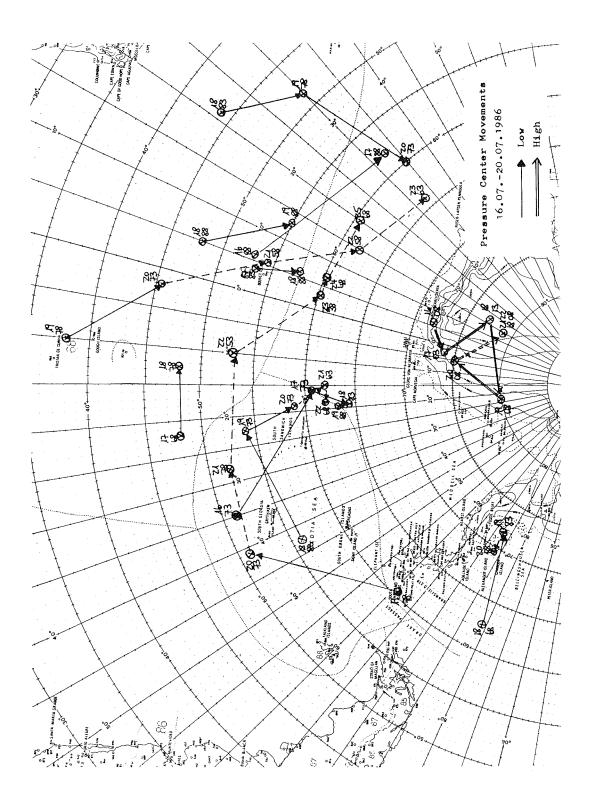
During the second period from mid of August to September the Weddell Sea depression was still observed rather often, but did not have the same effect on meridional flow. The explanation must be sought in the initial phase of a Weddell Sea depression, i.e. when it crosses the peninsula. If this happens more to the north, e.g. around 65S to 67S with a more westerly of southwesterly component, lee effects at the northern part of the peninsula are missed due to an unfavourable southwesterly stream. As a consequence the Weddell Sea depression is not regenerated by these lee effects and fills up. Lee waves are formed further north at the Andes and have a track too far to the north to involve cold air from the continent, which would improve the baroclinic conditions. Now the main track of depressions is between 60S and 65S eastwards, the mean trough is along 65S, which does not allow large scale meridional exchage.


#### Acknowledgement

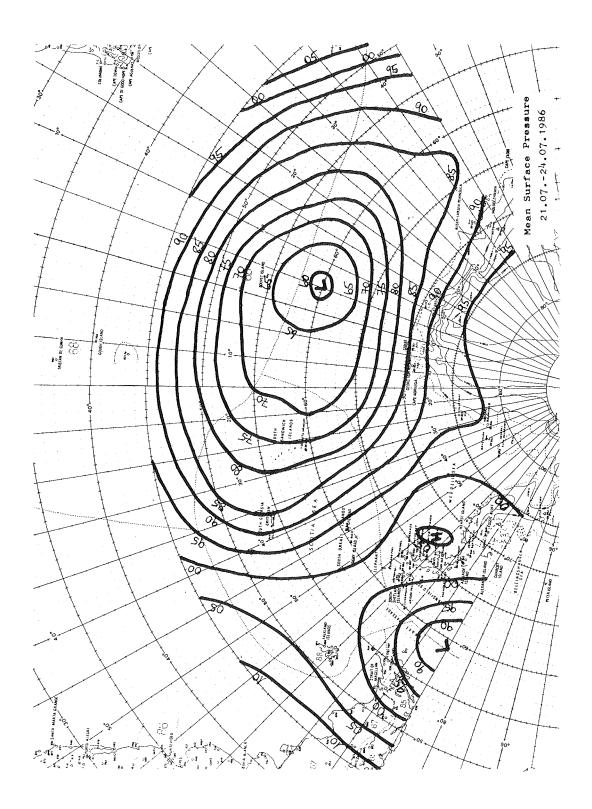
M. Gube-Lenhardt and her assistants (Alfred-Wegener-Institut) checked, cleaned and plotted the radiosonde data. P. Wadhams (Scott Polar Research Institute) and H. Hoeber (Meteorologisches Institut der Universität Hamburg) provided ARGOS buoy data, O. Goldbach and H. Brammann helped with computing the mean fields and B. Zinecker typed the manuscript. Their contributions are gratefully acknowledged. I am also indebted to E. Augstein, chief scientist of WWSP 86 leg one, who encouraged writing of this report and ensured its publication.



x


131



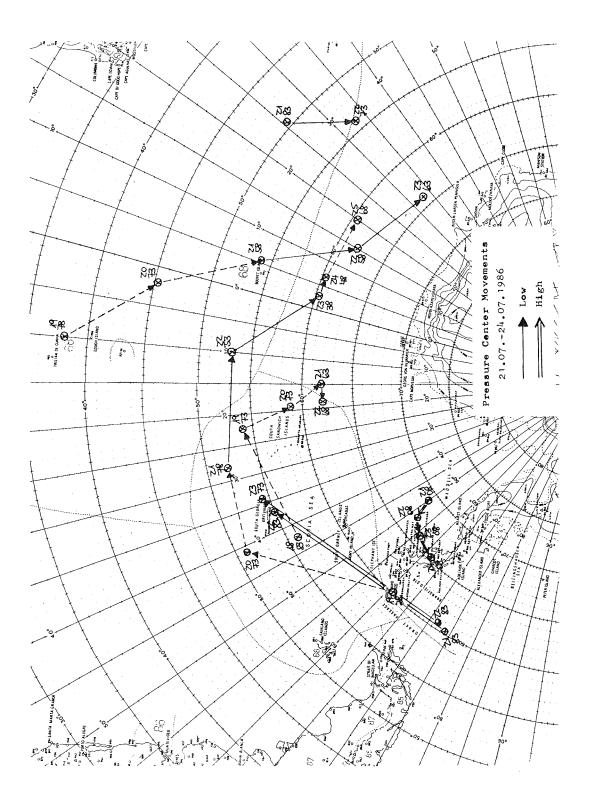

•

`

132



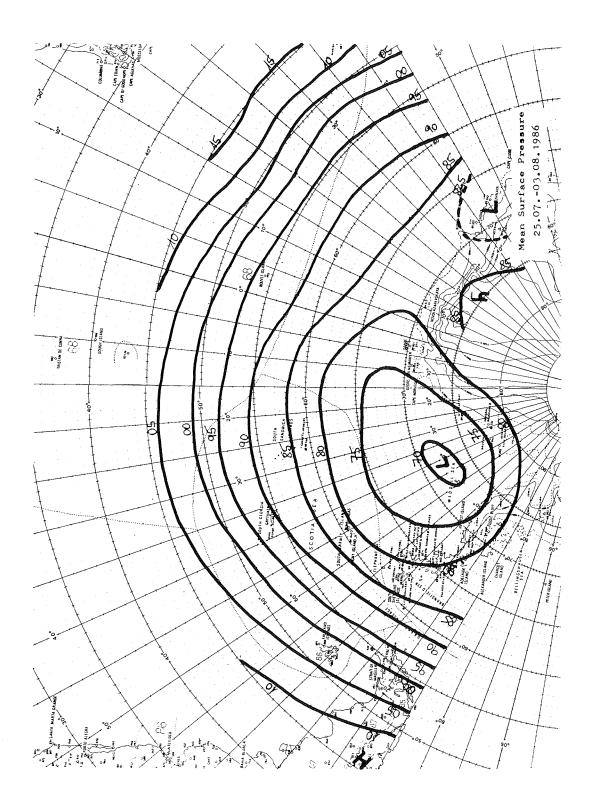
`




Ň

.

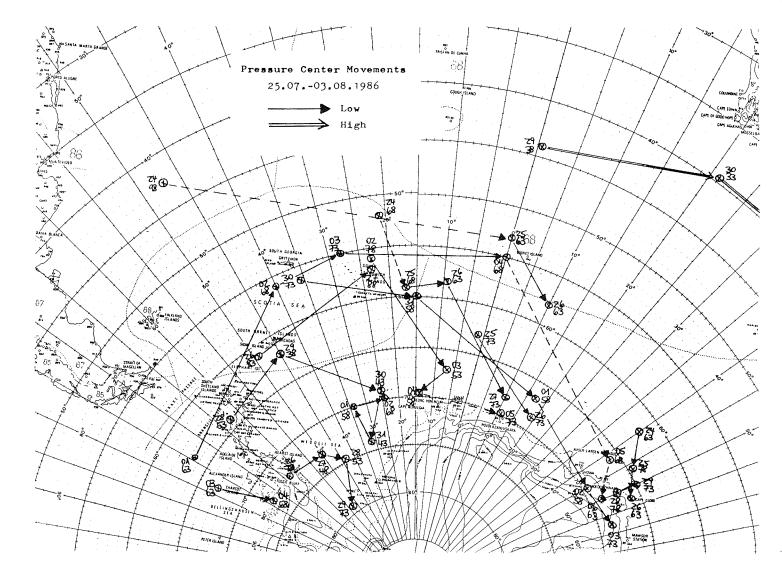
134

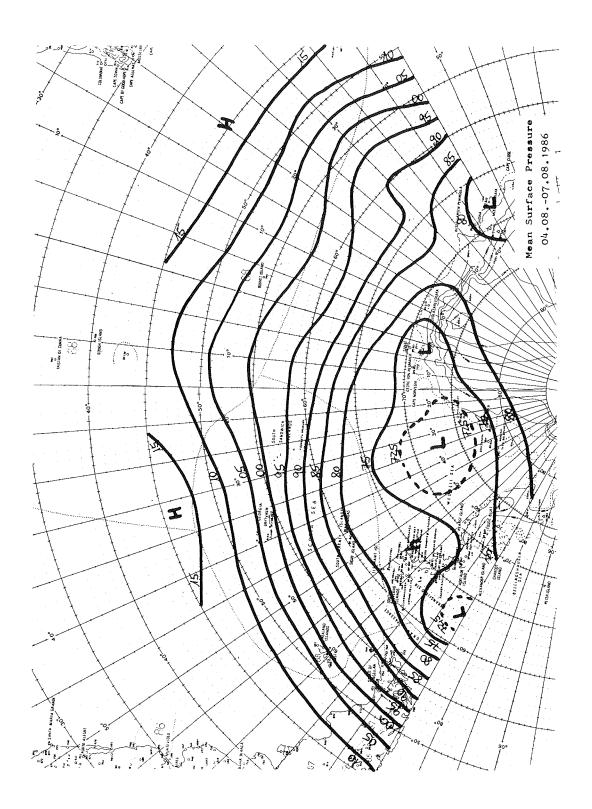

×



`

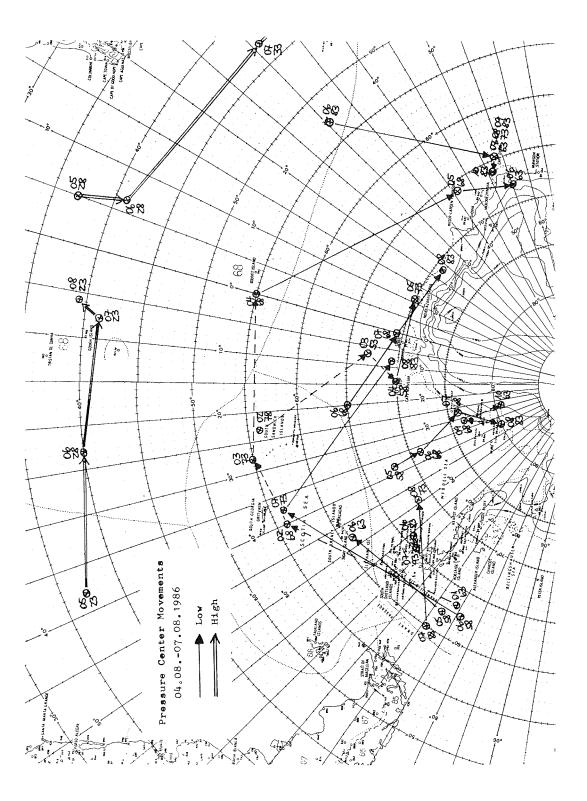
135


.




x

×


136

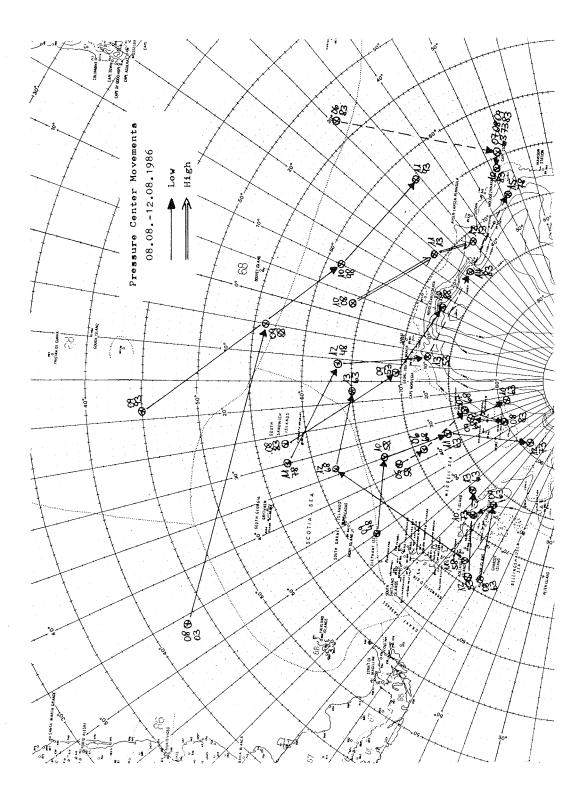




.

138

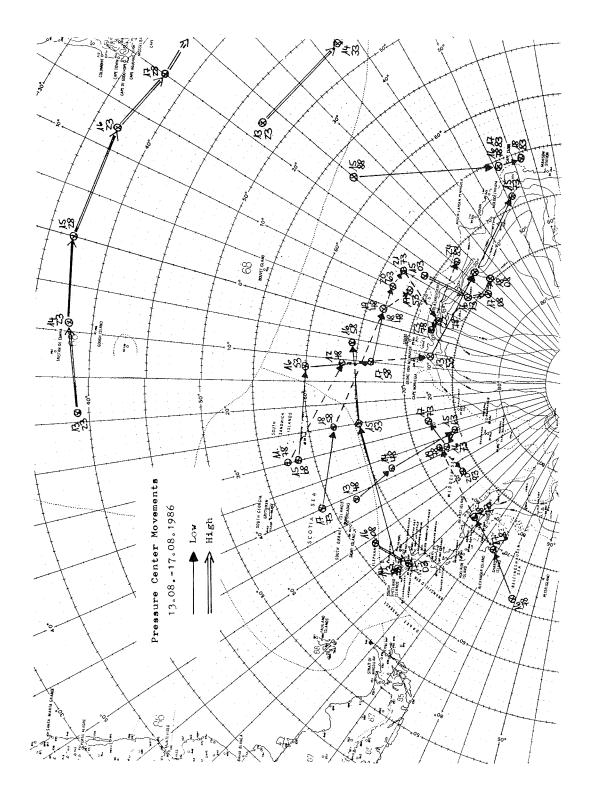




ς.

λ.

139

۰,

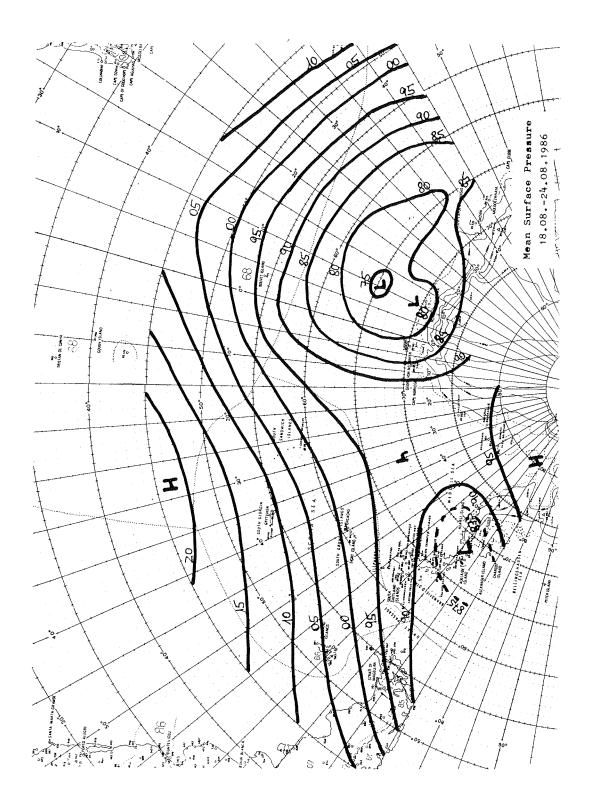





,

•

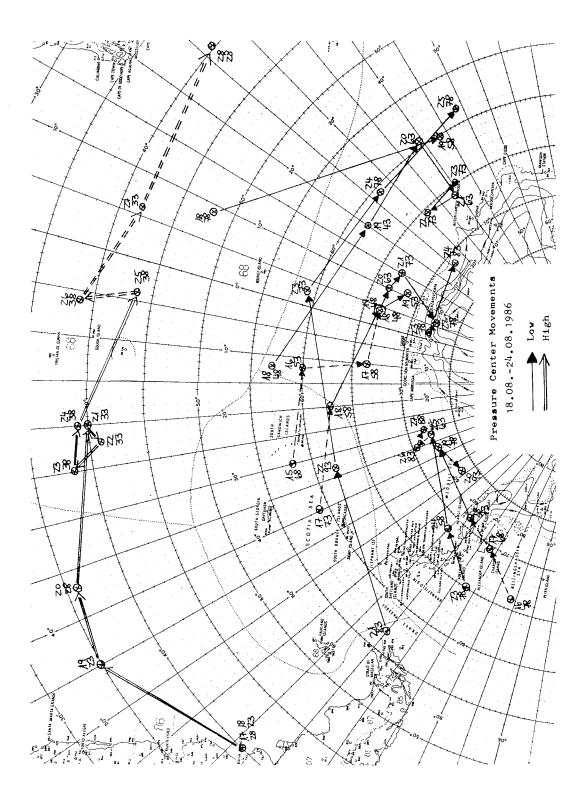
141




•

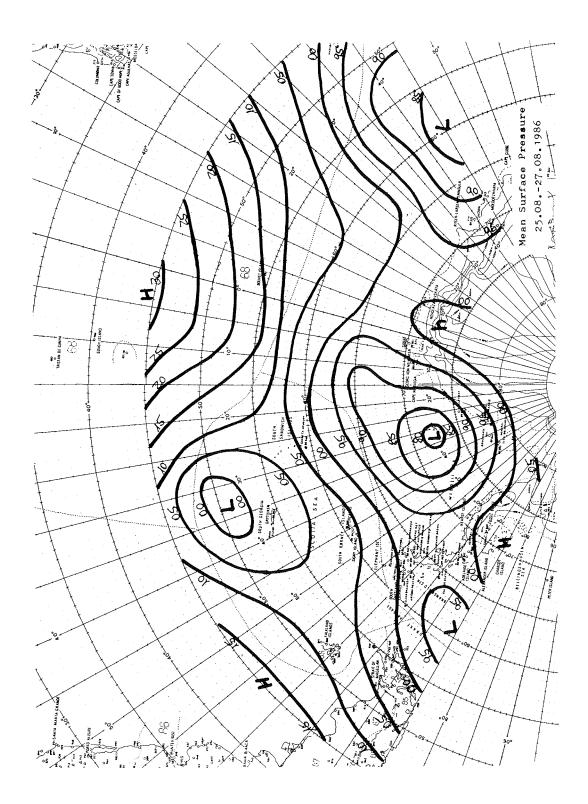
Υ.

142


· · · ·



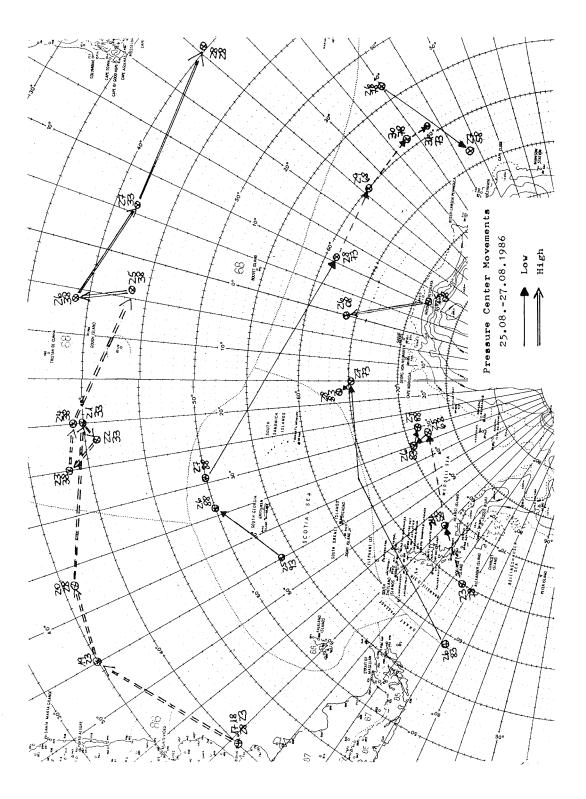



`

.



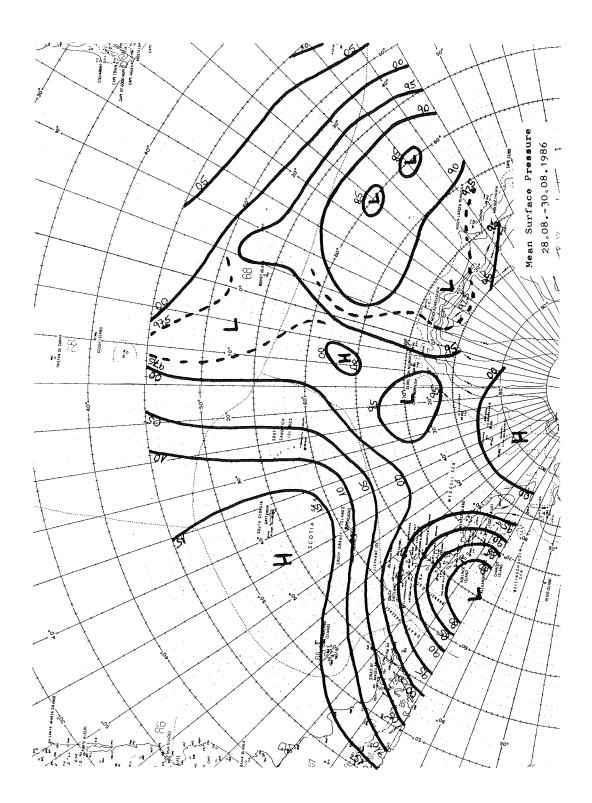
v


`



146

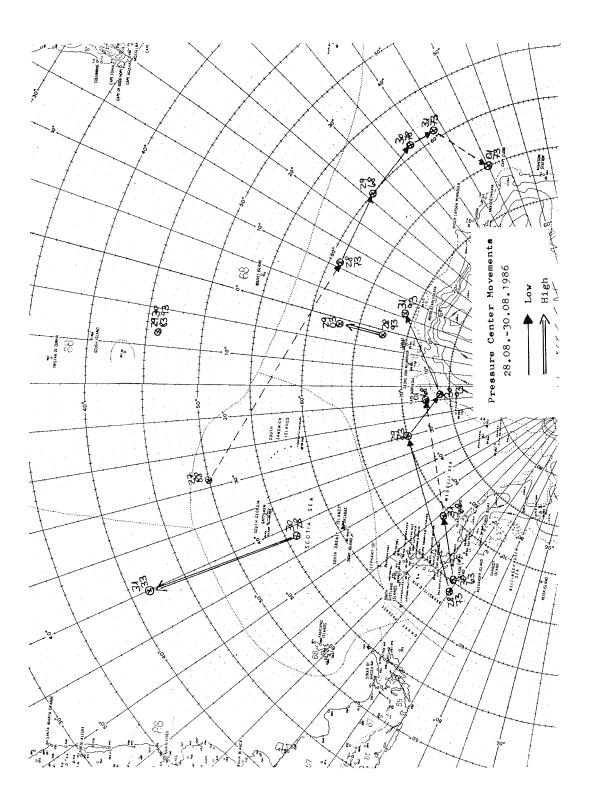
`


,



`

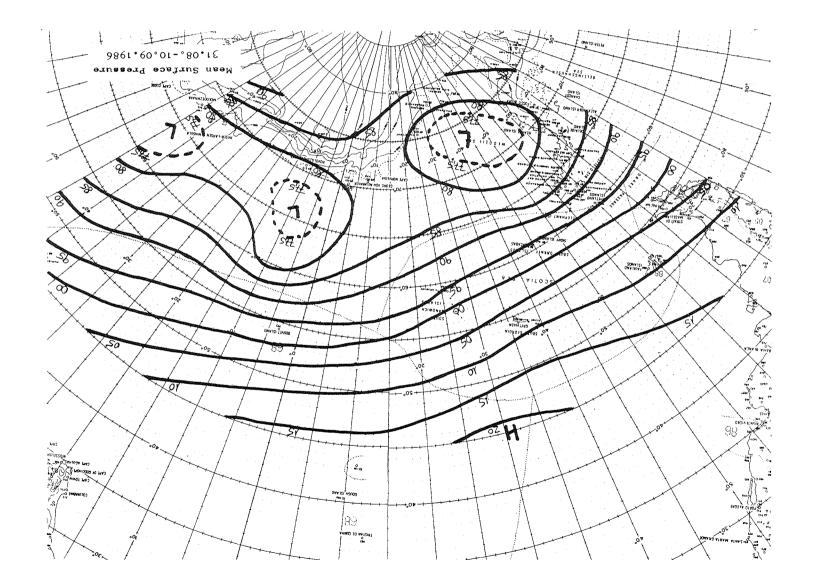
,

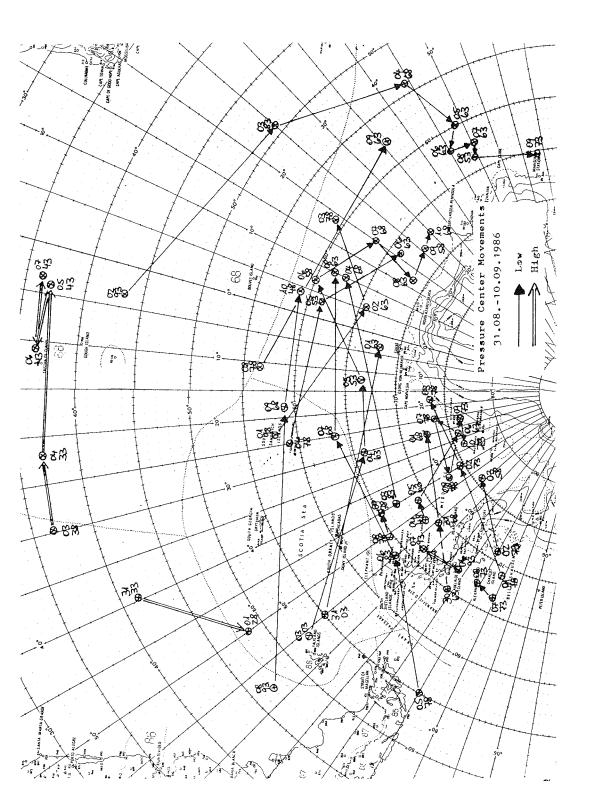

147



•

`


148




`

•

149





151

۰

``

•

# APPENDIX

# WMO Code Tables

- h Height above ground of the base of the lowest cloud seen
- C_H -- Clouds of genera Cirrus, Cirrocumulus and Cirrostratus
- C_L -- Clouds of genera Stratocumulus, Stratus, Cumulus and Cumulonimbus

.

,

- C_M -- Clouds of genera Atlociúmulus, Altostratus and Nimbostratus
- ww -- present weather
- $W = past weather (refers to W_1 and W_2, respectively)$

,

## h — Height above ground of the base of the lowest cloud seen

# Code figure

0	0 to	50 m
1	50 to	1 <b>00</b> m
2	100 to	200 m
3	200 to	300 m
4	300 to	600 m
5	600 to	1000 m
6	1000 to	1500 m
7	1 500 to	2000 m

- 8 2000 to 2500 m
- 9
- 2500 m or more, or no clouds
- Height of base of cloud not known or base of clouds at a level lower and tops at 1 a level higher than that of the station

Notes:

- (1) A height exactly equal to one of the values at the ends of the ranges shall be coded in the higher range; e.g., a height of 600 m shall be reported by code figure 5.
- (2) Due to the limitation in range of the cloud-sensing equipment used by an automatic station, the code figures reported for h could have one of the three following meanings;
  - (a) The actual height of the base of the cloud is within the range indicated by the code figure; or
  - (b) The height of the base of the cloud is greater than the range indicated by the code figure but cannot be determined due to instrumental limitations; or
  - (c) There are no clouds vertically above the station.

# W - Past weather

Code flaure

- Cloud covering  $\frac{1}{2}$  or less of the sky throughout the appropriate period 0
- Cloud covering more than 1/2 of the sky during part of the appropriate period and 1 covering 1/2 or less during part of the period

ι.

- 2 Cloud covering more than  $\frac{1}{2}$  of the sky throughout the appropriate period
- Sandstorm, duststorm or blowing snow 3
- Fog or ice fog or thick haze 4
- 5 Drizzle
- 6 Rain
- 7 Snow, or rain and snow mixed
- Shower(s) 8
- Thunderstorm(s) with or without precipitation 9

 $C_{\text{H}}$  – Clouds of the genera Cirrus, Cirrocumulus and Cirrostratus

Code figure	Technical specifications	Code figure	Non-technical specifications
0	No CH clouds	0	No Cirrus, Cirrocumulus or Cirro- stratus
1	Cirrus fibratus, sometimes uncinus, not progressively invading the sky	1	Cirrus in the form of filaments, strands or hooks, not progressively invading the sky
2	Cirrus spissatus, in patches or entangled sheaves, which usually do not increase and sometimes seem to be the remains of the upper part of a Cumulonimbus; or Cirrus castellanus or floccus	2	Dense Cirrus, in patches or en- tangled sheaves, which usually do not increase and sometimes seem to be the remains of the upper part of a Cumulonimbus; or Cirrus with sproutings in the form of small tur- rets or battlements, or Cirrus having the appearance of cumuliform tufts
3	Cirrus spissatus cumulonimboge- nitus	3	Dense Cirrus, often in the form of an anvil, being the remains of the upper parts of Cumulonimbus
4	Cirrus uncinus or fibratus, or both, progressively invading the sky; they generally thicken as a whole	4	Cirrus in the form of hooks or of filaments, or both, progressively invading the sky; they generally become denser as a whole
5	Cirrus (often in bands) and Cirro- stratus, or Cirrostratus alone, pro- gressively invading the sky; they generally thicken as a whole, but the continuous veil does not reach 45 degrees above the horizon	5	Cirrus (often in bands converging towards one point or two opposite points of the horizon) and Cirrostra- tus, or Cirrostratus alone; in either case, they are progressively invading the sky, and generally growing denser as a whole, but the continu- ous veil does not reach 45 degrees above the horizon
6	Cirrus (often in bands) and Cirro- stratus, or Cirrostratus alone, pro- gressively invading the sky; they generally thicken as a whole; the continuous veil extends more than 45 degrees above the horizon, with- out the sky being totally covered	6	Cirrus (often in bands converging towards one point or two opposite points of the horizon) and Cirro- stratus, or Cirrostratus alone; in either case, they are progressively invading the sky, and generally grow- ing denser as a whole; the continu- ous veil extends more than 45 degrees above the horizon, without the sky being totally covered

Cirrostratus covering the whole sky 7 Veil

•

Veil of Cirrostratus covering the celestial dome

(continued)

`

Сн

154

7

,

## Сн — СL

Code figure	Technical specifications	Code figure	Non-technical specifications
8	Cirrostratus not progressively invad- ing the sky and not entirely cover- ing it	8	Cirrostratus not progressively in- vading the sky and not completely covering the celestial dome
9	Cirrocumulus alone, or Cirrocumu- lus predominant among the CH clouds	9	Cirrocumulus alone, or Cirrocumu- lus accompanied by Cirrus or Cirro- stratus, or both, but Cirrocumulus Is predominant
1	C _H clouds invisible owing to dark- ness, fog, blowing dust or sand, or other similar phenomena, or because of a continuous layer of lower clouds	1	Cirrus, Cirrocumulus and Cirro- stratus invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or more often because of the presence of a conti- nuous layer of lower clouds

# $C_{\text{L}}$ — Clouds of the genera Stratocumulus, Stratus, Cumulus and Cumulonimbus

<b>a</b>		<b>.</b> .	
Code figure	Technical specifications	Code figure	Non-technical specifications
0	No CL clouds	0	No Stratocumulus, Stratus, Cumu- lus or Cumulonimbus
1	Cumulus humilis or Cumulus fractus other than of bad weather, ^e or both	1	Cumulus with little vertical extent and seemingly flattened, or ragged Cumulus other than of bad weather,* or both
2	Cumulus mediocris or congestus, with or without Cumulus of species fractus or humilis or Stratocumu- lus, all having their bases at the same level	2	Cumulus of moderate or strong ver- tical extent, generally with protu- berances in the form of domes or towers, either accompanied or not by other Cumulus or by Strato- cumulus, all having their bases at the same level
3	Cumulonimbus calvus, with or with- out Cumulus, Stratocumulus or Stratus	3	Cumulonimbus the summits of which, at least partially, lack sharp outlines, but are neither clearly fibrous (cirriform) nor in the form of an anvil; Cumulus, Stratocumulus or Stratus may also be present
4	Stratocumulus cumulogenitus	4	Stratocumulus formed by the spread- ing out of Cumulus; Cumulus may also be present
-	Charles and the state of a	-	<b>e</b>

5 Stratocumulus other than Stratocumulus cumulogenitus 5 Stratocumulus not resulting from the spreading out of Cumulus

• "Bad weather" denotes the conditions which generally exist during precipitation and a short time before and after.

.

`

(continued)

x.

.

(Code 0513 — continued)					
Code figure	Technical specifications	Code figure	Non-technical specifications		
6	Stratus nebulosus or Stratus fractus other than of bad weather,* or both	6	Stratus in a more or less conti- nuous sheet or layer, or in ragged shreds, or both, but no Stratus fractus of bad weather *		
7	Stratus fractus or Cumulus fractus of bad weather, [●] or both (pannus), usually below Altostratus or Nimbo- stratus	7	Stratus fractus of bad weather • or Cumulus fractus of bad weather, or both (pannus), usually below Alto- stratus or Nimbostratus		
8	Cumulus and Stratocumulus other than Stratocumulus cumulogenitus, with bases at different levels	8	Cumulus and Stratocumulus other than that formed from the spread- ing out of Cumulus; the base of the Cumulus is at a different level from that of the Stratocumulus		
9	Cumulonimbus capillatus (often with an anvil), with or without Cumulo- nimbus calvus, Cumulus, Strato- cumulus, Stratus or pannus	9	Cumulonimbus, the upper part of which is clearly fibrous (cirriform), often in the form of an anvil; either accompanied or not by Cumulo- nimbus without anvil or fibrous upper part, by Cumulus, Strato- cumulus, Stratus or pannus		
1	CL clouds invisible owing to dark- ness, fog, blowing dust or sand, or other similar phenomena	1	Stratocumulus, Stratus, Cumulus and Cumulonimbus invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena		

• "Bad weather" denotes the conditions which generally exist during precipitation and a short time before and after.

# $C_{\ensuremath{\text{M}}}$ — Clouds of the genera Altocumulus, Altostratus and Nimbostratus

Code figure	Technical specifications	Code figure	Non-technical specifications
0	No CM clouds	0	No Altocumulus, Altostratus or Nimbostratus
1	Altostratus translucidus	1	Altostratus, the greater part of which is semi-transparent; through this part the sun or moon may be weakly visible, as through ground glass
2	Altostratus opacus or Nimbostratus	2	Altostratus, the greater part of which is sufficiently dense to hide the sun or moon, or Nimbostratus (conUnued)

ς.

,

156

`

,

# Сі. — Сы

Code figure	Technical specifications	Code figure	Non-technical specifications
3	Altocumulus translucidus at a sin- gle level	3	Altocumulus, the greater part of which is semi-transparent; the va- rious elements of the cloud change only slowly and are all at a single level
-4	Patches (often lenticular) of Alto- cumulus translucidus, continually changing and occurring at one or more levels	4	Patches (often in the form of almonds or fishes) of Altocumulus, the greater part of which is semi- transparent; the clouds occur at one or more levels and the elements are continually changing in appearance
5	Altocumulus translucidus in bands, or one or more layers of Altocumu- lus translucidus or opacus, progres- sively invading the sky; these Alto- cumulus clouds generally thicken as a whole	5	Semi-transparent Altocumulus in bands, or Altocumulus in one or more fairly continuous layers (semi- transparent or opaque), progres- sively invading the sky; these Alto- cumulus clouds generally thicken as a whole
6	Altocumulus cumulogenitus (or cumulonimbogenitus)	6	Altocumulus resulting from the spreading out of Cumulus (or Cumu- lonimbus)
7	Altocumulus translucidus or opacus in two or more layers, or Altocumu- lus opacus in a single layer, not progressively invading the sky, or Altocumulus with Altostratus or Nimbostratus	7	Altocumulus in two or more layers, usually opaque in places, and not progressively invading the sky; or opaque layer of Altocumulus, not progressively invading the sky; or Altocumulus together with Alto- stratus or Nimbostratus
8	Altocumulus castellanus or floccus	8	Altocumulus with sproutings in the form of small towers or battlements, or Altocumulus having the appear- ance of cumuliform tufts

Altocumulus of a chaotic sky, generally at several levels

•

- 9 Altocumulus of a chaotic sky, generally at several levels
- CM clouds invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or because of a continuous layer of lower clouds // Altocumulus, Altostratus and Nimbostratus invisible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or more often because of the presence of a continuous layer of lower clouds

,

См

9

1

`

(Code 0515 - continued)

•

# ww — Present weather

•

	- 49	No precipitation at the station at the time of ob-	servation	
ww = 00	- 19	No precipitation, fog, ice fog (except for 11 and 12), duststorm, sandstorm, drifting or blowing snow at the station * at the time of observation or, except for 09 and 17, during the preceding hour		
Co	de fig	ure		
	ww			
t eors	00	Cloud development not observed or not observable		
NO INTEREOTS except photometeors	01	Clouds generally dissolving or becoming less developed	characteristic change of the state of sk	
o e to	02	State of sky on the whole unchanged	during the past hou	
d Id	03	Clouds generally forming or developing		
9	04	Visibility reduced by smoke, e.g., veldt or forest or volcanic ashes	fires, industrial smok	
smoke	05	Haze		
or sn	06	Widespread dust in suspension in the air, not ra the station at the time of observation	ised by wind at or nea	
Haze, dust, sand	07	Dust or sand raised by wind at or near the statio tion, but no well-developed dust whirl(s) or sand storm or sandstorm seen; or, in the case of ship station	I whirl(s), and no dust	
aze, du:	08	Well-developed dust whirl(s) or sand whirl(s) see during the preceding hour or at the time of observ or sandstorm		
ï	09	Duststorm or sandstorm within sight at the time station during the preceding hour	of observation, or at th	
	10	Mist		
	11	Patches of shallow fog or ice fog at the stat		
	12	More or less sea, not deeper than about 2 met continuous at sea	res on land or 10 metre	
	13	Lightning visible, no thunder heard		
	14	Precipitation within sight, not reaching the ground	or the surface of the se	
	15	Precipitation within sight, reaching the ground o but distant, i.e., estimated to be more than 5 km		
	16	Precipitation within sight, reaching the ground o near to, but not at the station	r the surface of the se	
	17	Thunderstorm, but no precipitation at the time of	of observation	
	18	Squalls   at or within sight of the sta	tion during the precedir	
	19	Funnel cloud(s) **   hour or at the time of obs		

.

x

(continued)

×

ww

158

.

(Code table 4677 - continued)

ww

ww == 20 29	Precipitation, fog, ice fog or thunderstorm ing hour but not at the time of observa	
Code fig WW	jure	
20	Drizzle (not freezing) or snow grains	)
20	Rain (not freezing)	
22	Snow	not falling as shower(s)
23	Rain and snow or ice pellets	
24	Freezing drizzle or freezing rain	
25	Shower(s) of rain	
26	Shower(s) of snow, or of rain and snow	N
27	Shower(s) of hail*, or of rain and hail*	
28	Fog or ice fog	
29	Thunderstorm (with or without precipitat	tion)
• Hail, small ha	il, snow pellets. French: grêle, grésil ou neige r	oulée.
ww = 30 - 39	Duststorm, sandstorm, drifting or blowing	ng snow

ww		
30		- has decreased during the preceding hour
31	Slight or moderate dust- storm or sandstorm	- no appreciable change during the preceding hour
32		<ul> <li>has begun or has increased during the preceding hour</li> </ul>
33		- has decreased during the preceding hour
34	Severe duststorm or sandstorm	- no appreciable change during the preceding hour
35		<ul> <li>has begun or has increased during the preceding hour</li> </ul>
36	Slight or moderate drifting sno	W ]
37	Heavy drifting snow	generally low (below eye level)
38	Slight or moderate blowing sno	ow) serverally high (shave our lovel)
39	Heavy blowing snow	generally high (above eye level)

ww = 40 - 49 Fog or ice fog at the time of observation

ww

`

40 Fog or ice fog at a distance at the time of observation, but not at the station during the preceding hour, the fog or ice fog extending to a level above that of the observer

41 Fog or ice fog in patches

42 Fog or ice fog, sky visible { has become thinner during the preceding
43 Fog or ice fog, sky invisible { hour

×

(continued)

(Code table 4677 - continued) Code figure ) no appreciable change during the preced-44 Fog or ice fog, sky visible 45 Fog or ice fog, sky invisible | ing hour 46 Fog or ice fog, sky visible | has begun or has become thicker during 47 Fog or ice fog, sky invisible 1 the preceding hour 48 Fog, depositing rime, sky visible 49 Fog, depositing rime, sky invisible ww = 50 - 99 Precipitation at the station at the time of observation ww = 50 - 59 Drizzle

### ww 50 Drizzle, not freezing, intermittent 51 Drizzle, not freezing, continuous 52 Drizzle, not freezing, intermittent 53 Drizzle, not freezing, continuous

54 Drizzle, not freezing, intermittent heavy (dense) at time of observation 55 Drizzle, not freezing, continuous 1 56 Drizzle, freezing, slight 57 Drizzle, freezing, moderate or heavy (dense) 58 Drizzle and rain, slight

slight at time of observation

moderate at time of observation

59 Drizzle and rain, moderate or heavy

ww = 60 - 69 ww 60 Rain, not freezing, intermittent slight at time of observation 61 Rain, not freezing, continuous 62 Rain, not freezing, intermittent moderate at time of observation 63 Rain, not freezing, continuous 64 Rain, not freezing, intermittent 1 heavy at time of observation 65 Rain, not freezing, continuous 66 Rain, freezing, slight 67 Rain, freezing, moderate or heavy 68 Rain or drizzle and snow, slight 69 Rain or drizzle and snow, moderate or heavy ww = 70 - 79 Solid precipitation not in showers

ww

Rain

70 Intermittent fall of snowflakes slight at time of observation 71 Continuous fall of snowflakes 72 Intermittent fall of snowflakes moderate at time of observation 73 Continuous fall of snowflakes

(continued)

ww

(Code table 4677 - continued)

### Code figure

ww

- 74 Intermittent fall of snowflakes
- heavy at time of observation 75 Continuous fall of snowflakes
- 76 Diamond dust (with or without fog)
- 77 Snow grains (with or without fog)
- 78 Isolated star-like snow crystals (with or without fog)
- 79 Ice pellets

ww = 80 - 99 Showery precipitation, or precipitation with current or recent thunderstorm

#### ww

ww				
80	Rain shower(s), slight			
81	Rain shower(s), moderate or heavy			
82	Rain shower(s), violent			
83	Shower(s) of rain and snow mixed, s	slight		
84	Shower(s) of rain and snow mixed, r	noderate or heavy		
85	Snow shower(s), slight			
86	Snow shower(s), moderate or heavy			
87	Shower(s) of snow pellets or small hail, with or without rain	- slight		
88	or rain and snow mixed	) – moderate or heavy		
89	Shower(s) of hail*, with or without rain or rain and snow	– slight		
90	mixed, not associated with thunder	- moderate or heavy		
91	Slight rain at time of observation	)		
92	Moderate or heavy rain at time of observation	the backward days the sea		
93	Slight snow, or rain and snow mixed or hail** at time of observation	thunderstorm during the pre- ceding hour but not at time of observation		
94	Moderate or heavy snow, or rain and snow mixed or hail** at time of observation			
95	Thunderstorm, slight or moderate, without hail**, but with rain and/or snow at time of observation			
96	Thunderstorm, slight or moderate, with hail** at time of observation			
97	Thunderstorm, heavy, without hail**, but with rain and/or snow at time of observation	thunderstorm at time of observation		
98	Thunderstorm combined with dust- storm or sandstorm at time of obser- vation			
99	Thunderstorm, heavy, with hail** at time of observation	)		

N

French: grêle.
 Hail, small hail, snow pellets. French: grêle, grésil ou neige roulée.

,

# Folgende Hefte der Reihe "Berichte zur Polarforschung" sind bisher erschienen:

	sind bisher erschienen:	rkaufspreis
,	* Sonderheft Nr. 1/1981 – "Die Antarktis und ihr Lebensraum" Eine Einführung für Besucher – Herausgegeben im Auftrag von SCAR	
	Heft Nr. 1/1982 – "Die Filchner-Schelfeis-Expedition 1980/1981" zusammengestellt von Heinz Kohnen	11
	Heft Nr. 2/1982 – "Deutsche Antarktis-Expedition 1980/1981 mit FS "Meteor" " First International BIOMASS Experiment (FIBEX) – Liste der Zooplankton- und Mikronektonnetzfänge zusammengestellt von Norbert Klages	10
	Heft Nr. 3/1982 – ,,Digitale und analoge Krill-Echolot-Rohdatenerfassung an Bord des Forschungs- schiffes ,Meteor' " (im Rahmen von FIBEX 1980/81, Fahrtabschnitt ANT III), von Bodo Morgenstern	19
	Heft Nr. 4/1982 – "Filchner-Schelfeis-Expedition 1980/81" Liste der Planktonfänge und Lichtstärkemessungen zusammengestellt von Gerd Hubold und H. Eberhard Drescher	12
,	* Heft Nr. 5/1982 — "Joint Biological Expedition on RRS 'John Biscoe', February 1982" by G. Hempel and R. B. Heywood	
	* Heft Nr. 6/1982 – "Antarktis-Expedition 1981/1982 (Unternehmen "Eiswarte")" zusammengestellt von Gode Gravenhorst	
	Heft Nr. 7/1982 – "Marin-Biologisches Begleitprogramm zur Standorterkundung 1979/80 mit MS "Polar- sirkel" (Pre-Site Survey)" – Stationslisten der Mikronekton- und Zooplanktonfänge sowie der Bodenfische zusammengestellt von R. Schneppenheim	
	Heft Nr. 8/1983 - "The Post-Fibex Data Interpretation Workshop"	10
	by D. L. Cram and JC. Freytag with the collaboration of J. W. Schmidt, M. Mall, R. Kresse, T. Schwinghan <b>Heft Nr. 9/1983</b> – "Distribution of some groups of zooplankton in the inner Weddell Sea in summer 1979 here the sea of the set of the sector of th	
	by I. Hempel, G. Hubold, B. Kaczmaruk, R. Keller, R. Weigmann-Haass Heft Nr. 10/1983 – "Fluor im antarktischen Ökosystem" – DFG-Symposium November 1982	23
	zusammengestellt von Dieter Adelung Heft Nr. 11/1983 – "Joint Biological Expedition on RRS 'John Biscoe', February 1982 (II)" Data of micronecton and zooplankton hauls, by Uwe Piatkowski	16
	Heft Nr. 12/1983 – "Das biologische Programm der ANTARKTIS-I-Expedition 1983 mit FS "Polarstern" Stationslisten der Plankton-, Benthos- und Grundschleppnetzfänge und Liste der Probennahme an Robbe und Vögeln, von H. E. Drescher, G. Hubold, U. Piatkowski, J. Plötz und J. Voß	
*	* Heft Nr. 13/1983 – "Die Antarktis-Expedition von MS "Polarbjörn' 1982/83" (Sommercampagne zur Atka-Bucht und zu den Kraul-Bergen), zusammengestellt von Heinz Kohnen	
*	* Sonderheft Nr. 2/1983 – "Die erste Antarktis-Expedition von FS "Polarstern' (Kapstadt, 20. Januar 1983 Rio de Janeiro, 25. März 1983)", Bericht des Fahrtleiters Prof. Dr. Gotthilf Hempel	
*	* <b>Sonderheft Nr. 3/1983</b> – "Sicherheit und Überleben bei Polarexpeditionen" zusammengestellt von Heinz Kohnen	
	Heft Nr. 14/1983 – "Die erste Antarktis-Expedition (ANTARKTIS I) von FS "Polarstern' 1982/83" herausgegeben von Gotthilf Hempel	40
	<b>Sonderheft Nr. 4/1983</b> – "On the Biology of Krill <i>Euphausia superba</i> " – Proceedings of the Seminar and Report of the Krill Ecology Group, Bremerhaven 12.–16. May 1983, edited by S. B. Schnack	75
	Heft Nr. 15/1983 – "German Antarctic Expedition 1980/81 with FRV 'Walther Herwig' and RV 'Meteor' " First International BIOMASS Experiment (FIBEX) – Data of micronekton and zooplankton hauls by Uwe Piatkowski and Norbert Klages	- 22
	Sonderheft Nr. 5/1984 - "The observatories of the Georg-von-Neumayer Station", by Ernst Augstein	٤
	Heft Nr. 16/1984 – "FIBEX cruise zooplankton data" by U. Piatkowski, I. Hempel and S. Rakusa-Suszczewski	19
	Heft Nr. 17/1984 – "Fahrtbericht (cruise report) der "Polarstern'-Reise ARKTIS I, 1983" von E. Augstein, G. Hempel und J. Thiede	29
	Heft Nr. 18/1984 – "Die Expedition ANTARKTIS II mit FS "Polarstern' 1983/84", Bericht von den Fahrtabschnitten 1, 2 und 3, herausgegeben von D. Fütterer	25
	Heft Nr. 19/1984 – "Die Expedition ANTARKTIS II, mit FS "Polarstern' 1983/84", Bericht vom Fahrtabschnitt 4, Punta Arenas–Kapstadt (ANT-II/4), herausgegeben von H. Kohnen	41
	Heft Nr. 20/1984 – "Die Expedition ARKTIS II des FS "Polarstern" 1984, mit Beiträgen des FS "Valdivia" und des Forschungsflugzeuges "Falcon 20" zum Marginal Ice Zone Experiment 1984 (MIZEX)" von E. Augstein, G. Hempel, J. Schwarz, J. Thiede und W. Weigel	42

......

,

,

¢

,