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Zusammenfassung 
 

Der weltweite Klimawandel steht in direktem Zusammenhang mit der anthropogenen 

Freisetzung von Treibhausgasen wie Kohlendioxid (CO2) und Methan (UN IPCC-Report 2007). 

Darum wurde die Erforschung des globalen Kohlenstoffkreislaufs in den letzten Jahren stark 

vorangetrieben. Dabei ist insbesondere zu klären, welche Rolle der Hydro-, Bio- und 

Atmosphäre innerhalb der beobachteten Veränderungen zukommt und welche Auswirkungen die 

Zunahme der atmosphärischen CO2 Konzentration auf die verschiedenen Kompartimente des 

Erdsystems haben. Aufgrund seines riesigen Kohlenstoffinventars stellt der marine 

Kohlenstoffkreislauf hierbei die wichtigste Komponente dar. Zahlreiche Befunde weisen dem 

Südozean eine Schlüsselstellung bezüglich der Aufnahme von CO2 zu. Allerdings ist eine genaue 

Quantifizierung dieser Stoffflüsse, insbesondere aufgrund der Unzugänglichkeit der Region, 

kaum großflächig möglich. Speziell zum benthischen Kohlenstoffeintrag lagen bisher kaum 

genaue Daten vor. Diese können aus Oberflächensedimentdaten wie beispielsweise aus 

hochauflösenden Sauerstoffprofilen abgeleitet werden. Allerdings zeigt sich, dass an 

Sedimentkernen, also ex situ bestimmte benthische Kohlenstoffflüsse durch Temperatur- und 

Druckveränderungen häufig fehlerbehaftet sind. Die Alternative besteht in der Messung der 

Sauerstoff-Mikroprofile am Meeresboden (in situ). Bisher waren jedoch für den Südozean keine 

derartigen Literaturdaten verfügbar. Im Rahmen dieser Doktorarbeit wurden während der 

Antarktis-Expedition ANT XXI-4 in situ und ex situ Sauerstoffprofile gemessen und hieraus 

benthische Kohlenstoffflüsse abgeleitet. Hierdurch wurde es möglich, eine tiefenabhängige 

Korrekturfunktion zu bestimmen, mit der bisher publizierte und unpublizierte Kohlenstoffflüsse 

revidiert wurden. Damit wurde eine einheitliche Datenbasis für benthische Kohlenstoffeinträge 

für viele wichtige Regionen innerhalb des Südozeans wie beispielsweise die Amundsen und 

Bellingshausen See (südlicher Pazifischer Ozean), das Scotia und Weddell Meer (südlicher 

Atlantischer Ozean) sowie das Crozet Becken im südlichen Indischen Ozean geschaffen. 

Einschließlich der Stationen am Antarktischen Schelf decken 134 neue bzw. revidierte 

Messlokationen einen Bereich von annähernd 180° des Südozeans ab, für welche benthische 

Kohlenstoffflüsse bzw. die Mächtigkeit der oxischen Zone des Oberflächensediments vorliegen.  

Darüber hinaus wurden benthische Kohlenstoffeinträge empirisch in Beziehung gesetzt zu 

dominanten Diatomeenverteilungen in Oberflächensedimenten sowie zu satellitengestützten 

Chlorophyll-a Langzeitmessungen. Im Kontext mit benthischen Kohlenstoffflüssen des 

gesamten Atlantischen Ozeans zeigt sich eine deutlich höhere Export-Effizienz im Südozean, 

und hier speziell im Bereich des Opalgürtels, als bisher angenommen. 
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Summary 
 

Without doubt, global climate change is directly linked to the anthropogenic release of 

greenhouse gases such as carbon dioxide (CO2) and methane (UN IPCC-Report 2007). 

Therefore, research efforts to comprehend the global carbon cycle have increased during the last 

years. In the context of the observed changes, it is of particular interest to decipher the role of the 

hydro-, bio- and atmospheres and how the different compartments of the earth system are 

affected by the increase of atmospheric CO2. Due to its huge carbon inventory, the marine 

carbon cycle represents the most important component in this respect. Numerous findings 

suggest that the Southern Ocean plays a key role in terms of oceanic CO2 uptake. However, an 

exact quantification of such fluxes of material is hard to achieve for large areas, not least on 

account of the inaccessibility of this remote region. In particular, there exist so far only few 

accurate data for benthic carbon fluxes. The latter can be derived from high resolution pore water 

oxygen profiles, as one possible method. However the ex situ flux determinations carried out on 

sediment cores, tend to suffer from temperature and pressure artefacts. Alternatively, oxygen 

microprofiles can be measured in situ, i.e. at the seafloor. Until now, no such data have been 

published for the Southern Ocean. During the Antarctic Expedition ANT XXI/4, within the 

framework of this thesis, in situ and ex situ oxygen profiles were measured and used to derive 

benthic organic carbon fluxes. Having both types of measurements from the same locations, it 

was possible to establish a depth-related correction function which was applied subsequently to 

revise published and additional unpublished carbon fluxes to the seafloor. This resulted in a 

consistent data base of benthic carbon inputs covering many important sub-regions of the 

Southern Ocean including the Amundsen and Bellingshausen Seas (southern Pacific), Scotia and 

Weddell Seas (southern South Atlantic) as well as the Crozet Basin (southern Indian Ocean). 

Including additional locations on the Antarctic Shelf, there are now 134 new and revised 

measurement locations, covering almost 180° of the Southern Ocean, for which benthic organic 

carbon fluxes and sedimentary oxygen penetration depth values are available. 

Further, benthic carbon fluxes were empirically related to dominant diatom distributions in 

surface sediments as well as to long-term remotely sensed chlorophyll-a estimates. The 

comparison of these results with benthic carbon fluxes of the entire Atlantic Ocean reveals 

significantly higher export efficiencies for the Southern Ocean than have previously been 

assumed, especially for the area of the opal belt. 
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1 General introduction 
 

The World Meteorological Organisation (WMO) and the United Nations Environment 

Programme (UNEP) founded the Intergovernmental Panel on Climate Change (IPCC) 

1988 when global change became more and more obvious. The idea was that the IPCC 

should monitor and report in regular intervals the situation of the global climate, its 

effects for the society, and advice policy makers. The IPCC report 2007 clearly appoints 

the reasons for global climate change as follows: since 1750 the concentration of 

carbon dioxide (CO2) raised from 280 ppm up to 379 ppm in 2005 (Solomon et al., 

2007). This is an increase of 35 % compared to the first reliable measurements in 1750. 

The increment during the last decade is the largest since 50 years. The modern 

atmospheric CO2 concentration is the highest value since 650.000 years. 78 % of this 

increase is attributed to the use of fossil fuels and 22 % is caused by the change of land 

use (e. g. uprooting). 

These facts may illustrate the importance of carbon in the earth system. Where are the 

large carbon reservoirs on planet earth? Where are the sources and sinks of CO2? 

What happens with the ‘missing carbon’, the part of anthropogenic generated and 

released carbon which is still missing in the global budget? Fig 1-1 gives an overview of 

the global carbon cycle and exhibits interactions between reservoirs and flux rates 

between different compartments. 
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Figure 1-1: Simplified global carbon cycle after Seiter (2004). The inventory of carbon (bold numbers) and the 

fluxes (italic numbers) are modified after Ittekkot et al. (2002) and Sarmiento & Gruber (2002). Arrows show 

carbon fluxes [Gt/year]. Anthropogenic changes with annual growth rates are indicated by red numbers. PP indicates 

the primary production of surface waters. 

 

Besides water vapour, CO2 is the main contributor to changes in atmospheric radiation; 

a minor part is generated by other greenhouse gasses. In contrast, variations in solar 

irradiance have a minor effect in global warming. In total, a warming of earths climate 

does exist. The aforementioned IPCC report documented that the surface temperature 

increased about +0.74°C over the last century (Solomon et al., 2007). Furthermore, the 

past 12 years were the warmest years since the beginning of temperature recordings. 

The temperature increase during the past 50 years was twice as high as the increase 

during the past 100 years and the climate sensitive Arctic region heated up twice as 

much as the global average. The IPCC report clearly attributes anthropogenic 

greenhouse gas emissions (mainly CO2) to the climate development of the last 50 

years. 

Until now the oceans work as gigantic CO2 sinks as they dissolve most of the carbon 

produced by combustion of fossil fuels. The IPCC report assumes that from all of the 
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anthropogenic CO2 emissions since 1750 around 45 % stayed in the atmosphere and 

about 30 % was adsorbed by the world ocean (Solomon et al., 2007). This process on 

the one hand leads to saturation and on the other hand causes ocean acidification. 

Figure 1-1 shows the ocean sub-divided into a smaller reservoir of surface water and a 

larger pool of deep water. Both work as different compartments with a differing inventory 

and storage capacity in respect to carbon. A miner portion of the carbon reacting the 

ocean’s interior, settles on the surface sediments of the deep-sea. A sub fraction here 

from is subsequently remineralized whereas another part is buried in the sediments. 

Figure 1-2 illustrates this process known as the marine carbon cycle. 

 

 
Figure 1-2: Diagram of the marine carbon cycle. Phytoplankton converts inorganic carbon into organic biomass by 

photosynthesis. After dying or consumption by grazing the organic biomass sinks into the ocean’s interior. A 

distinct fraction of this freshly exported carbon of the euphotic zone is remineralized within the water column. 

Sediment traps are usually used to quantify this carbon flux to the deeper water column and to surface sediments. 

The use of free fall lander systems gives the opportunity to quantify the carbon flux which reaches the see bed.  
 

The marine carbon cycle is moved into the scientific focus during the last decades. 

Biological and physical processes in the surface ocean strongly control the air-sea 

carbon dioxide (CO2) balance as a key factor of the earth’s climate system (Sarmiento & 

Le Quere, 1996). Marine carbon sequestration via the biological pump (Kumar et al., 
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1995; Sarmiento & Le Quere, 1996; Sarmiento et al., 2004) as well as via the solubility 

pump (Raven and Falkowski, 1999; Le Quéré et al., 2007) is considered one of the 

major pathways of carbon exchange between atmosphere and the marine reservoir 

(Fig. 1-2). 

The combination of these two processes in the Southern Ocean is attributed with the 

uptake of ~2 Pg of anthropogenic carbon dioxide per year (Siegenthaler & Sarmiento, 

1993; Caldeira & Duffy, 2000) which is ~32 % of the annual global anthropogenic 

carbon dioxide emissions during the 1990s (Houghton, 2003). The long-term efficacy of 

the biological pump depends on the depth of carbon export: Delivery of particulate 

organic carbon to the seafloor represents much longer isolation from the atmosphere 

(e.g. Boyd & Trull, 2007) than carbon recycling within the upper ocean. CO2 fixation by 

phytoplankton via photosynthesis combined with the subsequent cycle of grazing, 

export to the deep, sedimentation, and remineralization represents one of the major 

CO2 sinks in this respect. The Southern Ocean (SO) is recognized as one of the world’s 

most important regions (DiTullio et al., 2000; Ribbe, 2004). However, amounts and 

mechanisms of organic matter export to the deep-sea are still poorly constrained (Asper 

et al., 1992; Jahnke, 1996; Schlitzer, 2002). 

Vast areas of the world ocean are characterized by deep-sea environments. Contrasting 

their areal importance, our knowledge of biogeochemical processes as well as of the 

deep-sea fauna is still limited, in particular for the climate-sensitive Polar Regions. Apart 

from ecological considerations, deep-sea sediments exhibit a globally important carbon 

sink. Several large programmes and projects such as JGOFS (Joint Global Ocean Flux 

Study), OMEX (Ocean Margin Exchange), BIGSET (Biogeochemical Fluxes of Matter 

and Energy in the Deep Sea), BIO-C-FLUX (Biological Carbon Flux in the Benthic 

Boundary Layer of the Deep Sea), 6C (Carbon Cycle, Carbonate Chemistry, Climate 

Change), or Carbo-Ocean addressed the marine carbon cycle during the last decades 

and at present. Nonetheless, due to their limited accessibility, polar deep-sea 

environments are still underrepresented in respect to benthic organic carbon fluxes and 

the linkage of benthic species distribution and small scale geochemical settings. At 

oligotrophic and deep-sea sites, the organic carbon rain rate to the sea floor (Corg flux), 

can be deduced in good approximation from measurements of the sedimentary oxygen 

demand. 

The total oxygen uptake (TOU) normally exceeds and is to be distinguished from the 

diffusive oxygen uptake (DOU). Whereas TOU includes the contribution of epi and 
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macro fauna to the net respiration rate of a given sediment section (e.g. Graf et al., 

1995; Rowe et al., 1997), DOU exhibits its basic turnover primarily caused by microbial 

activities. Both TOU and DOU can be determined ex situ, i.e., by shipboard sediment 

core incubation and laboratory measurements of pore water oxygen microprofiles, 

respectively. Alternatively these parameters can be determined in situ, i.e. at the sea 

floor using deep-sea benthic chamber and microprofiler landers, respectively (Tengberg 

et al., 1995). In order to circumvent sampling artefacts as well as depressurization and 

temperature effects during core recovery, measurements should preferentially be 

performed in situ. 

The use of micro sensors for flux determination was introduced already some 25 years 

ago (Revsbech et al., 1980; Revsbech & Jørgensen, 1986; Reimers et al., 1986). 

Although, since their in situ deployment is not trivial, data coverage is still modest for 

temperate regions (Fig. 1-3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-3: Worldwide in situ Corg flux (DOU) determinations for water depths of more than 100 m water depth till 

2003 (Reimers et al., 1984; Reimers, 1987; Archer et al., 1989; Bender et al., 1989; Jahnke et al., 1989; Berelson et 

al., 1990; Archer & Devol, 1992; Reimers et al., 1992; Devol & Christensen, 1993; Glud et al., 1994; Hales et al., 

1994; Jahnke et al., 1994; Cai et al., 1995; Hales & Emerson, 1996, 1997; Glud et al., 1998; Lohse et al., 1998; Glud 

et al., 1999; Luff et al., 2000; Sauter et al., 2001; Wenzhöfer et al., 2001a+b; Epping et al., 2002; Giordani et al., 

2002; Wenzhöfer & Glud, 2002 and additional database queries of PANGAEA (http://www.pangaea.de/). 
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For the deep high latitude Southern Ocean (SO), there are to our knowledge no in situ 

flux measurements beside our own investigations. There exist laboratory-based ex situ 

flux data for the deep SO (Schlüter, 1991; De Wit et al., 1997; Hulth et al., 1997; 

Smetacek et al. 1997; Rabouille et al., 1998), which, in comparison with in situ data, 

tend to considerably over-determine benthic fluxes mainly due to pressure and 

temperature artefacts occurring during sediment recovery (Glud et al., 1994, 1999, 

Sauter et al., 2001). 

Within the framework of this thesis, a set of in situ and ex situ determined benthic fluxes 

was obtained during Cruise ANT XXI/4 (R/V “Polarstern”) in 2004. The results were 

compared with satellite-observed chl-a distributions of spring and summer blooms in the 

Polar Front region. Benthic fluxes were determined at sites below an artificially induced 

diatom bloom (European Iron Fertilization Experiment, EIFEX, Strass et al., 2005; 

Assmy et al., 2006), and in areas of naturally high and low surface productivity (Sauter 

et al., 2005).  

Sauter et al. (2001) showed that the correction of ex situ determined benthic fluxes in 

northern Polar Regions is possible, since decompression effects are linearly related to 

water depth whereas temperature effects are less important in polar regions. 

Proceeding from this approach, the new dataset of the SO was used to derive a revised 

correction function for existing flux determinations in the southern high latitudes. With 

additional, so far unpublished oxygen microprofiles, a fundamental dataset obtained at 

134 sites was compiled. According to the newly established correction function, ex situ 

measurements were corrected (Fig. 1-4). 
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Figure 1-4: Worldwide in situ DOU determinations for water depths of more than 100 m water depth with the new 

determined and processed dataset in the Southern Ocean. 

 

Proceeding from this data basis, fluxes and sedimentary oxygen penetration depth 

values (OPD) were compared with long term satellite observations (SeaWiFS, Sea 

viewing Wide Field-of-view Sensor projekt, NASA). For a detailed description of long-

term carbon sequestration by the ocean, parameters such as export production, rain 

ratios, particle sinking rates and water depth has to be taken into account. The amount 

of material exported to the deep is the result of complex interaction of processes 

including primary production, aggregation, grazing as well as planktic and microbial 

communities present in the surface ocean. 

Amongst other factors, variability in the relative density of planktonic cells depends on 

phytoplankton species and their physiological state. Thus, the mechanisms of particle 

sedimentation are still not fully understood (Asper et al., 1992; Jahnke, 1996; Schlitzer, 

2002). 



1 General introduction 

  10  

Figure 1-5 illustrates some of these mechanisms in the context of the Southern Ocean. 

The mean chlorophyll-a concentration (chl-a) observed over 10 years, shown in the left-

hand satellite-derived image, is highest in shelf regions and frontal systems. On the top 

right of figure 1-5 the variability in chl-a (root square mean variability, rms) is particularly 

high over the shelf, with relatively low variability at the Antarctic front systems (e.g. 

Subantarctic Front, Antarctic Polar Front) suggesting steady production. Primary 

production and chl-a distribution counter draws to the sediment compartment. Different 

regions with individual diatom distributions are reflected in characteristic provinces of 

sedimentary diatom debris which were be mapped e.g. by Crosta et al. (1997), Zielinski 

& Gersonde (1997), Armand et al. (2005), and Crosta et al. (2005). One aim of this 

thesis is the comparison of surface sediments in this respect, which leads to regionally 

different oxygen gradients and oxygen penetration depths (bottom of fig. 1-5). 

As a final step, benthic fluxes were compared statistically with the 10 year SeaWiFS 

observation and according to the sea surface production regime of the respect Southern 

Ocean region. The statistical examination revealed that data interpretation is difficult if 

the dataset is restricted to the high latitude Southern Ocean. This is attributed to high 

local, seasonal and annual variabilities in the surface chl-a distribution. 

Most of the sites investigated here are located in the Atlantic Sector of the Southern 

Ocean. Only the comparison of these results with published in situ Corg fluxes obtained 

from other sites of the Atlantic Ocean, lights-up the picture: Within this context, the 

importance of the Southern Ocean’s contribution to CO2 drawdown can be assessed. 

Thus, these results can be considered a contribution to a refined comprehension of the 

global carbon cycle. 
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Figure 1-5: Schematic overview of the pathways of organic matter production, export, sedimentation, and benthic 

remineralization. This thesis investigates possible empiric relationships of sea surface production and benthic fluxes 

by applying a statistical approach. 
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2 Outline of the manuscripts 
 
This thesis comprises original texts, figures, and tables of three submitted manuscripts. 

All of which have been submitted to international peer-reviewed journals (Nature, Deep-

Sea Research I, Global Biogeochemical Cycles). Following the review-process, their 

final published form might slightly differ from the chapters presented in this work. 

 

The work was carried out at the Alfred Wegener Institute for Polar and Marine Research 

in Bremerhaven and at the University of Bremen and was co-funded by the Deutsche 

Forschungsgemeinschaft within the Priority Program SPP 1158 (SA1030/1-1 – 1-4). 

 

Three manuscripts represent the main part of the results compiled during the PhD and 

presented in three chapters of this thesis. All manuscripts are linked to each other. A 

brief outline of each manuscript is given below. They are all based on own 

investigations and were authored by myself as first author. 

 

 

Chapter 3 
Enhanced carbon export to deep-sea sediments underlying productivity hotspots 

in the Southern Ocean 

O. Sachs, E. J. Sauter, M. Schlüter, I. Peeken, P. Assmy, U. Bathmann, V. H. Strass 

and V. Smetacek 

 

Satellite images of the Antarctic Circumpolar Current reveal enhanced chlorophyll 

concentrations along the Polar Front. Oxygen uptake rates, a proxy for carbon flux, 

measured in situ in deep-sea sediments underlying the chlorophyll band weeks after its 

disappearance were threefold higher than in surrounding water. Similarly high values 

were recorded in sediments underlying the site of an iron fertilization experiment. We 

estimate that at least 10 % of phytoplankton biomass artificially induced by iron addition 

reached the deep sea floor. Since carbon input to deep-sea sediments appears to triple 

with a doubling of surface biomass, artificial iron fertilization of the Southern Ocean from 

this point of view could sequester a significant fraction of current atmospheric CO2 

accumulation. 
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Chapter 4 
Benthic organic carbon flux and oxygen penetration reflect different plankton 

provinces in the Southern Ocean 

O. Sachs, E. J. Sauter, M. Schlüter, M. M. Rutgers van der Loeff, K. Jerosch, and 

O. Holby 

 

The manuscript addresses organic carbon fluxes to the sediment surface of different 

regions of the Southern Ocean derived from in situ and ex situ oxygen microprofiles. An 

empiric approach to correct ex situ measurements for their potential artefacts is 

presented. Furthermore, oxygen penetration depth values were investigated as a 

measure for benthic long term carbon input which was found to correlate with diatom 

species dominating specific regions of the Southern Ocean. Thus, benthic fluxes 

confirm the particularities of regionally dominant diatom species in respect to the 

efficiency of carbon export to the deep-sea. 

 

 

 

Chapter 5 
Spatial variability of the transfer efficiency of primary produced carbon to the 

seafloor of the Atlantic Ocean 

O. Sachs, J. N. Schwarz, E. J. Sauter, M. Schlüter, and M. Schodlok 

 

This chapter focuses on datasets of benthic oxygen fluxes, satellite-derived primary 

production estimates and bathymetry which have been used to derive transfer functions 

for the export of carbon from the surface mixed layer to the sea floor. Biogeochemical 

provinces defined a priori using surface chlorophyll or sediment characteristics could not 

be distinguished by their transfer efficiencies. However, a posteriori definition of 

provinces based on the transfer efficiency showed a band of high export efficiency 

along the Southern Ocean opal belt and in the northern North Atlantic. Possible 

explanations for this are discussed. 
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3 Enhanced carbon export to deep-sea sediments underlying 
productivity hotspots in the Southern Ocean 

 

Oliver Sachs 1, Eberhard J. Sauter1, Michael Schlüter1, Ilka Peeken2, Philipp Assmy1, 

Ulrich Bathmann1, Volker H. Strass1 & Victor Smetacek1 

1 Alfred  Wegener  Institute  for  Polar  and  Marine  Research,  Am  Handelshafen  12, 

D-27570 Bremerhaven, Germany. 

2 IFM – GEOMAR  Leibniz  Institute  of  Marine  Sciences,  Duesternbrooker  Weg  20, 

D-24105 Kiel, Germany. 

 

3.1 Abstract 

The modern Southern Ocean plays a modest role in global air-sea exchange of carbon 

dioxide because its low, iron-limited phytoplankton production utilises only a fraction of 

nutrients provided by circumpolar upwelling of deep water1-2. According to the Iron 

Hypothesis3, phytoplankton growth rates and the accompanying draw-down of 

atmospheric CO2 during glacial cycles were significantly enhanced due to iron 

fertilization by 10-fold higher dust input levels in the Southern Ocean than today4. 

Whereas local phytoplankton blooms occur naturally5 and have been induced by 

artificial iron addition in in situ experiments6, the fate of their biomass, which determines 

magnitude and duration of carbon sequestration in the deep ocean, is still under 

dispute6-7. We studied the deep-sea floor underlying regions of low and high 

productivity, including the site of an iron fertilization experiment conducted a few weeks 

earlier, and found compelling evidence of fresh deposition of significant amounts of 

organic carbon emanating from surface blooms. Our in situ measurements of 

sedimentary carbon fluxes under recurrent high productivity hotspots along the Antarctic 

Polar Front are amongst the highest recorded from the ocean. In striking contrast, 

carbon deposition under adjoining low-productive waters was much lower. Our findings 

support the Iron Hypothesis and identify the Southern Ocean as a potential global-scale, 

long-term sink of atmospheric CO2. 
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3.2 Introduction 

The current low productivity of the land-remote Southern Ocean, despite high nutrient 

concentrations of nitrate and phosphate, has been shown to be due to iron limitation of 

phytoplankton growth rates8. Unambiguous evidence has come from 5 experiments in 

which several tonnes of iron sulphate were added to patches of open ocean in different 

sectors and regions of the Antarctic Circumpolar Current (ACC)9-12. All experiments 

resulted in phytoplankton blooms and significant lowering of CO2 levels in the surface 

layer. However, the extent and duration of impact on atmospheric CO2 levels depends 

on the proportion of bloom biomass that sinks out of the surface layer relative to that 

recycled within it. For various reasons, the fate of experimentally induced biomass, but 

also that of natural blooms in the ACC, has been poorly documented so far6. 

 

3.3 Results and discussion 

Satellite images of surface chlorophyll concentrations, a proxy for productivity, indicate 

annually recurrent, narrow bands of chlorophyll concentrations >1 mg Chl m-3 along 

certain stretches of the Antarctic Polar Front (APF) that contrast with the lower (by half) 

values characteristic for the northern and southern branches of the ACC on either side13 

(Fig. 3-1a). These chlorophyll hotspots disappear during the autumn with unknown fate 

(Fig. 3-1 b, c). At this stage we can only speculate on the provenance of the iron fuelling 

these restricted APF blooms but it is reasonable to assume that the fate of artificially 

induced blooms will be similar to those of natural ones. In order to estimate the amount 

of organic carbon deposited on the sea floor underlying the natural and artificial 

hotspots in comparison to less productive waters, we carried out in situ microsensor 

measurements of oxygen uptake by surface sediments from 4 sites in the Southern 

Ocean and retrieved undisturbed samples of the upper 20 cm sediments from 3 of 

them. 

The first site was located in the centre (Station 598) of a stable, cyclonic eddy of about 

100 km diameter located within a meander of the Antarctic Polar Front and in which an 

iron fertilization experiment (EIFEX) had been completed 2 week earlier14. The second, 

reference site (Station 600) underlay the south-western branch of the APF surrounding 

the eddy. Such mesoscale eddies in the ACC, clearly visible in satellite images of sea-
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level height, are ideally suited for Lagrangian studies of temporal developments15. They 

can extend from the surface to the sea floor and persist for several months, hence 

provide ideal containers for following the fate of bloom biomass from the surface to the 

deep-sea and sea floor16. The other two sites were sampled ~3 weeks later and 

selected on the basis of surface chlorophyll concentrations during the previous months. 

Station 703 was located in the broad belt of impoverished water of the southern ACC 

whereas Station 705 was pinpointed under the annually recurrent, ~130 km broad band 

of high chlorophyll along the APF southwest of Africa that had disappeared ~6 weeks 

earlier (Fig. 3-1). 

 

Figure 3-1: Surface chlorophyll-a concentrations across the ACC for 3 separate weeks in the 6-week period 

between 10th of February and 20th of March 2004. Due to the vagaries of cloud cover, each image is integrated from 

multiple passes of the SeaWiFS satellite over a week. The phytoplankton bloom along the meandering Polar Front 

crosses the centre of the image and is more diffuse to the west during the first week. The signal fades in subsequent 

weeks indicating demise of the bloom. The SeaWiFS (NASA) images were recorded several weeks prior to the in 

situ flux measurements at the numbered sites marked with white dots. 

 

A distinct fluffy layer of freshly deposited plankton cells and organic detritus distinct from 

the sediment surface was observed in the sediment core taken from site 600 (Fig. 3-2). 

At Site 705, the surface sediment consisted of an extremely soft layer which was both 

inhomogeneous and bioclastic, indicative of prolonged high sedimentation and 

accumulation rates. Freshly deposited material was identified on the surface but it did 

not appear as a discrete layer. In contrast, the sediment core retrieved from site 703 

lacked any signs of freshly deposited material. 
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Figure 3-2: Evidence of freshly deposited material at Site 600 (a-c). a, Sediment core retrieved from the periphery 

of the eddy in which the iron-fertilization experiment (EIFEX) was performed showing a 5 mm thick layer of freshly 

deposited remains of a phytoplankton bloom, (arrow: foraminifer Bathysiphon cf. flavidus) lying on the sediment 

surface. b, Chl-a fluorescence of an intact dinoflagellate cell (arrow) indicates fresh phytoplankton material at 

~3600 m depth (epifluorescence micrograph with Chl-a filter), scale bar, 50 µm. c, DAPI fluorescence  indicates 

high bacterial activity on a colonised cell of the diatom Corethron pennatum from the fluff layer, scale bar, 50 µm. 

 

In situ microsensor measurements indicated high sedimentary oxygen uptake at the 

surface  of  all  three  stations  underlying  areas of chlorophyll  concentrations  

>1mg Chl m-3. (Sites 598, 600, and 705). Benthic organic carbon fluxes between 9.4 

and 13.1 mg C m-2 d-1 derived from these in situ oxygen micro-profiles (Fig. 3-3) are in 

the range of typical values for the high-productive, up-welling areas off West Africa, 

whereas  the  flux  measured  at  Site  703  underlying  impoverished  water 

(3.3 mg C m-2 d-1) was similar to values determined in the deep open Atlantic17. The 

fresh sedimentation of labile organic material was particularly evident at Sites 598 and 

600 where a discontinuity in the oxygen in situ microprofiles at about 5 mm sediment 

depth, i.e. at the sediment-fluff interface, reflected non-steady state conditions (red 

arrows in Fig. 3-3a, b). Notably, this change in the oxygen gradient coincides with a 

rapid drop in porosity (derived by the in situ measured formation factor, blue graph in 

Fig. 3-3a, b) below the fluff layer. As shown by the green bars in Fig. 3-3, fresh 

sedimentation is further supported by high oxygen consumption rates (2.1 and 1.3 µmol 

cm-3 d-1) at the sediment surface of Stations 598 and 600 respectively as compared to 

much lower values in the sediment below (0.005 and 0.004 µmol cm-3 d-1). In contrast, 

much lower activity in the surface layer (0.4 µmol cm-3 d-1) but similar values to sites 598 

and 600 in the sediment below (0.002 µmol cm-3 d-1) were found at Site 703 (Fig. 3-3c). 
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Figure 3-3: Oxygen microprofiles (black dots) measured in situ at the sites marked in Fig. 3-1. Oxygen 

consumption rates (green, note different scales) and benthic organic carbon fluxes (red numbers) were obtained by 

fitting the data with the model PROFILE19 (red fits). A significant change in sediment porosity (blue dots) delineates 

the transition between an overlying fluffy layer and the sediment surface at Sites 598 and 600 (blue arrows). This 

coincides with a discontinuity in the pore water oxygen profile (red arrows) and reflects very recent sedimentation 

of fresh material. Modelled oxygen consumption rates at Stations 598, 600 and 705 exhibit a drastic drop below the 

fluff layer in comparison with Station 703. Porosity and O2 consumption rates in the underlying sediment are similar 

at Sites 598, 600 and 703, but indicate softer, organic rich sediments at Site 705. 

 

We were unable to obtain a sediment core from Site 598 but the similarity in oxygen 

profiles between this Site and 600 strongly suggests the presence of freshly deposited 

fluff layers at both sites, which in the eddy centre (Site 598) will have emanated from the 

EIFEX bloom. The species composition of the EIFEX bloom was similar to that 

observed in surrounding water prior to fertilization. Freshness of the fluff layer in core 

600 is indicated by elevated phaeopigment concentrations (~7000 ng g-1 dry weight), 

the presence of chlorophyll-a fluorescence in phytoplankton cells with intact nuclei 

(Fig. 3-2b) and high bacterial activities in comparison to the sediment below the fluff 

layer (Fig. 3-2c). Further, intact, chains of diatom species that dominated the sinking 

flux recorded from the EIFEX bloom18 (Chaetoceros atlanticus, C. dichaeta, Corethron 

pennatum, Fragilariopsis kerguelensis), including frustules of weakly silicified species 

(such as Guinardia cylindrus) were present in the fluff at site 600. 
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The remarkably similar benthic carbon fluxes underlying the EIFEX eddy centre (Site 

598) and its peripheral APF loop (Site 600), despite differences in surface chlorophyll 

concentrations, can be explained by the dynamics of the EIFEX patch. At the time of 

fertilization, measured chlorophyll concentrations along the APF loop were 1.2 mg 

chlorophyll m-3 which is about twofold higher than within the eddy but declined 

significantly in the period when the EIFEX bloom was growing. Maximum values in the 

centre of the bloom (2.8 mg Chl. m-3) were fourfold higher than those in surrounding 

water within the eddy core (Fig. 3-4). 

 

Figure 3-4: Close-up of the EIFEX eddy. a, Just before fertilization. b, At the height of the experimental bloom. 

c, In its declining phase. Chlorophyll concentrations are according to the scale bar in Fig. 1. The red oval in a 

denotes the approximate boundary of the eddy core at that time. Chlorophyll concentrations were initially higher 

around the eddy periphery than within its core where the experiment was carried out. The eddy centre shifted 

northward by 35 km in the period between a and b. The fertilized patch, which circled clockwise within the eddy at 

about weekly intervals, is visible southwest of the eddy centre denoted by site 598 in panel b and southeast of it in 

panel c. The red line in panel d marks the track of one float positioned 200 m below the patch shortly after the flux 

event. The track is representative for the other floats positioned deeper in the water column down to 1000 m depth. 

 

The bloom peaked on 8. March, 24 days after fertilization, and a strong flux event 

through the deep water column was recorded subsequently19. The area covered by the 

continuously spreading patch when the flux occurred was approximately 20-30% of the 

area of the eddy core within which it was rotating (Fig. 3-4). Because the patch was 

located off-centre, it described perfect, almost overlapping ovals of 70 and 50 km 

dimension around the eddy centre during the 5-week long experiment. Hence, material 

sinking out of the rotating patch will have been “smeared” over an area of about 3 to 5-

fold greater extent in the course of a full, 7-day revolution, apparently shorter than the 
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flux event. In contrast, material sinking out of the peripheral APF frontal jet (Site 600) 

will have been deposited as a band beneath it and not “smeared” over a more extensive 

sediment area. Thus, although surface chlorophyll concentrations along the APF were 

lower than in the centre of the EIFEX patch, the amount of fluff deposited on the 

underlying sediments was about the same as within the eddy. In other words, without an 

EIFEX bloom a fluff layer would not have been deposited in the impoverished eddy 

core. 

At Site 705, where the highest fluxes were measured (13.1 mg C m-2 d-1), the 

smoothness of the oxygen depth profile (Fig. 3-3d) indicates a steady state system 

characterised by enhanced, long term influx of organic carbon. In contrast, the fluff 

layers at sites 598 and 600 appear not to be a recurrent feature. The shallow oxygen 

penetration depth (OPD) of ~10 cm at Site 705 contrasts with Sites 598, 600 and 703 

where oxygen concentrations extrapolated from the microprofiles penetrate at least 

>40 cm into the sediment. These are, to our knowledge, the first published in situ flux 

data for the SO. Previous ex situ observations of low OPD values in sediment samples 

from the APF are in good agreement with our in situ fluxes at Site 70520-21. 

A conservative estimate of the amount of carbon deposited from the surface blooms can 

be derived from measured benthic carbon fluxes and consideration of the spatial 

kinetics of the patch. From the satellite images and measurements carried out around 

the EIFEX eddy prior to fertilization, we know that the fresh material at Sites 600 and 

705 were deposited at about the same time and derived from blooms of roughly similar 

magnitude (1-2 mg chlorophyll m-3 in an 80-100 m deep mixed surface layer). This 

corresponds to a phytoplankton biomass of approximately 4 g carbon m-2, at a C:Chl 

ratio of 30 determined from the EIFEX bloom. Carbon fluxes at the sediment / water 

interface at all sites were approximately 10 mg m-2 d-1. Since measurements at site 600 

were carried out two weeks and at site 705 five weeks after deposition of the fresh 

material we assume that the measured benthic carbon fluxes prevailed for at least 

35 days which results in a flux estimate of 350 mg C for this time period. This is a 

minimum estimate as we do not know for how long these fluxes lasted. These 

calculations indicate that at least 10% of organic carbon built up by the surface bloom 

was deposited as fluff on the deep sea floor.  
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3.4 Conclusions 

Our data indicate that a significant portion of the biomass of natural and artificially 

induced blooms reaches the underlying deep-sea floor within weeks after 

disappearance from the surface. Rapid sinking of surface blooms and deposition as fluff 

on the sea floor has been described for the North Atlantic22 and is probably due to 

diatom cells and chains aggregating into fast-sinking flocks that trigger the mass 

sinking23. The proportion of organic carbon produced in the surface layer that is 

deposited on the underlying deep-sea floor appears to triple with doubling of chlorophyll 

concentrations above about 0.5 mg Chl m-3. The amount buried, reflected in depth of 

oxygen penetration, depends on degree of recurrence of surface blooms. Higher levels 

of dust input during glacials4 will have resulted in much higher productivity and hence 

more intense burial of organic carbon over much larger areas than today. This is 

corroborated by the high abundances of Chaetoceros resting spores – an indicator of 

higher productivity – in glacial ACC sediments of the Atlantic sector as compared to 

today24. It follows that an iron-fertilized ACC, whether naturally by dust or artificially by 

ferrous sulphate, is capable of sequestering a significant portion of atmospheric carbon 

dioxide in surface sediments for time scales exceeding those of deep-sea ventilation, 

i.e. well in excess of 1000 years. 

 

3.5 Methods 

3.5.1 Study site 

During expedition ANT XXI/4 of R/V “Polarstern” (27.03.-06.05.200425) in situ 

measurements and sampling was performed at four locations close to the Antarctic 

Polar Front (Tab. 3-1). 
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Table 3-1: Station list 

Site Label Date Latitude (S) Longitude (E) Depth (m) 
PS65/598 02.04.04 49° 18,50’ 02° 11,68’ 3942 
PS65/600 03.04.04 49° 59,88’ 02° 20,22’ 3589 
PS65/703 
PS65/705 

29.04.04 
30.04.04 

52° 35,12’ 
49° 00,06’ 

09° 00,19’ 
12° 15,32’ 

3330 
4293 

  Site labels are abbreviated in the text (e.g. 598 for PS65/598). 

 

3.5.2 Benthic carbon fluxes 

Benthic carbon fluxes were derived from in situ oxygen microprofiles obtained by an 

autonomous deep-sea microprofiler (Unisense A/S, Denmark) deployed in combination 

with a free-fall lander system. The profiler was equipped with five oxygen sensors and a 

formation factor probe (resistivity sensor). Since the pore water oxygen gradient at the 

sediment surface is altered during recovery of sediment cores due to depressurization 

and temperature changes, fluxes measured at sediment cores (ex situ) tend to over-

estimation26-27). Therefore, such micro profile measurements should be performed in 

situ. According to ref.28 Clark type oxygen sensors (Unisense A/S) with tip diameters of 

~25 µm and a stirring sensitivity <2%, pre-calibrated according to ref.27 were lowered 

through the sediment water interface into the sediment with a vertical resolution of 

0.5 mm during 5-6 hours at the sea floor. Porosity data for accurate flux calculation 

were obtained according to ref.27 from in situ measured formation factor profiles. 

Diffusive oxygen fluxes were determined from the in situ measured data using the fit 

procedure and the software PROFILE29. Oxygen diffusion coefficients were calculated 

according to30 using the individual temperature, pressure and salinity conditions of each 

site. Profiles apparently affected by bio-irrigation and from broken sensors were 

discarded. The profiles acquired at Site 600 were affected by noise that we ascribe to 

the intrusion of salt water (~2 ml) into the liquid-filled (3M FC77, FluorinertTM) housing 

of the step motor. In this case, only data inside the 70% confidence interval were 

included in the fit procedure. Flux values are given as the median of all profiles used at 

one site (two at each of the sites 598, 600, and 703; four at Site 705). Oxygen 

consumption rates were also calculated using PROFILE29. 
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3.5.3 Sediment sampling 

For sediment sampling a multiple corer with a core diameter of 10 cm was deployed31. 

Apparently undisturbed sediment cores were obtained at sites 600, 703, and 705. At 

Site 598 no sediment was retrieved despite repeated efforts. Upon recovery, sediment 

samples were immediately segmented into 1 cm slices in the shipboard cool laboratory. 

The top centimetre was cut into two slices of 5 mm. Sediment samples were shock 

frozen in liquid nitrogen and stored at -80 °C. If present, fluff was sampled separately by 

pipette, shock frozen and stored at -80°C. A portion of the fluff was preserved in 

hexamine-buffered formaline solution (2%) and stored at 4 °C. 

 

3.5.4 Sediment investigations 

Samples were examined by light and epifluorescence microscopy revealing chl-a in 

cells of phototrophic dinoflagellates, single cells and chains of diatoms with intact nuclei 

(made visible by 4´,6-Diamidino-2-phenylindoldihydrochloride (DAPI) staining). High 

bacterial activities were observed by DAPI staining in formaline fixed fluff samples. 

Fluff and sediment samples for light microscopy investigations were transferred into 

Utermöhl chambers and onto microscope slides. Samples were filtered over Black 

Nuclepore® membranes (Whatman, pore size 0.8 µm.) for epifluorescence microscopy  

Pigment analyses were performed by high performance liquid chromatography (HPLC). 

For analytical preparation, 1 cm³ of sediment was mixed with 50 µl of internal standard 

(canthaxanthin) and 1 ml of glass beads (1 mm diameter). This mixture was extracted 

3 times with 2 ml acetone in a cell mill for 3 minutes. After centrifugation (10 minutes at 

4000 U min-1 and 0 °C) the extracts were unified and concentrated on an Alltech C18™ 

solid phase extract clean column. Pigments were eluted with 100% acetone and further 

concentrated under nitrogen atmosphere in the dark to a final volume of 0.3 ml. Finally, 

pigments were measured with a Waters™ HPLC system according to ref.12. 
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3.5.5 APEX floats 

Four autonomous profiling APEX (Autonomous Profiling EXplorer) floats were deployed 

below the fertilized patch at depths of 200m, 300 m, 500 m and 1000 m. before 

departure from the EIFEX experimental site14. The floats ascend to the surface once 

every 2 days and transmit their data to satellite for about 10 hours before sinking back 

to their parking depth. 
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4.1 Abstract 

Based on the comparison between benthic oxygen fluxes derived from oxygen 

microprofiles measured at sediment cores (ex situ) and by means of free falling lander 

systems (in situ), a correction function was set up that was applied on existing ex situ 

flux data in order to revise the database for the Southern Ocean. Organic carbon fluxes 

range from 0.5 to >35 mgC m-² d-1. Oxygen microprofiles were measured at 134 sites in 

different sub-regions mainly of the Atlantic Sector of the Southern Ocean. Oxygen 

penetration depths and benthic organic carbon fluxes were derived from the profiles and 

investigated in respect to regional characteristics. In the Scotia Sea (~3000 m water 

depth) oxygen penetration depths of less than 15 cm were observed in deep-sea 

sediments. In contrast, the oxic zone extends to several decimetres in abyssal 

sediments of the Weddell Sea and south-eastern South Atlantic. The depth of 

oxygenation reflecting sedimentary long term organic matter influx was found to be 

correlated with diatom key species characterizing different regions of the surface ocean. 

From the partly very high fluxes derived from micro sensor data it can be concluded that 

episodic and seasonal sedimentation pulses are important for carbon supply to the sea 

floor even at great depths.  
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4.2 Introduction 

The transfer of particulate organic carbon from the sea surface to the deep ocean and 

its remineralization and burial at the seafloor closely links the atmospheric CO2 

concentration to the marine carbon cycle. Carbon and nutrients remineralised or buried 

in surface sediments are removed from air-sea exchange of CO2 or primary production 

for periods of 100s to 1000s of years. 

Recent benthic organic carbon fluxes are mainly quantified by the in situ deployment of 

microprofilers and benthic chamber systems (e.g. Reimers et al., 1986; Reimers, 1987; 

Glud et al., 1994; Tengberg et al., 1995; Jahnke, 1996; Sauter et al., 2001; Wenzhöfer 

& Glud, 2002). In situ microprofilers allow for measuring O2 profiles in surface 

sediments with a high vertical resolution up to sub-millimeter scale. From these micro 

gradients, the sedimentary dissolved oxygen uptake (DOU) can be derived as a 

measure of organic carbon rain rates to the sea floor (hereafter referred to as Corg flux), 

which is indicative of the flux of particulate organic carbon reaching the seafloor (e.g. 

Revsbech & Jørgensen, 1986; Reimers et al., 1986; Jahnke, 1996). Compared to such 

in situ measurements, fluxes derived by ex situ determinations on shipboard are often 

biased by sampling artifacts. For example, ex situ oxygen probes determined at deep-

sea sediments (>1000 m) tend to be affected by decompression leading to an 

overestimation of the concentration gradients (Reimers et al., 1986). Due to these 

artefacts, such ex situ measurements provide reliable information about the oxic zone of 

the sediment and a semi-quantitative measure of the long term Corg flux but no exact 

determination of the DOU.  

Based on compilations of benthic flux studies, budgets of the amount of particulate 

organic matter transferred to the seafloor were derived for large ocean basins or even 

on a global scale (Jahnke, 1996; Schlüter et al., 2001; Wenzhöfer & Glud, 2002; Seiter 

et al., 2005). These investigations are linked to sediment particle trap studies (Wefer & 

Fischer, 1991; Lampitt & Antia, 1997; Honjo, 2004) providing values for Corg fluxes in 

the water column and are relevant for the comparison of biological processes, flux 

budgets and model calculations. 

Compared to the northern North Atlantic, upwelling regimes as off Namibia or regions in 

front of South America, still only little is known about benthic Corg fluxes in the Southern 

Ocean (SO), a key region for the global marine carbon cycle (Kumar et al., 1995; 

Caldeira & Duffy, 2000; Sarmiento et al., 2004). Especially the region separating the 
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Antarctic and Subantarctic zone (ASZ), referred to as the biogeochemical divide 

(Martinov et al., 2006), and seems to have a crucial impact in respect to the present and 

past global CO2 cycle. Considering the Atlantic sector of the Southern Ocean, only a 

limited number of studies investigated Corg fluxes in the ASZ region via sediment 

particle traps (e.g. Wefer & Fischer, 1991; de Baar et al., 1995; Smetacek et al., 1997; 

Bathmann et al., 1997; Fischer et al., 2000, 2002) or radio nuclide tracers (Rutgers van 

der Loeff et al., 1997). Data on Corg fluxes reaching the seafloor of the ASZ are based 

on a very limited number of O2 microprofiles and sediment incubations (Schlüter, 1991; 

Hulth et al., 1997; Smetacek et al., 1997; De Witt et al., 1997; Rabouille et al., 1998; 

Schlüter et al., 2001). Accurate flux data derived from in situ oxygen microprofile 

measurements were not available for this area until now. Instead, only ex situ 

measurements were reported so far. Due to the lack of data, the Southern Ocean south 

of 60° was excluded from the global carbon budgets derived by Jahnke (1996) and 

Seiter et al. (2005).  

In this paper we present new results including the first in situ oxygen measurements 

reported for the SO, derived from measurements of oxygen profiles in surface 

sediments and a compilation of more than 134 oxygen profiles (Rutgers van der Loeff, 

1990a; Schlüter, 1990; Rutgers van der Loeff & Berger, 1991; Schlüter, 1991; Smetacek 

et al., 1997; de Wit et al., 1997; Rabouille et al., 1998; Sachs et al., subm.). This study 

of in situ and ex situ flux data is complemented by additional unpublished data sets 

obtained during previous field expeditions (1986-1990, 1992-1994, 2004) to the Mid 

Atlantic Ridge region (Holby, 1994), Amundsen and Bellingshausen Seas (Holby, 1996), 

the Antarctic Peninsula region, the Scotia and Weddell Seas and the east Antarctic 

shelf (Fig. 4-1). 

Based on a comparison of in situ with ex situ oxygen profiles a correction function for ex 

situ data previously measured in Southern Ocean sediments was established. This 

allows us to estimate organic carbon fluxes reaching the seafloor for sites were ex situ 

measurements are available and obtain a retrospective data analysis correcting existing 

benthic oxygen and Corg fluxes as well as oxygen penetration depth values (OPD, the 

oxygenated zone in sediment). In a second step regional differences of particulate 

organic matter fluxes were considered for the region south of 40° S. The combined 

dataset allows for considering the specific pattern, e.g. with respect to the biogenic silica 

cycle, of particulate organic matter fluxes reaching the seafloor. The compilation of 

these data significantly improves the data basis and our understanding of regional 
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differences of benthic fluxes in the Southern Ocean. 

 
Figure 4-1: For the region from the Amundsen and Bellingshausen Seas (west of the Antarctic Peninsula) to the 

Crozet Basin (60° E) oxygen profile measurements of surface sediments were compiled. In total 134 sites were 

considered, x indicating in situ sites. This includes new measurements as well as previously published data (Tab. 4-

1). The Antarctic Polar Front (white line) is given according to Orsi et al. (1995). 
 

 

4.3 Materials and methods 

In this study, data derived from measurement of oxygen profiles in surface sediments 

from different sources were compiled and considered: a) In situ and ex situ 

measurements were performed during the Polarstern Expedition ANT XXI/4 (Sachs et 

al., subm.) on a latitudinal transect across the Antarctic Polar Front system. b) Ex situ 

and two in situ datasets obtained during the Polarstern Expeditions (ANT V/4, ANT VI/2-

3, ANT VIII/3 & 6, ANT X/5-6, ANT XI/3) to the Amundsen and Bellingshausen Seas 

(Pacific Sector) as well as the Atlantic sector of the Antarctic Circumpolar Current, the 

Scotia and Weddell Seas, the east Antarctic shelf and continental slope. These data 

previously considered with respect to the depth of the oxic habitat within the sediment 

(Rutgers van der Loeff, 1990a; Schlüter, 1990; Schlüter et al., 2001), were now used for 

flux determination and the revised investigation of the regional patterns of OPD values. 

In total 134 microprofiles were considered for OPD studies in different regions of the 

Southern Ocean whereas 96 were suited to derive Corg flux values from (Tab. 4-1). 
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4.3.1 Measurements of in situ and ex situ oxygen microprofiles 

In situ oxygen microprofiles were measured during Expeditions ANT X/6 (Holby, 1994, 

Fig. 4-2) and ANT XXI/4 (Sachs et al., subm.) by means of a deep-sea microprofiler. 

Mainly due to ice coverage and frequent rough weather conditions, these are the first in 

situ oxygen microprofile measurements published for the Southern Ocean. 

Microprofilers were equipped with up to five pressure compensated Clark type oxygen 

sensors with a tip diameter of ~25 µm and a stirring sensitivity <2%. Sensors were pre-

calibrated according to Sauter et al. (2001). During ~5-6 hours at the sea floor, sensors 

were lowered through the water-sediment interface into the sediment with a vertical 

resolution of 0.5 mm. A Niskin bottle mounted onto the lander frame and closing in 

concert with the lander’s releaser provided bottom water for sensor re-calibration. For 

porosity determination, the microprofilers were also equipped with a resistivity sensor 

(formation factor probe).  

Oxygen diffusion coefficients were calculated according to Boudreau (1997) using the 

individual in situ temperature recorded by a current meter (Aanderaa, Norway) mounted 

onto the lander frame. Diffusive in situ oxygen fluxes were determined from the 

uppermost 3-4 mm of the pore water oxygen profiles using the software PROFILE (Berg 

et al., 1998). The fit curve (Fig. 4-2) of measured oxygen profiles were computed by the 

model PROFILE. 
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Figure 4-2: In situ O2-measurements in surface sediments of the Southern Ocean (Site PS2365 and PS2376, cruise 

ANT X/6). Oxygen consumption rates (green) and benthic organic carbon fluxes were computed by the model 

PROFILE (Berg et al., 1998). 

 

Porosities were derived for ex situ and in situ oxygen profiles by measurement of the 

formation factor Boudreau (1997). Where such information was not available, a “mean” 

porosity profile calculated from three in situ measured high resolution profiles was 

applied. The comparison of this porosity distribution with values determined ex situ at 

the same sites revealed a deviation of <1%. 

Diffusive oxygen fluxes were converted into organic carbon rain rates on the basis of 

the modified Redfield Ratio (Anderson & Sarmiento, 1994) and under the assumption 

that in oligotrophic deep-sea sediments the major part of organic carbon is 

remineralized by oxic respiration. 

For the compilation of ex situ fluxes only profiles which were measured in sediment 

samples recovered by a multiple corer (MUC, Barnett et al., 1984) were considered. 

Only cores with apparently undisturbed sediment surface and clear supernatant water 

column were selected and transferred to the ship’s cool laboratory (2-4°C). Shipboard 

pore water oxygen microprofiles were measured immediately using Clark type glass 
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microelectrodes similar to those applied for in situ measurements. In a few cases, 

especially when the oxygen penetration depth exceeded several decimetres, Clark type 

steel-needle probes were applied. Microelectrodes were calibrated prior to each 

measurement against the bottom water oxygen concentration determined by Winkler 

titration (Grasshoff et al., 1983) and oxygen-free seawater. The microelectrodes were 

mounted into a micromanipulator and profiles were measured with a vertical resolution 

of 0.1 to 2 mm. Oxygen measurements were conducted down to as much as 32 cm. At 

cores where the anoxic zone was not reached by the measurement, OPD was 

estimated by fitting a double exponential function to the oxygen profile.  

Except the study of Sachs et al. (subm.), all of the published deep-sea studies of the SO 

represent ex situ measurements, which tend to considerably over-estimate benthic 

fluxes (e. g. Reimers et al., 1986; Glud et al., 1994 and 1999; Sauter et al., 2001). This 

is mainly due to pressure release and, if the sample comes from warm or temperate 

regions, temperature artifacts which may occur during sediment recovery. Whereas the 

oxygen gradient at the water-sediment interface is very sensitive against such artifacts, 

the thickness of the oxic zone within surface sediments (i.e. the oxygen penetration 

depth) is much more robust in this respect and offers an additional indication for benthic 

carbon fluxes (Rutgers van der Loeff, 1990a; Cai & Sayles, 1996; Schlüter et al., 2001). 

In addition OPD values measured from box corer sub-samples were gathered in the 

years 1986, 1987 and 1988 from the Weddell Sea and Antarctic shelf region. No flux 

values were taken from such samples due to the potentially poor preservation of the 

sediment surface.  

Specific observations were made at two particular sediment samples: (1) Sediments at 

site PS65/600-2 were covered by a consistent 5 mm thick fluff layer (Sachs et al., 

subm.). (2) At site PS1782 Rutgers van der Loeff (1990b) and Rutgers van der Loeff & 

Berger (1991) describe “extremely fluid sediment” from a high accumulation area in 

5016 m depth. It should be mentioned here that in case of fluff present on top of the 

sediment, the flux correction is misleading since the bacterial activity and the diffusion is 

changing dramatically with sediment depth. Similarly, a correction cannot be given for 

“liquid” or “extremely fluid” sediments as suggested by in situ and ex situ investigations 

of Arctic deep-sea sediments (Molloy Hole, Fram Strait, 5400 m depth, Sauter and 

Sachs, unpublished). Due to the given specific sediment consistency, Corg fluxes were 

not corrected for these particular SO sites. However, the OPD value was used in both 

cases.  
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4.4 Results and discussion 

4.4.1 Relationship between ex situ and in situ flux measurements 

Whereas the in situ oxygen probes allow the direct computing of Corg fluxes, ex situ 

measurements might be biased by sampling artefacts (e.g. Reimers et al., 1986). As 

shown by Glud et al. (1994, 1999) or Sauter et al. (2001) the comparison of ex situ and 

in situ measurements obtained of the same site allows for assessing a specific 

relationship. This can be applied to correct Corg fluxes of ex situ determined profiles. 

Subsequently we investigated the suitability of this approach for the Southern Ocean. 

For this purpose the ratio of in situ / ex situ flux data based on new measurements and 

previous published data is considered. 

In Figure 4-3 the available global dataset of in situ / ex situ measurements obtained at 

the same sampling site are shown. The data are compiled from Glud et al. (1994), Glud 

et al. (1999), Sauter et al. (2001) and Wenzhöfer & Glud (2002). Due to unusual 

warming of the sediment samples (Wenzhöfer et al., 2001, n=4) and unusual sediment 

compaction (Sauter et al., 2001, n=1) a sub-set of these data were not considered in 

Figure 4-3.  

 
Figure 4-3: Flux ratio of ex situ / in situ determined diffusive oxygen uptake (DOU) versus depth for a mixed data 

set (Glud et al. 1994, 1998 and 1999; Sauter et al., 2001; Wenzhöfer & Glud, 2002 and this study) 
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The number of comparative ex situ / in situ flux measurements is very limited. To our 

knowledge there are no other data sets beyond those used in this study. The obtained 

relation in Figure 4-3 represents data from the Atlantic as well as the Pacific Oceans 

and includes equatorial and up-welling regions as well as abyssal plains. 

With a coefficient of determination (R²) of 0.20, the obtained regression exhibits a weak 

correlation between ex situ / in situ fluxes and water depth. However, there is a trend 

towards higher DOUlab/DOUins values with increasing water depths which can be 

generally attributed to pressure artefacts. In addition, temperature-related effects and 

accelerated bacterial respiration as well as pore water diffusion may cause artefacts 

effecting the ex situ flux measurements. 

Since the oxygen profiles were measured in very different environment settings (in 

respect to water column temperatures or primary production regime) we considered the 

DOUlab/DOUins versus water depth relations for high northern and southern latitudes in 

detail (Fig. 4-4). 

 
Figure 4-4: Flux ratio of ex situ / in situ determined diffusive oxygen uptake (DOU) versus depth including only 

high latitude data (Glud et al., 1998; Sauter et al., 2001 and this study). 

 

Data from the shelf area of Svalbard (Glud et al., 1998) and from the deep northern 

North Atlantic (Sauter et al., 2001) in combination with own new in situ values obtained 

from the Southern Ocean and the Fram Strait (Sauter and Sachs, unpublished data) 

were used. As shown in Figure 4-4, the DOUlab/DOUins versus water depth ratios 

obtained for high latitudes are positively correlated with water depth and reveal a much 
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stronger correlation with a coefficient of determination of 0.64. The depth-dependent 

correction function derived for the high latitude regression is 

DOUlab/DOUcorr = 0.00039 · z  +  0.91      (1) 

z being  the water depth [m] and DOUcorr being the calculated Corg flux [mgC m-² d-1] as 

expected to be measured in situ. From equation (1), literature ex situ flux data can be 

corrected as follows: 

DOUcorr = DOUlab · (0.00039 · z  +  0.91)-1     (2) 

One focus of this paper was to correct literature and own ex situ measurements 

according to the above explained correction function. The corrected fluxes are listed in 

the Table 4-1 together with sampling techniques and biological provinces of the site of 

sampling (classification see below).  
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4.4.2 Organic carbon fluxes reaching the seafloor of the Southern Ocean 

The organic carbon fluxes derived for the SO by in situ measurements and by correction 

of ex situ measurements are shown in Figure 4-5. Benthic fluxes range from very low 

values of 0.6 mgC m-² d-1 (Weddell Sea) to approximately 25 mgC m-² d-1 below coastal 

polynias in front of the east Antarctic shelf. Highest fluxes up to 37.1 mgC m-² d-1 were 

determined for the Antarctic shelf region (Fig. 4-5). The spatial distribution of oxygen 

penetration depths (shallow and deep OPD values are a semi-quantitative indicator for 

continuous high and low organic carbon flux into the sediment, respectively) are shown 

in Figure 4-6. Furthermore, benthic Corg fluxes and OPD values show no obvious 

relation to water depth, oceanic fronts and regions except those at the Polar Front. 

However, if the oxygen penetration depths are mapped against the context of additional 

sedimentary parameters, a more systematic pattern is obvious: All open ocean fluxes 

exceeding 5 mgC m-² d-1 are in or close to the biogenic silica belt, an area of enhanced 

sedimentary silicate from diatom export in the SO. For regionalization purposes, several 

surface sediment mappings by Zielinski & Gersonde (1997), Burckle & Cirilli (1987), 

Jousé et al. (1962), DeFelice & Wise (1981), Armand et al. (2005), Crosta et al. (2005) 

and Mohan et al. (2006) were unified into a composite map of high sedimentary 

inventories of diatom valves (Fig. 4-5). 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-5: Flux of organic carbon reaching the seafloor. The fluxes were derived from in situ measurement of 

oxygen profiles in surface sediments and correction of ex situ determined fluxes according to equation (2). Colors 

and circle sizes represent different Corg fluxes. Hatched areas indicate diatom-rich surface sediments according to 
Zielinski & Gersonde (1997), Jousé et al. (1962), DeFelice & Wise (1981), Burckle & Cirilli (1987), Armand et al. 

(2005), Crosta et al. (2005) and Mohan et al. (2006). 
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Figure 4-5 shows a striking coincidence of high fluxes within the areas of diatom-

enriched surface sediments. Highest abundances of diatom valves in surface sediments 

are known in the circumpolar “Diatom Ooze Belt” (Burckle and Cirilli, 1987), which is 

one of the most important areas of global biogenic silica accumulation (Tréguer & Van 

Bennecom, 1991; Nelson et al., 1995; Schlüter et al., 1998, Geibert et al., 2005).  

High deep-sea benthic Corg fluxes as well as shallow OPD values are closely related to 

the occurrence of diatom ooze (Figs. 4-7 & 4-8). Stations south and north of the diatom 

ooze belt show very low fluxes ranging between 0.6 and 2.4 mgC m-² d-1 and very deep 

OPD values conspicuously exceeding 100 cm. These results correspond well to data 

obtained from a sediment particle trap deployed in the central Weddell Sea (Fischer et 

al., 1988). 

Although low in total organic carbon content (0.3-1.4 %Corg, Schlüter et al., 1998, 

Fischer et al., 1998 and own data), the sediments of the diatom ooze belt obviously 

receive high Corg fluxes. The most recent iron fertilization experiment (Strass et al., 

subm.), which was sampled in respect to benthic Corg fluxes after the sink-out of the 

iron-induced diatom bloom provides the answer for this apparent paradox. Sachs et al. 

(subm.) found a fresh fluffy diatom layer below the fertilized patch. In situ 

measurements revealed a fresh sedimentation event with a benthic Corg flux of 9.6 mgC 

m-² d-1
 in 3942 m water depth. It was shown by in situ flux measurements that naturally 

occurring diatom blooms at the polar front lead to very high benthic fluxes of up to 

13.1 mgC m-² d-1 at 4293 m depth. We hypothesize that benthic Corg fluxes are directly 

linked with diatom production at the surface: Exceeding the threshold concentration, 

diatoms aggregate and act as a “carbon carrier” or a short-cut conveyor to the deep-

sea, i.e. are responsible for rapid carbon export to the deep. The pulsed sedimentation 

of this fresh and labile Corg leads to an episodic enhancement of fluxes whereas OPD 

values react more sluggish and are a result of perennial changes in flux patterns. Thus, 

Corg fluxes represent recent flux events whereas the OPD signature reflects the multi-

year influx to the benthic system. 

Several studies revealed the importance of diatoms for the transfer of primary produced 

organic carbon to the seafloor (Scharek et al., 1999; Fischer et al., 2002; Sachs et al., 

subm.). Other sediment particle trap studies in the SO revealed that the export to the 

deep is characterized by seasonal and episodically pulsed sedimentation events 

(Fischer et al., 1988; Wefer & Fischer, 1991; Fischer et al., 2003). Scharek et al. (1999) 

showed for the oligotrophic north Pacific gyre a pulsed, rapid export of diatoms down to 
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4000 m depth and suggested that diatoms are more important for the vertical flux of 

organic carbon than previously assumed. Different sinking velocities due to formation of 

aggregates or algae mats were observed (Turner, 2002 and references herein). The 

high transfer of biogenic silica was preserved as a diatom ooze belt in the surface 

sediment. Investigations of diatom species in surface sediments (e.g. Zielinski & 

Gersonde, 1997; Abelmann et al., 2006) showed that the opal belt could be subdivided 

in provinces. Chaetoceros spp, which is known for its high carbon efficiency, dominates 

close to the Antarctic Peninsula and the Scotia Sea whereas in more eastern directions 

F. kerguelensis is dominating, which exports mainly biogenic silica to the sediments 

(Abelmann et al., 2006). Since the diatom dominated ecosystem changes gradually, we 

can find areas where both habitats overlap (Fig.4-6). 
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Figure 4-6: Oxygen penetration depths (OPD) of surface sediments in the Southern Ocean. Blue colors and circle 

sizes indicate different OPD values. The orange hatched area shows enhanced Chaetoceros spp. spores (>20%) in 

surface sediments and corresponds with Region A (The Chaetoceros spp. province, see text) whereas the red 

hatched area shows elevated Fragilariopsis kerguelensis frustles (>40%) and corresponds with Region B. The 

hatched areas were established according to Zielinski & Gersonde (1997), Jousé et al. (1962), DeFelice & Wise 

(1981), Burckle & Cirilli (1987), Kellogg & Kellogg (1987), Crosta et al. (1997), Armand et al. (2005), Crosta et al. 

(2005) and Mohan et al. (2006). The blue marked area corresponds to Region C (The east Antarctic Shelf and 

continental slope). Black lines represent transects of selected oxygen microprofiles (A = Fig. 4-10, B = Fig. 4-11, C 

= Fig. 4-12). 
 

 

To refine the image, we investigated how our results match the distribution of key 

species of modern diatomeous surface sediments. For this purpose we compared the 

mapped diatom ooze belt with its diatom provinces as suggested by Zielinski & 

Gersonde (1997) considering the OPD values as a long term signal of benthic Corg flux. 

Additional information was taken from surface sediment maps by Jousé et al. (1962), 

DeFelice & Wise (1981), Burckle & Cirilli (1987), Kellogg & Kellogg (1987), Crosta et al. 

(1997), Armand et al. (2005), Crosta et al. (2005) and Mohan et al. (2006). Figure 4-5 

indicates that high fluxes are directly linked with siliceous, diatom-rich sediments. High 

fluxes indicate rapid and pulsed deep export which can be observed occasionally as 

fresh phytodetritus or fluff layer in various regions of the SO. The occurrence of deep 

organic carbon export (annually, seasonally and/or regionally) is associated with 

different diatom key species dominating primary production in the surface ocean and 

generates a typical OPD pattern. Consequently, we distinguish three characteristic SO 

regions in respect to their Corg input as a main result of this study (Fig. 4-6). 
 
 
Region A: The Chaetoceros spp. province  

The first region is characterized as a region of shallow sediment oxygen penetration and 

high abundances of resting spores (20 % around South Georgia and the South 

Sandwich Islands, up to 100 % at the Antarctic Peninsula). According to Zielinski & 

Gersonde (1997), Armand et al. (2005) and Abelmann et al. (2006), the surface 

sediments around the Antarctic Peninsula, the Scotia Sea and the region around South 

Georgia and the South Sandwich Islands belong to the Chaetoceros spp. province. The 

resting spores originate from small-celled diatoms belonging to the subgenus 

Hyalochaetae of the genus Chaetoceros (C. curvisetus, C. debilis, C. socialis, C. 



4 Benthic organic carbon flux and oxygen penetration reflect different plankton provinces in the Southern Ocean 

  64  

neglectus, C. simplex). Close to the Antarctic Peninsula OPD values are in the range of 

only 1.5 to 2.5 cm. In more eastern directions, in areas with a resting spore content as 

low as 20 % (Zielinski & Gersonde, 1997), OPD values increase to over 20 cm sediment 

depth (examples see Fig. 4-8). This increasing oxygen penetration depth corresponds 

well with intensive diatom blooms which can be annually observed by remote sensing 

(e. g. SeaWifs, Modis) in this region, indicating a constant long term signal over several 

years of enhanced deep carbon export. Abelmann et al. (2006) showed that the diatom 

genus Chaetoceros has been the key genus for large diatom blooms also during glacial 

periods, characterising regions of high glacial productivity.  

The dominant small and spiny spore forming Chaetoceros species responsible for the 

enhanced export indicate nutrient rich and iron enriched surface waters within the 

Region A (Smetacek, 1985; Abelmann et al., 2006). In sediments, the Chaetoceros 

group and Thalassiosira antarctica – scotia group are normally preserved as resting 

spores (Zielinski & Gersonde, 1997). Beside this key species other diatoms like the 

weakly silicified Corethron pennatum [formerly C. criophilum] are locally important in this 

province. Highest carbon fluxes of 144 mgC m-² d-1 derived from sediment particle traps 

were closely linked to the presence of high Chaetoceros spp. abundances of 60 % to 

80 % (Abelmann et al., 2006 and references herein). The highest benthic fluxes of the 

Southern Ocean (25.7 to 37.1 mgC m-² d-1) were consistently observed within the 

Chaetoceros spp. province (Fig.4-6). Concomitant with the collapse of a phytoplankton 

bloom, spiny vegetative cells, spores and other phytodetritus aggregate build fast 

sinking particles (Smetacek, 1999). Repeated fluff observations especially in the Scotia 

Sea confirm the appearance of fast sinking particles. This pathway of the biological 

carbon pump is one of the most important mechanisms to efficiently bring down organic 

carbon to the oceans’ interior (Smetacek, 1999; Smetacek et al., 2004). According to 

the sedimentary diatom distribution (Fig. 4-7), a smaller region close to Kerguelen 

Islands is suspected to be of the same type as Region A (Armand et al.; 2005, Blain et 

al., 2007). However, more field observations of this particular small region are required 

to verify this observation. 
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Figure 4-7: Selected oxygen profiles measured in Region A, the Chaetoceros spp. province. Profiles were measured 

along Transect A (Fig. 4-6) reaching from the Antarctic Peninsula (Station PS1549 (143)) to the South Sandwich 

Islands (Profile PS2280-1 (776)). Oxygen penetration depths increase from west to east. 
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Region B: The open ocean Fragilariopsis kerguelensis Province 

Sediments of this large area exhibit oxygen penetration depths between 8 cm and more 

than 100 cm. This region is characterised by a content of more than 40 % Fragilariopsis 

kerguelensis (= F. kerguelensis) frustules (Zielinski & Gersonde, 1997). The region is 

situated in a predominantly iron limited ecosystem within the ACC and is characterized 

by assemblages of large-celled and heavily silicified diatoms (Smetacek et al., 2004). 

The primary production regime seems to be closely linked to deep–sea sedimentation 

patterns, in particular at the meandering band of the Polar Front (Fig. 4-8). This direct 

linkage is supported by fluff observations in the Atlantic (Mackensen et al., 1993; 

Fischer et al., 1998; Sachs et al., subm.) and Indian sector (Riaux-Gobin et al., 1997; 

Pinturier-Geiss et al., 2001).  

In contrast to Region A, several sites exist in the F. kerguelensis Province, where the 

oxygen penetration depths suggest a much lower Corg input than the flux values 

determined from the surface gradients of the oxygen profiles, i.e. some of these profiles 

exhibit a discontinuous depth progression (compare Fig. 4-8 a, b, f with Fig. 4-7). Apart 

from potential sampling artefacts (see above), this may be indicative of episodic export 

events in the F. kerguelensis Province. It appears that F. kerguelensis is not the main 

source for episodic sedimentation pulses. For example, Riaux-Gobin et al. (1997) 

described fluffy layers containing chl-a and phaeopigments with F. kerguelensis, 

Chaetoceros spp. and Corethron pennatum. A similar species composition, including 

high pigment concentrations was found in a ~13 cm thick, liquid surface layer at site 

PS65-705 and in a 0.5 cm fluffy layer at the PF (Sachs et al., subm). Again, the same 

species composition was obviously responsible for the rapid export at the end of the 

European Iron Fertilization Experiment (EIFEX, Strass et al., subm). At these stations, 

however, large oceanic Chaetoceros species in combination with the large diatom 

Corethron pennatum, which are poorly preserved in sediments, were identified to be 

responsible for Corg export. 

Beside single local observations such as the sediment accumulation at site PS1782, 

(Rutgers van der Loeff, 1990b; Rutgers van der Loeff & Berger, 1991) or production 

hotspots (Sachs et al., subm), the patchiness of the oxygen penetration depth in the 

Fragilariopsis kerguelensis Province is considered a result of seasonally, annually and 

regionally changing events. This is also suggested by porewater oxygen profiles which 

were not in a steady state below fluffy layers (Sachs et al., subm) as well as the 

discrepancy between high benthic Corg fluxes and great OPD values. 
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Figure 4-8: Selected oxygen profiles of Region B (Fig. 4-6, Transect B). The transect starts in the north (a) with 

Station PS1751 and ends with Station 1772 in the south (f). Decreasing oxygen penetration depths close to and south 

of the Polar Front (PS1759 and PS1765, 1768, respectively) indicate locally enhanced benthic fluxes in the PF area. 
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Region C: The Antarctic shelf region and the continental slope (without Antarctic 

Peninsula) 

This area includes sediments off the coast up to 2000 m water depth. This province is 

characterized by a patchy and inhomogeneous sedimentation area (Schlüter, 1991) with 

varying physical and biological properties. The coastal ecosystem is shaped by local, 

regional, seasonal and inter-annual ice-conditions including coastal polynias as well as 

area-specific topography and hydrography. As shown in Fig. 4-9, this heterogeneity is 

reflected by the diversity of OPD values (from 1.2 cm up to several meters in some 

sites) and Corg fluxes between 0.5 up to 24.5 mgC m-² d-1.  

The export of phytodetritus into surface sediments is dominated in Region C by different 

ice algae such as diatoms of the genus Fragilariopsis (especially the ice algae F. cruta 

and F. cylindrus), Chaetoceros or Thalassiosira antarctica. Furthermore, its sea ice 

habitat is dominated by algae which export large amounts of carbon to the sediment-

water interface but are hardly found preserved in the sediment below. The two species 

that dominate this Corg flux are Phaeocystis (Dayton, 1990; DiTullio et al., 2000; 

Smetacek et al., 2004) and Corethron pennatum (eg. Estrada & Delgado, 1990; Schloss 

& Ferreyra, 2002). However, only few direct observations of fluff or fresh phytodetritus 

layers in surface sediments of the east Antarctic shelf and the upper slope are reported 

in literature (Riemann, 1992; Barthel, 1997). Riemann (1992) found fluffy material at 

several Antarctic shelf and slope stations which contained faecal pellets and intact chain 

forming centric diatoms as well as colonies of Phaeocystis. Barthel (1997) described an 

almost 25 cm thick layer of phytodetrital material which consisted solely of large and 

fragile frustles of Corethron pennatum. These observations suggest Corethron 

pennatum to be rapidly transported to the deep where it scarcely occurs normally due to 

its fast dissolution (DeFelice & Wise, 1981; Gersonde & Wefer, 1987; Stockwell et al., 

1991; Crawford, 1995; Brachfeld et al., 2003). In Antarctic late-Holocene sediments 

discrete Corethron pennatum layers imply high-productivity events with mass 

sedimentation (Taylor & McMinn, 2001), possibly below polynyas (Pudsey, 1988) or 

eddies (Jordan et al., 1991). In addition, fluff and aggregate re-distribution caused by 

bottom currents (Lampitt, 1985) may explain the patchy distribution of phytodetritus 

layers along the east Antarctic shelf and upper slope (Gutt et al., 1998). 

As a result of the variable ice habitats that are reflected by different benthic ecosystems 

in Region C, oxygen penetration depths as well as benthic fluxes are highly variable. It 

seems that there is no general flux and OPD pattern as can be found for Regions A and 
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B (the Chaetoceros spp. and F. kerguelensis Provinces, Figs. 4-6 & 4-7). However, so 

far there is a very limited number of benthic flux data available. To resolve the picture, 

additional high quality measurements are needed to be performed within this complex 

region. 

 

 
Figure 4-9: Selected oxygen profiles measured in Region C (Figure 4-6, Transect C). This west-east transect off 

the Antarctic coast starts at 32° W (Station PS1605-2) and ends at the Gunnerus Ridge at 33° E (Station PS1811-1). 

  

Although the differences found in the three provinces are not surprising since they 

reflect different eco systems, the open ocean regions A and B exhibit interesting 

parallels: Both are situated within the diatom ooze belt and receive benthic fluxes in the 
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same range (Fig. 4-10) partly independent from water depth (Fig 4-11). 

 

 
Figure 4-10: Corg fluxes of Chaetoceros spp. and F. kerguelensis Provinces. 
 

 

 
Figure 4-11: Corg fluxes of Chaetoceros spp. and F. kerguelensis Provinces. Below 1500 m, fluxes show no clear 

dependence on water depth. 

 

 

Benthic fluxes derived from the surface oxygen microgradients can be considered as a 

short term signal ranging from 0.6 to ~ 10 mgC m-² d-1 in both provinces. The three flux 

values from the shelf off the Antarctic Peninsula correspond to sediment particle trap 
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observations that revealed high fluxes as well (Abelmann et al., 2006 and references 

herein). 

With respect to the oxygen penetration depth, a different pattern is obtained: Whereas 

OPD values increase from around 2 cm around the Antarctic Peninsula to around 20 cm 

towards South Georgia and the South Sandwich Islands (Fig. 4-12), they increase up to 
60 cm in the periphery of the Chaetoceros spp. Province (Fig. 4-12, red circle). East of 

South Georgia and the South Sandwich Islands (Region B, F. kerguelensis Province), 

the picture changes into an inhomogeneous distribution (Fig. 4-12). While the Corg flux 

varies from 2.5 to 13.1 mgC m-² d-1 (Fig. 4-10), OPD values range between 8 cm and 

>100 cm (Fig. 4-12 and 4-13) with a main fraction between 20 and 40 cm.  

 

 
Figure 4-12: OPD values of Chaetoceros spp. and F. kerguelensis Provinces. The red circle shows peripheral OPD 

values from the Chaetoceros spp. Province (Argentine Basin, Drake Passage and Bellingshausen Sea). See text for 

explanation. 
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Figure 4-13: OPD values of Chaetoceros spp. and F. kerguelensis Provinces. See text for explanation. 

 

Considering OPD values as a multi-year signal in respect to benthic fluxes, these 

patterns differ significantly from the distributions of Corg fluxes (Figs. 4-10 & 4-11): 

Whereas Corg fluxes are similar in both areas, the shallow oxygen penetration depths 

observed in the Chaetoceros spp. Province suggest a more frequent deep export 

compared to the F. kerguelensis Province which displays much more scattered OPD 

values. This corresponds with ex situ observations of Rabouille et al. (1998), and in situ 

observations of Sachs et al. (subm.). Single diatom blooms export fresh and labile 

organic carbon from the surface to the deep–sea, e.g. at the meandering Polar Front. 

Immediate bacterial degradation steepens the surface gradients of oxygen profiles of 

the F. kerguelensis Province temporarily before the steady state conditions are 

established within the subsequent months. 

 

 

4.5 Conclusions 

Diatoms play a key role in the ocean carbon cycle (Smetacek, 1999). Complementing 

the rare sediment particle trap data, our results provide information about carbon fluxes 

reaching the deep-sea sediments of individual areas of the Southern Ocean. We 

suggest that diatoms are the major contributors to rapid deep export. The data set 

presented here allows for mapping the thickness of the oxygenated layer in surface 
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sediments as multi-year flux information for different diatom provinces. This proves the 

concept of Abelmann et al. (2006), which suggests that productive zones are reflected 

in the sediments. Transferred to glacial/interglacial times, it permits to regionalize sinks 

of CO2 of past climate cycles. Furthermore, the determination of paleo Corg fluxes from 

this relationship would provide important input for the comprehension of export and 

burial processes as well as CO2 modelling. According to Smetacek (1999), there are still 

fundamental gaps in our knowledge which will have to be bridged in order to completely 

understand global elementary cycles, their time scales as well as their implications in 

respect to global change. Connecting modern oceanic phytoplankton provinces with 

deep-sea carbon fluxes, the present paper aims to contribute to the understanding of 

controls and feedbacks of biogeochemical cycles in the Southern Ocean. 

We conclude from these investigations that diatoms are more important for the vertical 

flux of organic carbon than previously assumed. It is obvious that diatom-dominated 

ecosystems such as the Southern Ocean play a major potential role in respect to CO2 

drawdown. This is clearly supported by our flux correction. 

Furthermore, we propose to continue enlarging the database of high quality in situ flux 

measurements (e. g. from the Scotia Sea, Antarctic shelf and slope). In particular, by 

measuring below specific patches of diatom blooms, one could more exactly determine 

export capacities, burial efficiencies and remineralization rates of individual diatom 

species. Doing so, the regional distribution of benthic carbon fluxes can be used as the 

basis for a more detailed modelling of CO2 draw down in the Southern Ocean. 
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5.1 Abstract 

Datasets of benthic oxygen fluxes, satellite-derived primary production estimates and 

bathymetry have been used to derive transfer functions for the export of carbon from the 

surface mixed layer to the sea floor, in the Southern and Atlantic Oceans.  

Biogeochemical provinces defined a priori using surface chlorophyll or sediment 

characteristics could not be distinguished by their transfer efficiencies.  However, a 

posteriori definition of provinces based on the transfer efficiency showed a band of high 

export efficiency along the Southern Ocean opal belt and in the northern North Atlantic.  

Possible explanations for this are discussed.  Basin-wide carbon export values were 

calculated for the Southern, Atlantic and global oceans using the transfer functions 

derived for the a posteriori-defined provinces.  Areally integrated carbon fluxes were 

within the range published from sediment trap studies, and lower than published values 

calculated using inverse modelling of the f-ratio.  For the Southern Ocean, areally 

integrated carbon export to the sea floor in water deeper than 800 m was 0.055 PgCyr-1 

(0.6 % of net primary production).  Incorporating higher export ratios within the opal belt 

gave a value of 0.064 PgCyr-1. 
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5.2 Introduction 

Carbon dioxide (CO2) fixation by phytoplankton via photosynthesis decreases the partial 

pressure of CO2 at the ocean surface.  This process, combined with the subsequent 

cycle of grazing and export to the deep, is often referred to as the “biological pump” 

(Volk and Hoffert, 1985; Sarmiento and Le Quere, 1996), and represents one of the 

major CO2 sinks (Cameron et al., 2005).  The Southern Ocean (SO) is recognized as 

one of the world’s most important regions of carbon sequestration via the biological 

pump (Kumar et al., 1995; Sarmiento et al., 2004) as well as for the solubility pump, i.e. 

the physico-chemical pump of CO2 (Raven and Falkowski, 1999; Le Quéré et al., 2007). 

The combination of these two processes in the Southern Ocean is attributed with the 

uptake of ~2 Pg of anthropogenic CO2 per year (Siegenthaler & Sarmiento, 1993; 

Caldeira & Duffy, 2000) which is ~32 % of the annual global anthropogenic emissions 

during the 1990s (Houghton, 2003).  The long-term efficacy of the biological pump 

depends on the depth of carbon export: Delivery of particulate organic carbon to the 

seafloor represents the longest isolation from the atmosphere (e.g. Boyd & Trull, 2007).  

Organic carbon deposited at the sea floor is remineralized over days to years 

depending on composition, microbial and macrobenthic activity and other environmental 

factors.  Refractory components are buried in the sediments for geological time scales 

(Cai & Reimers, 1995).  The effect of photosynthetic carbon fixation on CO2 partial 

pressure in the water is negative except when carbon is used to form particulate organic 

carbon platelets or shells (e.g. Raven & Falkowski, 1999).  This means that in order to 

quantify the efficiency of the biological pump, parameters such as primary production, 

particulate inorganic and organic matter export and benthic carbon fluxes have to be 

determined. 
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The upper limit for export to the deep is determined by surface primary production rates, 

whereas the actual export into the deep sea is a complex, as yet incompletely 

understood, function of phytoplankton cell shape, composition, aggregation, grazing and 

ballasting (Asper et al., 1992; Dunne et al., 2005; Boyd & Trull, 2007; Passow & De La 

Rocha, 2006; Kemp et al., 2006; Jin et al., 2006; Green & Sambrotto, 2006).  Figure 5-1 

illustrates some of the mechanisms particularly relevant for the SO.  Primary production 

is largely determined by physical factors (e.g. Longhurst, 1995;  Holm-Hansen et al., 

2005) which may be typical for a region but vary over time scales of days to millennia. 
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Figure 5-1: Schematic overview of the pathways of organic matter production, export, sedimentation, and benthic 

remineralization.  This paper investigates possible empirical relationships between sea surface production and 

benthic fluxes applying a statistical approach. 
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There exist several approaches to classify production provinces (Platt et al., 2005; 

Longhurst, 1995).  However, routinely discerning provincial boundaries which change 

over time is difficult.  Figure 5-2 shows median summer chl-a and square mean 

variability (rms) SeaWIFS composites for the SO overlaid with biogeochemical 

provinces after Longhurst (1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: a) Median chl-a distribution and b) rms variability as an indicator for temporal chl-a 
variability of the study area over a timescale of 10 years.  Provinces are after Longhurst (1995). 
ANTA: Antarctic, APLR: Austral Polar, BENG: Benguela Current Coastal, BRAZ: Brazil Current 
Coastal, CHIL: Chile-Peru Current Coastal, EAFR: East Africa Coastal, FKLD: Southwest Atlantic 
Continental Shelf, ISSG: Indian Ocean South Subtropical Gyre, SANT: Subantarctic, SATL: South 
Atlantic Tropical Gyre, SPSG: South Pacific Subtropical Gyre, SSTC: South Subtropical 
Convergence. 

 

 



5 Spatial variability of the transfer efficiency of primary produced carbon to the seafloor of the Atlantic Ocean 

  86  

While both concentration and variability are well-contained by the Longhurst province 

along the Antarctic coast, off-shore, the variability patterns do not lie neatly within the 

boundaries.  The more sophisticated approach of Sokolov & Rintoul (2007) utilises 

satellite altimetry to track front locations and may solve the problem of determining 

provincial boundaries in the Southern Ocean.  Spatial patterns in flora and fauna have 

also been observed at the more mysterious sea floor (Beamann & Harris, 2005; Brandt 

et al., 2007a+b).  Among others, Suess (1980) and Martin et al. (1987) proposed 

transfer functions for the coupling between the two compartments.  Some studies 

suggest the biogeochemical provinces at the surface to have influence on the export 

regime (Lampitt & Antia, 1997).  On the other hand, evidence for a decoupling between 

ocean surface and sediment was reported e.g. by Buesseler, 1998, Seiter et al. (2004, 

2005) and Christensen (2000).  Owing to the relative paucity of information about 

community distributions in the twilight zone between these two domains, a complete 

surface to benthos mapping of communities or particle export processes is not yet 

possible, so that all determinations of benthic carbon flux distributions involve implicit 

assumptions about midwater processes.  There is evidence that the ecosystems 

occupying waters below the euphotic zone are highly adaptable (Richardson et al., 

2006; Zaric et al., 2005), which poses the question of the degree to which any regional 

variability in export production is smoothed out as exported material proceeds to the 

sea-floor.  The problem of regional variability in export efficiency can be considered in 

four stages:  A)  how much labile carbon sinks out of the euphotic zone?   B)  how well 

is it protected?  C)  how long is it exposed to remineralising forces?  D)  how efficient is 

the remineralising community? 

In the case of point A, the most direct method of quantifying organic carbon export 

production is to use particle traps, which provide estimates of carbon flux at 

predetermined temporal resolution at a fixed location or drift-depth.  These 
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investigations, mostly carried out within the top 1000 m of the water column, show 

pulsed and highly variable particle export.  Longer term variability of fluxes is difficult to 

determine due to logistical constraints on the duration of most studies.  Well-

documented technical limitations with respect to efficiency of different trap types (Gust 

et al. 1994, Scholten et al., 2001) can, in part, be alleviated using 234Th correction (e.g. 

Waples et al., 2006).  This method remains invaluable for examining particle 

sedimentation rates over time-scales of weeks to months.  However, the number of 

particle traps in the ocean is relatively low, particularly in the polar regions (Honjo, 2004 

and references therein).  Therefore it is difficult to derive basin-wide mean export 

production rates from particle trap data. 

Another method of determining carbon fluxes to the deep ocean involves use of the f-

ratio – the ratio of new to regenerated production – and global-scale modelling 

(Schlitzer, 2002; Schlitzer et al., 2003).  However, the validity of the f-ratio for 

determining export flux has  been called into question, since nitrification is now known to 

take place in the euphotic zone, rather than exclusively below the mixed layer (Dore & 

Karl, 1996;  Raimbault et al., 1999).   

A third method is the calculation of benthic carbon fluxes using oxygen measurements 

at the sediment / water interface.  In contrast to sediment traps, this provides values of 

carbon export through the twilight zone into the benthos.  Oxygen uptake rates, i.e. 

benthic oxygen consumption and pore water gradients, are closely linked to the 

degradation of labile organic carbon at the sediment surface.  Benthic oxygen uptake 

rates can be derived from oxygen microprofiles and sediment incubations (e. g. 

Revsbech & Jørgensen, 1986; Reimers et al., 1986; Glud et al., 1994; Berg et al., 

1998).  Both methods can be applied in situ (at the seafloor) and ex situ (by retrieving 

samples and measuring aboard ship).  Except in the study of Hulth et al. (1997) there 

exist no sediment incubation measurements for the Southern Ocean.  In contrast, many 
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flux determinations derived from oxygen microprofiles have been reported in the 

literature for other regions (e. g. Archer et al., 1989; Sauter et al., 2001; Wenzhöfer & 

Glud, 2002; Sachs et al. submitted 2007 and references therein).  Diffusive oxygen 

fluxes are converted into organic carbon rain rates on the basis of the Redfield Ratio 

modified by Anderson & Sarmiento, (1994).  Oxygen profiles also allow determination of 

the depth of sedimentary oxygen penetration depth (oxygen penetration depth, OPD), 

which is ecologically relevant as O2 supply can limit benthic faunal growth.  Whereas 

the organic carbon flux determined from oxygen microgradients reflects the recent 

history of sedimentation and Corg remineralization by microbial activity, the oxygen 

penetration depth reflects a long-term signal of benthic fluxes and can therefore be used 

as a measure of long term carbon export to the seafloor.  Measurements of total and 

diffusive oxygen uptake at a range of sites across the globe have shown that benthic 

Corg flux estimates based on diffusive oxygen uptake rates represent a lower limit on 

carbon export (Wenzhöfer & Glud, 2002; Seiter et al., 2005; Christensen, 2000). 

Sachs et al. (submitted 2006) observed an apparent correlation between in situ 

determined benthic organic carbon flux measurements and the remotely-sensed surface 

chl-a concentration at a few stations along the Antarctic Polar Front (APF).  The link 

between primary production (PP) and particle flux reported for mid-water particle traps 

(e. g. Lampitt & Antia, 1997; Fischer et al., 2000; Francois et al., 2002; Lutz et al., 2002) 

appeared to be  applicable to benthic flux measurements performed in the deep-sea. 

In this paper, the relationship between surface primary production and sea-floor carbon 

remineralisation in the Southern Ocean is examined for the first time with a substantial 

dataset.  Coupling between chl-a concentrations in surface waters and OPD, and 

between measured organic carbon remineralisation at the sea floor (hereafter assumed 

to represent the minimum exported carbon, referred to as benthic Corg flux), was 

examined for provinces defined using surface biomass and sediment characteristics.  
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The effects of water depth and latitude were also examined.  The objectives of this 

study were: 

1) to investigate whether statistically significant relationships could be 

identified between sea surface productivity and benthic Corg fluxes for the 

SO, 

2) to test the hypothesis of whether different biogeochemical provinces, 

characterized by different key phytoplankton species, can be distinguished 

from one another by their sea surface : benthos regression characteristics; 

and 

3) to use the sea surface:benthos regression relationships to produce maps 

of benthic Corgflux and OPD. 

This analysis differs from previous studies in 3 fundamental respects:  a) this study 

focuses on the SO, which has previously been omitted from large-scale Corg flux 

estimates (e.g. Jahnke, 1996; Antia et al., 2001) due to the very limited data coverage;  

b) benthic oxygen flux measurements and sediment oxygen penetration depths are 

used instead of mid-water sediment traps.  This avoids the uncertainties of sediment 

traps and chamber measurements and allows a lower limit for deep Corg export to be 

calculated;  c) long-term, median surface chlorophyll and primary production are used.  

This eliminates the possibility of analysing inter-annual trends but allows the degree to 

which surface-benthic biogeochemical systems are stable over decadal time scales to 

be addressed.  Time-scales involved are comparable to those used by Schlitzer et al. 

(2003), but the methodology is quite different. 
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5.3 Methods 

5.3.1 Database and data compilation 

5.3.1.1 Point Data at individual sites in the Southern Ocean: Corg fluxes and OPD 

Data derived from the measurement of oxygen profiles in surface sediments were 

compiled from different sources and assessed for suitability for further analysis (Sachs 

et al., submitted 2007).  In situ and ex situ oxygen microprofiles were measured during 

Polarstern Expeditions ANT V/4, ANT VI/2-3, ANT VIII/3, 6, ANT X/5-6, ANT XI/3, ANT 

XXI/4.  This covers the following SO regions: Amundsen and Bellingshausen Seas 

(Pacific Sector), Scotia and Weddell Seas, east Antarctic shelf and continental slope 

and the Atlantic sector of the Antarctic Circumpolar Current.  In total 134 microprofiles 

were taken from the literature, of which 96 were suitable for derivation of Corg fluxes 

(Sachs et al. submitted 2007).  Additional published in situ flux determinations from 

oxygen microprofiles were used to compare the results obtained for the SO with other 

domains of the Atlantic Ocean (Archer et al., 1989; Jahnke et al., 1989; Glud et al., 

1994; Hales et al., 1994; Hales & Emerson, 1997; Lohse et al., 1998; Schlüter et al., 

2000; Sauter et al., 2001; Wenzhöfer et al., 2001; Epping et al., 2002; Wenzhöfer et al., 

2002). 

 

Determination of organic carbon fluxes 

Benthic oxygen fluxes were partly determined in situ on the basis of oxygen 

microprofiles obtained by an autonomous deep-sea microprofiler deployed in 

combination with a free fall lander system.  Ex situ profiles were measured in 

undisturbed sediment samples recovered by a multiple corer (MUC, Barnett et al., 1984) 

in the ship’s cool laboratory at in situ temperature (Sachs et al., submitted 2007).  In situ 

and ex situ oxygen profiles were measured using Clark type glass microelectrodes.  
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Deep-sea and laboratory electrodes were calibrated prior to each measurement and 

against the bottom water oxygen concentration determined by Winckler titration 

(Grassoff et al., 1983).  When microprofiles reached the depth of oxygen depletion, this 

zero reading was used for calibration.  Diffusive oxygen fluxes were determined from 

the uppermost 3-5 mm of in situ and ex situ pore water oxygen profiles using the 

software PROFILE (Berg et al., 1998) and were converted into organic carbon rain rates 

on the basis of the modified Redfield Ratio (Anderson & Sarmiento, 1994), under the 

assumption that in oligotrophic deep-sea sediments the major part of organic carbon is 

remineralized by oxic respiration.  Ex situ determined deep-sea fluxes of the SO were 

depth corrected using the function  Corg fluxcorr  =  Corg fluxex situ  •  (0.00039  •  z  +  0.91)  

(Sachs et al., submitted 2007). 

 

Determination of oxygen penetration depth 

The in situ oxygen microprofiles were measured with a vertical resolution of 0.1-0.5 mm.  

For ex situ measurements, laboratory microsensors were mounted into a 

micromanipulator and profiles were measured with a vertical resolution of 0.1-2 mm.  

The maximum profile depth was 32 cm.  At cores where the anoxic zone was not 

reached during the measurement, OPD was estimated by fitting a double exponential 

function (Sachs et al., submitted 2007; Andersson et al., 2004) to the oxygen profile, 

using the Matlab ‘cftool’ program. 

 

5.3.1.2 Chlorophyll and primary production data (SeaWifs/MODIS) 

Sea surface chl-a concentration data were obtained from the NASA internet portal 

(http://oceancolor.gsfc.nasa.org).  Chl-a concentrations at the sediment stations were 

extracted from weekly, level 2 SeaWiFS data, with a spatial resolution of 9 km, for the 
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period November 1997 to December 2006.  SeaDAS v.5 was used for data extraction, 

while Matlab v.7.3 was used for subsequent analyses. 

Two suites of net primary production data, based on the Vertically Generalized 

Production Model (VGPM) and on the VGPM model with a correction for photo-

acclimation (Eppley) were also obtained from NASA (http://oceancolor.gsfc.nasa.gov).  

These primary production estimates are derived from SeaWiFS / MODIS chl-a and 

photosynthetically available irradiance data along with MODIS / AVHRR sea surface 

temperature data.  The native spatial resolution for primary production was 9 km, and 

the suitability of this was examined using a general circulation model (section 2.1.3)  

The native temporal resolution is one month and the temporal range September 1997 to 

October 2006.  These data were preferred to the Coastal Zone Colour Scanner (CZCS)-

derived dataset of Antoine et al. (1996) which has been used by many other studies 

because the emphasis here is on the long-term median values of both chlorophyll and 

primary production.  As the CZCS was more a proof-of-concept mission for coastal 

remote sensing, it was not designed or positioned for daily/two-daily repeat coverage 

which both SeaWiFS and MODIS acquire.  For median values, therefore, the more 

modern sensors are more suitable.  VGPM PP data were selected for further analysis, 

while the Eppley PP data were retained, being similar in approach to the Antoine et al., 

(1996) data set, for comparison with the VGPM approach.  Different sensor 

characteristics of MODIS and SeaWiFS necessitate the use of different corrections and 

chlorophyll algorithms:  the resulting chlorophyll values are significantly different only in 

highly turbid waters (oceancolor.gsfc.nasa.gov/VALIDATION).  Comparison of the 

weekly and monthly SeaWiFS and MODIS chlorophyll products at all stations used in 

this study showed no systematic bias in the range of values at any location (data not 

shown).  Muller-Karger et al. (2005) found that CZCS- and SeaWiFS-derived global net 

primary production estimates agreed to within ± 20%. 
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Median, mean and maximum chl-a and primary production values were calculated over 

the full range of remote-sensing data for each location where benthic measurements 

were performed, for comparison with sediment variables.  However, results are 

significantly biased towards summer values for high latitudes: Since the focus of this 

paper is the relationship between long-term carbon sequestration and primary 

production in varying ecological regimes and at varying latitudes, it was decided not to 

fix potentially arbitrary boundaries for ‘summer’.  This approach has the additional 

advantage of maximizing coverage in cloudy / icy regions.  A similar temporal bias is 

also present in other datasets used to estimate Corg flux, with the exception of long-term 

sediment trap deployments. 

 

 

5.3.2 Consideration of lateral advection 

Our comparison of surface production and benthic carbon input parameters (OPD, Corg 

flux) is based on the assumption of a predominately vertical export.  This approach is 

most accurate if the grid size of the satellite chl-a observation is chosen to encompass 

the likely distance of lateral advection.  Mean monthly modelled velocities together with 

a range of realistic sinking velocities (10, 200, 1000 m d-1) taken from literature (e. g. 

Suzuki et al., 2001; Turner, 2002) were used to reconstruct, from the station location at 

the sea-floor upwards, the lateral distance which could have been travelled by particles 

deposited at the site during each month of the year. 

Horizontal advection distances were calculated for each station using velocities from the 

BRIOS-1 ice-ocean model (Beckmann et al., 1999; Schodlok et al., 2002) with 24 model 

depths and a horizontal resolution of 1/6 x 1/3 deg within -50° to -80° S, and using 

World Hydrographic Atlas data to the north.  Despite the relatively high vertical 

resolution of the model at the sea-floor compared to the inner ocean, the BRIOS-1 
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model was not designed to simulate near-bottom turbidity currents, so that the 

possibility of large near-bottom transport distances was not considered.  To the best of 

our knowledge, no large-scale ice-ocean models currently running have the capability to 

predict bottom currents, and efforts to overcome this limitation are hindered by a lack of 

data for validating such predictions and by poor bathymetric charts – necessary for 

accurately predicting near-bottom flow – over large areas of the Southern Ocean. 

 

 

5.3.3 Connecting surface chl-a with benthic Corg fluxes and OPD values 

To test whether the relationships between surface and benthos vary regionally, two 

approaches were taken to a priori classification of ecological provinces: The first method 

uses only surface chlorophyll data from the last ten years’ remote sensing record.  The 

second method uses only benthic sediment information from the literature.  Results of 

these grouping procedures were also compared with the provinces determined by 

Longhurst (1995) and by Seiter et al. (2004). 

 

5.3.3.1 A priori groups based on surface chlorophyll data (CD groups) 

The chl-a distribution groups were determined using root mean square variability (rms) 

on the summer chl-a concentration and the log-transformed chl-a concentration at all 

stations.  Gaussian curves were fit to histograms of these two variables.  Best fits were 

obtained by assuming two Gaussian distributions for rms and three for chl-a.  ‘Low’, 

‘medium’ and ‘high’ value thresholds were chosen as the intersection points between 

Gaussian distributions.  The 134 stations were then assigned to one of the six groups 

according to their chl-a and rms–chl-a values.  The group defined as ‘low chl-a, high 

rms’ was found to be empty.  The group defined as ‘high chl-a, low rms’ contained only 

two stations which, since this is insufficient for statistical testing, were re-assigned to the 
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group ‘med chl-a, low rms’.  The remaining four chlorophyll data groups are henceforth 

referred to as ‘CD groups’: 

CD1:  low chl-a / low rms,  

CD 2:  median chl-a / low rms, 

CD X:  high chl-a / low rms, (2 stations reassigned to CD2) 

CD Y:  low chl-a / high rms, (empty) 

CD 3:  medium chl-a / high rms, 

CD 4:  high chl-a / high rms. 

 

 

5.3.3.2 A priori groups based on surface sediment data (SED groups) 

Groupings based on sediment data from the literature were assigned to each station 

using sediment surface distributions of Fragilariopsis kerguelensis, Chaetoceros spp. 

and depth (Jousé et al., 1962; DeFelice & Wise, 1981; Burckle & Cirilli, 1987; Zielinski & 

Gersonde, 1997; Armand et al., 2005; Crosta et al., 1997; Mohan et al., 2006).  Owing 

to a lack of information in the Amundsen and Bellingshausen Seas, the stations in this 

area were placed in a separate group.  Similarly, stations in the Atlantic, north of 30°S, 

were also placed into a separate group.  The resulting six sediment record groups are 

henceforth referred to as ‘SED groups’. 

One-way analysis of variance (ANOVA) was used to determine whether each of the 

grouping systems produced distinctive subsets of stations based on oxygen penetration 

depth (OPD), organic carbon flux, chl-a, PP and rms-chl-a.  

 

 

5.3.3.3 Coupling between the sea surface and benthos 

Direct coupling of sea surface to benthic data was tested using linear regression 

analyses between PP and Corg flux and between chl-a and OPD, i.e.: 
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Corg flux = a1   •   PP        Eq. 1 

ln OPD = a2  •  ln median chl a  + a3     Eq. 2 

 

Subsequently, several equations relating Corg flux, PP and depth from the literature 

were considered: 

 

Antia et al. (2001):   ln Corg flux =  a1 • ln PP   +   a2 • ln z   +   a3  Eq. 3 

Schlüter et al. (2000): ln (Corg flux )  =  a1 • ln (PP) + a2 • ln (z)   Eq. 4 

Suess (1980):  Corg flux  = PP / (a1 • z + a2)     Eq. 5 

 

Multiple-ANOVA tests were performed to establish whether the CD or SED groups were 

distinctive in the 2-dimensional (chl-a and OPD / PP and Corg flux) and 3-dimensional 

(including depth) parameter space. 

 

The most statistically significant of the resulting fits was applied to the ten-year 

Southern Ocean (40°S to 80°S, circumpolar) and Atlantic (70°W to 20°E, 80°S to 80°N) 

median PP data to produce a map of benthic Corg flux.  Corg flux was then integrated 

over basin and depth intervals.  Area per pixel of the primary production product was 

calculated by taking each value as a pixel-midpoint, locating a square midway to the 

neighbouring pixels and calculating area as: 

A = (π/180) • R2 • | sin λ1 – sin λ2 | • | φ1 - φ2 |   Equation 9 

Where the Earth’s radius R was assumed to be 6371 km, λ1 and λ2 are the northern and 

southern latitude boundaries and φ1 and φ2 the west and east longitude boundaries.  
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5.4 Results and discussion 

5.4.1 Lateral advection 

As reported in Table 5-1, mean net lateral advection calculated using monthly current 

fields produced by the BRIOS circulation model was found to be less than 5 km for even 

the slowest sinking particles.  One station at 74° 15’ S, 26° 17’ W (PS1596-2) was an 

extreme outlier with extreme advection distances up to ~32 km.  Based on these results 

and the resolution of available NASA level 3 data, the native satellite data resoltion of                

9 km was retained.  The linkage between surface chl-a values and benthic Corg fluxes 

should not be severely affected by lateral advection except where bottom currents, 

which could not be modelled, are strong.  In a similar study, Muller-Karger et al., 2005 

also retained 9 km resolution with the reasoning that only a small proportion of POC 

undergoes lateral transport.  However, it should be noted that anecdotal evidence (U. 

Bathmann, AWI, pers. comm.) as well as point studies (Geibert et al., 2005) indicate 

that the influence of bottom currents may be significant in many areas, including the 

Southern Ocean opal belt.  In this case, correlations between surface production and 

benthic oxygen uptake rates will be determined not only by the transfer function with 

depth but also by the spatial coherence of the surface biomass.  In order for advection 

along the sea floor to produce a systematic bias in statistical analyses, the deposition 

area for advective currents would have to be large (traversing gradients of at least an 

order of magnitude in surface chlorophyll values) and spatially coherent, producing an 

over-estimate of the export efficiency for the region in question.  Such an effect can only 

be ruled out by intensive in situ sampling or by focussed modelling efforts. 
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Tab. 5-1: Estimated diatom sinking rates (frustles, aggregates, pellets) and the corresponding mean lateral advection 

distances computed using results of the BRIOS-1 ice-ocean model (Beckmann et al., 1999; Schodlok et al., 2002). 

5 

 

sinking rate 
[m d-1] 

mean lateral advection        
[km] 

10 4.68 ± 1.11 
200 0.23 ± 0.06 
1000 0.05 ± 0.01 

 

 

5.4.2 Use of long-term median chlorophyll concentration and primary production 

estimates 

Previous studies investigating the coupling between sediment trap and surface primary 

production data have taken the latter from contemporaneous satellite overpasses or 

used the compilation of Antoine et al. (1996) based on the CZCS dataset for the period 

1978 - 1986.  Investigation of the relation between surface production and benthic Corg 

fluxes requires data obtained for comparable time scales at both the ocean surface and 

the sea floor.  For the benthic dataset examined here, which was collected between 

1986 and 2004, long-term median values should be much more robust since gaps in the 

data are smoothed, and the decadal time-scale over which OPD develops is 

approximated. 

The sediments of the deep SO are commonly deeply oxygenated.  On this account the 

measured oxygen microprofiles do not reach suboxic or anoxic depths.  The OPD 

values used here were mostly extrapolated beyond the actual measurement depth 

(Andersson et al., 2004; Sachs et al., submitted 2007).  Note that the resulting OPD 

values, which sometimes exceed several metres in the SO, represent a ‘virtual OPD’, 

which could be expected if the recent sedimentation conditions had prevailed over long 

geological timescales.  In reality, processes such as diagenesis, resedimentation etc. 

almost certainly eliminate oxygen from deeper sediments.  These OPD values should 

therefore be considered as mathematical constructs which capture the OPD profile 

curvature, not as measured OPD depths.  The deepest oxygen measurements were 

made at 39 cm (Sachs et al., submitted 2007). 

To answer the question of whether short- or long-term surface chlorophyll and 

production data are more suitable for comparison with the benthic flux data analysed 
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here, the mechanisms of POC transport to the seafloor have to be taken into account: If 

benthic measurements were carried out in the presence of freshly deposited organic 

matter which is increasingly believed to contribute significantly to total benthic POC 

fluxes, particularly at high latitudes (Nodder et al., 2005; Kemp et al. 2006), the resulting 

Corg flux may not be representative for the site as the labile organic carbon of this 

phytodetritus may be remineralised over time scales of days to weeks (e.g. Carney 

1989; Turley & Lochte 1990; Conte et al. 1995).  A measurement made a month after a 

sedimentation event would therefore yield a different profile for the upper centimetres of 

sediment, and hence a much lower value of benthic Corgflux (see Figure 5-1). 

In contrast, the oxygen penetration depth represents the long-term benthic influx of 

organic carbon and can therefore be used to gauge the representativeness of an 

instantaneous Corg flux estimate.  Assuming that remineralization and burial covary with 

changing carbon rain rates, and that the export systems responsible for the 

development of the sediment oxygen profile remain stable over many years, pairs of 

measurements of OPD and Corgflux should fall along a line which describes the 

depletion of O2 in the deeper sediments with increasing, regular rain rate and 

associated O2 demand.  Any measurement points affected by recent carbon deposition 

should fall above this line, since more carbon is present that would be expected for the 

long-term steady state.  Figure 5-3 shows the strong coupling found between Corg flux 

and OPD for the dataset employed here.  Regression curves are described by: 

 

For all data:   Corg flux = 63.8 · OPD-0.6476, r = -0.4557, n = 194  Equation 6a. 

For the SO:   Corg flux = 8.23 · OPD-0.4694, r = -0.667,   n = 126  Equation 6b. 

 

For the Atlantic N of 30°S: 

       Corg flux = 14.9 · OPD-0.7723, r = -0.8312, n = 32  Equation 6c. 
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Figure 5-3: Correlation between Corg flux and OPD at 126 sites for which 
both parameters were available in this study. AP 1 and AP 3 represents 
data subgroups introduced in Section 3.4. The regression curve for all data 
is:  ln(Corg flux) = [-0.4882 ± 0.0460] • ln(OPD) + [2.1076 ± 0.1385], 
n=126, r = -0.667. For stations north of 30° S: ln(Corg flux) = [-0.6775 ± 
0.0649] • ln(OPD) + [2.6218 ± 0.0988], n=32, r = -0.8312.  Dashed lines 
represent the 95% confidence interval for the fit to all data. 

 

 

Based on this, it was assumed in the following that the Corg flux measurements were 

generally not dominated by recent rapid export events.  The question of whether the 

difference in fit parameters between the Southern Ocean and the more northerly 

stations results from under-sampling in the north (n = 32 c.f. 126) will remain 

unanswered until more O2 profiles have been amassed:  ANOVA testing found no 

significant difference between the two groups of data used here (α = 0.05). 

The use of long-term median net primary production (PP) data is of particular advantage 

in the SO, which is the focus of this paper, since frequent cloud and ice-cover lead to 

poor temporal and spatial coverage over much of the SO.  The establishment of 

significant relationships between long-term surface productivity patterns and benthic 

oxygen profiles allows the use of older, pre-satellite era benthic measurements.  The 

strength of such relationships represents the stability over time of the surface mixed 

layer productivity (Gregg et al., 2005) and of the pelagic and benthic remineralising 

communities (assuming measurement errors to be constant over time). 
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A further consideration is the choice of the primary production model.  Since the 

publication of Antoine et al. (1996), ten years of daily SeaWiFS and MODIS satellite 

chlorophyll estimates have been gathered, as well as ongoing daily sea surface 

temperature measurements.  The NASA Ocean Color group 

(http://oceancolor.gsfc.nasa.gov) has made available global PP time series which use 

these datasets together with a range of primary production models, including one similar 

to the Eppley primary production algorithm used by Antoine et al. (1996), Lampitt & 

Antia (1997); Schlüter et al. (2000), Lutz et al. (2002) and the widely used Vertically 

Generalised Production Model (VGPM, Behrenfeld & Falkowski, 1997).  In contrast to 

the VGPM model the Eppley algorithm uses a temperature-dependent photosynthetic 

efficiency which, coincidentally, approximates photo-acclimation 

(http://web.science.oregonstate.edu/ocean.productivity/index.php).  Figure 5-4 shows 

the relationship between Eppley and VGPM median primary production values for the 

stations included in this study. 

 

 

Figure 5-4: Comparison of Eppley and VGPM primary production estimates at the stations for which benthic flux 

data were used in this study: a) blue-outlined diamonds denote agreement to within ±20 % between Eppley and 

VGPM; red circles indicate stations where VGPM estimate exceeds the Eppley estimate by >20%; green squares 

denote stations at which Eppley estimates exceeds VGPM estimates by >20%. b) Location of stations, using same 

color as a). 
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No PP data were available from either model for 30 stations in the marginal ice zone of 

the Southern Ocean and at ~40°N, 10°W.  No chlorophyll concentration data were 

available at all for 5 stations in the MIZ owing to persistent cloud and ice cover. 

The comparison of the models revealed that the VGPM model estimates exceeded 

those of the Eppley model by ~60% in the mid-latitudes, and fell short of the Eppley 

estimates by a little over 20% in the tropics (-20° to +20°N).  However, in the Southern 

Ocean and at a few scattered sites in the mid- and north polar latitudes, the two models 

were in agreement to within 20% (Fig. 5-4a, b).  The VGPM PP values are related to the 

Eppley estimates as follows: 

 

For the tropics (green stations in Fig. 5-4): 

VGPM = 0.8027 EPPLEY – 101.4,  r = 0.9978,  n = 23  Equation 7. 

 

For the mid-latitudes (red stations in Fig. 5-4): 

   VGPM = 1.6375 EPPLEY – 25.3,  r = 0.9954,  n = 97  Equation 8. 

 

Given the uncertainty in the importance of photo-acclimation across the range of 

latitudes investigated here, and the strong correlation between the two PP models, the 

VGPM model is used as the ‘standard’ throughout this study, but can be converted back 

to the Eppley estimates using Equations 7 and 8.  A comparison of 3-dimensional 

curve-fitting results using both Eppley and VGPM PP values is given in table 5-5. 

 

 

5.4.3 A priori station groups 
 
Locations of the a priori groups are illustrated in figure 5-5.  Note that, in figures 5-5 and 

5-6, both sets of a priori groups are colour coded (see legend for figure 5-5), and CD 

groups are always denoted by circles, SED groups by squares. 
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Figure 5-5: Maps of a priori groups: a) CD groups in the Southern Ocean, b) CD groups in the Atlantic and c) SED 

groups in the Southern Ocean. 

 

5.4.3.1 Chl-a distribution groups (CD groups) 

Characteristics of the CD groups are summarised in Table 5-2.  CD1 stations (low chl-a 

/ low rms) were mostly off-shore.  In the SO, this group was found in typical high-

nutrient, low-chlorophyll regions including south of the APF, the central Weddell Sea 

and off the Antarctic shelf and slope (Amundsen and Bellingshausen Seas, north of 

Gunnerus Ridge with the surrounding Riiser Larsen and Cosmonaut Seas).  Among 

stations in the whole Atlantic Ocean dataset, CD1 was found off North and South 

America as well as in the central South Atlantic.  The main domain of CD2 (median chl-

a / low rms) was west of the Antarctic Peninsula and the frontal systems of the SAF and 

APF.  Other locations included several stations close to the Marginal Ice Zone (MIZ) in 

the Amundsen and Bellingshausen Seas and deep waters of east Antarctica.  In the 

whole Atlantic dataset, CD2 was associated with upwelling areas along the west coast 

of Africa, south and north Europe and in the Greenland MIZ.  In polar seas, CD3 
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(medium chl-a / high rms) was found predominantly in the MIZ.  At lower latitudes in the 

Atlantic Ocean, CD3 was occasionally found on the continental shelf. CD4 (high chl-a / 

high rms) stations were always found close to CD3, and mostly inshore of CD3, 

suggesting that the chlorophyll values here fall into the overlap between adjoining 

Gaussian curves fitted to the chl-a and rms chl-a histograms, or that sharp gradients 

occur in the geographical distribution of chl-a characteristics (see Tab. 5-2).  A 

decoupling of chlorophyll concentration and PP was observed: chl-a increased, by 

definition, with increasing CD group number, whereas PP was lower for CD 3 than for 

CD 2. 
 

Tab. 5-2: Characteristics of the four chl-a distribution groups (CD). CD1 = low chl-a / low rms, CD2 = median chl-

a / low rms, CD3 = median chl-a / high rms, CD4 = high chl-a / high rms 

Group N Min Max mean Median Stdev rms Skew Skew 
(ln(var)) Similar to:

Median chlorophyll-a concentration (µgl-1) 
All data 26778 0.01 64 0.54 0.26 1.2 1.27 17 0.90 n.a. 

CD1 8536 0.01 4.5 0.19 0.15 0.18 0.26 8.6 0.73 / 
CD2 12831 0.046 12 0.44 0.29 0.49 0.66 5.9 0.92 / 
CD3 1569 0.047 31 0.93 0.42 2.1 2.3 7.7 1.1 / 
CD4 3842 0.085 64 1.5 0.89 2.3 2.7 11 0.39 / 

Median primary productivity (gCm-2yr-1) 
All data 17594 2.3 9002 638 397 698 946 2.8 -0.41 n.a. 

CD1 5892 2.3 2469 287 274 201 351 1.6 -0.91 / 
CD2 8192 6.0 5069 589 464 497 771 1.5 -0.70 3 
CD3 1028 9.6 3712 625 470 544 828 1.4 -0.58 2 
CD4 2164 34 9002 1613 1484 1073 1937 1.8 -1.3 / 

Root mean squared variability in log(hl-a concentration) 
All data 236 0.069 17 1.2 0.57 1.7 2.1 4.7 0.46 n.a. 

CD1 65 0.069 0.75 0.25 0.23 0.11 0.27 2.0 0.29 / 
CD2 100 0.23 1.2 0.60 0.56 0.25 0.65 0.55 -0.053 / 
CD3 31 1.2 6.0 2.4 1.9 1.3 2.7 1.6 0.83 4 
CD4 40 1.2 17 3.2 2.6 2.8 4.2 3.4 0.97 3 

Oxygen pentration depth (cm) 
All data 166 0.97 700 52 20 103 115 4.1 0.10 n.a. 

CD1 48 2.6 700 65 26 118 133 3.9 0.30 2, 3 
CD2 91 0.22 24 4.1 2.8 4.2 5.9 2.1 0.026 1, 3 
CD3 15 0.22 14 3.9 2.5 4.4 5.7 1.2 -0.27 1, 2 
CD4 28 1.1 21 8.7 9.3 4.9 10 0.33 -0.97 / 

Organic carbon fluxes (gCm-2yr-1) 
All data 201 0.18 24 4.4 2.8 4.4 6.2 1.8 -0.20 n.a. 

CD1 62 0.33 6.4 2.4 2.2 1.3 2.7 0.90 -0.86 2, 3 
CD2 91 0.22 24 4.1 2.8 4.2 5.9 2.1 0.026 1, 3 
CD3 15 0.22 14 3.9 2.5 4.4 5.7 1.2 -0.27 1, 2 
CD4 28 1.1 21 8.7 9.3 4.9 10 0.33 -0.97 / 

Depth (m) 
All data 241 104 5408 2627 2642 1492 3062 -0.053 -1.4 n.a. 

CD1 65 1047 5380 3568 3749 1178 3755 -0.64 -1.3 2 
CD2 100 163 5404 2995 3056 1344 3280 -0.16 -1.8 1 
CD3 31 225 4701 2087 2109 1215 2405 0.29 -1.1 4 
CD4 40 104 3107 1146 786 926 1467 0.69 -0.38 / 
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5.4.3.2 Sediment provinces (SED groups) 

Characteristics of the sediment groups are given in Tab. 5-3.  SED1, SED2, SED3 and 

SED4 contain stations which were located in regions of reported enhanced diatom 

sedimentation.  According to Crosta et al. (1997), Zielinski & Gersonde (1997), Armand 

et al. (2005) and Abelmann et al. (2006), the surface sediments around the Antarctic 

Peninsula, the Scotia Sea and the region around South Georgia and the South 

Sandwich Islands are abundant in Chaetoceros spp. resting spores (accounting for                

20 % of identified diatom frustules around South Georgia and the South Sandwich 

Islands, up to 100 % at the Antarctic Peninsula).  The SED1 group mirrors the 

distribution of this Chaetoceros province.  Diatoms of the genus Chaetoceros are 

normally weakly silicified and their frustules poorly preserved in sediments (e.g. Zielinski 

& Gersonde, 1997).  The domain of SED2 is characterised by a content of >40 % 

Fragilariopsis kerguelensis (F. kerg.) frustules.  The distribution of this more heavily 

silicified species corresponds with the distribution of the silica belt in the open ocean of 

the region of the SO considered here (Jousé et al., 1962; DeFelice & Wise, 1981; 

Zielinski & Gersonde, 1997; Crosta et al., 1997; Mohan et al., 2006).  SED3 lies within 

the east Antarctic shelf region and the continental slope with water depths of up to 2000 

m.  This province is characterized by patchy and inhomogeneous sedimentation 

(Schlüter, 1991) with varying physical and biological properties.  The coastal ecosystem 

is shaped by local, regional, seasonal and inter-annual ice-conditions including coastal 

polynyas as well as area-specific topography and hydrography.  All stations in the SO 

Atlantic Sector which could not be assigned to one of the other three groups were 

assigned to SED4.  These locations are generally characterized by lower sedimentation 

of siliceous material. 
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Tab. 5-3: Characteristics of the five sediment (SED) group systems. SED1 = Fragilariopsis kerguelensis province; 

SED2 = Chaetoceros spp. province; SED3 = East Antarctic shelf and continental slope (z < 2000 m); SED4 = 

Amundsen and Bellingshausen Seas, SED5 = ungrouped SO, SED6 = N of 40°S (Atlantic Ocean) 

Group N Min Max mean Median Stdev rms. Skew Skew 
(ln(var)) Similar to: 

Median chlorophyll-a concentration (µgl-1) 
SED 1 4255 0.03 1.8 0.23 0.20 0.15 0.28 3.6 0.82 / 
SED 2 2457 0.051 31 0.44 0.29 0.87 0.98 21 1.1 5, 6 
SED 3 774 0.062 44 1.3 0.53 2.5 2.8 8.6 0.43 / 
SED 4 384 0.047 64 0.96 0.21 4.0 4.1 12 1.6 / 
SED 5 1772 0.032 25 0.75 0.28 1.7 1.9 7.3 1.2 2 
SED 6 17136 0.01 28 0.56 0.28 0.98 1.1 10 0.61 2 

Median primary productivity (gCm-2yr-1) 
SED 1 3669 4.5 1262 189 147 154 244 1.9 -0.27 4 
SED 2 1501 9.6 1639 232 167 229 326 2.2 -0.24 4 
SED 3 286 2.3 2295 352 236 345 492 2.4 -0.96 / 
SED 4 302 8.1 2174 222 133 271 349 3.3 0.20 1, 2 
SED 5 1306 6.0 3125 282 197 283 399 2.9 -0.39 / 
SED 6 10530 6.0 9002 917 675 768 1196 2.6 -0.23 / 

Root mean squared variability in log (summer chl-a concentration) 
SED 1 35 0.18 0.42 0.27 0.24 0.074 .28 0.52 0.28 / 
SED 2 26 0.29 3.5 0.79 0.61 0.62 1.0 3.3 1.1 4, 5, 6 
SED 3 25 0.18 6.9 2.7 2.3 1.9 3.2 0.82 -0.91 4, 5 
SED 4 13 0.16 17 2.4 0.43 4.7 5.1 2.6 0.90 2, 3, 5, 6 
SED 5 34 0.16 6.0 1.8 1.3 1.6 2.4 1.2 -0.27 2, 3, 4 
SED 6 103 0.07 7.3 0.88 0.58 0.95 1.3 3.5 0.10 2, 4 

Oxygen pentration depth (cm) 
SED 1 35 8 110 42 35 28 50 0.98 -0.20 3, 4, 5 
SED 2 26 1.5 60 12 7.5 13 18 2.3 0.24 3, 4, 6 
SED 3 26 1.2 220 29 17 46 53 3.1 0.074 1, 2, 4 
SED 4 13 1.7 600 87 40 161 178 2.8 -0.07 1, 2, 3, 5 
SED 5 34 6 700 140 73 168 217 1.8 -0.10 1, 4 
SED 6 32 0.97 26 5.3 2.7 5.7 7.7 2.2 0.49 2 

Organic carbon fluxes (gCm-2yr-1) 
SED 1 33 0.95 4.8 2.1 1.8 0.98 2.3 0.86 0.30 2, 3, 4, 5 
SED 2 23 0.22 14 3.2 2.0 3.5 4.8 2.1 0.092 1, 3, 4, 5 
SED 3 10 0.18 8.9 3.3 1.8 3.1 4.4 0.72 -0.43 1, 2, 4, 5 
SED 4 13 0.22 4.5 2.4 2.3 1.3 2.7 0.043 -1.5 All 
SED 5 15 0.22 6.2 1.6 0.91 1.7 2.3 1.5 0.11 3, 4 
SED 6 107 0.35 24 6.1 3.9 5.1 7.9 1.2 -0.26 1, 2, 3, 4 

Depth [m] 
SED 1 35 2060 5016 3920 4091 718 3984 -0.75 -1.2 2, 5 
SED 2 26 225 5408 3041 3365 1441 3353 -0.41 -1.7 1, 4, 5, 6 
SED 3 26 163 1956 1066 1162 611 1222 -0.001 -0.62 4 
SED 4 13 446 4299 2320 2642 1332 2650 -0.24 -0.72 2, 3, 5, 6 
SED 5 34 2109 5431 3543 3523 1070 3700 0.16 -0.04 1, 2, 4 
SED 6 107 104 5380 2338 2159 1480 2763 0.30 -1.3 2, 4 

 

The SED5 group consists of sites in the Amundsen and Bellingshausen Seas which, 

according to Burckle and Cirilli (1987), are situated outside the silica belt.  Owing to 

insufficient species-specific sediment data, these locations could not be assigned to any 

of the other provinces.  Stations north of 40°S were also assigned to a separate group, 
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SED6, owing to paucity of information across the Atlantic.  Figure 5-5 illustrates the CD 

and SED group locations. 

In respect of the surface parameters, the SED groups are largely similar, with the 

exception of SED1 which has distinctive chl-a, PP and rms chl-a values.  Distributions of 

the benthic parameters OPD and benthic Corg flux, and of water depth, were likewise 

similar among all groups, with the exception of SED2, for which OPD was always 

shallower than 60 cm. 

 

5.4.4 Benthic carbon export ratio (BER) 
Regressions of net primary production against carbon remineralization rate were 

calculated, yielding the export ratio at the sea floor.  Since the term ‘export ratio’ 

describes the proportion of surface primary production exported out of the surface 

mixed layer, we apply the term ‘benthic export ratio’:  the difference between ER and 

BER at a given site represents the fraction of carbon which is remineralised in the 

meso-pelagic zone, so that BER represents a lower limit on carbon export ratio.  BER 

was calculated for the entire data set and separately for the CD and SED groups.  

Systematically overestimated PP would result in a lower BER: For example, if Eppley 

primary production is closer to the truth than VGPM PP, then the export ratios 

calculated here are too high in the mid-latitudes (Fig. 5-4, red points).  Since Eppley and 

VGPM agree well in Southern Ocean, BER values presented here for the SO can be 

taken as a best estimate for this method and dataset.  Further research into the 

accuracy of the various PP models is still urgently required. 

As an indication of long-term benthic Corg flux (Hartnett et al., 1998), median chlorophyll 

a was regressed against oxygen penetration depth.  Figure 5-6 illustrates these 

regressions.  A priori groupings were not generally significantly different in either Corg 

flux/PP or OPD/chl-a space (MANOVA, α = 0.05).  Table 5-4 lists significant 

correlations. 
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Figure 5-6: regression of a) chl-a against OPD for a priori CD groups; b), PP against Corg flux for a priori SED 

groups; c) PP against Corg flux for a priori CD groups; d) PP against Corg flux for a priori SED groups. CD and SED 

groupings coloured as in Figure 5-5. Regression curves are included only where the correlation between parameters 

was significant – see Table 5-4 for coefficients. 

 

The relationships between chl-a and OPD for CD groups (Fig. 5-6a) emphasize the use 

of chl-a characteristics in the definition of the groups: each group occupies a narrow 

sector of the x-axis, and it is found that OPD varies considerably regardless of the 

group, i.e., regardless of the typical duration and strength of phytoplankton blooms.  The 

SED groups each include stations with a wide range of chl-a (see also Table 5-3), and 

are correspondingly more scattered in the chl:OPD space (Fig. 5-6b).  Of note in the 

chl-a :OPD regression curves is that, while all statistically significant regressions 

showed the same trend, the slopes and y-intercepts differed by a factor of three and 

~10, respectively. 
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Tab. 5-4: Significant correlations between surface chlorophyll (productivity) and benthic oxygen penetration depth 

(carbon flux). 

Group N a1 a2 r² 
Ln(OPD) = a1 ln(chl) + a2 

CD2 60 -1.8593  (±0.6219) 0.2119  (±0.8098) 0.1017 
SED4 11 -1.1917  (±0.5993) 1.8693  (±0.8377) 0.2665 
SED6 30 -0.7865  (±0.1327) 0.3366  (±0.1896) 0.5603 

All data 163 -0.5488  (±0.1586) 2.2033  (±0.2150) 0.0789 
AP1 22 -1.1893  (±0.1043) 4.1145  (±0.1092) 0.8757 
AP2 139 -1.0371  (±0.1585) 1.2476  (±0.2221) 0.2536 

Ln(Corgflux) = a1 ln(PP) 
CD1 61 0.1436 (0.0139) / -0.455 
CD2 87 0.1862 (0.0154) / 0.2211 
CD4 24 0.3185 (0.0107) / 0.4523 

SED6 102 0.2373 (0.0119) / 0.4536 
All data 185 0.2009 (0.0104) / 0.1998 

AP3 48 0.2576 (0.0189) / 0.2924 
AP4 137 0.1844 (0.0123) / 0.2192 

 

 

Since the regression coefficient for ‘All Data’ is rather low (although significant), it 

remains likely that an alternative grouping system may provide clearer distinction 

between stations with different surface: benthic couplings (see section 3.4). 

In contrast, the scatter between PP and benthic Corg flux was much better constrained, 

and very similar slopes were found for all statistically significant regression curves (Fig. 

5-6c, d). Variability indicated by the errors in fit parameters and by the correlation 

between predicted and measured values (Table 5-4) represents the effects of non-

conservative processes, e.g. lateral advection by bottom currents, as well as variability 

in the efficiency of remineralisation. 

 

5.4.5 A posteriori groups 

Although none of the a priori groupings were significantly different in the 2-dimensional 

Corg flux/PP or OPD/chl-a spaces, distinctive groupings in the scatter between each of 

these parameter pairs could be observed by eye (Fig. 5-7).  Based on this observation, 

two new, a posteriori groupings were formed by choosing exceptionally high OPD and 

Corg flux values across the range of median chlorophyll-a and PP.  These were denoted 
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AP 1, 2 (chl-a/OPD space) and AP 3, 4 (PP/Corg flux) respectively, and are illustrated in 

figure 5-7. 

 

 
 

Figure 5-7: As fig. 5-6 but coloured according to a posteriori groupings: a) Groups AP1 and AP2 derived from the 

chl-a:OPD scatter, with ‘+’ for AP 1, open diamonds for AP 2 and the stations north of 30° S shown as filled 

diamonds; b) Groups AP3 and AP4 derived from PP:Corg flux, with blue triangles representing AP3 and pink 

triangles AP4, solid black lines representing fit curves and dashed lines indicating 10%, 3%, 1%, 0.5% and 0.2% 

benthic carbon export ratio (ER) curves; c) same as b) but using linear axes for comparison with e.g. Wenzhoefer & 

Glud, 2002. 

 

 

Figure 5-8 shows the locations of the new groupings.  Particularly high values of OPD / 

median chl-a (Group AP1) were located on the continental shelf and slope of Antarctica 

as well as in the Weddell Sea.  However, in each of these locations, AP1 and AP2 were 

mixed together, suggesting either: a) patchy distribution of ‘deeply oxygenated’ 

sediments or b) OPD at the nearby AP2 stations is actually affected by sporadic Corg 

flux, reducing the oxygenated sediment layer, so that OPD does not mirror the long-

term situation here. 
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Figure 5-8: Locations of a posteriori groups based on a) chl-a : OPD (red ‘+’ denotes AP 1, green diamonds denote 

AP 2) and b) PP : Corg flux (blue = AP 3, ~2% export ratio, magenta = AP 4, ~0.7% export ratio)  

 

Considering the high values of OPD in both AP1 and AP2 along the shelf (see Sachs et 

al., submitted, 2007), the latter explanation is unlikely.  Patchy distributions, on the other 

hand, could be explained by bottom currents (Gutt et al., 1998).  In the Weddell Sea, Ito 

et al. (2005) calculated net upward velocities at the AP1 locations, which indicates a 

possible physical explanation for low deposition in this area.  Weddell Sea sediment 

traps show extremely low but highly variable annual fluxes (Fischer et al., 1988).  

Benthic investigations from Schlüter et al. (1998) and Geibert et al. (2005) indicate very 

low benthic Si fluxes in this area, while Usbeck et al. (2002) suggested the prevalence 

of shallow remineralization in the central Weddell Sea.  Each of these proposed 

processes would result in low Corg flux, corresponding to deep OPD, despite the regular 

occurrence of phytoplankton blooms in spring and summer.  

A posteriori groupings for Corg flux vs. PP fell into a clear band along the opal belt, 

extending westwards along the Antarctic Peninsula and into the Amundsen and 

Bellingshausen Seas (fig. 5-8b).  Again, the distribution is patchy, similar to the Si map 

produced by Schlüter et al. (1998) or Seiter et al. (2004).  Scattered high BER stations 

(AP3) were also found in the northern North Atlantic, including the Greenland MIZ, and 
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close to the upwelling area off Namibia and along the NW European Continental 

Margin.  However, the bulk of the known upwelling areas, e.g. off NW Africa, fell into 

group AP4 (lower BER).  

 

5.4.6 Relationships between OPD, Corg flux, depth and latitude 

Many previous studies have investigated the impact of depth on Corg export efficiency 

(e.g. Suess, 1980; Pace et al., 1987; Jahnke, 1996; Antia et al., 2001).  For comparison 

between the SO and other regions studied, and before extending the relationship 

between Corg flux and PP to include depth in a multiple regression, the variability of 

OPD and benthic Corg flux with depth was investigated.  Figures 5-9 a) and b) illustrate 

these relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9: Variability of a) OPD, b) benthic Corg flux with depth, for stations in the SO 

(open circles) and in the Atlantic (north of 40°S, filled circles) and c) variability of Corg flux 

with latitude. 
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The relationship between depth and OPD was weak but statistically significant, with a 

tendency for weaker effects of depth on OPD at stations north of 30° S.  Considerable 

scatter in this relationship in the SO suggests either diverse or highly variable export 

regimes (large-scale variability), or patchiness in the macrobenthic communities which 

both depend upon and influence the benthic O2 supply (Jahnke, 2001; Wenzhöfer & 

Glud, 2002) (small-scale variability), or both.  Such patchiness has been observed in 

shelf and deep-sea environments (Gutt et al., 1998; Brandt et al., 2007a+b).  Gutt et al. 

(1998) also demonstrated a weak pelagic-benthic coupling between primary production 

and the distribution of macrobenthic communities in the region of the Antarctic shelf and 

upper slope.  

In contrast, the scatter in the short-term benthic Corg flux parameter with depth was 

similar for the SO and stations north of 30° S.  The range of values of the slope of this 

relationship in the literature, particularly from trap studies, encompasses the values 

found here.  Comparable curves have been found in pelagic trap studies (Francois et 

al., 2002; Lutz et al., 2002) as well as at the sediment / water interface (Wenzhöfer & 

Glud, 2002). 

In agreement with Behrenfeld and Falkowski (1997) and Christensen (2000) and in 

contrast to the results of Jahnke (1996) and Lampitt & Antia (1997), strong latitudinal 

gradients were observed in Corg flux (Fig. 5-9c).  Three latitudinal bands of high Corg flux 

are observed at 70° S, 20° S and 40° N, with an indication – but too few data – of high 

values in the northern North Atlantic.  These locations correspond to upwelling and high 

latitudes, where production is high (see figure 5-2).  
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Figure 5-10:  Variability of export ratio with a) depth and b) latitude. Solid lines in a) represent 
fits to data used in this study: bold line denotes AP3, thin line AP4. Dashed and dotted lines 
represent fits from Pace (1987) and Suess (1980), respectively. 

 

 

 

The relationship between ER and depth (Fig. 5-10, a) indicates that the strong slope 

observed in trap studies (e.g. Suess 1980; Pace et al., 1987; Lampit & Antia, 1997; 

Armstrong et al., 2002; Francois et al., 2002) has vanished for stations at all latitudes 

when ER is calculated using benthic fluxes, with the exception of the high ER opal belt 

stations (AP3, see fig. 5-8). 

Figure 5-10c illustrates the variability in BER with latitude, showing a clear tendency 

toward higher BER at polar latitudes.  This contradicts previous studies including 

Francois et al., 2002, Jahnke, 1996, Lampitt & Antia, 1997 and Christensen, 2000, and 
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is in agreement with Buesseller, 1998.  These conflicting results most likely reflect the 

sparsity of data available at high latitudes:  The dataset compiled by Sachs et al., 

submitted 2007 is the first study with substantial coverage of the SO.  However, it is 

also possible that the efficiency of the meso-pelagic community varies with latitude, 

perhaps affected by temperature, so that upper water column sediment trap studies to 

date have correctly observed lower ER at high latitudes, which subsequently evolves 

into higher BER on account of more efficient scavenging of the available carbon at 

lower compared to higher latitudes.  

Having found significant, variable, effects of depth on benthic Corg flux, a 3-D regression 

was used to relate these parameters to surface PP.  Following Antia et al. (2001), Corg 

flux was regressed against median primary production and water depth for all 185 

stations using Eq. 3. Additional regressions were calculated for the a posteriori 

subgroups AP 3 and AP 4, and also using alternative equations from the literature (Eq. 

4 and 5).  Table 5-5 presents the regression coefficients and statistics for each of these 

regressions.  Figure 5-11 shows the 3-dimensional fit corresponding to Eq. 3 applied to 

groups AP 3 and 4.  Proceeding on the assumption that benthic remineralization 

represents the lower limit on carbon flux to the sea floor, the AP 4 algorithm was 

selected to calculate conservative estimates of carbon rain rate in the Atlantic, 

described in the next section.  
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Figure 5-11:  Multiple regression of Corg flux against median VGPM primary production and water column depth 

for a) AP 4 and b) AP 3.  In each case, the coloured mesh represents the functions defined in Table 5-5 using the 

equation form of Antia et al. (2001). 
 

 
Tab. 5-5: Regression coefficients obtained by applying equation forms from the literature to the SO and Atlantic 

Corg flux and median VGPM or Eppley primary production dataset. 

VGPM Eppley 
Group 

A1 a2 a3 r2 N a1 a2 a3 r2 N 

Antia et al., 2001:  ln Corg flux = a1 • ln PP  +  a2 • ln z  +  a3,  [a1 = 1.77, a2 = -0.68, a3 = -2.3,  
r2 = 0.53, n = 24] 

All data 0.4232 -0.4759 2.2657 0.5459 185 0.3925 -0.5301 2.9321 0.5171 185 

AP 3 0.6495 -0.4704 1.6219 0.7927 48 0.7677 -0.4375 0.8796 0.7515 48 

AP 4 0.8331 -0.2330 -2.3251 0.7154 137 0.7822 -0.3501 -0.9662 0.6609 137 

Schlüter et al., 2000:  ln (Corg flux) = a1 • ln (PP) + a2 • ln (z),  [a1 = 1.873,  a2 = -1.172, PP > 0, 
z > 500 m, r = 0.92] 

All data 0.5756 -0.2995 / 0.5217 185 0.6036 -0.3078 / 0.4743 185 

AP 3 0.8554 -0.3800 / 0.7489 48 0.7885 -0.3524 / 0.7801 48 

AP 4 0.6613 -0.3964 / 0.6978 137 0.7056 -0.4156 / 0.6575 137 

Suess, 1980:  Corg flux= PP / (a1 • z + a2)  [a1 = 0.0238, a2 = 0.212, z ≥ 50 m,  r2 = 0.79, n = 33] 

All data 0.0107 88.6107 / 0.4635 185 0.0146 57.3771 / 0.2509 185 

AP 3 0.0069 27.2503 / 0.6730 48 0.0059 18.5504 / 0.5273 48 

AP 4 0.0074 123.4166 / 0.7236 137 0.0147 79.6460 / 0.3965 137 
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Statistically significant regression coefficients were found for each of the equations 

when applied to all stations as well as to the a posteriori groups AP 3 and AP 4.  Cluster 

analysis and MANOVA testing (α = 0.05) was used to establish whether the a priori 

groups were distinctive in the 3-dimensional Corg flux / z / PP space.  Only CD 4 

(chlorophyll distribution groups; high chl / high rms) and SED 8 (sediment groups; 

stations north of 30°S) were significantly different from other groups.  In the absence of 

an a priori grouping system by which multiple groups could be distinguished, the 

a posteriori groups, which were significantly different from one another according to 

MANOVA testing, were retained for further analysis.  

The equation form used by Antia et al., 2001 was chosen on account of to the similarity 

of datasets and consideration of the trends in Corg flux, z and PP: The equation of Suess 

(1980) includes a term [Corg flux · z] (re-arranging the equation to calculate PP from z 

and Corg flux).  This was deemed less appropriate than an expression based on 

exponents of z and PP, as in Antia et al. (2001) and Schlüter et al. (2000), since this 

allows the inverse trend between Corgflux and depth to be expressed in a single term.  

The difference between these two latter models is the inclusion of a constant logarithmic 

term by Antia et al. (2001) which, by allowing greater freedom in the fit, has the 

advantage of highlighting inappropriate data fitting.  The constant term represents the 

loss or gain of carbon in the water column which is not a function of water depth or net 

primary production at the surface.  Values of this constant term greater than 1 indicate 

that the fitted curve is readjusted upwards after exponential ‘decay’ in the carbon flux: 

This resembles a source term, which could be caused by introduction of carbon into the 

water column by lateral advection (an unlikely scenario considering the geographical 

scatter in the AP3 and 4 groupings), or it can be interpreted as an under-estimation of 

NPP by the satellite data.  The latter explanation is consistent with reports of 

underestimation of chlorophyll-a in the SO, possibly by errors in the atmospheric 
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correction at high latitudes (n.b. while it is often mooted that underestimation of 

chlorophyll-a in the SO is caused by the prevalence of deep chlorophyll maxima, this 

reasoning  is rejected on the grounds that a) other oligotrophic regions at lower latitudes 

typified by DCMs were included in development of the satellite algorithms and b) this 

does not account for systematic underestimation of chlorophyll in the Arctic, where 

DCMs are less usual).  The de facto exclusion of springtime data in the MIZ which 

arises from using the monthly PP product, for which more robust masking for variable 

cloud and ice cover is employed than the daily or weekly chlorophyll products, may also 

be important: Consultation of the weekly chlorophyll data showed that the median 

values measured during the summertime represent consistently lower concentrations 

than were attained during the spring bloom at AP3 stations (data not shown).  This 

implies that the satellite median PP data are not so much erroneous as not 

representative.  Peak values are of course also smoothed out by monthly compositing, 

but this affects the data at all locations, and will produce a regional bias only where the 

duration of blooms in one region is always significantly shorter than at other locations.  

Values of the constant term in Equation 3 less than 1 resemble a linear sink term.  This 

could be interpreted as the proportion of organic carbon which is remineralised most 

rapidly, i.e. regardless of the length of time over which the material is exposed to 

oxygen.  In the AP 4 data fit, the constant term was close to that obtained by Antia et al. 

(2001) with exp{-2.3} = 0.1, i.e. a sink term.  In contrast, the constant term for AP 3 was 

exp{1.6} = 5 – a source term, while for the fit to all data a value of 9.6 was obtained.  It 

is likely that this massive source term for all data resulted from unsuitable fitting of a 

single expression to a dataset which clearly falls into more than one group.  However, 

the precise meaning of the apparent source term for AP 3 remains unclear, especially 

given the similarity of a1 and a2 for AP 3 and AP 4.  This could indicate a true source 

term, such as sea-floor winnowing, or simply reflect lack of data. 
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Another factor which must be considered here because of the use of ‘snapshot’ Corg flux 

measurements is the possibility that the AP3 group represents those stations at which 

Corg flux measurements were affected by recent sedimentation events.  Re-examining 

Figure 5-3, where the AP3 stations are shown as filled blue circles, indicates that there 

is a slight tendency toward higher Corg flux : OPD ratios within the AP3 group.  However, 

the range of ratios remains broad for both AP3 and AP4, and ANOVA analysis indicated 

that the two groups were not distinctive within the Corg flux : OPD space (alpha = 0.05). 

The implications of the data fits for AP3 and AP4 are intriguing and can only be resolved 

by long-term in situ measurement programs.  Mathematical conundrums aside, the fact 

that the AP3 grouping, selected purely by means of the export ratio fell mostly in SO 

waters, supports the notion that mass export of fresh, giant (Kemp et al., 2006, 

Smetacek et al., 2002) or heavily silicified (Smetacek, 2004) diatoms, result in unusually 

high export efficiency.  Returning to the arguments A to D presented in the introduction;  

AP 3 represents stations at which either a) more labile carbon is exported and/or b) the 

labile carbon is better protected than at other locations and/or c) the exported carbon is 

exposed to reminerisation for less time and/or d) remineralisation is less efficient here.  

These possibilities are discussed below: 

a) Disproportionately high concentrations of carbon are exported: 

Higher export production can be discarded immediately by consulting Figure 5-2:  

AP 3 does include regions of relatively high surface biomass close to the Antarctic 

Peninsula, but also areas of very low biomass further to the west – these 

concentrations are not the highest in the SO and are an order of magnitude lower 

than is found on shelf regions in the northern hemisphere:  high BER in AP 3 is not 

caused simply by higher input of particulate organic carbon at the water surface. 
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b) Exported carbon is well protected against remineralisation: 

Dissolution of the protective silicate diatom frustule has been found to be slower 

when phytoplankton cells sink out before dying (Moriceau et al., 2007), and 

inorganic coatings may also slow cell degradation (Burdige, 2007).  It is unlikely that 

inorganic matrices are produced exclusively in AP 3 and not, for example, at more 

southerly stations with similar environmental characteristics.  Sedimentation of fresh 

phytoplankton has, on the other hand, been reported in the locality of the opal belt 

(Sachs et al., submitted 2006;  Riaux-Gobin et al., 1997).  Such mass precipitation 

events may be caused by matting of spined species such as Chaetoceros and 

Corethron or by loss of buoyancy, for example under nutrient stress.  The former 

requires sufficiently high chlorophyll concentrations that cells are highly likely to lock 

together;  this is not consistent with the satellite chlorophyll record for the eastern 

end of the opal belt, and even if satellite estimates are too low, Holm-Hansen et al. 

(2005) reported that chlorophyll in DCMs of the SO has not yet been found to 

exceed 0.7 mgm-3.  Slow but steady sinking out could be explained by deep mixed 

layer depths which, together with low iron availability, could maintain growth at very 

slow rates (see also Figure 5-2b), resulting in phytoplankton communities dominated 

by heavier, more strongly silicified cells (e.g. F. kergeulensis, used in this study to 

denote province SED 2, see section 3.3.2) and in a steady grazing pressure, leading 

to the dominance of larger cells (Smith & Lancelot, 2004;  Smetacek et al., 2002, 

2004).  Loss of buoyancy control could affect a higher than usual proportion of cells 

as they are subjected to low light levels in the deep mixed layer.  Since the AP 3 

group comprises regions of low, steady chlorophyll concentrations as well as high, 

variable concentrations (Figure 5-2a and b) it can not be ruled out that both slow and 

rapid sinking of large or heavy diatoms before cell death causes the higher BER 

values. 
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c) Exported carbon is exposed to remineralisation over disproportionately short time 

scales: 

This explanation can be discarded since the range of depths over which cells sink 

out in AP 3 is not distinct from that in AP 4, and there is neither evidence nor reason 

to suspect that sinking velocities are exceptionally high in the opal belt. 

 

d) Remineralisation is inefficient 

Low temperatures slow down bacterial activity (e.g. Matsumoto et al., 2007).  

However, the range of water temperatures found in the AP 3 region is similar to that 

found across the SO, so that this effect can be ruled out as being exclusive to the 

AP 3 region.  High turbulence, caused by strong wind mixing at the surface or by 

strong currents in the mesopelagic, may make grazing by chemotaxis inefficient 

(Kiorboe & Jackson, 2001; Visser & Jackson, 2004).  However, neither the wind nor 

the current regime along AP 3 is unique – strong easterly winds dominate most of 

the SO and the currents they produce are found in several concentric rings (e.g. 

Orsi, 1995;  Sokolov & Rintoul, 2007), not just along AP 3. 

It is possible that high BER in AP 3 results from combinations of processes categorised 

as b) and d) above.  However, suggestions in the literature that winnowing of benthic 

deposits by bottom currents (Geibert et al., 2005, Seiter et al., 2005) may also explain 

the grouping found here. 
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5.4.7 Calculation of Corg flux for the Southern (-80° to 120° E, < 30°S) and Atlantic 

Oceans 

Figure 5-12 shows the distribution of benthic Corg flux across the Atlantic Ocean 

calculated using the AP 4/Eq.3 algorithm.  These results are comparable to those of 

Wenzhöfer & Glud (2002) in the temperate Atlantic Ocean.   

 

 

Figure 5-12: Spatial distribution of benthic Corg flux 

calculated using Eq. 3/AP 4 (see table 5-5). 

 

This calculation was repeated using the Eq. 3 / AP 3 algorithm along the AP 3 domain 

(Figure 5-13).  The mask for AP 3 can be discerned in Figure 5-13 as a discontinuity in 

concentrations in a ring proceeding along and extending from the Antarctic Peninsula.  
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This mask was drawn to avoid the subtropical front but to include all the AP3 stations.  

However, the sub-tropical and sub-Antarctic fronts merge together, particularly toward 

the east, making the mask difficult to define.  In the event that further research confirms 

the high BER along the opal belt, ‘operational’ definition of the AP 3 mask would require 

smooth gradients at the boundaries between AP 3 and 4.  This is beyond the scope of 

the current study.  Since the region described here is restricted to the coverage of 

stations grouped within AP3, whereas the opal belt extends much further both to the 

east and the west (e.g. Seiter et al., 2004), it is assumed  that this still represents a 

conservative estimate of the importance of the opal belt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-13: Spatial distribution of Corg flux calculated using Eq. 3/AP 3 for the opal 

belt, and Eq. 3/AP 4 everywhere else (see table 5-5). 
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Integrating by area, it was found that the flux of carbon to the sea floor in the whole SO 

(> 45°S) is 0.055 PgCyr-1 for water depths greater than 800 m when Eq. 3/AP 4 was 

used; slightly less than that for the North Atlantic or South Atlantic.  Table 5-6 lists the 

integrated benthic Corg flux estimates found in this study by region, and provides several 

values from other studies for comparison. 

Application of the AP3 / Eq. 3 algorithm to the SO opal belt region, yielded an increase 

in SO benthic Corgflux of 0.0087 PgCyr-1.  This corresponds to 15% of the integrated 

carbon flux in the SO calculated using only AP 4/ Eq. 3, and to ~8 % of the Atlantic Corg 

flux estimate (see Table 5-6). 

 

Tab. 5-6: Areally integrated Corg flux values in this study and from the literature. a) Schlitzer (2002), Schlitzer et al. 

(2003), b) Muller-Karger et al. (2005), c) Seiter et al. (2005), d) Schlüter et al. (2000), e) Christensen (2000),                            

f) Wenzhöfer & Glud (2002) 

*Since the Eq.3/AP4 algorithm was developed using only SO and Atlantic data, these values are included for 
comparison only and should be viewed with caution. 

 This study Other studies 
 

Region Area 
(mi. km2) 

Median PP 
(PgCyr-1) 

Corg flux
(PgCyr-1) %PP 

 Flux / 
Area       

(gCm-2yr-1)
Corgflux (gCyr-1) 

S. Ocean 
(south of 45°S ) 53.5 9.25 0.055 0.60 1.03  

S. Ocean 
(south of 30°S ) 99.4 27.7 0.15 0.55 1.52 3.0a 

S. Ocean 
(south of 45°S,  

AP 3&4) 
53.5 9.25 0.064 0.69 1.20  

South Atlantic 28.9 12.1 0.061 0.51 2.12 0.062 
0.095a 

North Atlantic 32.7 12.6 0.065 0.52 2.00  
0.204e, 0.134f

N. Atlantic Arctic 2.33 1.06 0.006 0.60 2.70 2.7d  

Global ocean* 314.8 101.4 0.545 0.54 1.73 0.478       0.714a, 0.93b, 
0.5c,0.74e 
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Figure 5-14a illustrates the contribution of different water depths to the total sea-floor 

carbon flux expressed as a percentage of global Corg flux calculated using Eq. 3/AP 4.  

Depth intervals of 500 and 800 m were chosen to represent the permanent thermocline 

in shelf and open ocean waters, respectively, following Ostlund et al. (1987) and Muller-

Karger et al. (2005).  Subsequent 1000 m depth intervals were segregated to illustrate 

the importance of water depths.  As suggested by Muller-Karger et al (2005), the 

continental shelves (< 500 m water depth) contribute disproportionately to Corg flux, as 

can be seen in figure 5-14b (area-normalised Corg flux).  In the deep ocean, regions of 

4000 to 5000 m depth contributed most to carbon flux below 1000 m, while the area-

normalised Corg flux decreased gently with depth, as also found by Jahnke (1996) and 

Schlüter et al. (2000). 

 

 

Figure 5-14: a) Corg flux for the North Atlantic Arctic, North Atlantic, South Atlantic, Southern Ocean (all 

longitudes) and ‘rest of the world’, at different depth intervals, calculated using Eq.3 / AP4, as a percentage of 

global Corg flux to all depths; b) Corg flux in gCm-2yr-1 calculated by normalising the area-integrated values by the 

total area of each region.  

 

 

Integrated benthic Corgflux values calculated in this study were within the range 

published for various regions (table 5-6), with the notable exception of the value 

calculated by Schlitzer (2002) for the SO (south of 30°S).  However, this discrepancy 

could have arisen because Schlitzer (2002) did not explicitly calculate carbon deposition 
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at the sea-floor, but rather remineralisation within the lower water masses, or because 

of the significant nitrification within the euphotic zone, rendering the f-ratio invalid. 

While global application of the Eq.3/AP 4 algorithm enabled comparison with other 

studies using a range of methodologies, it is difficult to assess how well it performs in 

basins other than the SO and Atlantic: Seiter et al. 2005 concluded that Pacific sub and 

anoxic remineralization processes are more important outside of the Southern and 

Atlantic Oceans on account of the time since these waters were last ventilated.  This 

would imply that our estimates considerably underestimated the benthic Corg flux.  In 

contrast, Cai & Reimers (1995) found similar remineralisation rates in the Pacific and 

Atlantic.  In general, the global dataset, particularly of oxygen microprofiles, is still 

sparse.  

 

 

5.4.8 Open questions 

Relationships between benthic Corgflux and OPD 
One of the greatest weaknesses of this study is the scatter in the relationship between 

benthic Corgflux and OPD (figure 5-3).  In the absence of more temporal monitoring of 

Corgflux variability at any given location, the use of the relationship between these two 

parameters remains the best option for determining whether Corgflux measurements are 

contaminated by recent sedimentation events.  Clearly, a tighter relationship, or better 

understanding of interactions between the upper millimetres and deeper layers of 

sediment, is desirable. 

 

Could more sophisticated definition of ecological provinces better capture the variability 

in BER? 

The study of Sokolov & Rintoul (2007) promises a routine method for establishing 

ecological province boundaries in the Southern Ocean.  If this, or a similar, approach 

can be expanded to other regions, then determining the strength of coupling between 
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surface carbon fixation and benthic rain rates will be limited only by the size of the 

benthic dataset. 

 

Does the mesopelagic community eliminate the surface ecological province footprint at 

depth? 

As pointed out by Cai & Reimers (1995), remineralisation of carbon at the sediment 

interface depends not only on the degradability of particulate organic matter but also on 

the benthic environment, i.e. parameter such as on oxygen concentration, 

sedimentation rate and bioturbation rates.  Since these conditions influence one another 

over both short and geological time scales, the system is clearly highly evolved and 

complex: this may mean it is susceptible to disturbance by sudden changes in input or 

that it is highly adaptive, so that regional variability is mostly damped out within days of 

Corg reaching the sea floor. 

Several elements of the mesopelagic community have been shown to adapt to Corg 

export variability (e.g. Žarić et al., 2005; Richardson et al., 2006; Countway et al., 2007), 

suggesting that the ecosystem across the breadth of the water column is able to 

compensate for the mode and speed of particle export and make maximal use of 

available Corg.  Export models, while becoming increasingly sophisticated, still lack a 

detailed parametrisation of mesopelagic variability (e.g. Gehlen et al., 2006; Stemmann 

et al, 2004).  

This dataset used here suffers very poor coverage in the mid-latitude gyres, reported to 

have the lowest export ratio.  Despite this, the values found here are lower than those 

reported from sediment traps in the vicinity of the gyres.  This implies that sufficient 

remineralisation occurs between the lowest trap positions and the sea floor that, even in 

the more productive zones of the current dataset, benthic remineralisation rates are 

lower than in the mesopelagic of the oligotrophic gyres.  
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What is the inter-annual variability in benthic Corgflux? 
The results presented here represent the long-term (decadal) situation.  While Gregg et 

al., 2005 found no significant trend in chl-a concentrations in the SO over the last ten 

years, Antia et al. (2001) reported a shift in biological pump efficiency caused by 

reduced opal content.  On a global scale, the interannual variability in Corg flux reported 

by Muller-Karger et al. (2005) far exceeded the inter-decadal trend derived by Gregg et 

al. (2005).  Such trends can not be analysed using the current oxygen microelectrode 

dataset since fewer than 10 measurements concurrent with the SeaWIFS or CZCS flight 

periods have been recorded so far.  

 

How efficient is the biological pump in the SO? 
Similar to Schlitzer (2002) this study was not intended to be a stand-alone approach to 

quantifying the rate of biological pump efficiency since no indication of rain ratio can be 

gleaned from satellite data at present.  The rain ratio has been found to be low in the 

SO (Seiter et al., 2004): their data show an inverse correlation between opal and calcite 

over much of the global ocean.  In the SO and Arctic, CaCO3 concentrations are 

conspicuously low, whereas opal appears high in the SO, low in the Arctic.  This implies 

that the AP 3 stations in the SO are likely to have a reinforcing effect on the biological 

pump, while the same may not be true for the Arctic.  The results presented here 

represent a lower limit on the carbon flux to the sea floor; the algorithms derived may be 

used in models which distinguish the soft- and hard-tissue pumps to quantify the effects 

of primary production on alkalinity as well as determining carbon export. 
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5.5 Conclusions 
 

A large dataset of benthic oxygen microprofiles and satellite primary production data 

have been used to explore regional variability in the export of organic carbon to the sea 

floor in the Southern and Atlantic oceans. 

A priori determination of ecological provinces using satellite-derived chlorophyll 

concentrations or sediment characteristics did not capture regional differences in the 

benthic export ratio, whereas a posteriori groupings, defined using the BER, highlighted 

a band of high export along the Southern Ocean opal belt (BER ~ 2 % compared to 0.7 

% in the rest of the Atlantic).  

Benthic organic carbon flux was found to be elevated within three latitudinal bands – at 

70°S, 20°S and 40°N, whereas high BER was clearly a feature of high latitudes. 

Spatially-integrated carbon export was calculated for the North and South Atlantic, 

northern North Atlantic, Southern Ocean and ‘rest of the world’, yielding comparable 

values to most values published based on quite different techniques, with the exception 

of the calculations of Schlitzer (2002) for the Southern Ocean south of 30°S which 

exceeded our estimates by a factor of ~5. 

The implications of our findings affect estimates of present and past contributions to 

CO2 draw-down in the Southern Ocean and possibly in other areas of the world ocean.  

There is evidence that during glacial periods export in the SO was significantly 

enhanced (Kumar et al., 1995; Anderson et al., 2002; Fennel et al., 2003; Abelmann et 

al., 2006).  Our results for the modern SO could be used to reconstruct detailed 

palaeoproductivity scenarios such as that proposed by Abelmann et al., 2006.   
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6 Synthesis and Outlook 
 

This chapter summarises the main results of the previous chapters and describes 

additional co-operations with other scientific groups.  Developed research programs are 

also introduced and an outline for further planned projects given. 

 

In the framework of this cumulative thesis, evidence for an enhanced carbon export to 

the deep Southern Ocean was found. The collapse of an artificially induced plankton 

bloom as well as the breakdown of a large natural bloom at the Antarctic Polar Front 

was observed by satellite observations and the response of the subsequent carbon 

export to the deep-sea floor could be measured in situ at the water/sediment interface 

for the first time. It also could be shown for the first time that organic carbon reached the 

deep-sea floor after an iron fertilization experiment. During the same field campaign, 

reference measurements were carried out in an oligotrophic area characterised by 

much lower phytoplankton production at the surface. 

Proceeding from these results, existing benthic data from the Southern Ocean were 

evaluated and benthic fluxes were revised for numerous locations using a correction 

function established from the relation of in situ and ex situ flux determinations. This 

allowed comparison regional benthic fluxes with the diatom composition of surface 

sediments. Organic matter fluxes to the seafloor could be linked with diatom provinces 

and, in a further step with long-term satellite observations of surface ocean chlorophyll-

concentrations. This allowed the determination of biogeochemical provinces at the 

seafloor in terms of benthic fluxes. One of the most prominent results was the high 

export efficiency of organic carbon which in the Southern Ocean silica belt, which is 

considerably enhanced in comparison to the mid and low latitude Atlantic. These 

benthic results could be used as ground truth data for further modelling studies. 

Up to now, little is known about the seasonality of deep-sea benthic fluxes. Only a few 

in situ measurements exist in the region of the Antarctic Circumpolar Current. It is 

important to gather more in situ data and long term measurements in the near future.  

 

Apart from the key results shown above, vital co-operations with other research groups 

developed which led or will lead to several additional research papers and conference 

contributions (see appendix). One of the highlights to be mentioned was the targeted 

measurement of oxygen microprofiles at porpoise carcases in water depths of 2500 and 
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5400 m at the Arctic deep-sea long-term observation site “AWI Hausgarten”: These 

measurements, performed during the German-French cruise “Arctic Ocean 2005” with 

R/V “L’Atalante” by means of a small deep-sea microprofiler unit operated by a ROV 

(remotely operated vehicle), revealed that benthic communities are able to change the 

benthic milieu within days or a few weeks subsequent to the input of large food falls 

(see appendix). Due to time constraints, these findings will only be evaluated in the 

aftermath of this PhD thesis, under consideration of additional data obtained by 

collaborators in 2007.  
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7 Appendix 
 
Other publications and conference contributions further associated with this thesis: 
 
 
Peer-reviewed publications 
 
Gallucci, F., Sauter, E., Sachs, O., Klages, M., Soltwedel, T. (2007). Caging 
experiment in the deep sea: efficiency and artefacts from a case study at the Arctic 
long-term observatory HAUSGARTEN, Journal of experimental marine biology and 
ecology. 
 
Hoffmann, F., Sauter, E., Sachs, O., Røy, H., Klages, M. (2006). Oxygen distribution 
in Tentorium semisuberites and in its habitat in the Arctic deep sea, Proceedings of the 
7th International Sponge Symposium. 
 
 
Not peer-reviewed Publications 
 
Sauter, E. J., Sachs, O., Wiesner, U., Hoffmann, F., Bartsch, S., Morchner C. (in 
press). Geochemistry at the AWI-Hausgarten. Reports on Polar and Marine Research. 
 
Assmy, P., Cisewski, B., Henjes, J., Klaas, Ch., Sachs, O., Smetacek, V., Strass, V. 
(2006). Plankton rain in the Southern Ocean: The European Iron Fertilization 
Experiment EIFEX, Das AWI in den Jahren 2004 und 2005 - Report, 2004/2005, 38-41. 
 
Rogenhagen, J., Sauter, E. J., Sachs, O. (2005). Acoustic seafloor investigations with 
PARASOUND, In: Smetacek, V., Bathmann, U., Helmke, E. (eds), The Expeditions 
ANTARKTIS XXI/3-4-5 of the Research Vessel Polarstern in 2004, Reports on Polar 
and Marine Research, 500, 227-229. 
 
Sauter, E. J., Sachs, O., Wegner, J., Baumann, L., Gensheimer, M. (2005). Benthic 
fluxes around the Antarctic Front during the austral fall season, In: Smetacek, V., 
Bathmann, U., Helmke, E. (eds), The Expeditions ANTARKTIS XXI/3-4-5 of the 
Research Vessel Polarstern in 2004, Reports on Polar and Marine Research, 500, 218-
226. 
 
 
Invited talks 
 
Sauter, E., Sachs, O., Schlüter, M., Bathmann, U., Strass, V., Smetacek, V. (2007). 
Rapid export and high benthic fluxes at the Antarctic Polar Front, Assessment and 
reporting colloquium of the DFG Priority Program “Antarctic research with comparative 
investigations in Arctic ice region”, Bremerhaven, 12-14 February 2007. 
 
Sachs, O., Sauter, E. J. (2005). Zukunftsperspektiven geowissenschaftlicher Berufe, 
Die Zukunft in den Geowissenschaften (Workshop der DFG-Kommission für 
Geowissenschaftliche Gemeinschaftsforschung), 22-23 Februar 2005, Internationales 
Wissenschaftsforum Heidelberg, Deutschland. 
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Talks 
 
Peeken, I., Hoffmann, L., Assmy, P., Bathmann, U., Croot, P., Harbou von, L., 
Henjes, J., Jansen, S., Krägefsky, S., Lochte, K., Sachs, O., Sauter, E. (2006). 
Effect of in situ iron fertilisation during contrasting seasons – comparison between 
EisenEx and EIFEX, Ocean Sciences Meeting, 20-24 February 2006, Honolulu, Hawaii. 
 
Sauter, E., Sachs, O., Schlüter, M. (2006). Benthic Fluxes at the SO Polar Front, 
Interner Seminarvortrag auf POL2-Seminar, 23. February 2006. 
 
Sauter, E., Sachs, O., Schlüter, M. (2006). Benthic fluxes at the Southern Ocean Polar 
Front, Präsentation anlässl. SYSTCO-IPY-Arbeitstreffen, 27. February 2006, Hamburg. 
 
Sauter, E., Sachs, O. (2006). Spatial and temporal sedimentation and degradation 
patterns of particulate organic matter in the polar deep-sea (POMPOS), Coordination 
workshop DFG Priority Programme "Antarctic Research with comparative investigations 
in arctic ice regions", Bremerhaven, 9.-10. October 2006. 
 
Peeken, I., Hoffmann, L., Assmy, P., Bathmann, U., Cisewski, B., Leach, H., 
Lochte, K., Sachs, O., Sauter, E., Strass, V. (2005). Export of fresh algal material 
during the Southern Ocean iron fertilisation experiment, EIFEX, ASLO Summer 
Meeting, 19-24 Juni 2005, Santiago de Compostela, Spain. 
 
Sachs, O., Sauter, E. J., Schlüter, M., Peeken, I. (2005). Benthic Fluxes and pigments 
in deep-sea surface sediments of the EIFEX area, EIFEX workshop, 27-30 April 2005, 
Bremerhaven, Germany. 
 
Sachs, O., Sauter, E., Schlüter, M. (2004). Benthic fluxes of the Antarctic Polar Front 
area during the austral fall season, EIFEX Post cruise workshop, 11-12 November 
2004, Bremerhaven, Germany. 
 
 
Posters 
 
Assmy, P., Henjes, J., Klaas, C., Sachs, O., Sauter, E. J., Smetacek, V. (2006). 
Mass sinking of individual species populations during an iron fertilization experiment in 
the Southern Ocean (EIFEX)., Gordon Research Conference “Marine Microbes: 
Activities & Interactions”, 23-28 July 2006, Biddeford, Maine, USA. 
 
Sachs, O., Sauter, E. J., Schlüter, M., Peeken, I., Assmy, P., Schwarz, J., 
Bathmann, U. (2006). Extremely high benthic organic carbon fluxes at the Polar Front 
(Southern Ocean, Atlantic Sector) below areas of enhanced surface productivity, 2nd 
SCAR Open Science Conference "Antarctica in the Earth System", 12-14 July 2006, 
Hobart, Tasmania, Australia. 
 
Sauter, E., Sachs, O., Schlüter, M., Peeken, I., Assmy, P., Strass, V., Bathmann, U. 
(2006). Deep-Sea Benthic Fluxes and Fluff Layer Analyses in Sediments below a 
Southern Ocean Iron Vertilization Experiment, 2nd SCAR Open Science Conference 
"Antarctica in the Earth System", 12-14 July 2006, Hobart, Tasmania, Australia. 
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Sauter, E. J., Sachs, O., Schewe, I., Soltwedel, T. (2006). Impact of large food-falls on 
spatial and temporal patterns of dissolved oxygen in the upper sediment layers, 11th 
International Deep-Sea Biology Symposium, 9-14 July 2006, Southampton, UK. 
 
Sachs, O., Sauter, E. J., Schlüter, M., Wiltshire, K. H., Aberle, N., Peeken, I., 
Assmy, P., Stumm, K., Bathmann, U., Strass, V. H. (2005). Benthic fluxes in the 
region of the Polar Front in the east Atlantic sector of the Southern Ocean during austral 
fall 2004, ASLO Summer Meeting, 19-24 June 2005, Santiago de Compostela, Spain. 
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