Cruise Report

Atalante Cruise Leg – 2 MARSUED IV (replacement of MSM06/3)

07.01.08 Recife - 31.01.08 Dakar

Contents

2.1	Participants	3					
2.2	Research Program	5					
2.3	Cruise Narrative9						
2.4	Preliminary Results	10					
2.4.1	Physical Oceanography	10					
2.4	4.1.1 Instruments and Methods	10					
2.4	4.1.2 First results	12					
2.4.2	Microbiology from low-temperature, diffuse and hot hydrothermal fluids	16					
2.4.3	Temperature measurements of low-temperature, diffuse hydrothermal fluids	24					
2.4.4	Fluid chemistry	28					
2.4	4.4.1 Fluid sampling	28					
2.4	4.4.2 Analytical procedures on-board	32					
2.4	4.4.3 First results	34					
2.4	4.4.4 The chemical composition of hydrothermal fluids – Perspectives	42					
2.4.5	Gas Chemistry	42					
2.4.6	Hydrothermal Symbioses	46					
2.4.7	Paleaoceanography	50					
	Global distribution and atmospheric transport of volatile and semi-volatile polyfluorinated	5 0					
•	ounds						
2.4.9	Volcanic rocks	52					
2.4.10	ORocks from the deeper crust	58					
2.4.11	ROV deployments during MAR SOUTH IV	67					
2.5	Acknowledgements	68					
2.6	References	69					
Appe	endix	71					

2.1 Participants

1.	Prof. Colin Devey	Chief Scientist	IFM-GEOMAR
2.	Dan Cormany	ROV Pilot	High Sierra Technologies
3.	Dr. Nicole Dubilier	Hydroth. Symbioses	MPI Bremen
4.	Gerd Fraas	Phys. Oceanography	Univ. Bremen
5.	Andy Foster	ROV-Team	Schilling Robotics
6.	Dieter Garbe-Schönberg	Fluid Chemistry	Univ. Kiel
7.	Petra Günnewig	Phys. Oceanography	Univ. Bremen
8.	Phillip Hach	Fluid Chemistry	Jacobs Univ. Bremen
9.	Almuth Harbers	Palaeoceanography	IFM-GEOMAR
10.	Claus Hinz	ROV-Team	IFM-GEOMAR
11.	Verena Klevenz	Fluid Chemistry	Jacobs Univ. Bremen
12.	Jürgen Koepcke	Petrology	Univ. Hannover
13.	Eric Labahn	ROV-Team	Fa. K.U.M.
14.	Klas Lackschewitz	ROV-Team	IFM-GEOMAR
15.	Ralf Lendt	Gas Chemistry	Univ. Hamburg ⁺
16.	Nadine Markus	Microbiology	Univ. Hamburg*
17.	Arne Meier	ROV-Team	IFM-GEOMAR
18.	Bernd Melchert	Bathymetry	IFM-GEOMAR
19.	Christian Mertens	Phys. Oceanography	Univ. Bremen
20.	Holger Paulick	Petrology	Univ. Bonn
21.	Mirjam Perner	Microbiology	Univ. Hamburg*
22.	Martin Pieper	ROV-Team	IFM-GEOMAR
23.	Katja Schmidt	Fluid Chemistry	Jacobs Univ. Bremen
24.	Jörg Schneider	ROV-Team	IFM-GEOMAR
25.	Richard Seifert	Gas Chemitry	Univ. Hamburg ⁺
26.	Harald Strauss	Fluid Chemistry	Univ. Münster
27.	Jillian Struck	Hydroth. Symbioses	MPI Bremen
28.	Günter Suhr	Petrology	Univ. Cologne
29.	Frederic von Guilleaume	Gas Chemistry	Univ. Hamburg ⁺
30.	Marco Warmuth	Gas Chemistry	Univ. Hamburg ⁺

Participating Institutions

IFM-GEOMAR

Wischhofstr. 1-3 24148 Kiel

MPI Bremen

Max-Planck-Institut for Marine Microbiology Celsiusstr. 1 28359 Bremen

University of Kiel

Institut für Geowissenschaften Olshausenstr. 40 24118 Kiel

University Bremen

Fachbereich 1 "Environmental physics" Postfach 330440 28334 Bremen

Jacobs University Bremen

PO Box 750561 28725 Bremen

University Hannover

Institut für Geowissenschaften Welfengarten 1 30167 Hannover

University of Cologne

Institut für Geologie und Mineralogie Zülpicher Str. 49 a/b 50674 Köln

University of Hamburg*

Department of Biology, Biozentrum Klein Flottbek Ohnhorststr. 18 22609 Hamburg

University of Hamburg+

Institut für Biogeochemie und Meereschemie Bundesstraße 55 20146 Hamburg

University of Münster

Geologisch-Paläontologisches Institut Corrensstraße 24 48149 Muünster

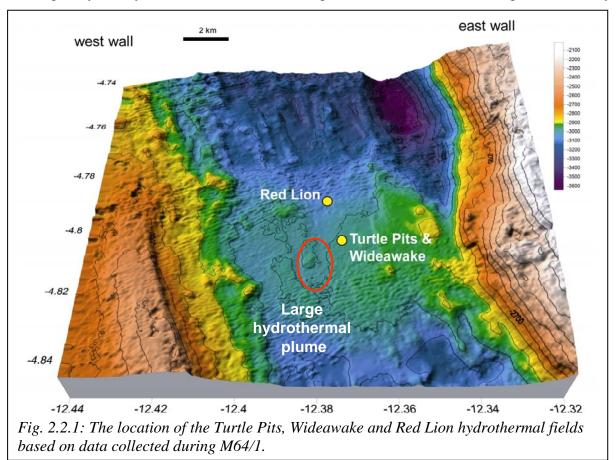
University of Bonn

Mineralogisches und Petrologisches Poppelsdorfer Schloss 53115 Bonn

Schilling Robotics

201 Cousteau Place Davis, CA., 95618 U.S.A.

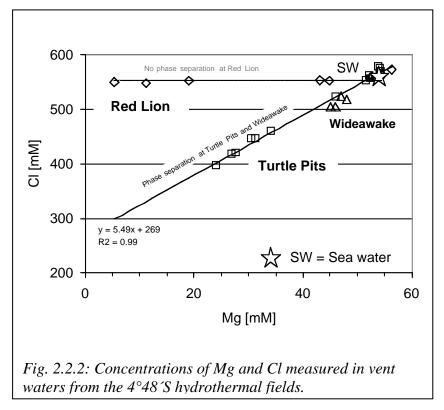
High Sierra Technologies


40940 Baptist Church Drive Lebanon, Oregon, 97355 U.S.A.

2.2 Research Program

The research cruise had, in the time available, two major aims: returning to observe and sample at the 4°48'S hydrothermal site (Turtle Pits etc.) and observing and sampling the lower crust on the 5°S Inside Corner High. The following gives some details on these goals:

4°48'S (Turtle Pits, Red Lion, Wideawake Field)


Vents at Turtle Pits (location, Fig. 2.2.1) show turbulent fluid emanations with temperatures of about 400°C. This is the highest temperature measured so far in fluids at the MAR. Consequently, the system is close to the critical point of seawater on the two-phase boundary

for a boiling system. The Turtle Pits boiling fluids have significantly reduced chloride concentrations (end member value of 254 mmol/l Cl, Fig. 2.2.2) compared to a background bottom seawater value of about 560 mmol/l Cl. This indicates that the fluids are phase-separated and that the samples collected represent the vapour-type phase in the boiling fluids. The diffuse-flow Wideawake mussel field, which is located at a distance of only a few hundred meters from Turtle Pits, is on the same mixing line of seawater and hydrothermal end member chlorinity (Fig. 2.2.2), indicating that Turtle Pits and Wideawake are supplied from the same fluid source at depth. Interestingly, the fluids from the Red Lion field apparently do not show any signs of phase separation (chlorinity end member of 563 mM undistinguishable from seawater, Fig. 2.2.2). Although we have no in-situ temperatures from the Red Lion vents, we can deduce that the Red Lion fluid source at depth has a significantly lower temperature than at Turtle Pits. The high Fe/Mn ratio of 6.8 at Turtle Pits is as high as it is documented for ultramafic systems such as Rainbow and Logatchev fields (Douville et al., 2002) and contrasts with a Fe/Mn ratio of 1 in the Red Lion fluids.

The Turtle Pits fluids have a very high H_2/CH_4 ratio of about 15, even exceeding those found in the serpentinite-hosted Logatchev and Rainbow hydrothermal vents (see data for cruise

M60/3 and from Douville et al., 2002). In contrast, the H_2/CH_4 ratio at Red Lion is only 2.7. Dissolved sulphide concentrations for the three individual hydrothermal vent sites at 5°S are quite variable, ranging from a low abundance of 3 μ mol/l (measured data) in the diffuse fluids at the Wideawake Mussel Field to concentrations as high as 830 μ mol/l (measured; endmember 1.3 mM) for hot fluids emanating from black smokers at the Turtle Pits site.

Preliminary sulphur isotope data for sulphide particles in the hydrothermal fluids as well as for massive sulphides from different chimneys at Turtle Pits display a range between +3.5 to +6.7 % (VCDT). Based on respective data for sulphide precipitates other from sites of hydrothermal activity at midocean ridges, this range in d³⁴S suggests that sulphur in the fluid represents a mixture of mantle sulphur and seawater sulphate sulphur.

During M64/1 the first microbiological studies at the southern hydrothermal vent sites of the MAR were initiated. Genetic analyses and cultivation experiments are in

progress, microscopic observations of microorganisms from the Wideawake field revealed heterogeneous morphological assemblages in most cases. Interestingly, enough rock samples collected at the border of Bathymodiolus assemblages showed white structures (0.5-2 mm length) which covered the entire rock and could easily be recognized by eye. Morphological these cells had the typical features of Thiothrix species. In addition, some netlike cracks were observed which were dominated by a large coccoid microorganism (20 μ m width) with obvious similarity to species of Achromatium. Both microorganisms contained numerous sulphur globules and represent members of the group of colorless sulphur bacteria. Both microorganisms are important primary producers and are highly abundant at these vent sites. To our knowledge, this is the first observation of these two colorless sulphur bacteria at deep sea hydrothermal vent systems.

Lower crustal and mantle rocks in the spreading axis

Decompression melting of adiabatically upwelling mantle is probably the cause of most magmatism at the mid-ocean ridges (e.g. Klein and Langmuir, 1987). At most ridges, the lower crust and upper mantle are therefore difficult to study as they are coated by and buried beneath 2+ km of dikes and lavas. At slower spreading rates, however, the adaibatic melting process can start to become heterogeneous and rocks from the lower crust and mantle start to become more accessible.

This occurs through two processes. Firstly, the mantle produces generally less melt and this melt production becomes focussed towards the spreading segment centres as a result of 3-D upwelling (Parmentier and Morgan, 1990). The "crust" is then made up of a mixture of basalt

and mantle rocks, the latter of which may contain intrusives such as gabbros (e.g. Cannat, 1996; Cannat et al., 1992; Cannat et al., 1995). Secondly, the increasing importance of tectonic processes in accommodating the spreading movement at magma-starved slower spreading ridges can lead to the formation of low-angle normal faults (Cann et al., 1997). These faults generate tectonic windows which can provide the necessary exposures of the lower crust and mantle (Tucholke et al., 1998). They can lead to the formation both of so-called "megamullions" (areas of striated seafloor close to the ridge axis reflecting the slip surface of the low-angle normal faults) and also of inside corner highs (areas of raised

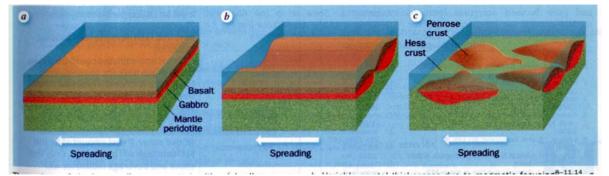


Fig. 2.2.3: Theoretical variations in seafloor structure with decreasing spreading rate (from left to right). From Snow (1995)

bathymetry on the inner side of a spreading axis – transform boundary). These low-angle detachment faults may be rooted above a shallow magma chamber, or even cut all the way into the mantle rocks. Baines et al. (2003) showed that the uplift of "inside corner highs" is partially caused by transpressional forces of large faults around them.

The seafloor generated at slow-spreading ridges (Fig. 2.2.3, c) is therefore in principle vastly different to that generated at fast-spreading ridges (Fig. 2.2.3, a).

This could have enormous implications for hydrothermal processes, as the nature of the rock in which the hydrothermal system is rooted is of paramount importance for the composition of the hydrothermal fluids. This point was made forcibly by the serendipitous discovery of a hydrothermal system situated on, and deriving all its energy from, ultramfic (mantle) rocks at the Lost City site in the Atlantic (Kelley et al., 2001).

The low-angle normal faults also bring samples from great depth up to the seafloor. This

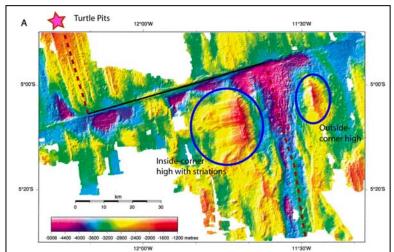
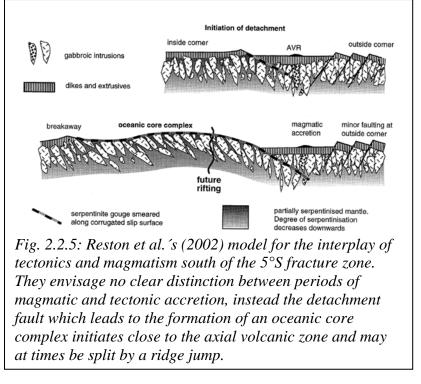


Fig. 2.2.4: Bathymetric map of the region around the 5°S Fracture Zone (from Reston et al., 2002). The present-day spreading axis is marked with a dashed line, the transform fault with a black line. The location of the Turtle Pits hydrothermal field (see Fig. 2.2.1) is also shown.


allows us almost unique access to rocks from the lower crust and upper mantle influenced by the hydrothermal circulation operating at very high temperatures at the interface between magmatic and hydrothermal processes. The geological record of this process was discovered in many gabbros from the Kane Fracture zone at the MAR, 23°N (Koepke et al., 2005b) and also from the Atlantis II core complex of the slow-spreading Southwest Indian Ridge (Koepke et al., 2005a; Koepke et al., 2004). These authors found evidence to hypothesis support the that seawater-derived water-rich fluids

propagate along high-temperature shear zones down into the deep oceanic crust causing locally hydrous partial melting on grain boundaries. This results in the formation of a characteristic interstitial mineral paragenesis and a SiO_2 -rich melt which may separate and crystallize within cracks forming typical felsic veins or netveining matrices. With the help of a newly developed in-situ Sr isotope technique it was recently verified that the fluids triggering the partial melting are seawater-derived. Thus, the observed fluid/melt transport in the deep oceanic crust within core complexes represents a first and fundamental stage in the transfer of heat from the crust to the surface.

Two areas in which lower crustal and mantle rocks are exposed are known from previous work in the MARSUED-area. Geophysical and rudimentary sampling studies south of a small fracture zone at 5° S (Reston et al., 2002) have shown the presence of both gabbros and serpentinites on a so-called inside-corner high. This high appears to have been split in relatively recent times (0.75 Ma) by rifting, forming a new axis in the middle of the uplifted

block and generating a complimentary outside-corner high (see Fig. 2.2.4).

Four dredges collected bv Reston during M47/2 showed that the inside-corner massif is predominantly made of gabbroic intrusive rocks. although serpentinised peridotites were found on the corrugated upper surface of the massif, probably associated with smearing along the detachment fault. These authors suggest that detachment faulting and uplift of lower crustal and mantle rocks may be concurrently occurring with magmatic rifting (see Fig. 2.2.5). This situation may be exactly the one which is needed explain the types of to

hydrothermal activity seen at the other SPP site at Logatchev and perhaps even at Nibelungenfeld, where fluids with temperatures which require them to have been in close contact with magmas are vented in areas of the seafloor characterised by lower crustal or mantle rocks. One of the major aims of the cruise proposed here will be to study this uplifted massif to determine (a) its geology and the distribution of rock types and (b) to look for the distribution of alteration channels which may have been former root zones for hydrothermal systems.

Reston et al.'s (2002) observation of gabbronorite among the plutonic rocks of the inside corner high is significant, since the dominance of orthopyroxene primocrysts in primitive gabbros indicates crystallization and fractionation at depth, several km deeper than that level where the axial magma chambers under ridges are typically located. For example, high amounts of gabbronorites were recovered farther north, between 14° - 16°N by both M60/3 and the ODP (Ocean Drilling Program, Leg 209) recording cooling and partial crystallization of ascending MORB at great depth (15–25 km). Moreover, crystallization and fractionation of MORB magmas at depth is also in agreement with phase equilibria modelling in combination with experimental work based on the dredged basalts of different segments of the MARSUED area, revealing different equilibrium pressures for individual segments between 1.5 and 8

kbar. These results show also that the differentiation under distinct segments was strongly influenced by water activity.

2.3 Cruise Narrative

The N.O. "Atalante" left Recife harbour on schedule in the morning of 7th January 2008. There followed a 7 day transit to the working area, including a stop to lower the ROV cable to 5500m to remove twists in the wire. The ship arrived in the working area late in the evening of 13^{th} January and the research program started with CTD stations to establish the strength and position of any hydrothermal plume. This was the beginning of activities which repeated each day – a night program consisting of CTD work or rock sampling with the volcanic corer interspersed with a day program of ROV dives. Whenever the ROV needed maintenance the day program consisted of mapping or longer CTD stations. The penultimate day of the working period was marked by an attempt (unfortunately unsuccessful) to recover releasers from the University of Bremen mooring which did not surface followed by the deployment of a profiling mooring from IFM-GEOMAR. The last day saw a long dive on the fracture zone wall at 5°S. Early in the morning of 26th January 2008.

2.4 **Preliminary Results**

2.4.1 Physical Oceanography

(C. Mertens, G. Fraas, P. Günnewig)

2.4.1.1 Instruments and Methods

Conductivity-temperature-depth (CTD) casts were carried out using a Sea-Bird Electronics, Inc. SBE 911plus system (IFM-GEOMAR) that was equipped with double temperature, conductivity, and oxygen sensors as well as with a Wetlab C-Star transmissometer (D. Quadfasel, Univ. Hamburg). The underwater unit was attached to a SBE 32 carousel water sampler with 24 Niskin bottles. Three bottles were left out for a lowered acoustic Doppler current profiler system (LADCP), hence a maximum of 21 bottles was used. The complete system worked properly throughout the entire cruise. Salinity samples, typically three on each cast, were collected for later analysis at home. In total 20 CTD casts were carried out, including three time series (yoyo) stations, and one towed transect across the rift valley (Fig. 2.4.1.1).

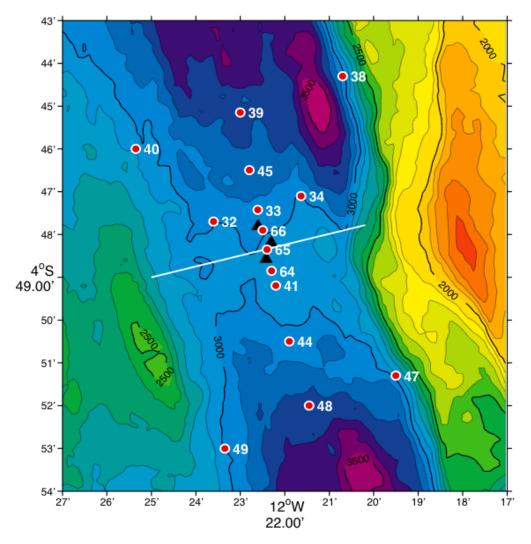


Fig. 2.4.1.1: Map of the working area showing the CTD/LADCP stations (dots). The track of a tow-yo track across the rift valley is shown as a white line. The hydrothermal vent sites Turtle Pits, Comfortless Cove, and Red Lion are depicted as black triangles. Additionally three time series stations were carried out. Two north of Red Lion (at station 33) and one north of Comfortless Cove (near station 66).

The LADCP system consisted of two RD Instruments 300 kHz Workhorse Monitor ADCPs. The instruments worked in a synchronized master-and-slave setup, where the downward looking master (S/N 630, IFM-GEOMAR) triggers the upward looking slave (S/N 7915, Univ. Bremen). The instruments were powered by an external battery supply, that consisted of 35 commercial quality 1.5 V batteries assembled in a pressure resistant Aanderaa housing. On one of the time series stations (62, CTD17) the slave instrument did not collect any data. This was presumably caused by a communication problem between master and slave.

An inverse method incorporating the bottom track velocities was used for the post processing of the raw data. The overall performance of the two instruments was very good: The range of each instrument was typically 150 m in the upper parts of the water column and 60 to 70 m at depth exceeding 1500 m. Thus, the total range of the package reached from 150 to 300 m. With lowering and heaving velocities of 1 m/s of the instrument package, this range amounted to 100 to over 200 estimates of current shear in each depth cell in the deep water, and more in the shallow layers, depending on the amount of backscatter. For the cast with the single instrument, the reduction of range lead to a decrease of shear estimates per bin, but as the water depth did not exceed 3000 m and the abundance of backscatterers was high, the resulting current data were still of good quality.

During yoyo and towyo stations three (serial numbers 33, 36, and 38) miniature autonomous plume recorders (MAPR, E. Baker, NOAA/PMEL) were used to improve the data coverage. MAPRs are self-contained instruments, that record data at pre-set time intervals from temperature (thermistor mounted in a titanium probe, resolution 0.001°C), pressure (0 - 6000 psi gauge sensor, resolution 0.2 psi), and nephelometer (Sea Tech Light Backscatter Sensor, LBSS) sensors. One MAPR (S/N 38) had an additional redox potential (Eh) probe build by K. Nakamura. During operation two of the MAPRs were clamped on the hydrgraphic wire, 100 m and 200 m above the water sampler, and the MAPR with the Eh probe was directly attached to the water sampler. The instruments were working fine throughout the cruise, with only one exception during the cross-valley towyo, were one MAPR (S/N 38) recorded only the first 70% of data. On four CTD stations near the vent sites the MAPR with Eh probe was also attached to the water sampler. In total, MAPRs were used on 9 of the 20 CTD stations.

For measurements of the Helium concentrations and isotopic signature, water samples were taken in the water column from the Niskin bottles (94 samples in total) and directly from the vents with the ROV (3 samples). The samples were sealed free of head space and gas tight in copper tubes (sample volume 40 ml). Special containers for sampling vent fluid (developed & tested in the framework of the SPP 1144) were used for the ROV samples. The sampling containers can keep a pressure of more than 3.107 Pa and avoid phase separation of vent fluids and gases. Helium isotope measurements will be carried out at the University of Bremen with a fully automated UHV mass spectrometric system. The sample preparation includes gas extraction in a controlled high vacuum system. Helium and neon are separated from permanent gases in a cryo system at 25 K. A split of the sample is analyzed for 4He, 20Ne and 22Ne with a quadrupole mass spectrometer. At 14 K He is separated from Ne and released into the sector field mass spectrometer for analysis of 3He and 4He. The facility achieves about $\pm 0.2\%$ precision for 3He/4He ratios, and $\pm 0.5\%$ or better for helium and neon concentrations. The primodial components of helium isotopes are ideal tracers for large-scale distribution of vent fluids in the water column. Samples collected during this cruise are supposed to provide the regional distribution of dispersing vent fluids in the water column leading to an estimate of its volume.

On January 14, an attempt was made to recover a mooring with three Aanderaa RCM11 current meters (Univ. Bremen) at 4° 48.21' S, 12° 22.50' W, that was deployed during Meteor cruise M68/1 in May 2006. However, the mooring did not leave the ground, although the release execution command was clearly confirmed during several attempts from both

releasers. Acoustic ranging revealed that the releasers were located at a depth of about 3000 m which is the seafloor depth at this location. It was therefore concluded that the mooring must have lost all buoyancy because the nominal depth of the releasers was 45 m above the seafloor. Knowing the approximate position of the releasers from the acoustic ranging measurements, a recovery dive with the ROV was undertaken in the evening of January 24 to find the two releasers and possibly one of the current meters. During the dive an area of about 150 m x 100 m was searched but (probably because of the rough terrain) the instruments could not be found.

A new mooring equipped with a CTD profiler and an acoustic current meter (IFM-GEOMAR) was deployed at nearly the same location as the previous mooring. The instrument was programmed to carry out 11 profiles between 2295 dbar and 2990 dbar every 5 days. The deployment started on January 24, 23:10 with the anchor first. The top buoy went into the water on January 25, 01:18. Afterwards the mooring was carefully lowered towards the seafloor and acoustically released as the anchor was 15 m above the ground at 02:55. The position of the anchor drop was 4° 48.20' S, 12° 22.51' W and the water depth 3004 m.

2.4.1.2 First results

Two hydrographic sections with 3 casts each (CTD/LADCP/Water sampling/48 Helium samples) were carried out north (CTD6-CTD8) and south (CTD13-CTD15) of the area. The local topography is closed to the sides below a water depth of 2700 m, hence these two sections form a box where measurements of the current field and the stratification allow to calculate fluxes of volume, heat and helium into and out of the vent field area. A third section, again with 3 casts (CTD2-CTD4, 34 Helium samples) was carried out directly north of the Red Lion vent site. Six additional CTD stations (CTD9, CTD11, CTD12, CTD18-CTD20) were used to close an along-valley section (including 13 on stations 11 and 12). Three time series stations (yoyo) were carried out; two north of Red Lion (CTD5 and CTD17) and one north of Comfortless Cove (CTD16). Finally a 5 nm long tow-yo transect completely covering the deep part of the axial valley below the maximum plume hight. During the tow-

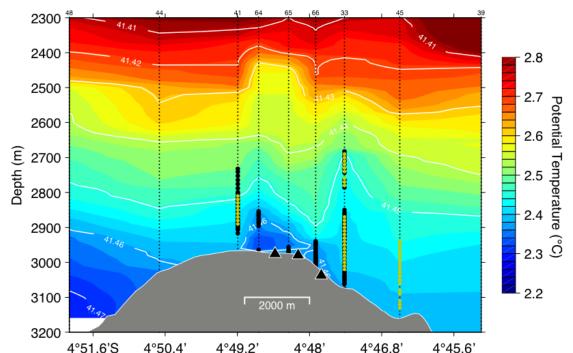
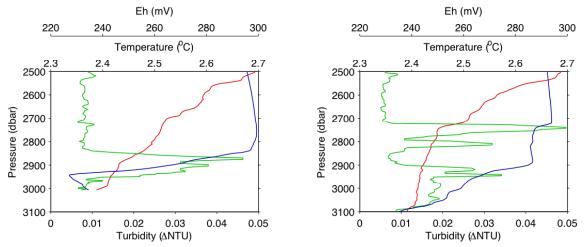



Fig. 2.4.1.2: Potential temperature section along the rift valley put together from nine non-synoptic CTD stations. Contours of potential density are shown in white. Transmission and Eh anomalies are marked with yellow and black dots (no Eh data on station 45). The locations of the vent sites are indicated by black triangles.

yow, POSIDONIA was used to navigate the CTD.

The along-valley temperature and density structure (Fig. 2.4.1.2) clearly indicates a mean northward flow, as the water below sill level is colder and denser on the southern side. Downstream of the sill, the isotherms and isopycnals (and hence the plume anomalies) deepen, showing that water spills over the sill, and the water column stretches, i.e. the vertical spacing between isopycnals increases. Plume signals, either transmission or Eh anomalies, were found at all stations close to the vent sites (33, 41, 45, 64-66) up to a depth of about 2700 m. The distance from the vent sites where plume signals are still found in the water column is larger in northward than in southward direction which indicates prevailing northward currents in the plume layer. Interestingly, Eh signals were found on three stations (64-66) rather close to the vent sites but no indications for the particle plume, neither in the transmissometer data nor in the backscatter measurements of the MAPR. Above the sill the isopycnals show large vertical excursions of up to ± 100 m caused by tides and internal waves.

Fig. 2.4.1.3: Vertical MAPR profiles of temperature (red), turbidity (green), and Eh (blue) at two stations south (station 41, left) and north (station 33, right) of the vent sites.

The maximum rise hight of the plume corresponds roughly to the 2.5 °C isotherm, observed at the stations 33 and 41. The MAPR data at these two stations are shown in Fig. 2.4.1.3. At the southern station a single plume between 2800 and 2950 m was observed. At the northern station the vertical structure of turbidity and Eh reveal an upper plume between 2700 and 2850 m, followed by a second plume between 2900 and 3000 m. The decrease in Eh in the upper plume is smaller compared to the second plume and therefore the water in upper plume is farther away from the source and probably originating from the Turtle Pits vent site. Below 3050 m a third decrease in Eh is observed again smaller than in the second plume, suggesting comfortless cove as the source. The central plume with the strongest Eh signal should therefore be attributed to the Red Lion vent site.

Detailed measurements of the plume variability were obtained during two time series stations (yoyo) carried out about 700 m north of the Red Lion vent site. The first yoyo was on January 14/15 with a duration of 9 hours and the second was about 8 days later on January 22/23. The time series of turbidity (Fig. 2.4.1.4) show a large variability of the particle plume. During the first yoyo stations two distinct maxima were observable, although changing in depth and intensity with time. These two maxima could be attributed to Turtle Pits (upper) and Red Lion (lower). The lowest plume that originates from Comfortless Cove starts to appear after 4-5 hours between 3000 and 3050 m. The vertical excursions of the plumes can be explained by internal waves, as the plume clearly follows the isotherms.

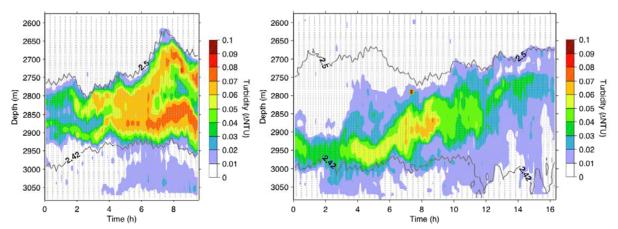


Fig. 2.4.1.4: Time series of turbidity measured during two yoyo stations carried out on January 14/15 (left) and January 22/23 (right), both at the same location about 700 m north of the Red Lion vent field (at station 33 in Fig. 2.4.1.1). Also shown are two temperature contours that depict the upper and lower boundaries of the non-buoyant plume.

During the second yoyo the turbidity measurements suggest a slowly rising single plume, which makes physically no sense in a non-buoyant plume. Instead the variability of the currents has to be taken into account which show a nearly constant northward flow and tidal fluctuations of ± 4 cm/s in east-west direction (Fig. 2.4.1.5). Therefore the path of the particles from the source to the observational site is strongly bent, depending on the tidal phase. At the beginning of the time series the current is purely northward and we observe the lower plume from Red Lion not the Turtle Pits plume, because during the hours before the current had an eastward component, driving the Turtle Pits plume away from the observational site. Later on, as the currents get a westward component, the upper Turtle Pits plume appears while the lower Red Lion plume gets weaker.

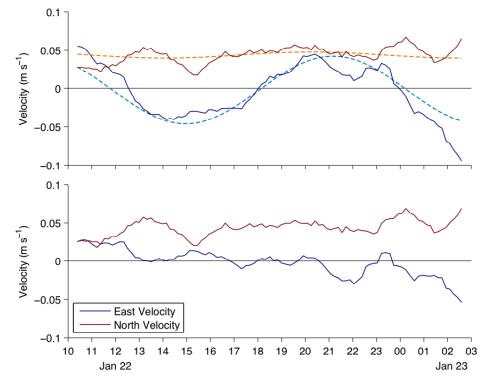


Fig. 2.4.1.5: Time series of the mean velocity in the plume layer between 2750 m and 3000 m measured on January 22/23 about 700 m north of the Red Lion vent field. The east velocity is shown in blue and north velocity in red. Harmonic fits of the semidiurnal M_2 tide are shown as dashed lines. The residual velocities after removal of the tides are shown in the lower panel

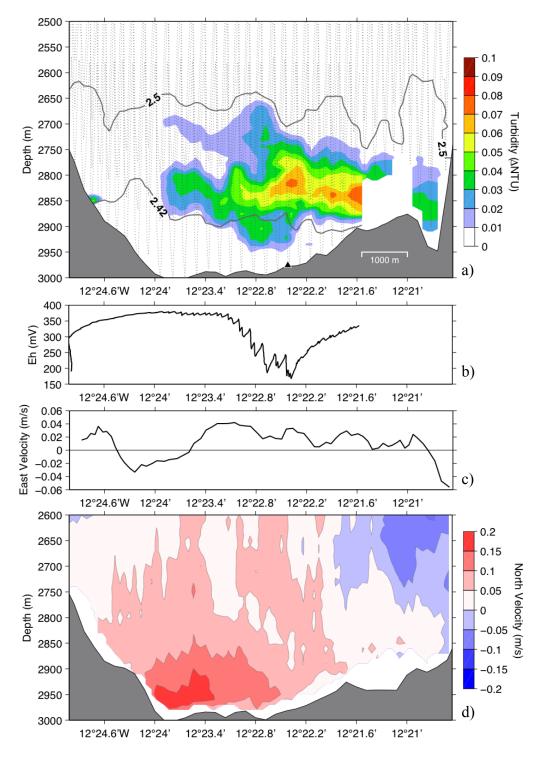


Fig. 2.4.1.6: Observations during a 5 nm long tow-yo crossing the rift valley from west to east. The CTD was navigated using POSIDONIA. (a) Turbidity from three MAPRs, one mounted on the CTD frame and two attached to the wire 100 m and 200 m above the CTD. (b) Eh from the MAPR parallel to the CTD. (c) Mean eastward current velocity below 2750 m from ADCP measurements. (d) Contours of northward velocity from ADCP measurements

The tidal phase of the currents is also of large importance to explain the structure of the particle plume that was observed during the cross-valley tow-yo. The plume appears to be extremely wide and covers about three fourth of the section (Fig. 2.4.1.6). Again we have a northward flow of about 5 cm/s and a fluctuating east-west component that is eastward at the beginning of the towyo, then westward for about two hours, and then mostly eastward for the

remaining part of the towyo. Thus we can assume that the plume is first pushed westward toward the ship for a few hours which explains the far west reaching plume. Afterwards the plume moves eastward and more or less follows the ship and instrument package.

The current measurements during the towyo show that the area was dominated by alongvalley northward currents. The average current velocity is typically of about 5 cm/s, with maxima of more than 15 cm/s. The strongest currents were observed close to the bottom where the overflow across the sill takes place. The volume transport associated with the flow observed during the towyo amounts to 0.12 Sv (1 Sv = 10^6 m³/s). For a more general determination of the background flow field that takes long term variability into account and for the precise determination of tidal amplitudes and phases, a moored profiler that measures CTD and velocity data in the lower 700 m was deployed at the sill of the valley, in the center of the vent fields at 12° 22.51' S, 4° 48.20' S.

2.4.2 Microbiology from low-temperature, diffuse and hot hydrothermal fluids

(Mirjam Perner, Nadine Markus)

The main objective of the microbiology group during this cruise was to collect lowtemperature, diffuse and hot hydrothermal fluids from hydrothermal fields on the southern Mid-Atlantic Ridge to investigate:

- 1. the intra-field and inter-field microbial variability
- 2. the functioning of the microbial community, specifically focusing on microbial H_2 and H_2 S-oxidation and CO₂ fixation.

Intra-field and inter-field microbial variability

To investigate the intra-field and inter-field microbial variability the following fluids were collected (see table 2.4.2.2):

3 hot hydrothermal fluids (Sisters Peak, Mephisto, Two Boats)

5 low-temperature diffuse fluids (Wideawake and Clueless, mussel patches)

To identify and quantify the local microorganisms in the fluids of different sites material was collected to construct clone libraries using the 16S rRNA gene and perform fluorescence *in situ* hybridization in the home laboratory.

Functioning of the microbial community

The functioning of the vent microbial community is studied by two approaches. The first includes cultivation of selected groups of bacteria and archaea. The second involves analysis of functional genes and parallel-performed ¹⁴C-incubation experiments with the decrease of potential electron-donors and acceptors being monitored.

Cultivation experiments

To characterize at least parts of the microbial community cultivations have been started on board (and will be continued in the home laboratory) specifically selecting for H_2 -oxidizing and CO_2 fixing microorganisms (e.g. *Epsilonproteobacteria*, *Aquificales*, and

Methanococcales). For this purpose, selective media for autotrophic microorganisms was supplemented with various electron donors (H₂, H₂S, S^{\circ}, S₂O₃) as well as suitable electron acceptors (O₂, NO₃, S^{\circ}, S₂O₃) in the presence of CO₂.

Additionally, media for aerobic and anaerobic heterotrophic microorganisms was used. Cultivations were conducted along a temperature gradient of 25-75°C.

For the cultivation experiments, material was gathered from:

1 hot hydrothermal fluid (Sisters Peak, Comfortless Cove)

3 low-temperature diffuse fluids (Wideawake and Clueless mussel patches)

¹⁴C-incorporation experiments

The second approach investigates the functioning of the vent microbial community by using functional genes encoding for key enzymes of H₂-oxidation, oxidation of reduced sulfur compounds and CO₂ fixation. However, the presence of functional genes encoding key enzymes of specific metabolisms is no proof of the actual functioning of this metabolism. Therefore, additionally, ¹⁴C-incorporation experiments (at 25°C) were performed with hydrothermal fluids, which were supplemented with H₂ (under oxic and anoxic conditions) or H₂S as electron donor. The decrease of the supplied electron donors (H₂ or H₂S) and electron acceptors (O₂) was monitored during the 30 hours of incubation.

For this experiment hydrothermal fluids were collected from 3 diffuse fluids (Wideawake, Clueless) and 1 hot fluid from Mephisto (Red Lion)

Four parallels with each 15 ml of the hydrothermal fluids were supplemented with

- H₂-gas under anoxic conditions

- H₂-gas under oxic conditions

 $-H_2S$

- nothing (reference)

and injected with ${}^{14}\text{CO}_3{}^{2-}$. Three parallel controls using liquids that were microorganism-free (filtered through a 0.1 µm filter) and liquids with non-active microorganisms (sample was fixed with formaldehyde) were incubated to determine the non-biological loss of H₂, O₂ and H₂S in the incubation bottles. These values were taken into consideration when evaluating the decrease of H₂, O₂ and H₂S in the incubation experiment.

 H_2 , O_2 and H_2S contents were monitored at time points 0 and after 30 hours of incubation (Fig. 2.4.2.1). The amount of labeled inorganic carbon, which has been incorporated into the cells, has been measured for one of the parallels on board (Fig. 2.4.2.1) and will be determined for the other three parallels in the home laboratory.

substrate decrease and inorganic carbon fixation in hydrothermal fluids during ¹⁴C incubation under distinct chemical conditions

Fig. 2.4.2.1: The decrease of substrates $(H_2, H_2S \text{ and } O_2)$ under distinct conditions is shown for a 30 hour time-period in the incubation experiments at 25°C. H_2 data by Marko Warmuth and Richard Seifert (University Hamburg); H_2S data by Harald Strauss (University Münster). Fluids at Mephisto were anoxic therefore no O_2 decrease could be determined.

station	depth [m]	niskin bottle number	DNA (-70°C)	FISH (fixed in formaldehyde)
ATA02-31CTD = ATA02-CTD01	3000	1-6	filter 2-2 (900 mL)	filter 3000 (100mL)
	2700	13	filter 2-3 (900 mL)	filter 2700 (100mL)
	2600	14	filter 2-1 (900 mL)	filter 2600 (100 mL)
	2200	17	filter 2-7 (450 mL)	filter 2200 (45 mL)
	1800	19	filter 2-5 (450 mL)	filter 1800 (45 mL)
	100	20	filter 2-4 (900 mL)	filter 100 (100mL)

Table 2.4.2.1: Sample list of CTDs

MARSÜD IV (07.01. – 31.01.2008)

l'Atalante

Table 2.4.2.2: Sample list of hydrothermal fluids taken with the KIPS during the ROV dives

station	site	KIPS bottle number		FISH	culture			CO ₂ rates
			(-70°C)	(fixed in formaldehyde) name		target organism t (°C		
Rocks Turtle Pits 35 H	ROV							
ATA02-35 ROV 16	Turtle Pits		rock	rock				
ATA02-35 ROV 16A	Turtle Pits		rock	rock				
Diffuse fluids Wideaw	ake (4 bottles	taken) 37 ROV 1-5 11:	50-12:18 UTC		38	Desulfurobacterium group,	25	1H2.0-1
ATA02-37 ROV 1-5	Wideawake	C8/B6/B5	filter 2-8 (200 mL)	filter (200 mL)	39	Desulfurococcales &	55	1H2.0-2
			filter 2-9 (400 mL)		40	Epsilonproteobacteria	75	1H2.0-3
			filter 2-10 (200 mL)		41	Thermales + Aeropyrum	55	1H2.0-4
					42	Thermales + Aeropyrum	75	1H2.A-1
					43	Methanococcales	37	1H2.A-2
					44	Methanococcales	55	1H2.A-3
					45	Methanococcales	75	1H2.A-4
					46	Thermococcales	75	1H2S-1
					47	Aquificales +		-
						Epsilonproteobacteria	25	1H2S-2
					48	Aquificales +		
						Epsilonproteobacteria	37	1H2S-3
					49	Aquificales +		
						Epsilonproteobacteria	55	1H2S-4
					50	Aquificales +	7.5	10 (1
					<i>5</i> 1	Epsilonproteobacteria	75	1Ref1
					51	Archaeoglobales	55	1Ref2
					52	Archaeoglobales	75	1Ref3
								1Ref4

Cruise Report

MARSÜD IV (07.01. – 31.01.2008)

l'Atalante

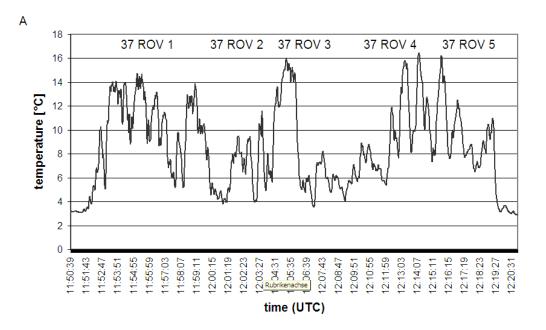
station	site	KIPS bottle number		FISH		culture		CO ₂ rates	
			(-70°C)	(fixed in formaldehyde)	name	target organism	t (°C)		
Diffuse fluids Wideawa	ake (5 bottles	taken) 37 ROV 10-13	15:58-16:18 UTC		55	Desulfurobacterium group,	25	2H2.0-1	
ATA02-37 ROV 11-13	Wideawake	A2/A3	filter 2- 11 (500 mL)	filter (200 mL)	56	Desulfurococcales &	55	2H2.0-2	
					57	Epsilonproteobacteria	75	2H2.0-3	
					53	Thermales + Aeropyrum	55	2H2.0-4	
					54	Thermales + Aeropyrum	75	2H2.A-1	
					58	Methanococcales	37	2H2.A-2	
					59	Methanococcales	55	2H2.A-3	
					60	Methanococcales	75	2H2.A-4	
					61	Thermococcales	75	2H2S-1	
					62	Aquificales +		•	
						Epsilonproteobacteria	25	2H2S-2	
					63	Aquificales +			
						Epsilonproteobacteria	37	2H2S-3	
					64	Aquificales +			
						Epsilonproteobacteria	55	2H2S-4	
					65	Aquificales +			
						Epsilonproteobacteria	75	2Ref1	
					66	Archaeoglobales	55	2Ref2	
					67	Archaeoglobales	75	2Ref3	
								2Ref4	

Hot fluids ATA02-42 ROV 12 (Sisters Peak, C	68	Desulfurobacterium group	75	
ATA02-42 ROV 12	filter 2-12 (100 mL) filter (10 mL)	69	Methanococcales	75
	filter 2-13 (100 mL) filter (40 mL)	70	Thermococcales	75
			Aquificales +	
	filter 2-14 (100 mL)	71	Epsilonproteobacteria	75
		72	Archaeoglobales	75

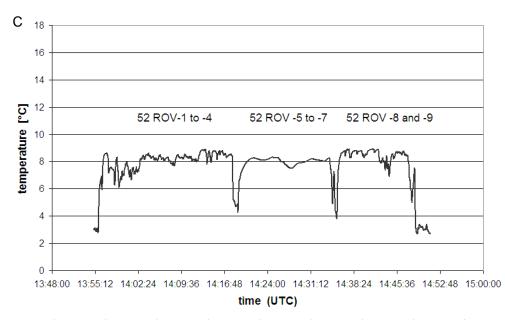
station	site	KIPS bottle number	DNA (-70°C)	FISH (fixed in formaldehyde)	name	culture	t (°C)	CO ₂ rates
Rocks ATA02- 46 RO	V (Wideawak	e slurp gun)	rock					
		en) 52 ROV 1-4 13:59-	14:17 UTC		73	Desulfurobacterium group,	37	3H2.0-1
ATA02-52 ROV 1,2, 4	Clueless	C9/C8/B6	filter 2-21 (100 mL)		74	Desulfurococcales &	55	3H2.0-2
			filter 2-22 (100 mL)		75	Epsilonproteobacteria	75	3H2.0-3
			filter 2-23 (100 mL)		76	Methanococcales	37	3H2.0-4
			filter 2-24 (100 mL)		77	Methanococcales	55	3H2.A-1
)		78	Methanococcales	75	3H2.A-2
					79	Thermococcales	37	3H2.A-3
					80	Thermococcales	55	3H2.A-4
					81	Thermococcales	75	3H2S-1
					82	Aquificales +	15	51125 1
						Epsilonproteobacteria	37	3H2S-2
					83	Aquificales +		-
						Epsilonproteobacteria	55	3H2S-3
					84	Aquificales +		
						Epsilonproteobacteria	75	3H2S-4
					85	Archaeoglobales	37	3Ref1
					86	Archaeoglobales	55	3Ref2
					87	Archaeoglobales	75	3Ref3
ATA02-52 ROV 5,6,7	Clueless	B4/B5/A3	filter 2-20 (400 mL)					3Ref4
ATA02-52 ROV 8,9	Clueless	A2/A1	filter 2-15 (150 mL)					
			filter 2-16 (55 mL)					
			filter 2-17 (55 mL)					
			filter 2-18 (55 mL)					
			filter 2-19 (55 mL)					
Hot fluids 57 ROV 2 (Furtle Pits) (4	bottles) 15:35-15:39 U						
× ×			filter 2-25					
ATA02-57 ROV 2	Turtle Pits		(3 x 66 mL)	filter (1 mL)				
			filter 2-26					
			(3 x 66 mL)					
				filter (45 mL)				

l'Atalante

MARSÜD IV (07.01. – 31.01.2008)


Cruise Report

Cruise Report	MAR	<u>SÜD IV (07.01. – (</u>	31.01.2008)	l'	Atalante			
station	site	KIPS bottle number	DNA (-70°C)	FISH (fixed in formaldehyde)	name	culture	t (°C)	CO ₂ rates
Hot fluids Mephisto		ottles taken) 67 ROV	4-8 14:48-15:03 UT	С				
ATA02-67 ROV 4-8	Mephisto	C9/C8/B6	filter 2-27 (50 ml)	filter (1 mL)				4H2.0-1
			filter 2-28 (50 ml)	filter (45 mL)				4H2.0-2
								4H2.0-3
								4H2.0-4
								4H2.A-1
								4H2.A-2
								4H2.A-3
								4H2.A-4
								4H2S-1
								4H2S-2
								4H2S-3
								4H2S-4
								4Ref1
								4Ref2
								4Ref3
								4Ref4


2.4.3 Temperature measurements of low-temperature, diffuse hydrothermal fluids

(Mirjam Perner, Dieter Garbe-Schönberg)

During the sampling of the low-temperature hydrothermal fluids with the KIPS at Wideawake and Clueless the temperature was monitored (Fig. 2.4.3.1 A-C).

Fig. 2.4.3.1: Temperature measured during sampling of low-temperature diffuse fluids at Wideawake (A, B) and at Clueless (C).

Following the fluid sampling the 8-chanel temperature logger was inserted into the spot of sampling and measured temperatures along a vertical gradient for 20-30 minutes (Figs. 2.4.3.3, 2.4.3.5, 2.4.3.7).

Fig. 2.4.3.2: Measurment of temperature with the 8-channel temperature logger at the low-temperature diffuse outlet at Wideawake (37 ROV6).

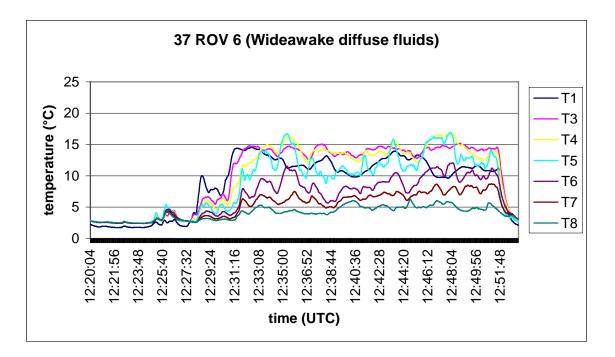


Fig. 2.4.3.3: Measurment of temperature with the 8-channel temperature logger at the low-temperature diffuse outlet at Wideawake (37 ROV6). T1 = 28 cm depth, T3 = 24 cm, T4 = 20 cm, T5 = 16 cm, T6 = 12 cm and T7 = 8 cm.

Fig. 2.4.3.4: Measurment of temperature with the 8-channel temperature logger at the low-temperature diffuse outlet at Wideawake (37 ROV13).

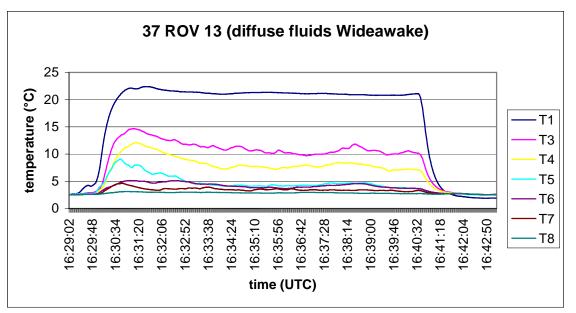


Fig. 2.4.3.5: Measurment of temperature with the 8-channel temperature logger at the low-temperature diffuse outlet at Wideawake (37 ROV13). T1 = 28 cm depth, T3 = 24 cm, T4 = 20 cm, T5 = 16 cm, T6 = 12 cm and T7 = 8 cm.

Fig. 2.4.3.6: Measurment of temperature with the 8-channel temperature logger at the low-temperature diffuse outlet at Clueless (52 ROV10).

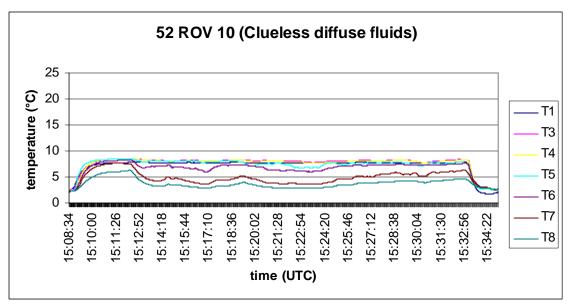


Fig. 2.4.3.7: Measurment of temperature with the 8-channel temperature logger at the low-temperature diffuse outlet at Clueless (52 ROV10). T1 = 28 cm depth, T3 = 24 cm, T4 = 20 cm, T5 = 16 cm, T6 = 12 cm and T7 = 8 cm.

2.4.4 Fluid chemistry

(Dieter Garbe-Schönberg, Katja Schmidt, Harald Strauss, Verena Klevenz, and Phillip Hach)

2.4.4.1 Fluid sampling

Kiel Pumping System (KIPS)

One pre-requisite for an accurate estimate of the composition of hydrothermal fluids venting at high-temperature Black Smokers or from diffuse mussel-field sites is sampling of the hydrothermal fluids without entrainment of ambient seawater which would cause immediate precipitation of sulphides and barite and, hence, loss of these compounds from solution. One measure of the purity of the sampled hydrothermal fluid is temperature. Consequently, realtime *in-situ* measurement of the temperature helps to guide the tip of the sampling nozzle to the hottest region within the vent orifice where the purity of the venting fluid is highest and least diluted with seawater. Another pre-requisite is that all materials coming into contact with the sampled fluid are inert and have lowest adsorption coefficients preventing systematic errors introduced by either contamination or losses due to adsorption. Precipitation during cooling of the sampled fluid, however, cannot completely be avoided.

A remotely controlled flow-through system – the Kiel Pumping System (KIPS-3) - mounted on the ROV's starboard tool sled was used for this purpose (Garbe-Schönberg et al., 2006). The parts of the system getting into contact with the sample are entirely made of inert materials and are stable up to temperatures of 260 °C (short-term 305 °C): perfluoralkoxy (PFA), polyetherethyleneketone (PEEK), polytetrafluorethylene (PTFE, Teflon®), and a short tube of high-purity titanium (99.9 % Ti). Fluid enters via this titanium tube (40 cm length, 6 mm I.D., bent to 90°) - the nozzle - mounted to a T-handle which is guided by the ROV's ORION manipulator arm (Fig 2.4.4.1). Parallel to the titanium nozzle is a high-temperature sensor (see below) delivering real-time temperature data for the tip of the nozzle. Coiled PFA tubing (3/8" O.D., 3 m length) connects the nozzle to a remotely controlled multi-port valve (PEEK/ PTFE) delivering the fluid to the respective sampling flask. The valve is driven by a stepper motor (electric actuator, Schilling Robotics, U.S.A.) and controlled from a separate laptop via RS232 tunneling through the ROV control system (Kiel 6000 ROV: Node 6, port #14). The software package used was FluidCtrl V. 3.0.0 by Jens Renken @ Marum Soft, Bremen.

The multiport valve has 9 ports connected to 9 single PFA flasks with 675 ml volume each (Nalgene, USA). Each bottle is equipped with a check valve at the outlet. The flasks are mounted in three racks A-C, with every rack containing three horizontally positioned bottles (A1-A3, B4-B6, C7-C9), allowing an easy transfer of the racks to the laboratory where sub-sampling was done. Flasks were pre-filled with ambient bottom seawater (North Atlantic Deep Water, NADW) obtained from previous CTD hydrocasts. A 24 V deep sea mechanical gear-pump is mounted downstream to the sample flasks, thus avoiding contamination of the samples. The pumping rate was approx. 1 L/min at 24 VDC. The standard pumping time per sample was set to 4 min. making sure that the flask volume was exchanged at least 5 times. The outlet of the KIPS system is located on the porch at the front-side of the ROV, where video control allows the observation of warm shimmering fluids leaving the system. In addition, a flow mobile was attached to the outlet tube at diffuse vent sites.

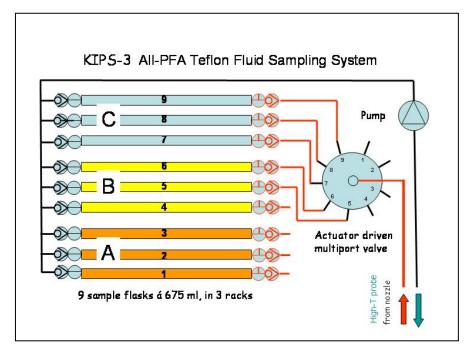


Fig. 2.4.4.1: Schematic configuration of the inert KIPS fluid sampling system (only tubing connections to flasks # 5 - # 9 are shown for clarity). Fluid entering the nozzle is distributed by a motorized multiport-valve to 9 PFA sample flasks á 675 ml, each with check valves and stopcocks. The pump is positioned downstream. Racks A, B, C with 3 flasks each can be quickly removed and sub-sampled in the lab.

A high-precision thermistor temperature sensor (manufactured by H.-H. Gennerich, Bremen) inside a stainless steel pressure housing was attached parallel to the nozzle. The 90% time constant of the sensor in water was better than 10 s. The sensor is connected to a RBR logger TR-1050R (Serial# 12644, RBR Brancker, Canada) for real time data conversion to

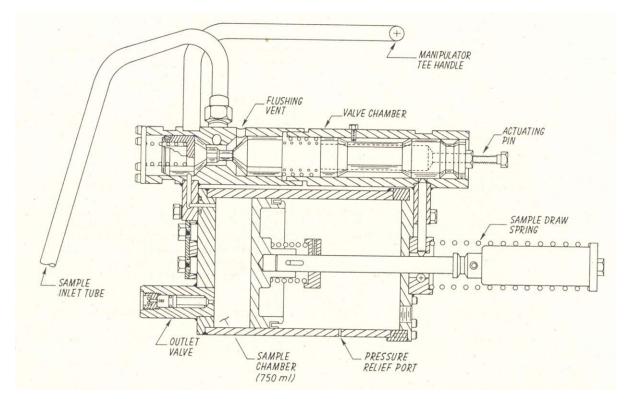

calibrated temperatures and data storage. A Y-splice cable connection accomplished real time data transfer through the ROV's RS232 data line and the display on a ROV control van monitor. Two individual sensors were used during this cruise: temperature probe #5 during stations ATA 35 ROV through ATA 42 ROV, and T probe #4 for all subsequent dives. Calibration coefficients used during the cruise are tabulated in Table 2.4.4.1. Prior to the cruise a 23-points high-precision calibration covering 0-450 °C was performed at an ISO-certified calibration lab (TESTO, Germany) for each of the sensors.

Table 2.4.4.1: Calibration coefficients for resistance data-to-temperature conversion of T probes #5 and #4 at RBR logger TR-1050.

T probe #5	(NTC No 193729)	T probe #4 (NTC No 193731)			
A0	0.003516129399127	A0	0.00347114037326		
A1	-0.000256163403706	A1	-0.000255203453916		
A2	0.000002731961606	A2	0.000002719519579		
A3	-0.00000081982648	A3	-0.00000080192994		

Major water samplers

In addition to the KIPS, we used two titanium syringes ("Major" after von Damm et al., 1985; manufactured by IFREMER/ BREST-MECA) to collect hot hydrothermal fluids at Turtle Pits, Comfortless Cove and Red Lion. The total sample volume for one major is 750 ml (Fig 2.4.4.2). The samplers were constructed primarily of titanium with seals made of teflon and viton. The syringes are not gas-tight: a simple lab test showed that bubbling from the samplers started at 1.5 bars overpressure. They are constructed to be self-flushing and are sent to the seafloor in chocked mode. To take a fluid sample, the snorkel is placed into the vent orifice. First, only the snorkel gets flushed by the fluid; a control for a good position in the undiluted part of the fluid outflow is allowed by observing the small flushing outlet opening. Undiluted hydrothermal fluid without seawater mixing is indicated by a clear solution leaving the outlet. Triggering the sampler is accomplished by pushing the releaser with a hydraulic cylinder mounted on the ROV manipulator arm. This releaser 1) closes the flushing valve, 2) opens the valve to the sample chamber, and 3) releases the pin holding the piston rod so that the large spring can pull the piston back soaking hydrothermal fluid into the sample chamber. To recover the sample on board tubing is connected to the small outlet valve of the sample chamber. For gas sampling, vacuum extraction was applied (see section on Dissolved Gas Chemistry). Thin black coatings in the sample chamber were observed in most cases, caused by precipitation of sulfides.

Fig. 2.4.4.2: Schematic drawing of "Major" titanium syringe sampler after von Damm, 1985 (Geochimica et Cosmochimica Acta 49, 2197–2220).

In total, 22 hot fluid samples were collected utilizing KIPS and Majors: seven from Turtle Pits (Two Boats), nine from Comfortless Cove (Sisters Peak) and six from Red Lion (Mephisto). Diffuse fluids were collected at two different locations at Wideawake (9 samples) and Comfortless Cove (Golden Valley – 9 samples).

Buoyant hydrothermal plumes were sampled by means of the CTD/Rosette, equipped with 24 bottles à 10 l volume and operated as tow-yos (see section oceanography for details). In total, 16 water column profiles were sampled and immediately acidified in order to determine Fe and Mn in these samples.

Sub-sampling and sample preparation for on-board analyses and subsequent measurements in the home laboratories

Immediately after recovery of the ROV on deck KIPS sample racks and Ti majors were transferred to the laboratory for subsampling following a standardized protocol (see appendix). In addition to the onboard analyses, further fluid sample aliquotes were taken for measuring fluid chemical composition and selected isotopes.

In order to fullfill the requirement for trace metal analyses to work on indentical sample aliquots, the rest of each sample was first transferred to one PFA bottle, homogenized by shaking and further distributed to the respective bottles. Furthermore, hot hydrothermal fluids emanating from black smokers contain precipitates formed during cooling and mixing with seawater. On board, aliquots were not filtered but acidified with 1-5 ml subboiled HNO₃ per 100 ml fluid and stored in PFA bottles. A second set of aliquots were pressure filtrated (99.9990 nitrogen) through 0.2 µm Nuclepore PC membrane filters in a Sartorius filtration unit, acidified with 0.2 ml subboiled concentrated nitric acid per 100 ml and also stored in

100 ml PFA bottles until analyses. Procedural blanks were processed in regular intervals. All work was done in a class 100 clean bench (Slee, Germany) using all-plastic labware (HDPE, PC, FEP, PFA). Rinse water was ultrapure (>18.2 MOhm) dispensed from a Millipore Milli-Q system.

After return to the home labs in Kiel and Bremen samples will be analysed for major and minor elemental composition (Na, K, Ca, Mg, Sr, Ba, B, Fe, Mn, Cu, Zn) by means of ICPoptical emission spectrometry (Ciros SOP; Spectro) and trace elements (e.g., I, Br, B, Li, Al, Ti, Cs, Ba, Sr, Y-REE, Fe, Mn, Cr, V, Cu, Co, Ni, Pb, U, Mo, As, Sb, W) by ICP-mass spectrometry using both collision-cell quadrupole (U-Kiel: 7500 cs, Agilent, JU-Bremen: Elan DRC-e, Perkin Elmer) and high resolution sector-field instrumentation (U-Kiel: PlasmaTrace 2, Micromass). At JUB in Bremen, complementary analyses on the speciation of metals will be carried out using voltammetry (computrace VA 757, Metrohm). For anion analyses (e.g., Cl⁻, Br⁻, I⁻, SO₄²⁻), aliquots of hot hydrothermal fluids with precipitate were pressure-filtrated through 0.2 µm PC membrane filters (Nuclepore). For amino acids and other organic compounds, respective measurements will be carried out in collaboration with Dr. Ostertag-Henning at Bundesanstalt für Geowissenschaften und Rohstoffe (BGR, Hannover, Germany). Onboard, non-filtered sub-samples for organic analyses were immediately frozen (-20°C) as 50 ml aliquots in glas bottles. Filters from filtration of the KIPS fluid samples of the ROV were kept in plastic containers. Samples for the detection of dissolved inorganic silica were diluted 1:50 from the concentrated fluid (filtered and acidified) with DI water.

Further subsamples were collected for stable isotope analyses. Filtered aliquotes of hot hydrothermal fluids (2x2 ml) were stored with no headspace in crimp-sealed glass vials for hydrogen (δ^2 H) and oxygen isotope measurements (δ^{18} O). Hydrogen sulfide disolved in the hydrothermal fluids was precipitated as zinc sulfide with a 3% zinc-acetate solution, filtered and dried for measuring the four stable sulfur isotopes (32 S, 34 S, 36 S). For determining the carbon isotopic composition of inorganic carbon (δ^{13} C) dissolved in hot and diffuse hydrothermal fluids, 20 ml aliquotes were poisened with two drops of HgCl₂ and stored in the dark. Stable isotope measurements will be carried out at the Geologisch-Paläontologisches Institut, Universität Münster, Germany. For Ca, Sr, and Cl isotope measurements, 50 ml of non-filtered hydrothermal fluid were stored in HDPE bottles.

2.4.4.2 Analytical procedures on-board

In general, on-board measurements were performed immediately after sample recovery on deck. Sampling followed a standardized protocol in order to avoid oxidation of highly redox-sensitive dissolved constituents in the hydrothermal fluids.

pH and Eh

Non-filtered aliquots of each sample were subjected to immediate pH and Eh measurements (Ag/AgCl reference electrode).

Dissolved oxygen

Dissolved oxygen was determined for diffuse hydrothermal fluids following the classical Winkler method as outlined in Grasshoff (1999). The method was slightly modified in order to utilize 10 ml volumetric flasks. The detection limit is approx. 0.5 ml/l O_2 , precision is in the range of \pm 0.1 ml/l O_2 . The samples were analysed by Mirjam Perner and Nadine Markus (see section on Microbiological Diversity).

Iron speciation

Determination of iron speciation was performed spectrophotometrically. The method is based on determining the orange-red ferroin complex, which is formed by Fe(II) ions in the fluid sample complexed with 1% (w/v) 1,10-phenantroline in a pH range of 3-5. In addition to the quantification of Fe(II), the total Fe content is measured by reducing all Fe with a 1% (w/v) ascorbic acid solution. Fe(III) concentration is calculated as the difference between total Fe and Fe(II). Analyses were carried out with a Biochrom Libra S12 spectrophotometer at a wavelength of 511 nm.

Dissolved sulfide

For onboard analysis of dissolved sulfide concentrations, initially two different methods were applied: voltammetry and spectrophotometry.

All voltammetric measurements were performed on a 757 VA Computrace with a standard PC (Metrohm, Herisau, Switzerland). The three-electrode configuration consisted of the static mercury drop electrode (SMDE) as the working electrode, an Ag/AgCl reference electrode (3M KCl), and a platinum wire as the auxiliary electrode. Sulfide concentrations were determined by using a NaOH 0.1M oxygen-free solution (Application Bulletin No. 199/3, Metrohm, Herisau, Switzerland).

Spectrophotometry of dissolved sulfide is based on the light absorption of methylene blue at a wave length of 660 nm. Dissolved sulfide is stabilized in a colloidal form as zinc sulfide using zinc acetate gelatine solution (100 μ l for 1 ml of hydrothermal fluid). The sulfide reacts with N,N_dimethyl-1,4-phenylene-diamine-dihydrochloride to colourless leucomethylene and – through oxidation by Fe(III) supplied by an FeCl₃-solution – further to methylene blue. Photometric measurements were performed using a Biochrom Libra S12 spectrophotometer. Concentrations of the freshly prepared stock solution utilized for calibration were determined by titration with a 0,02N sodium-thiosulfate solution.

Further measurements of sulfur speciation (i.e., intermediate sulfur species like sulfite or thiosulfate) will be performed at the home laboratory, following the monobromobimane method (Fahey and Newton, 1987). On board, 50µl volume of the hydrothermal fluid was added to 110µl of previously prepared derivatization mixture, composed as follows: 50µl of HEPES buffer, 50µl acetonitrile and 10µl monobromobimane (48mmol/L). Derivatization was performed in the dark and was stopped after 30 min by adding 100µl of methanesulfonic acid (Rethmeier et al., 1997). Several advantages derive from this approach: the opportunity to quantify additional metastable sulfur phases, to separate these for isotopic measurements (method currently being developed in cooperation with Dr. Ostertag-Henning, BGR Hannover), and to perform respective measurements on substantially smaller sample volumes.

Chloride

Phase separation in hydrothermal fluids is reflected in chlorinities substantially different from seawater. Accordingly, chloride concentrations were quantified by titration with 0.1M AgNO₃ using fluoresceine-sodium as indicator (after FAJANS). For reference, seawater was measured at 560 mM.

2.4.4.3 First results

In situ-temperatures and chemistry of Black Smoker hydrothermal fluids

A dedicated high-precision thermistor-based temperature sensor integrated within the KIPS fluid sampling system and mounted parallel to the sampling nozzle was used for our temperature measurements of hydrothermal fluids. It has to be kept in mind that fluids emerging e.g., at the top of a 12 m tall chimney may have already cooled or mixed with seawater inside the chimney structure. Moreover, vigorous venting involves turbulent mixing of hydrothermal fluids with seawater leading to a highly chaotic temperature distribution within the orifice. It becomes evident that temperature measurements under these conditions and with a ROV difficult to hold in position within a few millimetre for some tens of seconds are only a rough estimate of the real temperature of the hydrothermal fluid. However, quite constant temperature readings could be obtained for some high-temperature vents including the Two Boats vent at Turtle Pits where we measured a stable temperature of 451 ± 1.6 °C and a maximum temperature of 529 °C. These are the highest temperatures ever obtained for a black smoker fluid on the seafloor. This suggests that the phase-separated hydrothermal system at Turtle Pits and Comfortless Cove (T_{max} = 429 °C (529 °C) might react above the critical curve of the NaCl-H₂O system. In contrast, non-phase-separated fluids emerging at the Mephisto vent in the Red Lion hydrothermal system - in only 1 km distance to Two Boats - have temperatures of 366 °C (Table 2.4.4.2). The following Figs. 2.4.4.3 through 2.4.4.9 illustrate the temperature conditions during our fluid sampling of the hightemperature black smoker chimneys.

Area	Site	2006	2008	2008	2008	Fluid sample
		T _{max} (°C)	Station	T_{max} (°C)	T _{avg} (°C)	No.
Hot venting						
Turtle Pits	Two Boats-Top Two Boats-Bottom Two Boats-Bottom Two Boats-Bottom	409	35 ROV 35 ROV 46 ROV 57 ROV	429 529 412 371	416 ± 2.3 451 ± 1.6 ./. ./.	No sample 35 ROV-7 46 ROV-7 57 ROV-2/ -5
Comfortless Cove	Sisters Peak	400	42 ROV	379	367 ± 4.9	42 ROV-2 /-7
Red Lion	Mephisto	346	67 ROV	366	364 ± 0.6	67 ROV-3/ -8
<i>Diffuse venti</i> Wideawake	ng Wideawake mussel field	19	37 ROV	16	8	37 ROV-1/ -5 37 ROV-10/ -13
Comfortless Cove	Golden Valley/ Clueless Site	4	52 ROV	9	9	52 ROV-1 /-9

Table 2.4.4.2: Measured temperatures of venting hydrothermal fluids

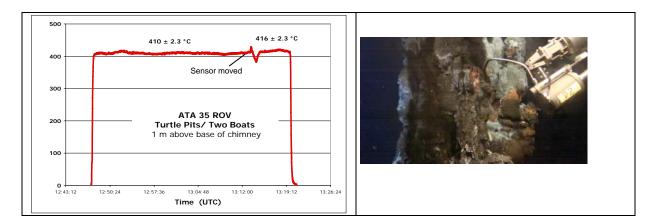


Fig. 2.4.4.3: Station ATA 35 ROV, Turtle Pits. Temperature readings and fluid sampling was at a small outlet approx. Im above the base of Two Boats. Average over 20 minutes: $410 \pm 2.3 \text{ }^{\circ}\text{C}$. After the sensor had been repositioned temperature readings were $416 \pm 2.3 \text{ }^{\circ}\text{C}$ over 5 minutes. The maximum temperature recorded was $T_{max} = 429 \text{ }^{\circ}\text{C}$. KIPS fluid sampling failed. Ti Major D2 filled, 35 ROV-7.

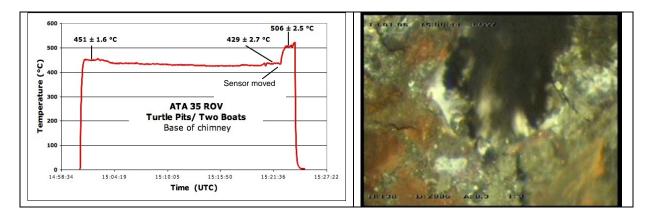


Fig. 2.4.4.4: Station ATA 35 ROV, Turtle Pits. Temperature readings were from a newly opened orifice at the base of the Two Boats black smoker. Initially, temperature was at 451 ± 1.6 °C but faded to 428 °C. Repositioning of the nozzle resulted in temperatures of 429 ± 2.7 °C. After fluid sampling was finished an attempt was made to relocate the hottest spot by careful scanning the orifice opening. Temperature readings increased to 506 ± 2.5 °C, and topped at 529 °C. After opening the orifice vigorous venting with schlieren of clear hydrothermal fluid leaving the orifice could be observed. Fluid sampling failed \Im .

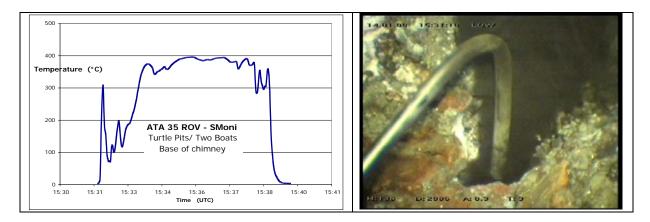


Fig. 2.4.4.5: Station ATA 35 ROV, Turtle Pits. Temperature readings were taken in the same orifice at the base of the Two Boats black smoker, but with the SMoni offline sensor+logger combination. SMoni uses different thermistor technology than that used in the KIPS sensors. Maximum temperature obtained was $396 \, ^\circ$ C. However, the offline design of the probe makes a systematic search for the tiny spot with the hottest temperature in the orifice impossible. (Note: The SMoni logger was unfortunately flooded during the next use at station ATA 42 ROV.)

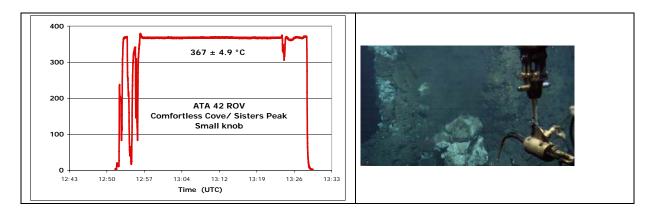


Fig. 2.4.4.6: Station ATA 42 ROV, Comfortless Cove. Temperature readings and fluid sampling were at a small knob in the top region of the Sisters Peak chimney. Average over 20 minutes: $367 \pm 4.9 \, ^\circ C$, $T_{max} = 379 \, ^\circ C$, KIPS fluid samples 42 ROV-2 to -5 taken and Ti-Major D1 42-ROV-7 filled. KIPS fluid samples 42 ROV-11 to -14 were taken without temperature reading because the cable had been cut during handling.

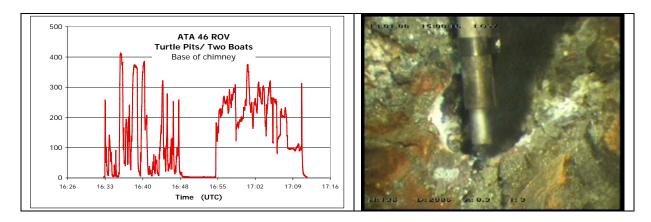


Fig. 2.4.4.7: Station ATA 46 ROV, Turtle Pits. KIPS fluid samples 46 ROV-7 and -8 were taken from the same orifice at the base of the black smoker as three days before (35 ROV). Meanwhile, a 20 cm tall chimney was re-grown over this period. After collapse of the new small chimney the venting from the orifice was found to be significantly less vigorous than during the previous visit. The feeding outlets must have plumbed by fresh precipitates. There was no accurate temperature control during fluid sampling because the T sensor had been displaced from the tip of the sampling nozzle. A maximum temperature of **412** \cdot C was recorded.

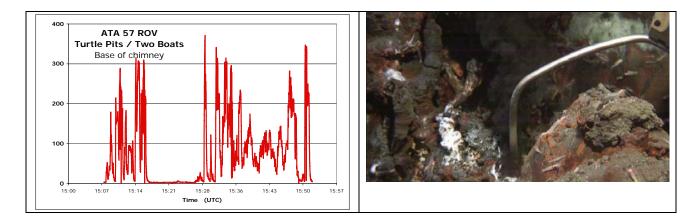


Fig. 2.4.4.8: Station ATA 57 ROV, Turtle Pits. KIPS fluid samples 57 ROV-2 to -5 collected again at base of chimney Two Boats. The orifice was now even more plumbed, and fluid flow was significantly reduced. Every attempt to reopen the orifice failed. The maximum temperature reading was 371 °C.

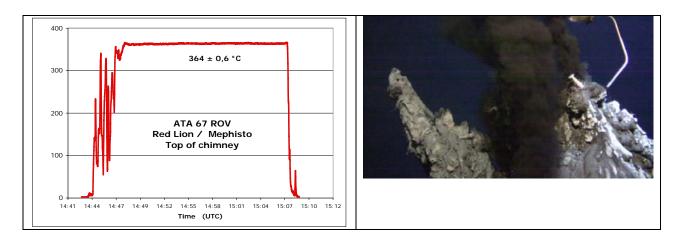


Fig. 2.4.4.9: Station ATA 67 ROV, Red Lion. A newly opened orifice in the summit region of the Mephisto chimney was sampled with Ti Major D2, 67 ROV-3, and KIPS fluid samples 67 ROV-4 to -8. Clear fluid was leaving the outlet of KIPS. Temperatures were 364 ± 0.6 °C with a maximum of 366 °C.

Chemical composition

On-board measurements comprised pH, Eh, concentrations of oxygen, sulfide, chloride and Fe speciation. For selected samples, the concentrations of dissolved H_2 , CH_4 , CO_2 and CO were also quantified (see chapter on Gas Chemistry). Analyses were performed in order to ascertain the quality of sampled hydrothermal fluids (i.e., the degree of admixed seawater) and to provide an initial characterization of fluid composition and characteristics, particularly with respect to phase separation. Results are presented in Figures 2.4.4.10 to 2.4.4.13 and Tables A1 and A2 (Appendix).

Turtle Pits (Two Boats)

Sampling the Two Boats chimney with the Kiel ROV 6000 turned out to be extremely difficult. Orifices with vigorous venting at the top of the smoker were inaccessible for the ROV. In addition, fluid sampling failed during the first attempt in 35 ROV. However, hydrothermal fluids were collected 1 m above, and at the base of the Two Boats chimney. However, the temperature probe was displaced from the sampling nozzle such that sampling was not guided by the temperature maximum in the orifice and more diluted fluids were sampled. Consequently, the pH range is wide between 2.8 and 6.6 in these samples. The sample with the lowest pH (57 ROV-4) displays the highest Fe concentration of 3.9 mM, and maximum sulfide concentrations of 4.8 mM were measured. Chlorinity in these Turtle Pits fluid samples is significantly reduced compared to seawater, ranging between 300 mM and 550 mM. This can only be caused by phase separation of the fluid in the subseafloor, at P/T conditions above the critical point of seawater (<3000 m, >405 °C) and the emanation of the low-salinity vapor phase.

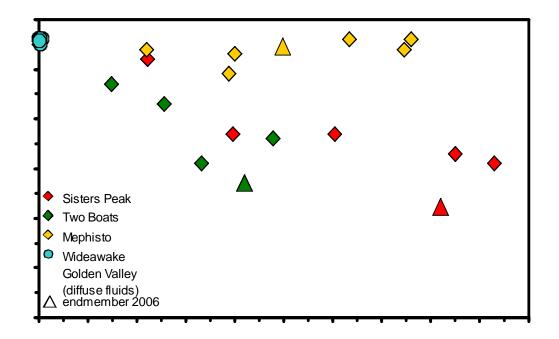
This year's results are in good agreement with the chemical signature of fluids sampled at the same chimney in 2005 and 2006 (endmember chloride concentration: 270 mM; endmember Fe concentration: 4 mM, endmember H₂S concentration: 4.2 mM). It may be suggested from these results that the Two Boats chimney is constantly emanating a vapor phase since 2005, and, probably, the general chemical composition will be found to be as constant. Quantification of the relative percentage of hydrothermal fluid in the collected samples will be performed in the home laboratory, allowing the calculation of endmember compositions.

Comfortless Cove (Sisters Peak)

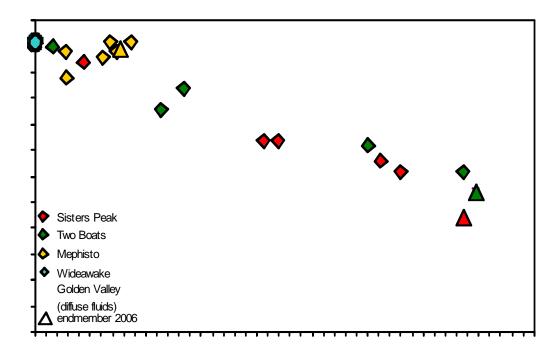
Fluids at the chimney structure Sisters Peak have been collected at 3 different orifices: one at the base of the chimney (42 ROV-2 to 42 ROV-7) and two others at the top (42 ROV-11 to 42 ROV-14). Due to difficulties in accessing the small orifices at the top, those samples contain a high amount of admixed seawater, expressed in pH values >5.6. The pH values for samples from the bottom orifice range between 3.4 and 6.8, corresponding to total Fe concentrations between 3.7 mM and 0.07 mM. The best quality sample contains 9.7 mM H₂S and 310 mM Cl; phase separation with the emanation of a low-Cl vapor phase is evident. As Two Boats, the Sisters Peak chimney has been sampled before, in 2006. Recent results for the concentration: 3.8 mM; endmember H₂S concentration: 8 mM; endmember Cl concentration: 220 mM). Again, this confirms stability in fluid composition as already observed in Turtle Pits. The chlorinity seems to be somewhat higher when compared to 2006, which could result from slight changes in P/T conditions of phase separation.

Red Lion (Mephisto)

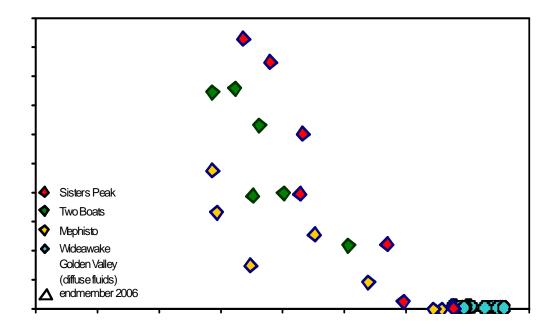
In the Red Lion field, six fluid samples were collected from a collapsed beehive on top of the Mephisto structure. Temperature measurements during KIPS sampling (15 minutes) recorded stable 363 °C. Fluid pH ranges between 2.8 and 5.1. A chloride concentration of 540 mM (median of 5 samples) indicates that phase separation is not a process currently taking place. Total Fe concentrations vary between 0.25 and 0.93 mM. H₂S concentrations display a maximum value of 7.6 mM. Again, concentrations of Fe, Cl, and H₂S measured during this cruise are comparable to samples from 2005 and 2006, attesting to an overall stability in fluid composition.


Compositional differences between hot hydrothermal fluids emanating at Red Lion and those emanating at Turtle Pits and Comfortless Cove are a clear function of temperature and phase separation.

Wideawake


At Wideawake, diffuse fluids emanate in an area of intense mussel inhabitation. Fluids were collected at two different locations (37 ROV-1 to 37 ROV-5; 37 ROV-10 to 37 ROV-13). Measured temperatures (KIPS) were 4 and 16 °C. The pH ranges between 7.05 and 7.5. Fe concentrations are as high as 25 μ M. Concentrations of H₂S range between 1.2 and 76 μ M. There is no clear correlation between H₂S and Fe concentrations. The measured chlorinity is seawater-like, with a median value of 550 mM.

Comfortless Cove (Golden Valley)


Diffuse fluids sampled at a mussel field (locality "Clueless") in the Golden Valley area seep at constant temperatures between 8 and 9°C. The pH ranges between 6.8 and 7.6. Fluids contain up to 43 μ M Fe and up to 56 μ M H₂S. Similar to diffuse fluids from the Wideawake mussel field, the H₂S concentrations do not correlate with respective Fe concentrations, but with pH.

*Fig. 2.4.4.10: Crossplot of H*₂*S and Cl concentrations for hot and diffuse hydrothermal fluids.*

Fig. 2.4.4.11: Crossplot of Fe(II) and Cl concentrations for hot and diffuse hydrothermal fluids.

*Fig. 2.4.4.12: Crossplot of pH and H*₂*S concentrations for hot and diffuse hydrothermal fluids.*

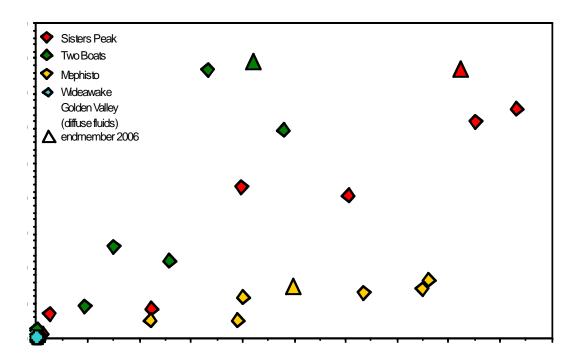


Fig. 2.4.4.13: Crossplot of H_2S and Fe(II) concentrations for hot and diffuse hydrothermal fluids.

2.4.4.4 The chemical composition of hydrothermal fluids – Perspectives

The chemical and isotopic composition of hydrothermal fluids is largely governed by the interaction of rocks and heated seawater percolating through the oceanic crust. Additional effects derive from phase separation of the hydrothermal fluid into a low-chlorinity, gas-rich vapour phase and a high-chlorinity brine phase. This process is accompanied by a strong partitioning of certain elements into either one phase. The latter aspect, i.e. phase separation, is most relevant for the two hydrothermal vent fields at Turtle Pits (Two Boats) and Comfortless Cove (Sisters Peak), as evident from respective chlorinity data measured on-board. In contrast, the Red Lion hydrothermal system shows no indication of phase separation serving as a reference site hosted in the same geological setting. This provides the unique opportunity to study partitioning effects induced by phase separation.

Resulting from these general characteristics, subsequent measurements in the home laboratories will aim to discriminate compositional effects derived from water-rock interaction from those caused by phase separation. The analytical approach comprises a wide array of analytical techniques for measuring the concentrations of major, minor and trace elements and the isotopic compositions for selected elements (Ca, Sr, Cl, Hf, S, C, H, O) in the hydrothermal fluid. The ultimate goal is a quantitative characterization of fluid composition that will represent the base for balancing the mass flux from mantle to ocean.

2.4.5 Gas Chemistry

(Ralf Lendt, Marco Warmuth, Frederic von Guilleaume, and Richard Seifert)

 CH_4 , H_2 , CO, and CO_2 were measured on board by gas chromatography. Focus was given to hot fluids to obtain information on the sub-surface hydrothermal processes and on diffuse vents emphasizing on the energy and food supply of vent organisms. In addition, the stable carbon and hydrogen isotope ratio of methane from the fluid samples will be measured in the isotope laboratory at the IfBM.

The water samples for these analyses were collected from 11 CTD stations and 6 ROV dives. For ROV dives, samples were obtained by three different advices namely the KIPS, titanium in situ gas samplers (MAJORS) and an isobaric sampler.

In addition, hydrogen was monitored within incubation experiments conducted by M. Perner on the metabolism of microorganisms present in hydrothermal fluids (Section 2.4.2).

Methods

In order to analyze dissolved CH₄, H₂, CO and CO₂, the fluid samples were degassed using a vacuum degassing technique modified from the method described by Rehder et al. (1999). In brief, water sample is drawn directly into a pre-evacuated flask which is then filled to only about half of the total flask volume. During this sampling, most of the dissolved gas exsolves into the remaining headspace. The amount of water taken was measured with a flow meter (Engolit Flow Control 100S/Typ DMK). The extracted gas phase is subsequently recompressed to atmospheric pressure and transferred to a gas burette. The mole fraction of the analysts are determined by gas chromatography on aliquots of this gas.

For the determination of dissolved CH_4 a CARLO ERBA (GC 4000) gas chromatograph equipped with a flame ionization detector was used in connection with an integration software. Helium was used as carrier gas, and separation was performed using a 4m Al_2O_3 column run isothermally at 130 °C.

CO, CO₂, and CH₄ concentrations of extracted gas were determined using a gas chromatograph (CARLO ERBA, 8000 top). 0.1 to 1 ml of gas was injected on and separated by a 10m long packed column, passed a thermal conductivity detector to a methanizer transforming all oxidized carbon species into CH₄ which then is quantified by a flame ionization detector. Data are recorded for both detectors by a PC based commercial integration software. Carrier gas was helium, oven temperature was 3 min isotherm 60°C, $40^{\circ}/\text{min}$ to 120° kept for 10 min.

A TRACE Ultra gas chromatograph (Thermo Electron) equipped with HaySep Q, and Molecular Sieve 5 A columns was used to determine the H_2 and CH_4 concentrations of the extracted gas. The run was performed isothermally at 40 °C, helium was used as carrier gas. The eluted gas was detected via a PDD (pulsed discharge detector, VICI).

After transferring the remainder of the gas into a 20 ml glass vial, the septum is sealed with silicone on the outside and with degassed saturated salt solution on the inside. ROV samples are listed in Table 2.4.5.1; CTD samples are listed in Table 2.4.5.2.

8

7

9

4

6

8

6

	*	ve	00
Station	KIPS	Ti-MAJOR	IB
ATA 35 ROV	1	2	
ATA 37 ROV	2		
ATA 42 ROV	1		1
ATA 46 ROV			1

3

8

7

9

4

6

Table 2.4.5.1: ROV samples studied for gas content of fluids

Station	samples	H ₂	CH ₄	CO
ATA 31 CTD	6	6	6	
ATA 32 CTD	6	6	6	5
ATA 33 CTD	5	4	5	5
ATA 38 CTD	8	8	8	
ATA 39 CTD	8	8	8	
ATA 40 CTD	7		7	
ATA 44 CTD	6		6	6

5

Table 2.4.5.2: Samples obtained by CTD-Rosette studied for gas content

Preliminary results

ATA 52 ROV

ATA 67 ROV

ATA 45 CTD

ATA 47 CTD

ATA 48 CTD ATA 49 CTD

ATA 64 CTD

CTD/Rosette samples were mainly obtained from the Turtle Pits area. Highest concentrations H_2 were found at 2740m depth with 4.4 nM, while CH_4 where up to 1.72 nM. CO was found in concentrations of about 20 nM showing no positive correlation with CH_4 or H_2 . An overview on the content of CH_4 and H_2 in water samples studied is given in Fig. 2.4.5.1

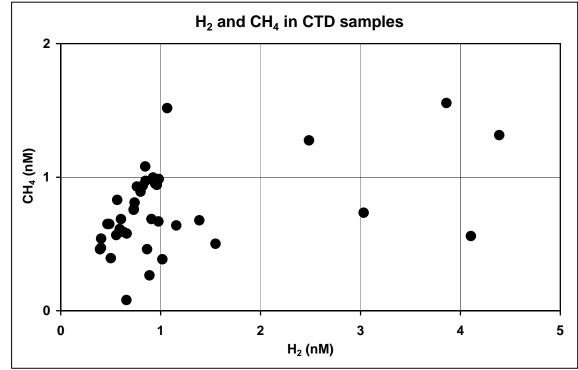


Fig. 2.4.5.1: Concentrations of CH₄ and H₂ in water samples obtained by CTD/Rosette.

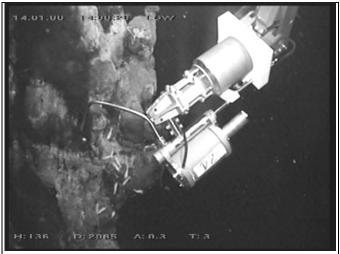

A main objective of the cruise was to take samples of black smoker fluids by avoiding degassing of the sample prior to on board analysis. For this purpose, a newly built isobaric sampler (IB) was used for the first time. Figure 2.4.5.2 shows the IB brought into position by the Rick Master of the ROV Kiel 6000 during dive ATA 42 ROV at the black smoker Sisters Peak located in the area Comfortless cove (see Table 2.4.5.3). Comparison between the data obtained from the fluid taken by IB and those obtained from a sample taken by KIPS at the same location

Fig. 2.4.5.2: Sampling of Sisters Peak with the IB-sampler

illustrates sampling of hot hydrothermal fluids by KIPS to be not suitable for studies of gas chemistry. Though from its design, the KIPS allows much better gaining samples of pure fluid when compared to the IB. Samples of high quality could also be retrieved using titanium samplers (MAJOR). Especially for the smoker Two Boats of the Turtle Pits hydrothermal field (figure 2.4.5.3), samples obtained this way showed the expected high gas concentrations (Table 2.4.5.3) exceeding those determined on KIPS samples during earlier cruises by far. The concentration of H_2 was close to 0.5 mM, exceptionally high for a fluid of

a system hosted by basaltic rocks, with a H_2/CH_4 ratio of 25.5. In view on the high temperatures of well above 400°C measured for the fluids during dive ATA 42 ROV, and the visual observations, we assume to have investigated an hypercritical fluid. New data on the gas content were also obtained for the fluid of the smoker Mephisto with 270 μ M of H₂, 14 μ M of CH4, and 8 μ M of CO.

Fig. 2.4.5.3: Sampling of Two Boats with the Ti-Major sampler

Table 2.4.5.5: Gas content of	
selected hot black smoker fluids	

Area / sample	<u>H₂ (μM)</u>	<u>CH₄ (μM)</u>	$CO_2(\mu M)$	<u>CO(µM)</u>
Turtle Pits, Two Boats ATA 35 ROV, Major D2	406	16	12956	4
Comfortless Cove, Sisters Peak ATA 42 ROV, IB ATA 42 ROV, KIPS C9	204 8.5	6.8 0.3	6745 221	1.5 0.05
Red Lion, Mephisto ATA 67 ROV, Major DS	270	14	n.d.	8

Investigations of fluids from diffuse vents were accomplished for samples of the Wideawake field at Turtle Pits and the Golden Valley at Comfortless Cove (Table 2.4.5.4). These data are of high relevance for the biological studies of vent faunas.

Area / sample	H ₂ (nM)	CH ₄ (nM)	$CO_2(\mu M)$	CO(nM)
Turtle Pits, Wideawake	_ 、 /	_ ` `	,	/
ATA 37 ROV, KIPS C7	197	15	65	113
ATA 37 ROV, KIPS A1	194	22		105
Comfortless Cove, Golden Valley				
ATA 42 ROV, KIPS A1	355	36	138	992

Table 2.4.5.4: Gas content of selected diffuse fluids

2.4.6 Hydrothermal Symbioses

(Jillian Struck and Nicole Dubilier)

1) Genomic analyses: Our main goal for this cruise was to collect and prepare *Bathymodiolus* mussels for genomic analyses of their symbionts. Knowledge of the genomes of chemosynthetic symbionts provides us with an invaluable catalogue of their potential metabolic pathways and can show us how the symbionts gain energy from hydrothermal fluids and pass these on to their hosts. These genomic analyses can then provide the basis for examining which pathways are actually used by the symbionts under different environmental conditions through transcriptomic and proteomic analyses.

As yet, no one has been able to cultivate the symbionts of animals from hydrothermal vents and cold seeps, making direct sequencing of their genomes from cultured cells impossible. Metagenomics, the sequencing of genomes of organisms from the environment, provides an ideal tool for gaining metabolic and genomic information about uncultivable bacteria. In 2007, we were successful in obtaining a grant from the French sequencing facility Genoscope to sequence the metagenome of the bacteria in *Bathymodiolus* gill tissues. These include the methane- and sulfur-oxidizing symbionts as well as a novel bacterial parasite that lives in the nuclei of bathymodiolin mussels. Since the host genome is so much larger than the bacterial genomes (estimated sizes of 200-300 megabases (MB) for the host and 3 - 5 MB each for the bacteria), we can not simply provide Genoscope with *Bathymodiolus* gill tissues. Our sequencing allotment of 300 MB would be "wasted" on sequencing of the host instead of the bacterial genes. It is therefore essential to physically separate the bacteria from the gill tissues, and such separations or enrichments of the bacterial fraction are best done on fresh material.

To separate the *Bathymodiolus* bacteria from host gill tissues we used density gradient centrifugation. In this method, a density gradient is created by carefully layering decreasing concentrations of a sugar compound called Histodenz (here 70 - 5%) on each other. Centrifugation of particles with different sizes and weights causes them to migrate to different density gradient layers. When a mixture of host tissue and bacteria is centrifuged in such a gradient, layers enriched in bacterial cells can thus be separated from host tissues.

To prepare tissues for density gradient centrifugation, we dissected the gills out of 6 freshly collected mussels from Wideawake and Clueless (see Sampling List). Care was taken to use only a single mussel individual for each gradient, to ensure that bacterial strain variability between host individuals does not complicate the genomic analyses. One of the two gills of each mussel was fixed for morphological and molecular analyses of the bacteria in the home laboratory (transmission electron microscopy, fluorescence in situ hybridization, PCR analyses of phylogenetic and functional genes) while the other gill was prepared for genomic analyses by homogenization on ice in 1X phosphate buffered saline (PBS). For some gradients, the homogenate was filtered through 12 and 5 µm filters before centrifugation, in others unfiltered homogenate was placed directly on the gradients. Gradients were centrifuged in the cold room (ca. 10° C) for 1.5 - 2 h at 5000 RPM. In all gradients a similar layering pattern was observed: 1) at the top of the gradient (5 - 10% Histodenz) lay a thin white fraction, followed by a light brown fraction with 2 sublayers, the top one light brown (~20% Histodenz), the bottom one milky brown (~30% Histodenz). The next fraction (~40% Histodenz) was thick and dark brown, followed by a light brown fraction with a crystalline appearance (~50% Histodenz). The bottom layers (~60 - 70% Histodenz) were all clear.

Fractions were removed from the gradient in 500 μ l steps and a subsample from each fraction was fixed for fluorescence in situ analyses (FISH) with probes specific to the bacteria in *Bathymodiolus puteoserpentis* from Logatchev. Analysis of the gradients with specific probes on board was difficult because the probes for the sulfur- and methane-oxidizing symbionts did not show a signal, presumably because these probes had too many mismatches to the symbionts from the Wideawake mussels. Using a probe for the intranuclear parasite, we only saw these bacteria in a single fraction (thick, dark-brown layer) from a single individual (46ROV1-1) in very low abundance. This layer was characterized by high abundances of bacteria presumed to be the sulfur- and methane-oxidizing symbionts based on DAPI-staining and their hybridization signal using the general bacterial probe EUB338. Contaminating host tissue concentrations were very low in this fraction. DAPI and EUB338 analyses of the top white layer of the gradients indicated that these were highly enriched in sulfur-oxidizing symbionts. Further analyses of these gradients in the home laboratory with probes specific to the Wideawake symbionts will allow us to decide which gradients we will use for our metagenomic analyses.

2) In situ fixation chamber DieFast: One of our main goals within the SPP 1144 is to understand the interactions between hydrothermalism and biology. To date, all animals from hydrothermal vents and other deep-sea environments are brought up to the surface and dissected and fixed on board. Most of the sites we are studying within the SPP 1144 are at 3000 m water depth. It thus can take up to 3 hours after the animals have left their environment before we can prepare them, often even longer if animal collection is not the last station for the ROV work of that day. This is a problem for analyzing the metabolic pathways the animals use in their environment. Changes in the transcription of genes to messenger RNA (mRNA) can occur within minutes, changes at the protein level within hours. We therefore designed an in situ fixation chamber, called DieFast, for fixing mussels or other biological samples directly on the seafloor within minutes of their collection (Fig. 2.4.6.1). DieFast consists of a fixation chamber with a rubber sealed lid (volume: 3 liters) that is connected through tubing to 3 syringes (each 100 ml). The chamber weighs 17 kg in air and easily fits on the ROV porch. Before deployment, the chamber and the tubing are filled with seawater. The syringes are filled with 40% formalin with stoppers placed in the syringes to prevent the formalin from running through the tubing into the fixation chambers. During deployment, the organisms are placed in the chamber, and the lid is closed and the stoppers released mechanically by the ROV arm. The 300 ml of 40% formalin are diluted to 4% in the fixation chamber, which is an ideal concentration for fixing biological samples for mRNA (mRNA FISH) morphological analyses of their and proteins (immunohistochemistry).

Our first (and only) deployment of DieFast at the Wideawake site (ATA 37 ROV 9) was highly successful. Mussels were collected singly or in clumps of 3-5 individuals and placed in the chamber using the ROV Orion arm. Closing of the chamber lid and release of the stoppers using the appropriate monkey fists was easily and quickly performed by the ROV pilots with the Orion arm. The entire time for deployment including the collection of mussels was less than 30 minutes. After recovery of the ROV, we examined the mussels: they were almost all intact and had clearly all been fixed by the formalin. Analyses of these specimens in the home laboratory and comparison with mussels fixed on board will reveal the importance of fixing animals in-situ.

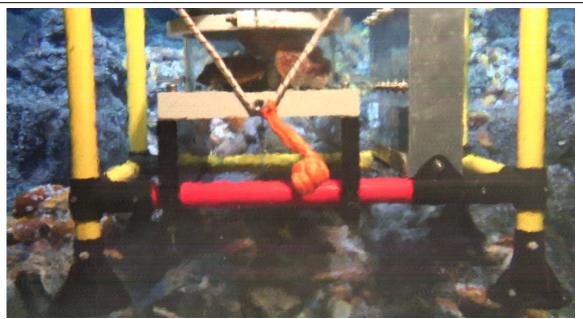


Fig. 2.4.6.1: DieFast during deployment at Wideawake. The mussels have already been placed in the fixation chamber and its lid has been closed using the elastic strap and the orange monkey fist attached to it. The syringes with formalin are on the right of the chamber behind the metal casing.

3) Collection of animals for biogeography

Our final goal for this cruise was to collect as many animals as possible for biogeography analyses (Table 2.4.6.1). One of the goals within the SPP 1144 is to better understand how ridge morphology and ocean currents influence the dispersal of vent organisms along the ridge. To do this, we compare the phylogenetic relationships of animals from different vent sites using genes as indicators of their relatedness. For example, if animals from Logatchev on the northern Mid-Atlantic Ridge were more closely related to animals from other northern MAR vents than to those from the southern MAR vents, this would suggest that geological barriers at the equator including the large offset of the ridge-axis prevented gene flow between southern and northern MAR vents. In addition to collecting mussels, we also collected at least two species of shrimp (Rimicaris exoculata and Mirocaris fortuna), and possibly a third species (Opaepele sp.), first found and described during the 2007 Meteor M68/1 cruise to the southern MAR. We were extremely fortunate to find a clam individual (Calyptogena sp.) at Clueless (ATA 52 ROV 11). This is only the second specimen that we have found at 5°S. These clams are extremely rare on the MAR and are only known from Logatchev and 5°S. We have only found dead clam shells at Logatchev but were recently given 5 alcohol-fixed Calyptogena sp. individuals from Logatchev by Dr. Andrey Gebruk (Shirshov Institute of Oceanology, Moscow). Phylogenetic analyses of the Logatchev and the 5°S individuals will show how these clams are related to other clams from vents and seeps around the world and may reveal their geographic origin for colonizing the MAR.

Table 1: Animals collected during L'Atalante cruise MSM06/3 to 5°S

Station number	Site	Sample	Sample treatments	Gradient centrifugation
ATA 35 ROV 18	Turtle Pits	Slurp	R. exoculata samples for FISH and DNA Mirocaris fortuna samples for FISH and DNA possibly 3 Opaepele sp. individuals for FISH and DNA	
ATA 37 ROV 7	Wideawake	Mussel net	Bathymodiolus sp. samples for FISH, DNA, RNA, electron microscopy whole <i>B</i> . sp. frozen for DNA	2 Individuals
ATA 37 ROV 8	Wideawake	Slurp	R. exoculata samples for FISH and DNA	
ATA 37 ROV 9	Wideawake	Die Fast	Whole <i>B</i> sp. fixed in situ for FISH	
ATA 46 ROV 1	Wideawake	Mussel net	<i>B</i> sp. samples for FISH, DNA, and electron microscopy	1 Individual
ATA 46 ROV 4	Wideawake	Slurp	Whole frozen <i>B</i> . sp.	
ATA 46 ROV 5	Wideawake	Slurp	Small B. sp. frozen whole for DNA	
ATA 52 ROV 11	Clueless (near Golden Valley)	Mussel net	B. sp. for FISH, DNA, RNA, electron microscopy Calyptogena sp. for FISH, DNA, RNA, electron microscopy Whole B. sp. frozen for DNA	2 Individuals
ATA 57 ROV 7	Wideawake	Mussel net	B. sp for FISH, DNA, RNA, electron microscopy B. sp. for cultivation experiments Whole B. sp. frozen for DNA	1 Individual
ATA 67 ROV 1	Red Lion - Mephisto	Slurp	Crab - Segonzacia, for DNA	
ATA 67 ROV 2	Red Lion - Mephisto	Slurp	R. exoculata samples for FISH and DNA	

2.4.7 Paleaoceanography

(Almuth Harbers)

Goals

During Leg 2 paleoceanographical investigations were focused on collecting planktonic foraminifera and pteropods. Refering to the project **Future Ocean** - "Changing habitats of calcareous plankton in the Green House World" planktonic foraminifera and their response to climate change is going to be studied. For the next hundred years a surface ocean warming of $3^{\circ}-5^{\circ}$ C is expected (Mitchell, 2005). An estimated pH drop of 0.7 units in surface waters is the effect of absorption of 50% of fossil fuel CO₂ emissions (Caldeira and Wickett, 2003).

One goal is to show the impact of acidification and surface ocean warming on planktonic foraminifera with reference to former investigations.

Investigations will include faunal inventory, assemblage composition, size distribution and shell weights, and chemical and isotopic composition regarding to δ^{13} C, δ^{18} O, Mg/Ca and Sr/Ca.

Methods

Samples were taken two times a day. With a, in the ship's sytem integrated pump, $3m^3$ seawater were filtered over a 63µm sieve. The water was pumped from below the vessel, in a depth of 4-5m. The samples were washed with fresh water and put into a vial with nearly 120ml ethanol. 32 samples were taken between 09.01.2008 and 29.01.2008. The first two samples RD 1 and RD 2 have only a volume of $1m^3$. Because of low inventory volume was then increased to $3m^3$.

Other 18 samples were taken on several days with an Apstein net ($100\mu m$). Samples were taken in depth sections of 0-10m, 10-20m, 20-30m, 30-40m and 40-50m. The net with an aperture of 17cm was deployed and lifted five times in each section, so nearly $1m^3$ got filtered in each section. The samples were washed with fresh water and stored with nearly 120ml ethanol in vials. Only three depth sections were done at sampling station TP 2 because the assisting Crew had to work on other stations.

Taking water samples for isotopic analyses took place once a day between 14.01.2008 and 29.01.2008. Seawater was collected with the water pump right before or right after the other samplings (pump and/or Apstein) took place. They got stored in a 100ml vial. Because of missing Mercury Chloride (HgCl₂) solution in the first days of cruise, only few samples were intoxicated to stop bacterial activity.

Any analyses will be done onshore at the IFM-GEOMAR, Kiel.

Sampling stations

Pump								
Sample	Date	UTM/start	UTM/end	local time	Latitude/start	Longitude/start	Latitude/end	Longitude/end
RD 1	09.01.2008	11:36	12:30	-3	07°03.4438	27°45.880W	07°02.250S	27°37.700 W
RD 2	09.01.2008	16:00	17:13	-3	07°02.144S	27°28.445W	07°02.440S	27°27.723W
RD 3	10.01.2008	9:46	12:02	-2	06°42.3558	25°07.930W	06°39.2458	24°46.878W
RD 4	10.01.2008	15:50	18:06	-2	06°34.0558	24°11.740W	06°31.088S	23°51.278W
RD 5	11.01.2008	9:50	12:22	-2	06°09.079S	21°22.808W	06°05.3908	20°57.900W
RD 6	11.01.2008	15:54	18:39	-2	06°00.368S	20°23.920W	05°56.585S	19°57.322W
RD 7	12.01.2008	9:45	11:40	-1	05°34.876S	17°30.957W	05°32.1458	17°12.581W
RD 8	12.01.2008	14:33	17:28	-1	05°27.4128	16°45.324W	05°22.6408	16°22.940W
RD 9	13.01.2008	9:01	11:39	-1	05°05.0198	14°17.077W	05°01.6168	13°52.626W
RD 10	13.01.2008	14:48	17:32	-1	04°57.474S	13°22.850W	04°53.7458	12°57.190W
RD 11	14.01.2008	9:18	11:40	-1	04°48.3798	12°22.632W	04°48.583S	12°22.427W
RD 12	14.01.2008	14:50	17:27	-1	04°48.594S	12°22.412W	04°48.590S	12°22.416W
RD 13	17.01.2008	10:55	13:45	-1	04°48.857S	12°22.332W	05°00.285S	11°59.704W
RD 14	17.01.2008	15:49	18:43	-1	05°09.764S	11°45.261W	05°06.959S	11°42.113W
RD 15	18.01.2008	9:24	12:28	-1	04°48.442S	12°22.314W	04°48.610S	12°22.346W
RD 16	18.01.2008	15:50	18:51	-1	04°48.588S	12°22.359W	04°48.586S	12°22.364W
RD 17	20.01.2008	10:11	12:57	-1	04°48.121S	12°22.282W	04°48.198S	12°22.268W
RD 18	20.01.2008	15:53	18:13	-1	04°48.193S	12°22.275W	04°48.200S	12°22.267W
RD 19	22.01.2008	11:36	13:44	-1	04°47.395S	12°22.604W	04°47.389S	12°22.599W
RD 20	22.01.2008	17:05	19:45	-1	04°47.391S	12°22.600W	04°47.398S	12°22.600W
RD 21	24.01.2008	9:11	11:36	-1	04°48.626S	12°22.721W	04°48.852S	12°22.297W
RD 22	24.01.2008	16:50	19:46	-1	04°48.044S	12°22.425W	04°48.114S	12°22.347W
RD 23	25.01.2008	9:36	12:02	-1	04°56.021S	11°39.493W	04°56.5068	11°36.996W
RD 24	25.01.2008	14:57	17:37	-1	04°56.501S	11°37.002W	04°56.3398	11°37.002W
RD 25	26.01.2008	10:32	12:32	-1	03°14.0998	12°13.800W	02°53.6138	12°21.219W
RD 26	26.01.2008	15:50	18:43	-1	02°20.826S	12°33.066W	01°52.0508	12°43.476W
RD 27	27.01.2008	9:07	11:10	-1	00°34.227N	13°36.325W	00°55.074N	13°43.866W
RD 28	27.01.2008	15:26	17:17	-1	01°39.038N	13°59.752W	01°58.295N	14°06.715W
RD 29	28.01.2008	10:03	12:12	0	04°53.398N	15°10.118W	05°14.830N	15°17.890W
RD 30	28.01.2008	15:36	17:32	0	05°48.503N	15°30.120W	05°59.988N	15°34.293W
RD 31	29.01.2008	9:25	11:33	0	08°24.125N	16°26.805W	08°44.798N	16°34.351W
RD 32	29.01.2008	15:27	17:30	0	09°20.454N	16°47.439W	09°21.026N	16°48.481W

Apstein	1						
Sample	Date	UTM/start	UTM/end	local time	Latitude	Longitude	Depth
TP 1	15.01.2008	10:31	11:37	-1	04°48.632S	12°22.354W	0-50m
TP 2	19.01.2008	15:04	15:48	-1	05°05.697S	11°39.961W	0-30m
TP 3	21.01.2008	11:00	12:20	-1	04°48.572S	12°22.450W	0-50m
TP 4	24.01.2008	15:04	16:29	-1	04°48.832S	12°22.611W	0-50m

Water sampl	es				
Sample	Date	UTM	local time	Latitude	Longitude
RDO1	14.01.2008	17:28	-1	04°48.590S	12°22.416W
RDO2	15.01.2008	16:42	-1	04°48.637S	12°22.349W
RDO3	16.01.2008	18:22	-1	04°48.117S	12°22.270W
RDO4	18.01.2008	15:50	-1	04°48.588S	12°22.359W
RDO5	19.01.2008	11:16	-1	05°05.4678	11°39.238W
RDO6	20.01.2008	13:00	-1	04°48.175S	12°22.271W
RDO7	21.01.2008	18:32	-1	04°48.617S	12°22.411W
RDO8	22.01.2008	17:05	-1	04°47.391S	12°22.600W
RDO9	23.01.2008	13:39	-1	05°05.9528	11°40.582W
$RDO10 + HgCl_2$	24.01.2008	16:49	-1	04°48.044S	12°22.425W
$RDO11 + HgCl_2$	25.01.2008	09:35	-1	04°56.021S	11°39.493W
$RDO12 + HgCl_2$	26.01.2008	10:31	-1	03°14.0998	12°13.800W
$RDO13 + HgCl_2$	27.01.2008	09:01	-1	00°33.126N	13°35.930W
$RDO14 + HgCl_2$	28.01.2008	9:55	0	04°52.091N	15°09.647W
$RDO15 + HgCl_2$	29.01.2008	9:23	0	08°23.714N	16°26.805W

Water samples

2.4.8 Global distribution and atmospheric transport of volatile and semivolatile polyfluorinated compounds

(Annekatrin Dreyer¹, Petra Günnewig)

¹ GKSS Research Center, Institute of Environmetal Chemistry, Gesthacht, Germany

Persistent and toxic perfluorinated organic acids have been detected in high concentrations in polar biota. As these perfluorinated acids are not volatile and only partly water soluble, the mode of transport of these compounds to remote regions is not yet satisfactorily explained. Two transport modes are being thought of: directly via the water phase and indirectly by the degradation of precursors via the atmosphere. To further elucidate this problem air samples were collected at the cruise L'Atalante Recife-Dakar and analysed for organic poly- and perfluoarinated compounds. These measurements will improve understanding of the long-range transport of this emerging class of organic contaminants to remote regions and lead to a better predictability.

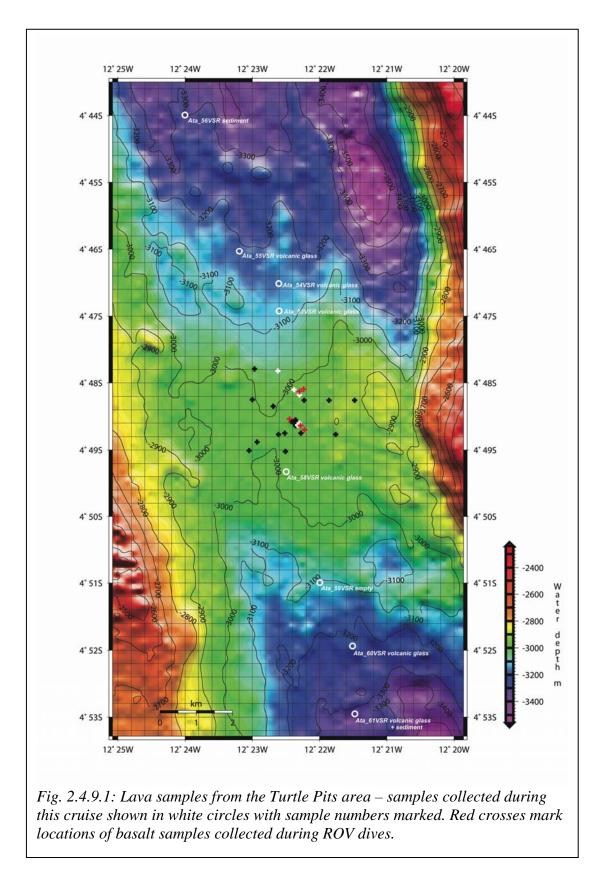
2.4.9 Volcanic rocks

(B. Melchert, H. Paulick)

The volcanological investigations during ROV deployments focussed on mapping individual lava flow units and taking samples from flow units with stratigraphically defined age relationships. Furthermore, we used the "Vulkanitstossrohr (VSR)" ("wax corer") in oder to obtain geochemical samples from the areas immediately to the north and south of the

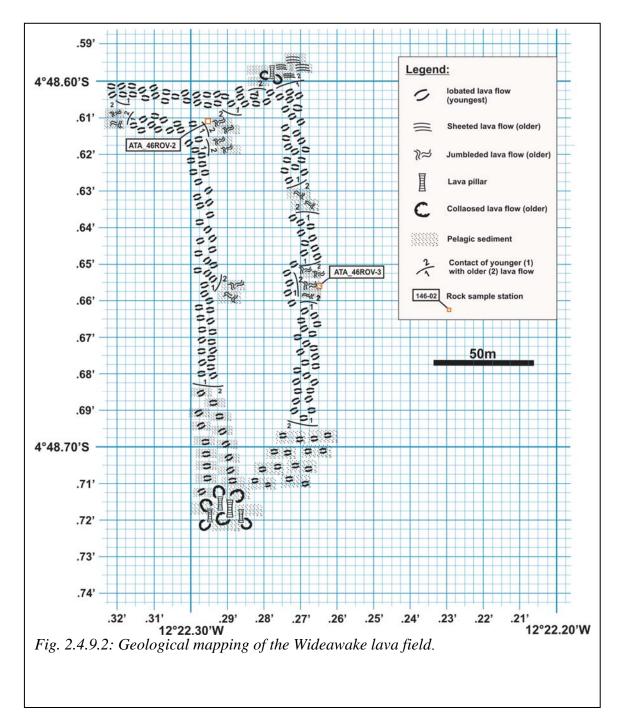
regional topographic high on which the hydrothermally active region at 4°48'S is located. Sample descriptions are provided in the Appendix.

Regional-scale sampling of basalt lava

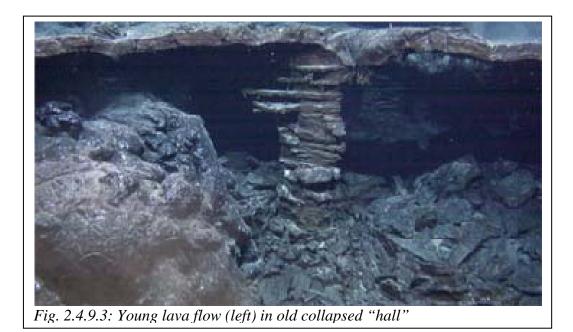

The existing basalt sample set, obtained during previous visits to the area in 2005 (M64-1) and 2006 (M68-1), is restricted to an aera of approximately 2 km x 2 km representing lava units from the immediate vecinities of the hydrothermally active sites. These are located on a topographically elevated portion of the ridge axis valley rising to around 2990 m below sea level [mbsl] whereas water depths increase to 3300 m at ~8 to 10 km to the north and the south (Fig. 2.4.9.1). The geochemical and isotopic compositions of this densely sampled area has been investigated as part of research projects at Kiel and Bonn and the data show that the magmas from this area are fairly homogenous in composition (unpublished data from Karsten Haase, Thomas Kokfeld and Holger Paulick). In order to determine whether the apparently increased volcanic activity in this area, generates a locallized ridge with an elevation in the order of 300 m, samples from the surrounding axial valley are required.

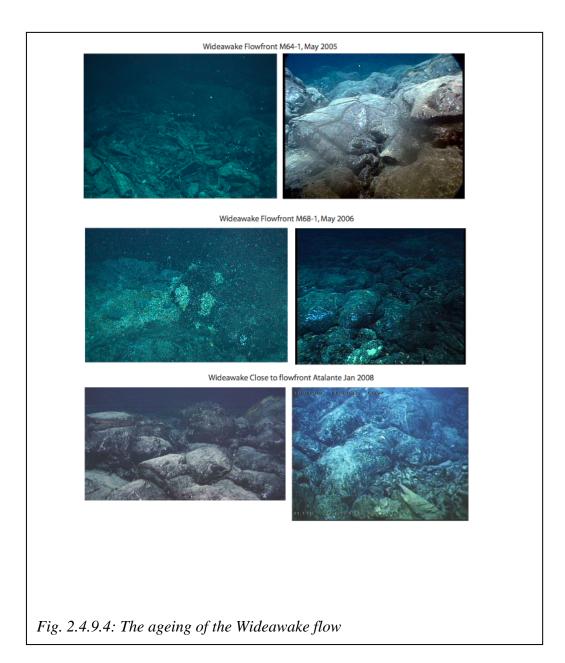
We obtained 6 VSR samples from the north and south of the Turtle Pits area returning sufficient volcanic glass for geochemical analyses (Fig. 2.4.9.1). These data will be used to determine whether there are compositional gradients in the lavas which may provide contraints of the sublithospheric controlling parameters on volcanism in the area.

Turtle Pits and Wideawake hydrothermal sites and the 2002 (?) lava flow


The volcanology of the Turtle Pits and Wideawake hydrothermal sites has been investigated during previous cruises and documented in Haase et al. (2007). In addition, deployment of the AUV ABE during the Cruise M68-1 (2006) provided detailed sea floor images of the geological situation at the Wideawake mussle bed site. Here, a young, lobate lava flow with a black, glassy luster has partly covered pre- exsisting mussle beds located on top of an older lava flow with a jumbled flow top morphology. Based on the intense hydrothermal activity at Turtle Pits and the occurrence of this young lavaflow in the immediate vicinity (ca. 200 m to the east, Fig. 2.4.9.2) it has been inferred by Haase et al. (2007) that this eruption may conincide with the record of a major seismic crisis in the area from 25 to 26 June 2002. Hence, this lava flow may represent one of the few occasion in submarine volcanological studies where the age of formation for a particular lava unit is actually known. Therefore, one half of a ROV dive (station ATA-46ROV) was devoted to the task of determining the dimensions and structures of the lava flow and to define its eastern and southern borders. This information shall be used in order to guide future deployments of an AUV (potentially during the next scheduled visit of the area in 2009) for locating the eruptive vent and areal extend of this flow unit.

Dive ATA-46ROV was successful in locating the eastern, strongly serrated contact of the 2002 (?) flow and to the south. Samples from older lava units have been obtained at two locations (ATA-46ROV-2 und -3). In the south, the older sheet lava flow is characterized by the construction of up to 3 m high lava tunnels which are locally collapsed providing evidence that most of these structures are hollow (Fig. 2.4.9.3; collapse structure).




The lava flowing through these systems was apparently well insulated from cooling and discharged at the flow front when magma supply ceased. Such eruption processes are a common phenomenon at subaerial lava fields with high eruption rates of low viscosity-high

temperature basalt lavas such as Hawaii. Clearly, recognition of such processes is important if erupted volumes are to be determined.

As an additional complication, we recognized that the young, 2002 (?) flow is locally channelled into the pre-exsisting lava drainage system prodived by the sheet flow lava tubes. Hence, some portion of that eruption may have been emplaced below the seafloor, escaping seafloor mapping efforts.

Furthermore, we recognized some signs of "aging" of the 2002 (?) lava flow. Comparing the seafloor images obtained in 2005, 2006 and during this cruise, we observed that the "glassy luster" of the flow surface (described by Haase et al., 2007) is apparently waning (Fig. 2.4.9.4). This could be inferred to be due to progressive incipient alteration of the upper surface of the quenched basalt glass covering the lava lobes. Also, we encountered a site of low T (up to 10 °C) fluid discharge on the 2002 (?) lava flow itself. Fluid discharge (shimmering water) is concentrated in lava lobe intersticies and the site is colonized by abundant small mussles colonizing cracks of the lava surface. These observational similarities to the Lilliput hydrothermal site (located at ~9°30'S), discovered during cruise M64-1, are astonishing. For both sites, recent initiation of hydrothermal discharge and colonization by mussles may be inferred. Potentially, the 2002 (?) lava flow may have covered a pre-exsisitng hydrothermal discharge site and hydrothermal fluid ascent through this flow has now been established.

Comfortless Cove hydrothermal area

The ROV dives to this hydrothermally active area, located approximately 2 km to the NNE of Turtle Pits were mainly focussed on obtaining fluid and biological samples. However, it has been possible to add observational data and basalt samples to the material collected during cruise M68-1. The basalt pillow mound located to the north of the Sisters Peak black smoker chimney was sampled (ATA-42ROV-16). This pillow flow overlies the older sheet flow that the Sisters Peak smoker is situated on (sample of this sheet flow was obtained during the previous cruise: M68-1_20ROV-3B). In addition, a following dive (station 52ROV) provided spectacular insight into an eruptive fissure located on top of the pillow mound (to the east of sampling site ATA-42ROV-16). The walls of this fissure show remarkable lava flow features in cross section such as sheet flow tops and elongated tubes. In this zone, shells of dead mussles were abundant. At the southern margin of the fissure, patches of living mussels were located and sampled. From this area a basalt sample was also obtained (ATA-52ROV-12).

2.4.10 Rocks from the deeper crust

(Günter Suhr, Jürgen Koepcke)

Three ROV dives were devoted to map and sample the deeper oceanic crust around 5°S. Two dives investigated the "Inside Corner High" at 5°06'S and 11°40'W, one dive was spent at the transform wall opposing the nodal deep at 4°56'S and 11°37W (Fig. 2.4.10.1). Each dive required about 1000 m of ROV climbing.

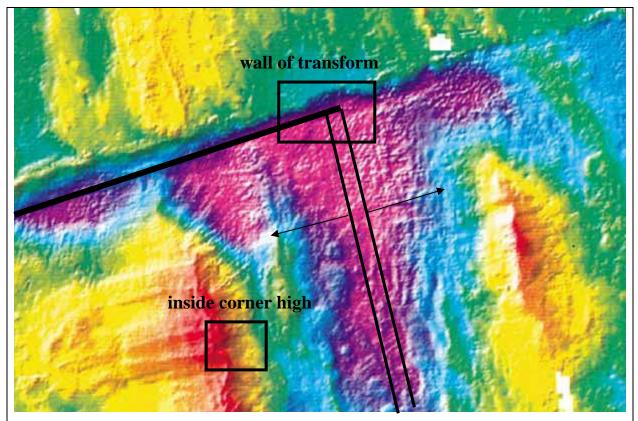


Fig. 2.4.10.1: Shaded relief map of seafloor topography in the 5°S region (Reston et al., 2002). The two areas of interest are marked by rectangles, the (new) ridge axis by a double line, and the transform fault by a thick black line. Massif to east of the ridge axis is the eastern part of the inside corner high, rifted away by the new ridge axis.

Inside corner highs are elevated plateaus with a curved surface at the intersection of a transform fault and an ocean ridge. Experience has shown that they preferentially expose unfaulted lower crustal rocks (Dick et al., 2000; Ildefonse et al., 2007), thus the common term "core complex". Our current understanding of how these rocks are exhumed is by long-term focusing of strain into a single normal fault associated with internal rotation of the block of up to 90° degrees (Lavier et al., 1999, Fig. 2.4.10.2).

The strain focusing is favored by the occurrence of volumentrically minor, rheologically weak, serpentinized mantle rocks between an otherwise gabbroic crust (Reston et al., 2002; Escartin et al., 2003; Ildefonse et al., 2007). As a result, the inside corner highs tend to have a thin cover of altered and sheared mantle rocks around a gabbroic core. Normally, the rocks inside the core would only be accessible by drilling. However, in case of the occurrence at 5°S, a westward-directed ridge-jump of the eastern ridge axis of the ridge-transform system has rifted apart the core complex, giving access to its internal setup.

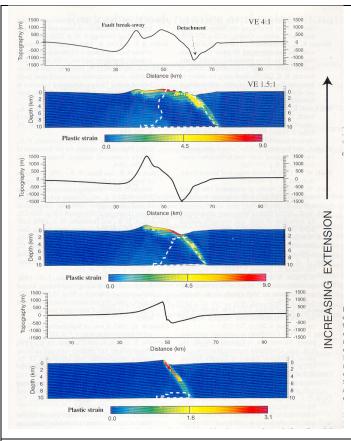
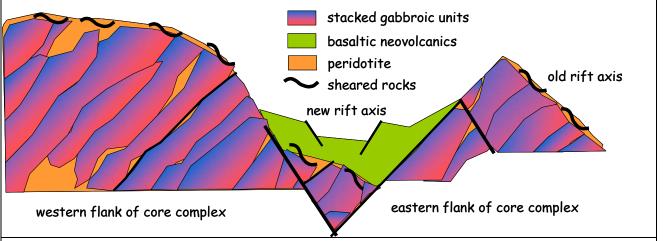



Fig. 2.4.10.2: Numerical model simulating the formation of inside corner highs. Note how an original horizontal marker rotates in an anti-clockwise fashion during exhumation (Lavier et al., 1999).

We decided to explore the western rift flank of the disected core complex with the ROV, since the eastern flank would perhaps expose a cross-section parallel to igneous units (Fig. 2.4.10.3). The targets for the dives were thus: (1) is the lithology along the rift flank as expected, i.e. deep rift volcanics, followed by gabbros, capped by sheared peridotite? And (2), can we see expressions of the rift tectonics?

The plan to investigate the northern wall of the transform was a consequence of the requirement to undertake a deep dive to test the ability of the ROV in the 5-6000 mbsf range. This was feasible in the basin forming at the intersection of the ridge axis with the transform fault ("nodal basin", the origin of which is actually poorly understood). The transform wall to the north of it was expected to expose rocks formed the inside corner of the at

Fig. 2.4.10.3: Pre-dive model of the core-complex at 5°S. *Note how the rift of the new ridge is thought to disect the core complex which would presumably be enveloped by a thin veneer of sheared mantle rocks.*

intersection of the northwestern ridge axis with the transform. This lithosphere has drifted with a half-spreading rate of 1.6 cm/year to the east and the rocks located at the northern extension of the south-eastern ridge axis should be ca. 5 Ma old. Since magmatism is thought to decrease (Cannat 1996) near the terminations of first-order segments as defined by transform faults (MacDonald et al., 1988), the questions for this day of the dive were (1) would the transform wall expose mantle rocks reflecting a low magmatic budget or volcanics reflecting abundant magmatism and (2) what is the expression of the transform tectonics?

Practical experience gained during the dives

The first two days of diving went without technical problems though conditions must be considered challenging. Lateral traversing meant that the ship had to follow the ROV with an equivalent speed, the covered vertical distance implied an on-going operation of the winch to haul in cable. Cliffs, corners, and huge boulders presented a danger for the cable to get caught. The group agreed that alternative sampling of this slope by dredging methods would be extremely hazardous since the dredge-container could easily be caught and ripped off. On the deep-dive test, the Orion arm behaved erratic.

Fig. 2.4.10.4: Cliff face in gabbro with true dip of ~75° on Inside-Corner High traverse. Visible height estimated 2, in, distance 10 m. Parking the ROV and take a sample? No easy task!

On the first day we took seven, on the second day fifteen, on the third day fourteen samples, usually using the Orionarm, but exceptionally also the Rigmaster arm. Dislodging in-situ samples turned out to be nearly impossible, so we mostly collected samples which were already loose. In most cases, we could convince ourselves that they were locally derived. Parking the ROV at the often near-vertical cliff-faces was extremely challenging and in several cases our pilots had to grab samples "on the fly". Samples were stored away in any of the four drawer compartment or - in the case of big samples - on the "porch" at the front of the ROV. Untangling some fifteen similarlooking samples required a strict book

keeping during sampling and more smaller instead of few larger compartment might have been preferable for our purposes.

Fig. 2.4.10.5: The ROV drawer, configured for – and filled with – rocks. Bookkeeping required! Additional tools from left: IB sampler, shovel, bionet.

It turned out nearly impossible to discriminate different lithologies by direct observations during our dives, since nearly all rocks were covered by Mn-crusts. We thus had to use morphological features and later calibrate our mapping with the samples taken. Here, the monitoring of the dive by video and HD cameras turned out to be very useful. Measuring the orientation of the structural elements like cliffs, joints, faults, laminations, corrugations on surfaces and suspected dyke contacts was feasible thanks to the known heading of the ROV. The onbord sonar was of great help in finding and measuring the orientation of interesting

elements. It showed reliably boulders in sediments and cliffs with their orientation at distances far beyond the area illuminated by the search lights. The available topographic seafloor maps were not accurate enough for planing the route during our dives though we always used them as a rough guide. Some features of the maps turned out to be relevant, others were only artifacts. In the end, we agreed that the visual information and geographic

coordinates (for us, mainly depth) associated with our samples will be of invaluable help in interpreting the data.

Geological Results of the Inside Corner High Dives

The two-day traverse covered the depths from 3400 to 1500 mbsf. The base of western rift flank was heavily sediment (Fig. 2.4.10.6). We could only collect one boulder sample which turned out to be a peridotite breccia, ultimately perhaps derived from the very top of the plateau.

As we headed westward, the slope steepened and cliffs appeared which strike between 300 and 340° and typically dip 70° to the E to NE. The major wall of the rift is a shear cliff of some 200m vertical distance, starting at 2500 mbsf (Fig. 2.4.10.4).

We could identify downdip slickensides, consistent with rift-related faulting (Fig. 2.4.10.7).

The orientation of the major cliff face, interpretated as the master rift fault, was repeatedly measured and is not quite understood since it is at an angle of some $10^{\circ}-50^{\circ}$ to the current ridge axis (trending 350°). In more detail, the rift-flank consists of ridges and valleys, the latter ones probably originating in transverse faults. The valleys tended to be full of tallus in a matrix of foraminiferous ooze so that we preferred to ascend along the ridges. A single, doubtful observation of igneous banding on a E-W trending cliff face showed the banding dipping 30° to the west, i.e. towards the core complex.

Fig. 2.4.10.8: View in plane polarized light of an entire thin section (3 cm long) showing olivine gabbronorite. Sample D2-S12 from the 5°S core complex.

Samples taken along the rift flank are mainly gabbros with a subordinate group of microgabbros and dolerite in the upper part (63ROV-9 to 63ROV-11 at 1767 m, 1674 m, and 1636 m). The gabbros range from melanocratic to leucogabbroic. Noritic gabbros are strongly suspected by inspection of hand-specimens. Olivine was not positively identified but is present in one of the samples taking from the *Meteor* cruise M47/2 during dredging

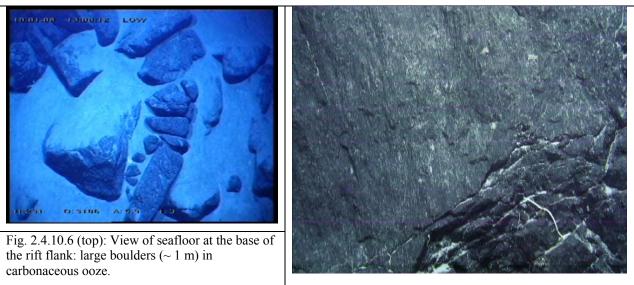


Fig. 2.4.10.7 (right):. Slickensides on fault plane indicating down-thrown frontal block.

(Fig. 2.4.10.8). The gabbros are usually medium-grained, one sample is coarse-grained. Felsic netveining is relatively widespread, a vague argument for a closed system evolution (see rock sample photos in Appendix). Oxide gabbros, on the other hand, also representing advanced stages of differentation only reached in nearly closed systems, were not recovered. Magmatic strain was not observed, suggesting that the gabbro body cooled in the lithosphere. Plastic strain, probably mylonitic, was observed in two samples (50ROV-3 and 63ROV-14). Both appear peridotitic.

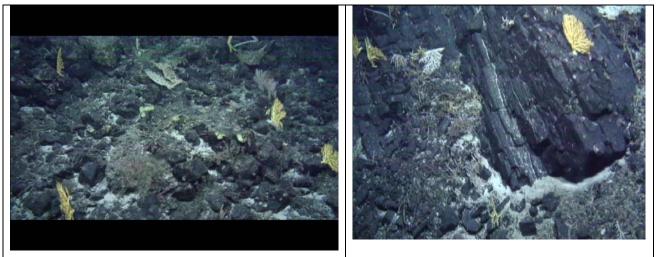
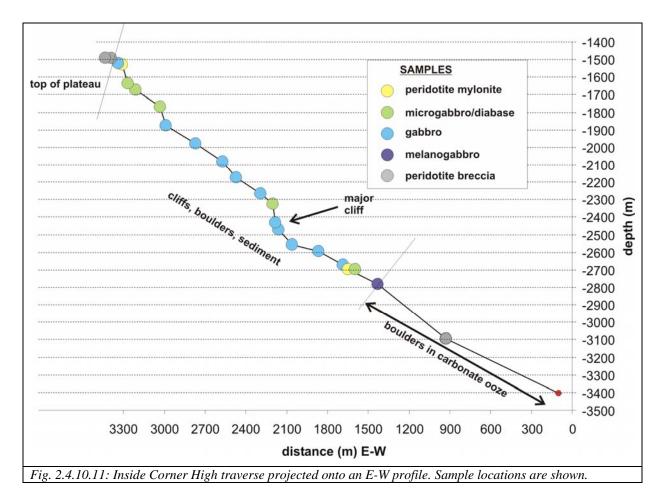
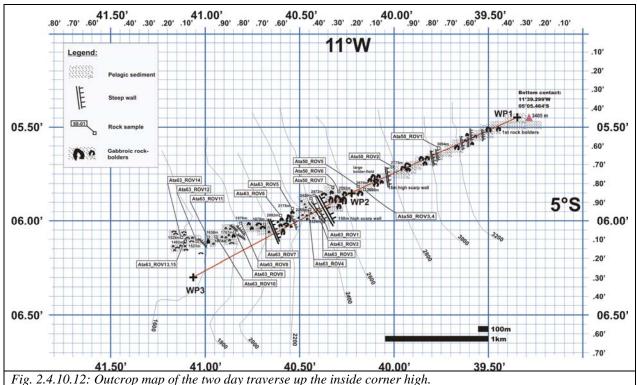


Fig. 2.4.10.9: Top of the Inside Corner High. Sampling confirmed that this is a coral-grown peridotite breccia horizon (ATA-63ROV-13 and -15).


Fig. 2.4.10.10: Highly sheared block of (ultramylonitic?) peridotite (?) 50 m beneath the plateau (ATA 63ROV-14)


Our impression is that the samples show a certain degree of greenschist-grade alteration. This is somewhat surprising, since the usually internally unfaulted nature of core complexes would make the penetration of water difficult.

The transition from the rift flank to the top of the plateau was abrupt. We traversed this edge twice to confirm the observation. Two samples taken at the top very near the edge turned out to be peridotite breccias (Fig. 2.4.10.9) whereas this breccia is absent all along the rift flank. A highly interesting, in-situ sample was recovered just beneath the plateau (ATA-63ROV-14): the dense, laminated rock appears to be ultramylonitic, probably peridotitic and may represent an early, higher temperature stage of the detachment fault (Fig. 2.4.10.10). Its orientation is moderately dipping to the NE. In total, all deformed samples (breccias and mylonites) are probably peridotitic. This strongly supports the current model of peridotite-related strain softening of the master normal fault. A cross-section and map of the traversed terrane is shown in Figs. 2.4.10.11 and 2.4.10.12, respectively.

About 32 hours video material taken with three cameras were cut to a condensed version of 20 minutes showing the main geological and morphological features.

Geological Results of the Transform Fault Dive

The topographic overview Fig. 2.4.10.1 shows that the new south-eastern ridge axis has also affected the opposing transform wall, since the latter shows a marked topographic depression where the continuation of the ridge axis intersects the transform wall. During our dive, however, there was a clear predominance of E-W trending cliff faces in the transform wall which we logically attribute to strike slip faulting associated with transform tectonics.

An impression of both the inside corner high and transform traverses are the striking similarity of continental and submarine landscapes. Near vertical cliff faces, talus slopes, *Felsenmeere* (Fig. 2.4.10.13) and slopes with rugged ridges and sediment-filled valleys were all recurring views familiar from land. Particularly the transform transect showed abundant evidence for mass-wasting. Perhaps the major difference to continental landscapes are the valley floors filled smoothly with sedimented, hosting groups of sticking out, large boulders as well as slopes which appeared generally to be somewhat steeper than on land (because of the reducted gravitational force available for collapse?).

During the dive itself, we were convinced that in the lower part, serpentinite and gabbro is exposed. However, ground truthing via sampling showed that the entire traverse within diabase was and microgabbro which we crossed in east-west trending ridges with intervening shallower, more sedimented parts perhaps related to faulting. We thus covered about 1000 vertical meters of upper oceanic crust with the likely addition of another 300 m above the point where we had to abandon the traverse due to time constraints. Thus,

Fig. 2.4.10.13: Felsenmeer, presumably collecting rocks from the dyke complex.

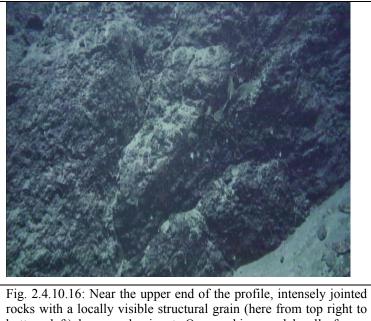
the upper crust in this region is likely to be fully developed with some 1.5 km of volcanics and subvolcancis. A so-called "transform effect" with a reduced or even absent crust seems very unlikely. Our contrasting traverses up the inside corner high and the transform wall emphasized the uniqueness of core complexes in giving easy access to lower crustal rocks.

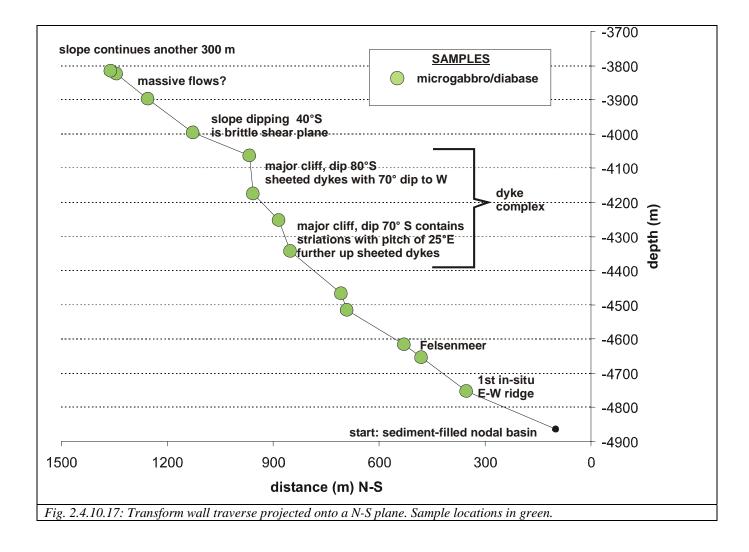
In several locations, there is strong evidence for an exposure of sheeted dykes (Fig. 2.4.10.14). Consistently, the locally sampled rocks are diabases, representing rapid cooling but no contact to seawater. We may even have collected one chilled margin sample (70ROV-7). Joints developed in the sheeted dyke complex during cooling give a characteristic, facetted outcrop picture but a dominating joints system represents the dyke contacts. Based on our observations, it seems likely that the entire cliff between 4380 and 4050 m is mainly made out of sheeted dykes. The dykes appear to have a predominant jointing dipping 70° to the west, interpreted as dyke-dyke contacts. This would translate to an inward rotation of an assumed original vertically oriented dyke swarm at the western ridge. There was no evidence for felsic veining as would be typical for the sheeted dyke – gabbro transition. Nor did we see pillow lavas which would represent the near sea-floor environment.

The degree of hydrothermal alteration can only be safely determined petrographically but hand-specimen inspection suggests that it is pervasively present. An excellent opportunity will offer itself by comparing our section to IODP Hole 1256D which recently covered 1.5 km of upper oceanic, fast-spreading crust by drilling (Koepke et al., submitted) as well as to the famous ODP Hole 504B.

The trend of the dykes appears to be – as it should – normal to the transform and the cliff faces. What would then form the E-W

Fig. 2.4.10.14. View of sheeted dykes with dominant joint-system dipping 75° to the left (west). Looking north at 4300 mbsf.


trending, steeply south dipping cliffs? In some cases we found good evidence for exposed shear planes with, in one case striations on such a face with a 25° eastern pitch (several attempts to sample this rock failed) (Fig. 2.4.10.15). Assuming a dextral shear as derived


Fig. 2.4.10.15: At the left, a steeply south (towards viewer) dipping fault surface with striations (arrow) is shown (4350 mbsf.). Photo at right shows same feature in the geological context: the fault plane occurs as a wall behind a dyke complex which strikes at high angle to it and with contacts dipping steeply to the left (west, red lines)

from the overall transform movement, this would mean a thrust component on the transverse movement, i.e. the southern block appears to have moved obliquely up and west with respect to the northern block (moving obliquely down and east). Higher up in the profile, at 4000 mbsf, a fault plane dipping 40° to the south was observed. Note that in this upper part, the topography is also shallower. We speculate that most of the near-vertical cliff are the expression of a late, brittle transverse fault.

The highest section covered with the ROV has a markedly different appearance. The dominant jointing system is absent, the rocks show a small-scale, intensely fractured surface, and a dominant structural grain may represent flow planes (Fig. 2.4.10.16). A working model calls here for massive flows.

rocks with a locally visible structural grain (here from top right to bottom left) became dominant. Our working model calls for an origin as massive flows.

2.4.11 ROV deployments during MAR SOUTH IV

(K. Lackschewitz, D. Comany, A. Foster, C. Hinz, E. Labahn, A. Meier, M. Pieper, J. Schneider)

Leg 2 of RV ATALANTE is the second scientific cruise of the Kiel ROV 6000 within the priority program 1144 "From mantle to ocean". A detailed technical description and operation of the entire system is given in the "chapter 1.4.10" of the Leg 1 cruise report "HYDROMAR V".

ATA- Leg 2	IFM- GEOM				Time	Time (UTC) Start	Time (UTC) End	Time (UTC)	Botto	Total
Station #	AR Dive #	Dat	Site	Depth	Laun ch	(Botto	(Botto	on Deck	m Time	Dive Time
#	Dive #	e 14.0	Sile	(m)	CII	m)	m)	Deck	Time	Time
35ROV	13	14.0	Turtle Pits	2988	09:39	11:13	17:40	18:55	06:27	09:16
001101	10	15.0		2000	00.00	11.10	17.40	10.00	00.27	03.10
37ROV	14	1.08	Wideawake/	3000	09:39	11:12	16:50	18:15	05:38	08:36
		16.0	Comfortless							
42ROV	15	1.08	Cove	3000	09:20	10:48	18:08	19:24	07:20	10:04
		18.0	Turtle Pits/							
46ROV	16	1.08	Wideawake	3000	09:25	11:10	17:58	19:15	06:48	09:50
		10.0	Inside							
50ROV	17	19.0 1.08	Corner High 5°S	3095	09:40	11:29	17:32	18:43	06:03	09:03
JUNUV	17	20.0	Comfortless	3095	09.40	11.29	17.52	10.43	00.03	09.03
52ROV	18	1.08	Cove	2990	10:00	11:43	17:20	18:39	05:37	8:39
		21.0								
57ROV	19	1.08	Turtle Pits	2990	09:36	11:03	19:29	20:50	08:26	11:14
			Inside							
		23.0	Corner High							
63ROV	20	1.08	5°S	2000	08:50	10:34	17:32	18:29	06:58	9:39
075 01/		24.0	_		~~ ~~			10.00		
67ROV	21	1.08	Red Lion	2960	09:20	11:42	15:19	16:26	03:37	7:06
		24.0	400m NW of							
68ROV	22	24.0 1.08	Comfortless Cove	3000	17:17	18:33	21:36	22:45	03:03	5:28
UONUV		1.00	Ascension	3000	17.17	10.00	21.30	22.40	03.03	J.20
		25.0	Fracture							
70ROV	23	1.08	Zone	4890	10:45	13:04	22:32	00:06	09:28	13:21

Table 2.4.11.1: Summary of ROV dives during MAR SOUTH IV

The technical innovations of the ROV provided a flexible and highly adaptable platform for scientific sampling and observation tasks and therefore played a major role for the scientific success aboard RV ATALANTE. Since the previous leg we have additionally installed a rotary sampler with a slurp gun.

In total 11 dives were carried out on 13 working days on the southern Mid Atlantic Ridge at 5°S. A summary about the statistics of the ROV dives are presented in Tab. 2.4.11.1. Launch and recovery has been done at sea states < 2m and winds < 4 bft.

Total dive times of 102 h including almost 70 h bottom time could be achieved at depths of 3000m. During our last dive ROV Kiel 6000 was deployed for the first time to a depth of 4890 m which is also the deepest dive for a ROV manufactured by Schilling Robotics.

The following scientific tools and devices were used on "KIEL ROV 6000m" during the above mentioned dives for obtaining biological, petrological and fluid-geochemical samples:

- KIPS fluid sampling system (incl. high-temperature sensor)
- Ti-Majors fluid sampler
- Isobaric gas sampler
- He tube
- 8-channel low-temperature lance
- SMONI (1-channel high temperature logger)
- Nets for biological sampling
- Slurp gun with rotary sampler

Three colour video cameras (1 HDTV and 2 Standard PAL cameras) have produced a large amount of video data. Videos from the standard cameras were permanently and synchronously recorded as mpeg2 files to a video server. HDTV videos were recorded only at scientific request. They are stored in HD format on a MacintoshPro and as mpeg2 files on the same video server as the standard videos. Approximately one hour of HDTV video was stored per dive. The video data stored on the video server is available to all scientists in SD converted format via the vessel's intranet using a web browser. The so-called ProxsysTM software on the server enables video previews (as mpeg4), cut and download of selected video sequences (as mpeg2).

Unfortunately, the digital still camera did not work after we had changed the defect controller board with a new board provided by the manufacturer.

After some problems during Leg 1, the Posodonia USBL navigation worked well. However, due to a malfunction of the Posidonia system it could not be used for dive 18 (station ATA-52ROV). In addition, at the beginning of our station work two homer beacons were set on the seafloor at Turtle Pits and Wideawake as reference positioning stations. Both were collected at the end of our dive operation in these areas.

2.5 Acknowledgements

The scientists of Atalante Leg 2 would like to thank Capt. Glehen and his crew for superb support at sea. The flexibility of the Senatskommission für Ozeanographie, the Deutsche Forschungsgemeinschaft and the Leitstelle Meteor/Merian in making these cruises possible in the short time available is gratefully acknowledged.

2.6 References

- Baines, A.G., Cheadle, M. J. et al. (2003). Mechanism for generating the anomalous uplift of oceanic clore complexes: Atlantis Bank, southwest Indian Ridge. Geology 31, 1105-1108
- Caldeira, K. and Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature, 425:365
- Cann, J.R.; Blackman, D.K.; Smith, D.K.; McAllister, E.; Janssen, B.J.R.; Mello, S.; Avgerinos, E.; Pascoe, A.R.; Escartin, J. (1997). Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge, Nature, 385, 329-332.
- Cannat, M. (1996). How thick is the magmatic crust at slow spreading oceanic ridges? Journal of Geophysical Research 101, 2847-2857.
- Cannat et al. (1995). An ultramafic lift at the Mid-Atlantic Ridge: successive stages of magmatism in serpentinized peridotites from the 15°N region, in: R.L.M. Vissers, A. Nicolas (Eds.), Mantle and lower crust exposed in oceanic ridges and in ophiolites, Kluwer, Dordrecht, 5-34.
- Cannat et al. (1992). Serpentinized peridotites and gabbros in the Mid Atlantic Ridge axial valley at 15°37'N and 16°52'N. Earth Planet. Sci. Lett. 109 (1992), 87–106.
- Damm et al. (1985). Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochimica et Cosmochimica Acta 49 (11), 2197-2220.
- Dick, H. J. B., J. H. Natland, et al. (2000). A long in-situ section of the Lower Ocean Crust: results of ODP Leg 176 Drilling at the Southwest Indian Ridge. Earth and Planetary Sciences Letters 179, 31-51.
- Douville et al. (2002). The Rainbow vent fluids (36° 14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology 184, 37-48.
- Escartin, J., C. Mével, et al. (2003). Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15_45°N. Geochemistry, Geophysics, Geosystems 4 (1067, doi:10.1029/2002GC000472).
- Fahey, R.C. and Newton, G.L. (1987). Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol, 143, 85-96.
- Garbe-Schönberg et al. (2006). KIPS A new multiport valve-based all-teflon fluid sampling system for ROVs. EGU General Assembly, Vienna, April 2006.
- Grasshoff (1999). Methods of Seawater Analysis. 3rd edition, 600 p., Wiley-VCH
- Haase et al. (2007). Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge. G³, 8 (11).
- Ildefonse, B., D. K. Blackman, et al. (2007). Oceanic core complexes and crustal accretion at slow spreding ridges. Geology 35, 623-626.
- Kelley, D.S., Karson, J.A., Blackman, D.K., Fruh-Green, G.L., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T.the AT3–60 Shipboard Party and Rivizzigno, P. (2001). An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412, 145–149.

- Klein, E. M., & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, 8089-8115.
- Koepke J, Christie DM, et al. (2007 submitted). Petrography of the Dike/Gabbro Transition at IODP Site 1256D (Equatorial Pacific): The evolution of the Granoblastic Dikes. Geochem Geophys Geosyst.
- Koepke, J., Feig, S.T., Snow, J. (2005). Hydrous partial melting within the lower oceanic crust. Terra Nova 17, 286-291.
- Koepke, J., Feig, S.T., Snow, J. (2005). Late-stage magmatic evolution of oceanic gabbros as a result of hydrous partial melting: Evidence from the ODP Leg 153 drilling at the Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 6, no. 2004GC000805.
- Koepke, J., Feig, S.T., Snow, J., Freise, M. (2004). Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contrib. Mineral. Petrol. 146, 414– 432.
- Lavier, L. L., W. R. Buck, et al. (1999). Self-consistent rolling-hinge model for the evolution of large-offset low-angle normal faults. Geology 27 (12), 1127-1130.
- Macdonald, K. C., P. J. Fox, et al. (1988). A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature 335, 217-225.
- Mitchell, J. (Ed.), 2005. The greenhouse effect and climate change A briefing from the Hadley Centre, 77 pp.; Hadley Centre, Exeter.
- Parmentier, E. M. and J.P. Morgant (1990). Spreading rate dependence of three-dimensional structure in oceanic spreading centers. Nature, 348, 325-328.
- Rehder et al. (1999). Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophysical Research Letters, 26 (5), 587-590.
- Reston, T. J., W. Weinrebe, et al. (2002). A rifted inside corner massif on the Mid-Atlantic Ridge at 5°S. Earth and Planetary Science Letters 200, 255-269.
- Rethmeier, J., Rabenstein, A., Langer M., Fischer U.(1997). Detection of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. Journal of Chromatography A, 760, 295-302.
- Tucholke, B.E., Lin, J. et al. (1998). Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J. Geophys. Res. 103, 9857-9866

Appendix

Appendix 1: Extended list of operations

Appendix 2: Fluid Chemistry results and subsamples

Appendix 3: ROV dive protocols

Appendix 1

Extended list of operations

Extended list of operations							
station	instruments used /samples /comments	location					
(date/time							
UTC)							
12.01.08							
ATA-	LADCP, no MAPR, 21 bottles	05°22.396'S, 16°22.917'W					
31CTD		@ 4164 m cable out					
17:17:57 –							
19:11:30							
13.01.08							
ATA-	LADCP, no MAPR, 16 bottles	04°47.701'S, 12°23.604'W					
32CTD		@ 3017 m cable out					
21:57:00 -							
23:49:35							
14.01.08							
ATA-	LADCP, 1x MAPR, 21 bottles, 2 not closed, 1 not	04°47.422'S, 12°22.603'W					
33CTD	tight	@ 3088 m cable out					
01:05:33 -							
02:58:26							
ATA-	LADCP, no MAPR, 16 bottles	04°47.103'S, 12°21.635'W					
34CTD		@ 3013 m cable out					
04:20:22 -							
06:15:35							
ATA-	tools: SMoni, ROV-Beacon <u>,</u> 2x He tubes, 2x Titan	ship at					
35ROV	Majors	04° 48.5696S, 2°22.4497W					
deployment							
09:39							
at bottom							
11:13							
12:13 :22		04°48.583'S, 12°22.414W					
deployment	and the second	, ,					
homer	Contraction of the second s	homer beacon					
beacon							
	and the second s						
10.17.50							
12:17:50	Site Two Boats						

	Exte	ended list of oper	rations	
station	instruments used /samp	les /comments		location
(date/time				
UTC)				
	KIPS fluids from hot ve	,	rn out to	
	be not filled, thus no pH			
12:49:25	Bottle C9 =35ROV1;	$T_{KIPS} = 406^{\circ}C$	pH=	Cl=
12:54:24	Bottle C8 =35ROV2;	$T_{KIPS} = 417^{\circ}C$	pH=	Cl=
12:58:59	Bottle C7 =35ROV3;	T _{KIPS} =412°C	pH=	Cl=
13:04:20	Bottle B6 =35ROV4;	$T_{KIPS} =$	pH=	Cl=
13:09:12	Bottle B5 =35ROV5;	T _{KIPS} =	pH=	Cl=
13:14:14	Bottle B4 =35ROV6;	T _{KIPS} =420°C	pH=	Cl=
13:47:54	Ti-major bottle $D1 = 35$	ROV7	pH= 6.4	4 Cl=550 Fluid sampling with Ti-
			and a	majors
14:34:39	Ti-major bottle $D2 = 35$	ROV8	pH=2.92	2 Cl=360
14:43:32	SMoni measurement =3	,	x=393°C	
15:06:35	Bottle A3 =35ROV10;	T _{KIPS} =451°C	pH=	Cl=
15:12:13	Bottle A2 =35ROV11;	$T_{KIPS} = 427^{\circ}C$	pH=	Cl=
15:17:03	Bottle A1 =35ROV12;	$T_{KIPS} = 427^{\circ}C$	pH=	Cl=
15:31:26	SMoni measurement =3	SROV13; Tma	ax=396°C	
15:43:01	He-sample =35ROV14	· · · · · · · · · · · · · · · · · · ·		
16:04:24	He-sample =35ROV15	· · · · · · · · · · · · · · · · · · ·		
16:46:27	Sulfide sample 35ROV			
16:46:27	Slurp gun sample (bottl	,		
17:34:00	Slurp gun sample (bottl	e 2) = 35 ROV 18		
17:40:09				
leaving				
bottom				
18:55 <i>ROV</i>				
on deck		na Duchar I-I I	:	04947 20426 12922 20028
ATA-	LADCP, 1xMAPR, kein	ne Proben, JoJo b	18 2000m	04°47.394'S, 12°22.600'W
36CTD				@ 3088 m cable out
20:00:22 – 07:32:30				
15.01.08	toola, DOV D	ale area al Tl	. " <u>1</u> : -	_1.:
ATA- 37ROV	tools: ROV-Beacon, 8- fast", 5 bionets	cnannei, 1-loggei	, ale	<i>ship at</i> 04° 48.6186S, 12°22.339W
1/51/	iusi , 5 dioneis			+ 04 + 40.01003, $12 - 22.339$ W

	Exte	ended list of oper	rations	
station	instruments used /sampl			location
(date/time				
UTC)				
deployment				
11:12:23 at				
bottom				
11:31:00				04° 48.626'S, 12° 22.342'W
deployment				
homer				
beacon				
11:33:25	Site Wideawake			
		A Contraction	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	KIPS temperature
	A STREET			measurement in mussel bed
		TAA.		
			-	
		CIL Parts	Carbo	
	CALCEN MAY ST	S. A. S. Same		
	KIPS fluids ROV2-5 an	d ROV10-13 = E	Diffuse fluids	S
11:54:47	Bottle C9 =37ROV1;	$T_{KIPS} = 7-11^{\circ}$	pH=7.5	Cl=560
11:59:21	Bottle C8 =37ROV2;	$T_{\text{KIPS}} = 4-11^{\circ}$	pH=7.05	Cl=550
12:04:44	Bottle C7 =37ROV3;	$T_{KIPS} = 8-11^{\circ}$	pH=7.29	Cl=550
12:10:45	Bottle B6 =37ROV4;	T _{KIPS} =	pH=7.03	Cl=560
12:14:53	Bottle B5 =37ROV5;	$T_{KIPS} = 12-16^{\circ}$	pH=	Cl=560
12:31:05	8-channel T-probe, = 37		6.7 to 4.4°	
13:49:46	Mussels with net #3; san			
14:11:07	Slurp gun, bottle 1, sam	*		
14:48:00	Die-fast instrument is fi			
			3	"Die-fast" instrument
	and the set of the	no line and	100 2	
			26 10	
		20 20 0		
		The States	Ser A	
		N. COL		
	· · ·		37	
		A AND A		
15.59.10		T 9.00C		<u>C1 550</u>
15:58:16	Bottle B4 = $37ROV10$;	$\frac{T_{\text{KIPS}} = 8-9^{\circ}\text{C}}{T_{\text{S}} = 5.7^{\circ}\text{C}}$		Cl=550
16:05:02	Bottle A3 = 37ROV11;		pH=7.42	Cl=560
16:08:57	Bottle A2 =37ROV12;	$T_{KIPS} = 6^{\circ}C$	pH=7.39	Cl=550

	Extended list of operations		
station	instruments used /samples /comments	location	
(date/time			
UTC)			
16:14:33	Bottle A1 = $37ROV13$; $T_{KIPS} = 9^{\circ}C$ pH=7.7	Cl=550	
16:29:50	8-channel T-probe, = 37ROV14, 18°C at tip of lance		
16:50:10 off			
bottom			
18:15 ROV			
on deck			
ATA-	LADCP, no MAPR, 16 bottles, 1 bottle open	04°44.298'S, 12°20.698'W	
38CTD		@ 3082 m cable out	
19:51:28 -			
21:44:58			
ATA-	LADCP, no MAPR, 20 bottles, 1 bottle not closed	04°45.147'S,12°23.002'W	
39CTD		@ 3250 m cable out	
23:51:30 -			
01:51:10			
16.01.08			
ATA-	LADCP, no MAPR, 16 bottles	04°45.999'S, 12°25.350'W	
40CTD		@ 2929 m cable out	
03:07:20 -			
04:55:10			
ATA-	LADCP, 1x MAPR, 14 bottles	04°49.197'S, 12°22.199'W	
41CTD		@ 2980 m cable out	
06:06:05 -			
07:55:20			
ATA-	Tools: SMoni, 2 bionets <u>,</u> 1x He tube, 2x Titan	Ship at	
42ROV	Majors, IB-sampler	4°48,188´S, 12°22,301´W	
9:20			
deployment			
10:48:04 at			
bottom			
	Site: Comfortless Cove		
11:04:43	Found Sister Peak	ROV at	
		4°48.222´S, 12°22.270´W	
		Sister Peak	
	and the second		
10.42.26	Concelle from all income (ADDOV 1		
12:43:26	Sample from chimney = 42 ROV-1		
	KIPS fluids ROV2-5 from base of vent		

	Exte	nded list of op	erations	
station	instruments used /sample	× =		location
(date/time	motiumento abea / sumpri			
UTC)				
13:00:04	Bottle C9 =42ROV2;	T _{KIPS} =367°	pH=6.75	Cl=n.d
13:05:26	Bottle C8 =42ROV3;	T _{KIPS} =367°	pH=4.33	Cl=380
13:10:34	Bottle C7 =42ROV4;	$T_{KIPS}=368^{\circ}$	pH=3.8	Cl=340
13:16:30	Bottle B6 =42ROV5;	$T_{KIPS}=368^{\circ}$	pH=4.28	Cl=360
				KIPS sampler
14:26:42	IB sample = 42ROV6			
15:22:51	Ti-major bottle $D1 = 42H$	ROV7 1	oH=3.36 (Cl=320
15:40:32	SMoni measurement =42ROV8; shipboard examination failed			
15:53:28	SMoni measurement =42		board examin	
	KIPS fluids ROV11-RO	•		
16:13:42	No bottle filled? =42RO	±	=220°	
16:49:06	Bottle B5 =42ROV11;	T _{KIPS} =?°	pH=5.69	Cl=520
16:54:41	Bottle B4 =42ROV12;	T _{KIPS} =?°	pH=6.76	Cl=n.d.
17:10:01	Bottle A3 =42ROV13;	T _{KIPS} =?°	pH=	Cl=
17:13:56	Bottle A2 =42ROV14;	T _{KIPS} =?°	pH=5.95	Cl=n.d.
17:30:59	SMoni measurement =42		ipboard exam	ination failed
				pillow lava at Golden Valley
18:03:41	Lava rock sample = 42R	OV16		<i>ROV at</i> 4°48.159 S, 12°22.298 W
18:08:28 leaving bottom 19:24 ROV				

	Extended list of operations				
station (date/time UTC)	instruments used /samples /comments	location			
on deck					
17.01.08					
entire day	ROV idle. Short circuit requires shortening of cable				
ATA- 43CTD 20:38:50 – 08:10:40	LADCP, 3xMAPR, TOW-YO, no bottles, (starts on 16 th , ends on 17 th)	04°48.992S,12°25.002 @ 2804 m cable out, START 04°47.784'S,12°20.190'W bei 2700 m Tiefe, END			
18.01.08					
ATA- 44CTD 01:01:45 – 03:09:05	LADCP, no MAPR, 16 bottles,	04°50.500'S,12°11.898'W @ 3055 m cable out			
ATA- 45CTD 04:22:25 – 06:23:40	LADCP, no MAPR, 18 bottles,	04°46.503'S,12°22.798'W @ 3185 m cable out			
ATA-	Tools: SMoni, IB-sampler, 1x He tubes, 2x Titan	ship at			
46ROV 9:25	Majors, 2 bionets	04°48,620'S, 12°22,353'W			
deployment 11:10:15 on bottom	Sites: Wideawake and Turtle Pits				
11:33:57	Bionet sample = 46ROV1 at Wideawake				
11:38:14 to 13:20:18	Mapping Wideawake lave fields				
11:57:45	Basalt sample = $46ROV2$				
		Fossil submarine lava gauge in Wideawake field			
13:10:25	Basalt sample = 46ROV3	04°48.656'S, 12°22.265'W; @ 2983 m water depth			
13:45:43	Slurp gun sampling of mussels; bottle 1= 46ROV4	04°48.632'S, 12°22.331'W			

	Extended list of operations	
station (date/time UTC)	instruments used /samples /comments	location
		First colonialization (?) of lava by mussels
16 15 20	Site: Two Boats	4040 5770 10000 410 M
16:15:30	IB sample = 46ROV6	4°48.577S, 12°22.412 W
16:57:54	Bottle C9 =46ROV7; T_{KIPS} = 180° pH=3.47 sensor is displaced by 2 cm from nozzle	Cl=470 KIPS temp.
17:01:52	Bottle C8=46ROV8, T_{KIPS} = 180° pH=n/a because of sensor problem	Cl=n/a no temp.
17:58:06 leaving bottom 19:15 on deck		
ATA- 47CTD 20:24:00 – 22:11:23	LADCP, no MAPR, 16 bottles, 1 bottle not closed	04°51.297'S,12°19.504'W @ 2944 m cable out
ATA- 48CTD 23:09:30 – 01:03:10 19.01.08	LADCP, no MAPR, 20 bottles, 1 "Schöpfer" not closed	04°52.000'S, 12°21.453'W @ 3271 m cable out
ATA- 49CTD 02:04:03 – 03:53:20	LADCP, no MAPR, 16 bottles	04°53.003'S, 12°23.350'W @ 3035 m cable out
ATAROV50 09:40:42 deployment 11:29:15 on bottom	Tools: 1x Titan Majors, 2 bionets, IB-sampler, Shovel; port drawer configured for rocks Site: Inside Corner High 1	Ship coordinates 5°05.3771′S, 11°39.393′W
13:26:05	Rock sample = 50ROV1, Mn-encrusted peridotite breccia	05°05.622'S, 11°39.764'W, depth 3094m
15:24:48	Rock sample = 50ROV2, melano-gabbro	05°05.746'S, 11°40.045'W

	Extended list of operations			
station (date/time UTC)	instruments used /samples /comments	location		
		depth 2775 m		
16:21:56	Rock sample = 50ROV3, small serpentinte mylonite	05°05.830'S, 11°40.170'W, depth 2696 m		
16:24:21	Rock sample = 50ROV4, small piece of microgabbro or dolerite	05°05.830'S, 11°40.170'W, depth 2696 m		
16:34:58	Rock small = 50ROV5, large piece of leucogabbro with corner of felsic intrusvie	05°5.815'S, 11°40.191'W, 2670m		
16:55:45	Rock sample = 50ROV6, gabbro with two merging high T shear zones	05,840'S, 11°40,289'W, depth 2592 m		
17:22:19	Rock sample = 50ROV7, qtz-diorite intrusive into gabbro pegmatite and regular gabbro	05°05.827'S, 11°40.311'W, depth 2555m		
17:32:25 leaving bottom 18:43 on deck		Leaving traverse for today at 05°05.833'S, 11°40.372'W, depth 2484 m		
ATA- 51CTD 23:39:28 - 08:07:40 20.01.08	LADCP, 3x MAPR, 3 bottles, YoYo, hit ground from 05:22:33 to 05:26:09	04°47.998'S, 12°22.353'W @ 3005 m cable out		
ATA- ROV52 10:00 <i>deployment:</i> 11:43 on <i>bottom</i>	8-channel T-logger; 4 bionets, He tube	04°48.102' S, 12°22.286' W, depth 2992 m		
bollom	Site Golden Valley, further planned operations were cancelled due to failure of Posidonia position system	Amazing volcanic morphology in Golden Valley		

	Ext	ended list of oper	ations	
station (date/time UTC)	instruments used /samp			location
				mussel cemetary in Golden Valley area
13:59:38	Bottle C9 =52ROV1;	T_{KIPS} =8.9°C°	pH= 7.6	1 Cl=n.d.
				view of mussel field in Golden Valley area
14:04:08	Bottle C8 =52ROV2;	$T_{KIPS} = 8.6 C^{\circ}$	pH=7.08	Cl= n.d.
14:09:13	Bottle C7 =52ROV3;	T_{KIPS} =8.5C°	pH=6.92	Cl = n.d.
14:13:10	Bottle B6 =52ROV4;	$T_{KIPS} = 8.9 C^{\circ}$	pH=6.97	Cl= n.d.
14:20:04	Bottle B5 =52ROV5;	$T_{KIPS} = 8.0 C^{\circ}$	pH=6.79	Cl = n.d.
14:24:45	Bottle B4 =52ROV6;	$T_{KIPS} = 8.3 C^{\circ}$	pH= 6.84	Cl= n.d.
14:28:43	Bottle A3 =52ROV7;	$T_{KIPS}=7.8C^{\circ}$	pH= 6.88	Cl=n.d.
14:36:52	Bottle A2 =52ROV8;	$T_{KIPS} = 8.8 C^{\circ}$	pH=6.96	Cl=n.d.
14:41:51	Bottle A1 =52ROV9;	$T_{KIPS} = 8.8 C^{\circ}$	pH= 7.29	O Cl= n.d.
15:09:10	8-channel T-probe, = 52	2ROV10, Tmax =	= 6°C°	
15:51:39	mussels in net $B = 52R$	OV11		
16:12:15	collecting rock fragmen	ts with shove $=$ 5	52ROV12	
16:35:26	placing bionet as marke			
17:20:08 leaving bottom				

	Extended list of operations	
station (date/time UTC)	instruments used /samples /comments	location
18:39 <i>ROV</i>		
on deck ATA53VSR c. 20:30	volcanic glass = 53VSR1	Ship at 04°46.914'S, 12°22.596', depth at contact 3139 m
21.01.08		
ATA54VSR c. 23:30	volcanic glass = 54VSR	ship at 04°46.48'S, 12°22.52'W, depth at contact 3161 m
ATA55VSR c. 03:00	volcanic glass = 55VSR	ship at 04.46.093'S, 12°23.209'W, depth at contact 3207 m
ATA56VSR c. 06:00	sediment = 56VSR	ship at 04°43.962'S, 12°24.061'W, depth at contact 3321 m
ATA- ROV57	Tools: IB sampler, 2 bionets; 1x He tubes, 2x Titan Majors	Ship at 4°48.558'S, 12°22.463'W; depth 2989
09:36:00 <i>deployment</i> 11:03:43 <i>on bottom</i>		
	Site: Turtle Pits	
13:34:09	Rock sample from chimney = ATA-57ROV-1	
15:35:56	Bottle C9 = $57ROV2$; $T_{KIPS} = > 220^{\circ}C$ pH=6	.57 Cl=n.d.
15:39:44	Bottle C8 = 57ROV3; T_{KIPS} = >220°C pH=5	.38 Cl=n.d.
15:43:06	Bottle C7 = 57ROV4; T_{KIPS} = >220°C pH = 2	2.85 Cl=360
15:46:46	Bottle B6 = 57ROV5; T_{KIPS} = >220°C pH=4	.51 Cl=430
16:47:22	IB tube = sample 57ROV6	
18:32:11	Collecting beacon 11	
19:01:09	Collecting beacon 10	
19:09:17	Bionet with mussels = 57ROV6	
19:29:31		
leaving bottom 20:50 on deck		
ATA58VSR c. 22:30	volcanic glass = sample 58VSR	<i>ship at</i> 04°49.36'S, 12°22.53'W, depth at contact 3019 m
22.01.08		

	Extended list of operations			
station (date/time UTC)	instruments used /samples /comments	location		
ATA59VSR c. 1:30	volcanic glass = sample 59VSR, bulk of sample lost before on board	<i>ship at</i> 04°50.965'S. 12°22.024'W; depth at contact 3097 m		
ATA60VSR c. 4:30	volcanic glass = sample 60VSR	<i>ship at</i> 04°51.959'S, 12°21.533'W, depth at contact 3233 m		
ATA61VSR c. 7:30	sediment plus bit volcanic glass = 61VSR	<i>ship at</i> 04°52.985'S, 12°21.533'W, water depth at contact 3310 m		
	Service on ROV, no flying today			
ATA- 62CTD 09:16:59 – 03:31:55 23.01.08	LADCP, 3x MAPR, no bottles	<i>ship at</i> 04°47.394'S, 12°22.600'W @ 3086 m cable out		
ATA-	Toola, In Titan Majona 2 bionata ID agundon	abin at 5°05 848'S		
63ROV	Tools: 1x Titan Majors, 2 bionets, IB-sampler,Shovel, port drawer configured for rocksSite: Inside Corner High 2	<i>ship at</i> 5°05.848'S, 11°40.429'W		
09:00:00 <i>deployment;</i> 10:44:04 <i>on bottom</i>		05°05.798'S, 11°40.368'W 2489m depth		
11:12:57	Rock sample = 63ROV1, coarse-grained gabbro	05°05.854S', 11°40.356'W at depth 2472m		
11:29:56	Rock sample = 63ROV2, medium-grained gabbro	05°05.863'S, 11°40.369'W at depth 2430m		
12:01:49	Rock sample = 63ROV3, microgabbro	05°05.919'S, 11°40.382'W at depth 2324m		
12:20:56	Rock sample = 63ROV4, medium-grained gabbro	05 05.927S, 11°40.433'W at 2265m		
10 51 00		steeply dipping fault plane developed in a gabbro cliff		
12:51:22	Rock sample = 63ROV5, medium-grained gabbro	05°05.931'S, 11°40.527'W at depth 2175m		

	Extended list of operations				
station (date/time UTC)	instruments used /samples /comments	location			
13:25:59	Rock sample = 63ROV6, medium-grained gabbro	05°05.968'S, 11°40.583'W. at depth 2082m			
14:01:40	Rock sample = 63ROV7, coarse-grained gabbro	05°06.022'S, 11°40.698'W at depth 1978m			
14:25:11	Rock sample = 63ROV8, medium-grained gabbro	05°06.013'S, 11°40.817'W at depth 1876m			
15:01:56	Rock sample = 63ROV, microgabbro	05°06.059'S, 11°40.843'W at depth 1767m			
15:25:58	Rock sample = 63ROV10, perhaps basaltic with felsic magmatic veins	05°06.081' S, 12°40.949'W at depth 1673.8 m			
15:40:14	Rock sample = 63ROV11, microgabbro	05°06.089'S, 11°40.982'W at depth 1636m			
16:34:02	Rock sample = 63ROV12, medium-grained gabbro with net veins	05°06.104'S, 11°41.061'W at depth 1521m			
16:52:28	Rock sample = 63ROV13, peridotite breccia	05°06.118'S, 11°41.102'W at depth 1491m			
17:18:11	Rock sample = 63ROV14, ultramylonitic rock?	05°06.093'S, 11°41.125W at depth 1529 m			
		probable ultramylonitic peridotite 50 m below edge of inside corner high plateau			
17:26:25	Rock sample = 63ROV15, peridotite breccia	5°06.116'S, 11°41.101'W at depth 1492 m			
		coral grown ultramafic breccia on plateau of inside corner massif			

	Extended list of operations	
station (date/time UTC)	instruments used /samples /comments	location
17:32:39 leaving bottom 18:29 .on		
deck ATA- 64CTD 23:50:14 – 01:38:30 24.01.08	LADCP, 1x MAPR, 20 bottles	04°48.848'S, 12°22.298'W @ 2983 m cable out
ATA- 65CTD 02:32:12 – 04:22:40	LADCP, 1x MAPR, 20 bottles	04°22.40'S, 12°22.395'W @ 2992 m cable out
ATA- 66CTD 05:07:45 – 07:06:00	LADCP, 1x MAPR, 20 bottles	04°47.902'S, 12°22.492'W @ 3023 m cable out
ATA- 67ROV	<i>Tools</i> : IB-sampler, 1x He tubes, 2x Titan Majors, 2 bionets, rock-bio box	<i>Ship at</i> 4°48.661S, 12°22.60'W, depth 2995 m
	Site: Red Lion	
09:20:00 in water	Fly one mile to correct location	
11:42:31 on bottom		04°47.821'S, 12°22.641'W at depth of 3048 m
13:15:27	Slurp gun collects shrimps = 67ROV1	
13:21:28	Slurp gun collects shrimps = 67ROV2	
14:29:54	Ti-major bottle $D2 = 67ROV3$ pH=3.5	1 Cl=490
14:48:17	Bottle C9 = $67ROV4$ T _{KIPS} = $350^{\circ}C$ pH= 4.0	01 Cl=530
14:51:51	Bottle C8 = $67ROV5$ T _{KIPS} = $363^{\circ}C$ pH=2.85	5 Cl=540
14:54:39	Bottle C7 = $67ROV6$ T _{KIPS} = no T°C pH=3.6	2 Cl=560
14:58:58	Bottle B6 = $67ROV7$ T _{KIPS} = no T°C pH=5.0	6 Cl=540
15:05:43	Bottle B5 =67ROV8 T_{KIPS} = no T°C pH=3.2	
15:17:12	He-sample = 67ROV9	
15:19:35 leaving bottom 16:26 on deck	Leaving ground early because of oil leak from slurp	gun
ATA-		<i>Ship at</i> 4°48.152'S,

	Extended list of operations	
station (date/time UTC)	instruments used /samples /comments	location
ROV68		12°22.381'W, depth 2995 m
17:17:15 in water 18:33:16 on bottom	Site: Comfortless Cove area	4°48.090'S, 12°22.384'W, depth 3002 m
	Searching in a 120 x 120 m square for oceanographic tool (mooring) suspected in this area, but no success	
21:36:55 leaving bottom 22:45on deck		
ATA- ROV69	Mooring loaded with MMP,700m length	
23:10 deployment 02.55 <i>released</i>		04°48.197'S,12°22.510'W, depth 3004 m
25.01.08		
ATA- ROV70	Tools: 1x Titan Majors, 1 bionet, IB-sampler,Shovel, port drawer configured for rocksSite: North wall of transform, 5°S at nodal basin	<i>Ship at</i> 4°56.420´S, 11°37.044'W, depth 4765m
10:45:00 in water, 13:04:39 at bottom		11°36.987W, 04°56.473'S depth 4864 m
	Testing ROV functions at large dephts	
16:53:37	Subvolcanic basalt = 70ROV-1	04°56.336′S, 11°37.057′W 4753 m
17:53:56	Microgabbro to diabase = 70ROV-2	04°56.258'S, 11°37.055'W depth 4654 m
18:11:10	Solidified foraminiferous ooze = 70ROV-3	04°56.231'S, 11°37.073'W depth 4617 m
18:15:26	Doleritic basalt = 70ROV-4	04°56.231'S, 11°37.073'W depth 4617 m
18:42:12	Microgabbro to diabase = 70ROV-5	04°56.145′S, 11° 37.088′W depth 4515 m
18:58:35	Doleritic basalt = 70ROV-6	04°56.124´S, 11°37.111´W depth 4468 m

	Extended list of operations	
station (date/time UTC)	instruments used /samples /comments	location
19:44:17	Basaltic with flow texture = 70ROV-7	04 56.046'S, 11°37.131 depth 4343 m
		striations related to movement on a steep fault. They appear to truncate a sheeted dyke complex visible in foreground
20:12:40	Diabase = 70ROV-8	04 56.028'S, 11°37.114 depth 4252 m
		well developed sheeted dykes in cliff face of the transform wall
20:38:45	Diabase = 70ROV-9	04° 55.990'S, 11°37.124'W, depth 4175m
21:13:58	Diabase = 70ROV-10	04°55.983'S, 11°37.113'W, depth 4063m
21:37:21	Basaltic breccia = 70ROV-11	04°55.895'S, 11°37.148'W, depth 3996m
22:00:15	Diabase = 70ROV-12	04°55.816'S, 11°37.166'W, depth 3897m,
22:17:13	Diabase = 70ROV-13	04° 55,765'S, 11°37.201'W, depth 3825m

	Extended list of operation	25
station (date/time UTC)	instruments used /samples /comments	location
22:29:45	Diabase = 70ROV-14	04°55.757'S, 11°37.212' W, depth 3815m
22:32:08 leaving bottom 00:06. on deck		

Butu Butu <th< th=""><th>Butto Butto <th< th=""><th>StationSampleBottleSample TypeDateNr.IDBottleSample TypeDate35 ROV1D1hot fluid14.01.200837 ROV2C3diffuse fluid15.01.200837 ROV2C3diffuse fluid15.01.200837 ROV3ROV3C3diffuse fluid37 ROV3C3diffuse fluid16.01.200837 ROV10B4diffuse fluid16.01.200837 ROV11A3diffuse fluid16.01.200837 ROV13A1diffuse fluid16.01.200837 ROV13A1diffuse fluid16.01.200837 ROV14A1hot fluid16.01.200842 ROV2C3hot fluid16.01.200842 ROV14A1hot fluid16.01.200842 ROV14A1hot fluid16.01.200842 ROV14A1hot fluid16.01.200843 ROV12B4hot fluid16.01.200844 ROV14A1hot fluid16.01.200844 ROV12B4hot fluid16.01.200845 ROV13A1hot fluid16.01.200845 ROV14A1hot fluid16.01.200846 ROV14A1hot fluid16.01.200847 ROV14A1hot fluid16.01.200848 ROV14A1hot fluid16.01.200848 ROV<</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Jacobs Ur</th><th>Jacobs University Bremen, AG Koschinsky</th><th>ien, AG k</th><th>Coschins</th><th>Å</th><th>Westr</th><th>Westfaelische Universitaet Mnster, AG Strauss</th><th>Strauss</th><th>5</th><th>Christian</th><th>AG Garbe-Sch nberg</th><th>Christian-Albrechts-Universitaet Kiel, AG Garbe-Sch nberg</th><th>Kiel,</th></th<></th></th<>	Butto Butto <th< th=""><th>StationSampleBottleSample TypeDateNr.IDBottleSample TypeDate35 ROV1D1hot fluid14.01.200837 ROV2C3diffuse fluid15.01.200837 ROV2C3diffuse fluid15.01.200837 ROV3ROV3C3diffuse fluid37 ROV3C3diffuse fluid16.01.200837 ROV10B4diffuse fluid16.01.200837 ROV11A3diffuse fluid16.01.200837 ROV13A1diffuse fluid16.01.200837 ROV13A1diffuse fluid16.01.200837 ROV14A1hot fluid16.01.200842 ROV2C3hot fluid16.01.200842 ROV14A1hot fluid16.01.200842 ROV14A1hot fluid16.01.200842 ROV14A1hot fluid16.01.200843 ROV12B4hot fluid16.01.200844 ROV14A1hot fluid16.01.200844 ROV12B4hot fluid16.01.200845 ROV13A1hot fluid16.01.200845 ROV14A1hot fluid16.01.200846 ROV14A1hot fluid16.01.200847 ROV14A1hot fluid16.01.200848 ROV14A1hot fluid16.01.200848 ROV<</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Jacobs Ur</th><th>Jacobs University Bremen, AG Koschinsky</th><th>ien, AG k</th><th>Coschins</th><th>Å</th><th>Westr</th><th>Westfaelische Universitaet Mnster, AG Strauss</th><th>Strauss</th><th>5</th><th>Christian</th><th>AG Garbe-Sch nberg</th><th>Christian-Albrechts-Universitaet Kiel, AG Garbe-Sch nberg</th><th>Kiel,</th></th<>	StationSampleBottleSample TypeDateNr.IDBottleSample TypeDate35 ROV1D1hot fluid14.01.200837 ROV2C3diffuse fluid15.01.200837 ROV2C3diffuse fluid15.01.200837 ROV3ROV3C3diffuse fluid37 ROV3C3diffuse fluid16.01.200837 ROV10B4diffuse fluid16.01.200837 ROV11A3diffuse fluid16.01.200837 ROV13A1diffuse fluid16.01.200837 ROV13A1diffuse fluid16.01.200837 ROV14A1hot fluid16.01.200842 ROV2C3hot fluid16.01.200842 ROV14A1hot fluid16.01.200842 ROV14A1hot fluid16.01.200842 ROV14A1hot fluid16.01.200843 ROV12B4hot fluid16.01.200844 ROV14A1hot fluid16.01.200844 ROV12B4hot fluid16.01.200845 ROV13A1hot fluid16.01.200845 ROV14A1hot fluid16.01.200846 ROV14A1hot fluid16.01.200847 ROV14A1hot fluid16.01.200848 ROV14A1hot fluid16.01.200848 ROV<									Jacobs Ur	Jacobs University Bremen, AG Koschinsky	ien, AG k	Coschins	Å	Westr	Westfaelische Universitaet Mnster, AG Strauss	Strauss	5	Christian	AG Garbe-Sch nberg	Christian-Albrechts-Universitaet Kiel, AG Garbe-Sch nberg	Kiel,
1 38000 7 0 001044 40.1700 X	3 RW 7 RW 7 RW 7 RW 7 RW 8 RW <th< th=""><th>35.00v 7 Dr hor fluid 14.01.2008 37.00v 1 22 met fluid 14.01.2008 37.00v 1 C3 diffuse fluid 14.01.2008 37.00v 1 C3 diffuse fluid 15.01.2008 37.00v 1 B5 diffuse fluid 15.01.2008 37.00v 1 B5 diffuse fluid 15.01.2008 37.00v 1 A2 diffuse fluid 15.01.2008 37.00v 1 A3 diffuse fluid 16.01.2008 40.00v 3 A1 diffuse fluid 16.01.2008 41.00v 41.00v 41.00v 16.01.2008 16.01.2008 41.00v 41.00v 41.00v 16.01.2008 16.01.2008 42.00v 1 A1</th><th>Location</th><th>Station Nr.</th><th>Sample ID</th><th></th><th></th><th>Date</th><th>onboard</th><th>anions</th><th>cations NF</th><th>cations F</th><th>Si-det.</th><th>AAs</th><th>trace metals REE, HFSE</th><th></th><th></th><th>\vdash</th><th></th><th></th><th>\vdash</th><th></th><th></th></th<>	35.00v 7 Dr hor fluid 14.01.2008 37.00v 1 22 met fluid 14.01.2008 37.00v 1 C3 diffuse fluid 14.01.2008 37.00v 1 C3 diffuse fluid 15.01.2008 37.00v 1 B5 diffuse fluid 15.01.2008 37.00v 1 B5 diffuse fluid 15.01.2008 37.00v 1 A2 diffuse fluid 15.01.2008 37.00v 1 A3 diffuse fluid 16.01.2008 40.00v 3 A1 diffuse fluid 16.01.2008 41.00v 41.00v 41.00v 16.01.2008 16.01.2008 41.00v 41.00v 41.00v 16.01.2008 16.01.2008 42.00v 1 A1	Location	Station Nr.	Sample ID			Date	onboard	anions	cations NF	cations F	Si-det.	AAs	trace metals REE, HFSE			\vdash			\vdash		
387001 3 0.0 0.00000000000000000000000000000000000	Strong B Optimized Location X	35 Rov 8 D2 hot fluid 15.01.2008 37 Rov 2 C7 diffuse fluid 15.01.2008 37 Rov 3 C7 diffuse fluid 15.01.2008 37 Rov 3 C7 diffuse fluid 15.01.2008 37 Rov 4 B6 diffuse fluid 15.01.2008 37 Rov 11 A3 diffuse fluid 15.01.2008 37 Rov 12 A2 diffuse fluid 16.01.2008 37 Rov 12 A2 diffuse fluid 16.01.2008 37 Rov 12 A2 diffuse fluid 16.01.2008 47 Hou A3 diffuse fluid 16.01.2008 47 Hou A1 A1 Hou fluid 16.01.2008 48 Max Hou 16.01.2008 16.01.2008 16.01.2008 49 A3 diffuse fluid 16.01.2008 16.01.2008 40 42 A1 Hot fluid 16.01.2008 41 A1 A1 Hot fl	ats, top	35 ROV	7	5	hot fluid	14.01.2008	×	×	×	×					×	×					
37000 1 0.0 0.0000 1 0.0 0.0	TFMO 1 Click of the field	37ROV 1 C3 affrase fluid affrase fluid 37ROV 1 C3 affrase fluid affrase fluid 37ROV 1 15.012008 37ROV 2 C3 affrase fluid 37ROV 1 A3 affrase fluid affrase fluid 37ROV 15.012008 37ROV 1 A3 affrase fluid affrase fluid 37ROV 15 A1 affrase fluid affrase fluid affrase fluid affrase fluid affrase fluid affrase fluid affrase fluid 42ROV 15.012008 42ROV 2 C3 hot fluid huid bot fluid bot fluid bot fluid bot fluid affrase fluid affras	ats, bottom	35 ROV	8	D2	hot fluid		×	×	×	×	×			×	×	×					×
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TYROW 2 CP Other Inter X	37R0V 2 C8 diffuse fluid affrese fluid 37R0V diffuse fluid affrese fluid affrese fluid affrese fluid affrese fluid affrese fluid affrese fluid affrese fluid 47R0V 5 C8 diffuse fluid affrese fluid affres		37 ROV	٢	5	diffuse fluid	15.01.2008	×	×	×				×								
37000 3 C_{10} $C_{$	TYRON 3 CT Other Infection X	37 ROV3C7diffuse fluid affines fluid		37 ROV	2	ő	diffuse fluid		×							×		×					
37000 4 00 <	Tree 1 1 x	37 ROV 4 B6 diffuse fluid affuse fl	/ideawake 1	37 ROV	e	C7	diffuse fluid		×					×									
377000 5 60 40000 hild 60 27700 7	TWO TS	37.80v 5 B5 diffuse fluid 37.80v 10 B44 diffuse fluid 37.80v 12 A2 diffuse fluid 37.80v 12 A2 diffuse fluid 37.80v 12 A1 diffuse fluid 37.80v 12 A1 diffuse fluid 42.80v 5 B6 hot fluid 16.012008 42.80v 5 B6 hot fluid 16.012008 42.80v 1 B5 hot fluid 16.012008 42.80v 1 B6 hot fluid 16.012008 42.80v 1 B5 hot fluid 16.012008 42.80v 12 B4 hot fluid 16.012008 42.80v 14 A1 hot fluid 16.012008 42.80v 14 B4 hot fluid 16.012008 42.80v 14 B4 hot fluid 16.012008 52.80v 14 B4 hot fluid 16.012008 <		37 R OV	4	B6	diffuse fluid		×										×				
37 000 10	Trip Trip <th< td=""><td>37.000 37.000 10 42.000 B4 41.00 410.000 16.01.2008 37.000 12 37.000 A2 42.000 10 42.000 10 40.000 10 40.0000 10 40.0000 10 40</td><td></td><td>37 P.OV</td><td>Ľ</td><td>a a</td><td>diffuent fluid</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	37.000 37.000 10 42.000 B4 41.00 410.000 16.01.2008 37.000 12 37.000 A2 42.000 10 42.000 10 40.000 10 40.0000 10 40.0000 10 40		37 P.OV	Ľ	a a	diffuent fluid		•														
37 ROM 11 23 40 <th< th=""><td>3 7000 1 0 000000 X <th< td=""><td>37.00 10 23 410 43 410 43 410 45.01 2008 37.00 12 A2 diffuse fluid 15.01 2008 37.00 13 A1 diffuse fluid 15.01 2008 42.00 2 C3 hof fluid 15.01 2008 42.00 5 B6 hof fluid 15.01 2008 42.00 7 D1 hof fluid 15.01 2008 42.00 14 A1 hof fluid 15.01 2008 42.00 12 B5 hof fluid 15.01 2008 42.00 14 A1 hof fluid 15.01 2008 44.00 14 A1 hof fluid 20.01 2008 52.00 2 C3 diffuse fluid 20.01 2008 52.00 2 C3 diffuse fluid 20.01 2008 52.00 2 C3 diffuse fluid</td><td></td><td>702 LC</td><td>, ţ</td><td>3 6</td><td>diffuce fluid</td><td></td><td>< ></td><td>,</td><td>,</td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td></th<>	3 7000 1 0 000000 X <th< td=""><td>37.00 10 23 410 43 410 43 410 45.01 2008 37.00 12 A2 diffuse fluid 15.01 2008 37.00 13 A1 diffuse fluid 15.01 2008 42.00 2 C3 hof fluid 15.01 2008 42.00 5 B6 hof fluid 15.01 2008 42.00 7 D1 hof fluid 15.01 2008 42.00 14 A1 hof fluid 15.01 2008 42.00 12 B5 hof fluid 15.01 2008 42.00 14 A1 hof fluid 15.01 2008 44.00 14 A1 hof fluid 20.01 2008 52.00 2 C3 diffuse fluid 20.01 2008 52.00 2 C3 diffuse fluid 20.01 2008 52.00 2 C3 diffuse fluid</td><td></td><td>702 LC</td><td>, ţ</td><td>3 6</td><td>diffuce fluid</td><td></td><td>< ></td><td>,</td><td>,</td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	37.00 10 23 410 43 410 43 410 45.01 2008 37.00 12 A2 diffuse fluid 15.01 2008 37.00 13 A1 diffuse fluid 15.01 2008 42.00 2 C3 hof fluid 15.01 2008 42.00 5 B6 hof fluid 15.01 2008 42.00 7 D1 hof fluid 15.01 2008 42.00 14 A1 hof fluid 15.01 2008 42.00 12 B5 hof fluid 15.01 2008 42.00 14 A1 hof fluid 15.01 2008 44.00 14 A1 hof fluid 20.01 2008 52.00 2 C3 diffuse fluid 20.01 2008 52.00 2 C3 diffuse fluid 20.01 2008 52.00 2 C3 diffuse fluid		702 LC	, ţ	3 6	diffuce fluid		< >	,	,				,								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9700 11 70 11 70 1 x<	37.ROV 11 A3 dimuse fluid 16.012008 37.ROV 12 A1 dimuse fluid 16.012008 42.ROV 2 C3 hot fluid 16.012008 42.ROV 5 C3 hot fluid 16.012008 42.ROV 5 C3 hot fluid 16.012008 42.ROV 5 B6 hot fluid 16.012008 42.ROV 7 C3 hot fluid 16.012008 42.ROV 17 C3 hot fluid 16.012008 42.ROV 12 B4 hot fluid 20.012008 42.ROV 12 B4 hot fluid 20.012008 52.ROV 2 C3 diffuse fluid 20.012008 52.ROV 2 C3 diffuse fluid 21.0120			2 ;				< ;	<	<				<			;					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37000 12 All Offended x	37 Rov 12 A2 diffuse fluid 37 Rov 13 A1 diffuse fluid 42 Rov 2 C9 hot fluid 16.01.2008 42 Rov 4 C7 hot fluid 16.01.2008 42 Rov 5 B6 hot fluid 16.01.2008 42 Rov 7 D1 hot fluid 16.01.2008 42 Rov 11 B5 hot fluid 16.01.2008 42 Rov 12 A1 hot fluid 16.01.2008 42 Rov 12 A1 hot fluid 16.01.2008 42 Rov 12 A1 hot fluid 16.01.2008 42 Rov 14 A1 hot fluid 16.01.2008 42 Rov 14 A1 hot fluid 20.01.2008 52 Rov 5 B5 diffuse fluid 20.01.2008 52 Rov 5 B5 diffuse fluid 20.01.2008 52 Rov 5 B5 diffuse fluid 20.01.2008	lideawake 2	37 KUV	11	P.A	aimuse riuid		×									×					
37 ROV 13 71 Rov 14 71 Rov 14 71 Rov 71 Rov <th71 rov<="" th=""> <th71 rov<="" th=""> <th71 rov<="" th=""><td>97000 13 All Office Hild %0.1200 x<td>37.Rov 13 A1 diffuse fluid 16.012008 42.Rov 2 C3 hot fluid 16.012008 42.Rov 3 C3 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 12 B4 hot fluid 16.012008 42.Rov 12 B4 hot fluid 16.012008 52.Rov 12 B5 hot fluid 20.012008 52.Rov 5 C3 diffuse fluid 20.012008 52.Rov 5 B5 diffuse fluid 21.012008 52.Rov 5 B5 hot fluid 21.012008<</td><td></td><td>37 ROV</td><td>12</td><td>A2</td><td>diffuse fluid</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td></td></th71></th71></th71>	97000 13 All Office Hild %0.1200 x <td>37.Rov 13 A1 diffuse fluid 16.012008 42.Rov 2 C3 hot fluid 16.012008 42.Rov 3 C3 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 12 B4 hot fluid 16.012008 42.Rov 12 B4 hot fluid 16.012008 52.Rov 12 B5 hot fluid 20.012008 52.Rov 5 C3 diffuse fluid 20.012008 52.Rov 5 B5 diffuse fluid 21.012008 52.Rov 5 B5 hot fluid 21.012008<</td> <td></td> <td>37 ROV</td> <td>12</td> <td>A2</td> <td>diffuse fluid</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td>	37.Rov 13 A1 diffuse fluid 16.012008 42.Rov 2 C3 hot fluid 16.012008 42.Rov 3 C3 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 5 B6 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 11 B5 hot fluid 16.012008 42.Rov 12 B4 hot fluid 16.012008 42.Rov 12 B4 hot fluid 16.012008 52.Rov 12 B5 hot fluid 20.012008 52.Rov 5 C3 diffuse fluid 20.012008 52.Rov 5 B5 diffuse fluid 21.012008 52.Rov 5 B5 hot fluid 21.012008<		37 ROV	12	A2	diffuse fluid		×							×			×				
	42600 2 000 45000 X <th< td=""><td>42.Rov 2 C3 hot fluid 16.01.2008 42.Rov 5 B6 hot fluid 16.01.2008 42.Rov 1 B5 hot fluid 16.01.2008 42.Rov 12 B4 hot fluid 16.01.2008 42.Rov 12 B4 hot fluid 18.01.2008 52.Rov 14 A1 hot fluid 20.01.2008 52.Rov 2 C8 diffuse fluid 20.01.2008 52.Rov 5 B5 diffuse fluid 20.01.2008 52.Rov 5 B5 diffuse fluid 21.01.2008 52.Rov 5 B6 hot fluid 21.01.2008 52.Rov 5 B6 hot fluid 21.01.2008 52.Rov 5 B6 hot fluid</td><td></td><td>37 ROV</td><td>13</td><td>A1</td><td>diffuse fluid</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	42.Rov 2 C3 hot fluid 16.01.2008 42.Rov 5 B6 hot fluid 16.01.2008 42.Rov 1 B5 hot fluid 16.01.2008 42.Rov 12 B4 hot fluid 16.01.2008 42.Rov 12 B4 hot fluid 18.01.2008 52.Rov 14 A1 hot fluid 20.01.2008 52.Rov 2 C8 diffuse fluid 20.01.2008 52.Rov 5 B5 diffuse fluid 20.01.2008 52.Rov 5 B5 diffuse fluid 21.01.2008 52.Rov 5 B6 hot fluid 21.01.2008 52.Rov 5 B6 hot fluid 21.01.2008 52.Rov 5 B6 hot fluid		37 ROV	13	A1	diffuse fluid		×					×									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42000 3 C3 Initial to the formation of the formatio	42 Rov 3 CS hot fluid 42 Rov 5 60 hot fluid hot fluid 42 Rov 6 985 hot fluid 101 42 Rov 6 985 hot fluid 101 42 Rov 7 D1 hot fluid 110 42 Rov 1 B5 hot fluid 18.012008 42 Rov 1 A1 hot fluid 18.012008 42 Rov 1 CS diffuse fluid 18.012008 52 Rov 2 CS diffuse fluid 20.012008		42 ROV	2	ട	hot fluid	16.01.2008	×	×	×	×				_	×	×	×	×			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	om 2500 4 CT Notice x <th< td=""><td>tem 42 Rov 42 Rov 52 Rov 53 Rov 54 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 56 Rov 57 Rov 56 Rov 57 Rov 56 Rov 57 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 56 Rov 57 Rov 58 Rov 58 Rov 58 Rov 56 Rov 57 Rov 58 Rov 56 Rov 57 Rov 58 Rov 56 Rov 57 Rov 58 Rov 50 Rov 58 Rov 58</td><td></td><td>42 R OV</td><td>e</td><td>ő</td><td>hot fluid</td><td></td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td><td>×</td><td>×</td><td></td><td>×</td><td></td><td></td><td></td><td></td></th<>	tem 42 Rov 42 Rov 52 Rov 53 Rov 54 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 55 Rov 56 Rov 57 Rov 56 Rov 57 Rov 56 Rov 57 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 56 Rov 57 Rov 58 Rov 58 Rov 58 Rov 56 Rov 57 Rov 58 Rov 56 Rov 57 Rov 58 Rov 56 Rov 57 Rov 58 Rov 50 Rov 58		42 R OV	e	ő	hot fluid		×	×	×	×	×	×		×	×		×				
Motion 27.00 5 Motion 47.800 7	000 25000 5 000 25000 7 x <	term 42 Rov 5 B6 hot fluid 42 Rov 1 1 1 1 1 42 Rov 1 5 945 hot fluid 16.012008 42 Rov 12 84 hot fluid 18.012008 18.012008 42 Rov 14 A1 not fluid 18.012008 18.012008 52 Rov 2 C3 diffuse fluid 20.012008 18.012008 52 Rov 2 C8 diffuse fluid 20.012008 18.012008 52 Rov 2 C8 A1 diffuse fluid 20.012008 52 Rov 2 C8 A1 diffuse fluid 20.012008 52 Rov 2 C8 A1 diffuse fluid 21.012008 52 Rov 3 A2 diffuse fluid 21.012008 57.012008 57 Rov 5 A3 diffuse fluid 21.012008 57.012008 57 Rov 5 A3 diffuse fluid 21.012008 5		42 ROV	4	C7	hot fluid		×	×	×	×					×						×
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42600 6 000 fluid x <	(1) 42 RCV 6 gas hot fluid 42 RCV 7 D1 hot fluid 42 RCV 12 B4 hot fluid 42 RCV 12 B4 hot fluid 42 RCV 14 A1 hot fluid 42 RCV 14 A1 hot fluid 52 RCV 2 C3 diffuse fluid 52 RCV 5 B5 diffuse fluid 52 RCV 5 A3 diffuse fluid 52 RCV 5 B5 hot fluid 52 RCV 5 B5 hot fluid 57 RCV 5 B6 hot fluid 67 RCV 6 C7 hot fluid 67 RCV 6 C7 hot fluid 67 RCV 6 C7 hot fluid 67 RCV 7 B6 hot fluid 67 RCV 6 C7 hot fluid 67 RCV 7 B6 hot fluid 67 RCV 7 7 B6 hot fluid 67 RCV 7 7 B6 hot fluid 67 RCV 7 7 86 hot fluid 7 8 8 hot fluid 8 8 hot fluid	rs Peak, bottom	42 ROV	5	B6	hot fluid		×	×	×	×	×		×	×	×		×				
	10 25000 1 Differential X	(1) 42 Rov 42 Rov 42 Rov 42 Rov 52 Rov 53 Rov 57 Rov 52 Rov 57 Rov 58 Rov 57 Rov 57 Rov 57 Rov 57 Rov 58 Rov 57 Rov 57 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 57 Rov 58 Rov 58 Rov 58 Rov 57 Rov 58 Rov 50 Rov		42 ROV	9	gas	hot fluid		×														
(1) 2200 1 270 1 270 1 270 1 270 1 270 1 270 1 270 1 270 1 270 1 1 1 270 1	(1) #2600 11 B5 h014d x <	(1) 42.ROV 11 B5 hot fluid hot fluid 48.ROV 12 B4 hot fluid 48.ROV 13.012008 42.ROV 1 C9 hot fluid 48.ROV 13.012008 52.ROV 2 C8 diffuse fluid 41.Ruse fluid 52.ROV 13.012008 52.ROV 2 C8 diffuse fluid 41.Ruse fluid 52.ROV 20.012008 52.ROV 5 B5 diffuse fluid 41.Ruse fluid 52.ROV 20.012008 52.ROV 5 B5 diffuse fluid 41.Ruse fluid 52.ROV 20.012008 52.ROV 5 B5 diffuse fluid 41.Ruse fluid 52.ROV 24.012008 57.ROV 5 B6 hot fluid 41.Ruse fluid 57.ROV 24.012008 57.ROV 5 B6 hot fluid 41.Ruse fluid 57.ROV 24.012008 67.ROV 6 C7 hot fluid 61.Ruse fluid 57.ROV 24.012008 67.ROV 7 B6 hot fluid 61.Ruse fluid 67.ROV 24.012008 67.ROV 6 C7 hot fluid 61.Ruse fluid 67.ROV 24.012008 67.ROV 7 B6 hot fluid 61.Ruse fluid 67.ROV 24.012008 67.ROV 7 B6 hot fluid 61.Ruse fluid 67.ROV 24.012008 67.ROV 8 C7 hot fluid 67.ROV 24.0		42 ROV	7	Б	hot fluid		×	×	×	×	×		×	×	×		×	×		×	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1) 2 Roy 1 0 Roy 1	(1) 42.500 45.800 12 42.800 B4 A1 hor fluid hor fluid 52.800 18.01.2008 46.801 52.800 2 C3 diffuse fluid diffuse fluid 52.800 18.01.2008 46.801 52.800 2 C3 diffuse fluid diffuse fluid 52.800 20.01.2008 52.800 52.800 4 B5 diffuse fluid diffuse fluid 52.800 21.01.2008 52.800 52.800 5 A2 diffuse fluid diffuse fluid 52.800 21.01.2008 52.800 57.800 5 A2 diffuse fluid diffuse fluid 57.800 21.01.2008 57.800 5 A2 diffuse fluid diffuse fluid 67.800 24.01.2008 57.800 5 B6 hot fluid diffuse fluid 67.800 24.01.2008 67.800 5 C3 hot fluid diffuse fluid 67.800 24.01.2008 67.800 5 B6 hot fluid diffuse fluid 67.800 24.01.2008 67.800 6 7 hot fluid diffuse fluid 67.800 24.01.2008 67.800 6 7 hot fluid diffuse fluid 67.800 24.01.2008 67.800 6		42 ROV	1	B5	hot fluid		×	×	×	×		×			×		×	×			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	arrow arrow <th< td=""><td>42.57.0v 1.4 A1 hor fluid 18.01.2008 46.6.Vv 7 C9 hor fluid 18.01.2008 52.6.Vv 2 C8 diffuse fluid 18.01.2008 52.6.Vv 3 C7 diffuse fluid 18.01.2008 52.6.Vv 3 C7 diffuse fluid 20.01.2008 52.6.Vv 4 B6 diffuse fluid 20.01.2008 52.6.Vv 5 B5 diffuse fluid 20.01.2008 52.6.Vv 5 B5 diffuse fluid 21.01.2008 52.6.Vv 5 B5 hot fluid 24.01.2008 57.6.Vv 5 B6 hot fluid 24.01.2008 57.6.Vv 5 B6 hot fluid 24.01.2008 57.7.6.Vv 5 B6 hot fluid 24.01.2008 67.7.6.Vv 5 B6 hot fluid 24.01.2008 67.7.6.Vv 5 B6 hot fluid 24.01.2008 67.7.6.7 B6 hot fluid<td>rs Peak, top (1)</td><td>42 R.OV</td><td>12</td><td>B4</td><td>hot fluid</td><td></td><td>: ×</td><td>×</td><td>×</td><td>×</td><td></td><td></td><td></td><td></td><td>: ×</td><td></td><td>: ×</td><td>×</td><td></td><td></td><td></td></td></th<>	42.57.0v 1.4 A1 hor fluid 18.01.2008 46.6.Vv 7 C9 hor fluid 18.01.2008 52.6.Vv 2 C8 diffuse fluid 18.01.2008 52.6.Vv 3 C7 diffuse fluid 18.01.2008 52.6.Vv 3 C7 diffuse fluid 20.01.2008 52.6.Vv 4 B6 diffuse fluid 20.01.2008 52.6.Vv 5 B5 diffuse fluid 20.01.2008 52.6.Vv 5 B5 diffuse fluid 21.01.2008 52.6.Vv 5 B5 hot fluid 24.01.2008 57.6.Vv 5 B6 hot fluid 24.01.2008 57.6.Vv 5 B6 hot fluid 24.01.2008 57.7.6.Vv 5 B6 hot fluid 24.01.2008 67.7.6.Vv 5 B6 hot fluid 24.01.2008 67.7.6.Vv 5 B6 hot fluid 24.01.2008 67.7.6.7 B6 hot fluid <td>rs Peak, top (1)</td> <td>42 R.OV</td> <td>12</td> <td>B4</td> <td>hot fluid</td> <td></td> <td>: ×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>: ×</td> <td></td> <td>: ×</td> <td>×</td> <td></td> <td></td> <td></td>	rs Peak, top (1)	42 R.OV	12	B4	hot fluid		: ×	×	×	×					: ×		: ×	×			
6670 7 C3 Inethid 18.012008 ×	#RRW T C3 Defined 16/12/2008 x	46 Rov 7 Cg hot fluid 18.01.2008 52 Rov 2 diffuse fluid 20.01.2008 52 Rov 2 diffuse fluid 20.01.2008 52 Rov 3 7 diffuse fluid 20.01.2008 52 Rov 5 B5 diffuse fluid 20.01.2008 52 Rov 5 B5 diffuse fluid 20.01.2008 52 Rov 5 B5 diffuse fluid 20.01.2008 52 Rov 6 B4 diffuse fluid 20.01.2008 52 Rov 6 B5 diffuse fluid 21.01.2008 52 Rov 8 A1 diffuse fluid 21.01.2008 57 Rov 3 C3 hot fluid 24.01.2008 57 Rov 5 B6 hot fluid 24.01.2008 67 Rov 5 C3 hot fluid 24.01.2008 67 Rov 5 B6 hot fluid 24.01.2008 67 Rov 6 C3 hot fluid 24.01.2008	eak. top (2)	42 ROV	14	A1	hot fluid		: ×	. ×	× ×	: ×				×	: ×	×	. ×				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 28 001000 </td <td>sz rov 1 C3 diffuse fluid 20.01.2006 sz rov 2 C8 diffuse fluid 20.01.2006 sz rov 3 C7 diffuse fluid 20.01.2006 sz rov 5 B5 diffuse fluid 20.01.2008 sz rov 5 B5 diffuse fluid 20.01.2008 sz rov 5 B5 diffuse fluid 20.01.2008 sz rov 5 B4 diffuse fluid 20.01.2008 sz rov 5 B4 diffuse fluid 21.01.2008 sz rov 3 A1 diffuse fluid 21.01.2008 sz rov 3 C3 hot fluid 21.01.2008 sz rov 5 C3 hot fluid 21.01.2008 sz rov 5 C3 hot fluid 21.01.2008 sr rov 5 C3 hot fluid <td>ts, bottom</td><td>46 ROV</td><td>-</td><td>60</td><td>hot fluid</td><td>18.01.2008</td><td>×</td><td>×</td><td>×</td><td>×</td><td>×</td><td></td><td></td><td>: ×</td><td>. ×</td><td>. ×</td><td>: ×</td><td></td><td></td><td>×</td><td></td></td>	sz rov 1 C3 diffuse fluid 20.01.2006 sz rov 2 C8 diffuse fluid 20.01.2006 sz rov 3 C7 diffuse fluid 20.01.2006 sz rov 5 B5 diffuse fluid 20.01.2008 sz rov 5 B5 diffuse fluid 20.01.2008 sz rov 5 B5 diffuse fluid 20.01.2008 sz rov 5 B4 diffuse fluid 20.01.2008 sz rov 5 B4 diffuse fluid 21.01.2008 sz rov 3 A1 diffuse fluid 21.01.2008 sz rov 3 C3 hot fluid 21.01.2008 sz rov 5 C3 hot fluid 21.01.2008 sz rov 5 C3 hot fluid 21.01.2008 sr rov 5 C3 hot fluid <td>ts, bottom</td> <td>46 ROV</td> <td>-</td> <td>60</td> <td>hot fluid</td> <td>18.01.2008</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td>: ×</td> <td>. ×</td> <td>. ×</td> <td>: ×</td> <td></td> <td></td> <td>×</td> <td></td>	ts, bottom	46 ROV	-	60	hot fluid	18.01.2008	×	×	×	×	×			: ×	. ×	. ×	: ×			×	
52 ROV 2 64 Muse fluid 52 ROV 2 64 Muse fluid 52 ROV 2 64 Muse fluid 52 ROV 3	x x	Szrov 2 CG offwae fluid X X X X Meen Valley Szrov 5 CG offwae fluid X X X X X Szrov 5 BG offwae fluid X <t< td=""><td></td><td>52 ROV</td><td>-</td><td>හ</td><td>diffuse fluid</td><td>20.01.2008</td><td>×</td><td>×</td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td><td>$\left \right$</td><td>×</td><td></td><td></td><td></td><td></td></t<>		52 ROV	-	හ	diffuse fluid	20.01.2008	×	×				×				$\left \right $	×				
22 ROV 32 ROV<	x x	S2 Rov 3 Cr diffuse fluid x		52 ROV	7	8	diffuse fluid		×	-						×			×				
S2 ROV 6 diffuse fluid 23 ROV 6 6 7	x x	Attent value 52 Rov 4 Bis diffuse fluid ×		52 R OV	e	C7	diffuse fluid		×										×	×			
22 ROV 5 B5 diffuse fluid 52 ROV 6 B4 diffuse fluid 52 ROV 6 B4 diffuse fluid 52 ROV 6 B4 diffuse fluid 52 ROV 8 A2 diffuse fluid 52 ROV 8 A2 diffuse fluid 52 ROV 8 A2 diffuse fluid 610 Rise fluid A1 diffuse fluid X 52 ROV 8 A2 diffuse fluid X 610 Rise fluid A1 diffuse fluid X X 57 ROV 3 5 X X X 57 ROV 4 A1 diffuse fluid X X 67 ROV 4 X X X X X 57 ROV 5 X X X X X 67 ROV 5 X X X X X 7 X X X X </th <td>x x</td> <td>Iden Valley 52 Rov 5 Bit of these fluid ×</td> <td></td> <td>52 R OV</td> <td>4</td> <td>B6</td> <td>diffuse fluid</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td>	x x	Iden Valley 52 Rov 5 Bit of these fluid ×		52 R OV	4	B6	diffuse fluid		×							×			×	×			
52 ROV 6 B4 diffuse fluid 52 ROV 3 diffuse fluid 3 5 7 4 52 ROV 3 6 84 diffuse fluid 3 5 7 4	x x	S2 ROV 6 B4 diffuse fluid ×	lden Valley	52 R OV	5	B5	diffuse fluid		×										×	×			
52 ROV 7 A3 diffuse fluid 52 ROV 7 A3 diffuse fluid 52 ROV 9 A 2 52 ROV 9 A X 52 ROV 9 A X 52 ROV 9 A X 61/16/86 fluid 41 A A 61/16/97 fluid 57 X X X 61/16/97 fluid X X X X X 7 X X X X X X 8 7001000 X <t< th=""><td>x x</td><td>Strov 7 A3 diffuse fluid ×</td><td></td><td>52 R OV</td><td>9</td><td>B4</td><td>diffuse fluid</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td>×</td><td>×</td><td></td><td></td></t<>	x x	Strov 7 A3 diffuse fluid ×		52 R OV	9	B4	diffuse fluid		×										×	×	×		
S2 ROV S2 ROV<	x x	szrov8A2offuse fluid×××szrov9A1offuse fluid××××szrov3C8hortituid21.01.2008×××××szrov4C7hortituid21.01.2008××××××szrov5C8hortituid21.01.2008×××××××szrov5C8hortituid21.01.2008××××××××strov3C2hortituid24.01.2008×××××××××strov5C8hortituid24.01.2008××× </td <td></td> <td>52 R O V</td> <td>7</td> <td>A3</td> <td>diffuse fluid</td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td>		52 R O V	7	A3	diffuse fluid		×					×					×				
52.ROV 53.ROV 9 A1 diffuse fluid 53.ROV 9 A1 diffuse fluid x	x x	sz Rov9A1diftuse fluidxxxxxxxBoats, bottom57 Rov2C8hortfluid21.01.2008xxxxxxxxS7 Rov5C8hortfluid21.01.2008xxxxxxxxxS7 Rov5B6hortfluid24.01.2008xxx <td></td> <td>52 R OV</td> <td>8</td> <td>A2</td> <td>diffuse fluid</td> <td></td> <td>×</td> <td>×</td> <td></td>		52 R OV	8	A2	diffuse fluid		×	×													
57.ROV 2 C3 hot fluid 21.012008 X <td>x x</td> <td>Boarts, bottom57 Rov2CG3Not fluid21.01.2008xx<!--</td--><td></td><td>52 ROV</td><td>6</td><td>A1</td><td>diffuse fluid</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	x x	Boarts, bottom57 Rov2CG3Not fluid21.01.2008xx </td <td></td> <td>52 ROV</td> <td>6</td> <td>A1</td> <td>diffuse fluid</td> <td></td> <td>×</td> <td></td>		52 ROV	6	A1	diffuse fluid		×														
57 ROV 3 C6 hotfluid 67 ROV 3 C6 hotfluid 67 ROV 4 2 3 C8 67 ROV 5 7 8 8 67 ROV 5 8 8 10 7 8 8 8 10 10 8 7 8 8 8 10 10 9 7 8 8 8 10 10 10 10<	x x	Beats, bottom 57 Rov 3 C3 Not fluid x		57 R OV	2	60	hot fluid	21.01.2008	×		×	×	×	×			×		×				
57 ROV 4 C7 hot fluid 57 ROV 4 C7 hot fluid 57 ROV 3 B6 hot fluid 67 ROV 3 1 78 ROV 4 C7 78 ROV 3 1 78 ROV 5 C3 78 ROV 5 C3<	x x	STROW 4 C7 Institute ×	Boats, hottom	57 ROV	e	ő	hot fluid		×	×	×	×	×	×		×	×	×					
97.ROV 5 B6 hot fluid 97.ROV 5 B6 hot fluid 1	x x	STROW 5 B6 Instituid 24.012008 x <td></td> <td>57 ROV</td> <td>4</td> <td>C7</td> <td>hot fluid</td> <td></td> <td>×</td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td>		57 ROV	4	C7	hot fluid		×		×	×	×	×		×	×	×					
67 ROV 3 D2 hot fluid 77 ROV 3 D2 hot fluid 77 ROV 4 7 X X 77 ROV 6 5 C X X 77 ROV 6 7 X X X X 77 ROV 6 7 X X X X X 77 ROV 6 7 X X X X X X 77 ROV 6 7 X X X X X X X X 7 X </th <td>x x</td> <td>Mephilsto §7.80V \$7, x, x,</td> <td></td> <td>57 ROV</td> <td>5</td> <td>B6</td> <td>hot fluid</td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>×</td>	x x	Mephilsto §7.80V \$7, x,		57 ROV	5	B6	hot fluid		×	×	×	×	×	×			×	×					×
67 ROV 4 C9 hof fluid 87 ROV 5 C8 hof fluid 87 ROV 5 C8 hof fluid x x x x	x x	Mephisto 67 Rov 67 Rov 67 Rov 67 Rov 5 C3 C3 67 Rov B6 Includ F X		67 ROV	en l	D2	hot fluid	24.01.2008	×	×	×	×	×				×	×	×			×	
67 ROV 5 C8 Not fluid X X 67 ROV 6 C7 Not fluid X X X 77 ROV 6 C7 Not fluid X X X X 77 ROV 1 1 X X X X X X 77 ROV 1 1 X X X X X X 77 ROV 1 1 X	x x	Mephisto 67 Rov errov srrov 5 crrov 0 crrov 5 crrov 0 crrov 5 crrov 0 crrov 5 crrov 0 crrov 5 crrov 0 crrov 0		67 ROV	4	ຶ	hot fluid		×	×	×	×	×	×			×		×				
67.ROV 6 C7 hot fluid x x x x x x x x x x x x x x x x x x x	x x	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Manhieto	67 ROV	5	ő	hot fluid		×		×	×	×			×	×	×	×				×
7 B6 hoffleid x x x x x x x x x x x x x x x x x x x	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e_{TROV} 7 $B6$ InstituteInstitute x </td <td></td> <td>67 ROV</td> <td>9</td> <td>C7</td> <td>hot fluid</td> <td></td> <td>×</td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td>×</td> <td>×</td> <td>×</td> <td></td> <td></td> <td></td> <td></td>		67 ROV	9	C7	hot fluid		×		×	×	×	×			×	×	×				
	x x	eviations: onboard: determination of PH, Eh, H2S, Fe speciation; F: filtered; NF: non-filtered; Si-det: silica determination; AAs: Elements including Y; HFSE: High Field Strength Elements; DIC: Dissolved Inorganic Carbon; H-Iso: Hydrogen Isotopes; O-Sulfur isotopes; MBB: Monobromobimane fixation for S speciation; Mg-det: magnesium determination; CI-Iso: stable CI, Ca, hauer, Kiel); PGE: Platinum group Elements		67 R OV	7	B6	hot fluid		×		×	×	×	×			×		×				
	speciation; F: filtered; NF: non-filtered; Si-det: silica determination; AAs: Amino Acids; REE: Rare ements; DIC: Dissolved Inorganic Carbon; H-Iso: Hydrogen Isotopes; O-Iso: Oxygen Isotopes; S-S speciation; Mg-det: magnesium determination; CI-Iso: stable CI, Ca, Mg, Sr Isotopes (AG A.	eviations: onboard: determination of pH, Eh, H2S, Fe speciation; F: filtered; NF: non-filtered; Si-det: silica determination; AAs: i Elements including Y; HFSE: High Field Strength Elements; DIC: Dissolved Inorganic Carbon; H-Iso: Hydrogen Isotopes; O- Sulfur isotopes; MBB: Monobromobimane fixation for S speciation; Mg-det: magnesium determination; CI-Iso: stable CI, Ca, hauer, Kiel); PGE: Platinum group Elements		67 R OV	8	B5	hot fluid		×	×	×	×	×	×	×	_	×	×	×	×			
			n Elements Sulfur isoto	nuuun pes: MI	BB: Mo	nobrc	лиуп гиени эторітапе	fixation	for S st	ווא, בוו Deciati	on: Ma-d	lveu IIIU Jet: magi	garııc nesiur	n det	orr, n-isu. ermination	ы Б С	ogen i: so: sta	surup ble C	es, c- 2. Ca,	Na, SI	r Isotop	ioupe: es (A(
arrierus, Dic. Dissorved irrorganic caroori, n-tso. nydrogen isotopes, O-tso. Oxygen isotopes, S- S speciation: Mo-det: magnesium determination: CI-Iso: stable CI. Ca. Mg. Sr Isotopes (AG A.			nhaner Kie	ЦС	Dlatin	20	nin Flaman	te te)			0								ĥ	<u>-</u>		

Appendix 2: Fluid Chemistry results and subsamples

Table A1: Summary of hydrothermal fluid subsamples taken during Atalante Leg 2

Location	Station Nr.	Sample ID	Bottle	Sample Type	Date	T (C)	Ча	E	H (IIII) H	H2S (ILM) Fe	Fe (II) ma/I	Fe (II) uM	Fe (tot) (ma/l) Fe	(tot) (mM)	CI (mm) 0	O2 (uM)
Two Boats, top	35 ROV	7	D1	hot fluid	14.01.2008		6,44	5 n.d		1,57	8,53	152,3	+	173,9	550	
Two boats, bottom	35 ROV	ø	D2	hot fluid		429-451*	2,92	-245	3370	3323	216	3857	221	3946	310	
	37 ROV	-	60	diffuse fluid	15.01.2008	7-11	7,5	-50		1,16	0,1	1,8	0,85	15,2	560	225
	37 ROV	2	8	diffuse fluid		4-11	7,05	T.		47,24	0,45	8,0	0,5	8,9	550	
Wideawake 1	37 ROV	e	C7	diffuse fluid		8-11	7,29	-180		14,65	0,78	13,9	1,23	22,0	560	
	37 ROV	4	BG	diffuse fluid		n.a.	7,03	-217		76,16	0,38	6,8	0,41	7,3	560	
	37 ROV	5	B5	diffuse fluid		12-16				27,96	0,45	8,0	0,74	13,2	560	
	37 ROV	10	B4	diffuse fluid		8-9	7,5	-213,6		39,1	0,13	2,3	0,19	3,4	550	
0 - 1	37 ROV	11	A3	diffuse fluid		5-7	7,42	-212,7		33,12	0,17	3,0	0,24	4,3	560	270
WIGEAWARE Z	37 ROV	12	A2	diffuse fluid		9	7,39	-217,9		48,59	0,13	2,3	0,13	2,3	550	
	37 ROV	13	A1	diffuse fluid		6	7,5			12,23	0,44	7,9	1,39	24,8	555	
	42 ROV	2	60	hot fluid	16.01.2008	367	6,75		390	100	4,42	29,0	4,36	77,9		
	42 ROV	ъ	C8	hot fluid		367	4,33		6650	6038	115,03	2054,1	119,26	2129,7	370	
	42 ROV	4	C7	hot fluid		367	3,8		0966	8494	174,06	3108	176	3141	330	
SISTERS PEAK, DOTTOM	42 ROV	5	BG	hot fluid		367	4,28		4300	3960	122,48	2187,2	111,35	1988,4	370	
	42 ROV	9	gas	hot fluid												
	42 ROV	7	D1	hot fluid			3,36		7800	9296	184,18	3289	205	3667	310	
	42 ROV	11	B5	hot fluid		n.d.**	5,69		530	2219	24,30	433,9	26,57	474,5	520	
SISLERS FEAK, LOP (1)	42 ROV	12	B4	hot fluid		n.d.**	6,76	< 30	0	38	4,19	74,9	3,92	69,9		
Sisters Peak, top (2)	42 ROV	14	A1	hot fluid		n.d.**	5,95		110	251	20,78	371,0	23,08	412,1		
Two Boats, bottom	46 ROV	7	60	hot fluid	18.01.2008	max. 412	3,47	-222,7		1486	74,46	1330	83,67	1494	470	
	60 DOV	~	00	diff.co firid	20.01 2008	0 0	761	90		~	0	0.0	αU U	7	t	AED
	52 ROV	- ~	88	diffuse fluid	2007-10-04	8.6	7.08	-136		21	0.11	2.0	0.18	3.2		201
	52 ROV	0	C7	diffuse fluid		8.5	6.92	-170		43	0.2	3.6	0,23	4,1		
	52 ROV	4	B6	diffuse fluid		8,9	6,97	-128		20	0,55	9,8	1,25	22,3		
Golden Valley	52 ROV	5	B5	diffuse fluid		8	6,79	-196		56			0			
•	52 ROV	9	B4	diffuse fluid		8,3	6,84	-186		40			0,02	0,4		244
	52 ROV	7	A3	diffuse fluid		7,8	6,88	-195		22	0	0,0	0			
	52 ROV	8	A2	diffuse fluid		8,9	6,96	-26,3		7	1,04	18,6	2,39	42,7		290
	52 ROV	6	A1	diffuse fluid		8,8	7,29	68,4		1	0,79	14,1	1,65	29,5		
	57 ROV	2	60	hot fluid	21.01.2008	max: 371	6,57	10		4	7,58	135,4	10,03	179,1		
	57 ROV	3	C8	hot fluid			5,38	-290		925	27,01	482,3	30,54	545,4		
I WO BOATS, DOTTOM	57 ROV	4	C7	hot fluid			2,85	-189		4782	167,5	2991	216	3857	360	
	57 ROV	5	BG	hot fluid			4,51	-274		2561	63,28	1130,0	73,22	1307,5	430	
	67 ROV	3	D2	hot fluid	24.01.2008		3,51	-224,4		3885	15,68	280,0	21,54	384,6	490	
	67 ROV	4	60	hot fluid		363	4,01	-207,4		3990	33,94	606,1	33,61	600,2	530	0
Moshinte	67 ROV	5	ő	hot fluid		363	2,85			7465	40,8	729	44,3	791	540	
	67 ROV	9	C7	hot fluid		363	3,62			6336	37,39	667,7	46,74	834,6	560	
	67 ROV	7	B6	hot fluid		363	5,06			2203	15,34	273,9	13,74	245,4	540	
	67 ROV	8	B5	hot fluid		363	3,22	-190,8		7593	47,88	855	52,19	932	560	

Table A2: Results from on-board chemical analyses and measured data

* max. T range measured in the same orifice ** T sensor failed

Location	Station Nr.	Station Nr. Sample ID	Bottle	Sample Type	Date	T (C)	На	Eh	H2S (JuM)	H2S (JJM)	Fe (II) mg/I	Fe (II) JM	Fe (tot) (mg/l)	Fe (tot) (mM)	CI (mM)	02 (µM)
Two Boats, top	35 ROV	-	5	hot fluid	14.01.2008		6,44	5	n.d.	1,57	8,53	152.3	9.74	173,9		
Two boots bottom	25 DOV	•	2	hat fluid		400 AE1*	000	346		0000	210	2067	100		010	
WO DOALS, DOLLOTI	20 RUV	•	70	LIOU LINIO		104-074	2,32	047-	0200	3343	017	1000	177	0340	010	
	37 ROV	-	60	diffuse fluid	15.01.2008	7-11	7,5	-50		1,16	0,1	1,8	0,85	15,2	560	225
	37 ROV	2	cs S	diffuse fluid		4-11	7,05	-206		47,24	0,45	8,0	0,5	8,9		
Wideawake 1	37 ROV	e	C7	diffuse fluid		8-11	7.29	-180		14.65	0.78	13.9	1.23			
	37 ROV	4	B6	diffuse fluid		n.a.	7.03	-217		76.16	0.38	6.8	0,41		560	
	37 ROV	5	B5	diffuse fluid		12-16				27.96	0.45	8.0	0.74		560	
	37 ROV	10	B 4	diffuse fluid		6-8	7.5	-213.6		39.1	0 13	23	0.19		550	
	100 20	2 7	5 5	different Build			0.1	200		- 00	7 0	0,0	100			020
Wideawake 2	3/ KUV	E	A3	dimuse muid		\	1,42	-212,/		33,12	11,0	3,0	0,24		096	2/0
	37 ROV	12	A2	diffuse fluid		9	7,39	-217,9		48,59	0,13	2,3	0,13	2,3	550	
	37 ROV	13	A1	diffuse fluid		6	7,5	-176,3		12,23	0,44	7,9	1,39	24,8	555	
	42 ROV	6	g	hot fluid	16.01.2008	367	6.75	t	390	100	4 42	10.02	4.36	6 22		
	42 ROV	1 0	8 8	hot fluid	200	367	4.33		6650	6038	115.03	2054 1	119.26	21	370	
		, .	3 5			100	p c		0000			1,702	04.011			
Sisters Peak, hottom	42 KUV	4	5	hot fluid		307	3,8		8960	8434	1/4,06	3108	1/6		330	
	42 ROV	5	BG	hot fluid		367	4,28		4300	3960	122,48	2187,2	111,35	1988,4	370	
	42 ROV	9	gas	hot fluid												
	42 ROV	7	5	hot fluid			3,36		7800	9296	184,18	3289	205	3667	310	
	42 ROV	11	B5	hot fluid		n.d.**	5.69		530	2219	24.30	433.9	26.57	474.5	520	
Sisters Peak, top (1)	42 ROV	12	B4	hot fluid		n.d.**	6.76		< 30	38	4.19	74.9	3.92			
Sisters Dealy ton (2)	40 POV	14	41	hot fluid			5 95		110	261	82 UC	371.0	23.08			
DISCERS LOW, OP (2)	AC1 74	1	č				200		2	104	£0,10	0110	00,04			
 			5	Land Black	0000 10 01		ļ	1 000	ĺ	0077		0001	1000		011	
Iwo Boats, bottom	46 KUV	`	3	hot fluid	18.01.2008	max. 412	3,47	-222,1	Ī	1486	74,46	1330	83,67	1494	470	
		,	00			0	i i	0		Ì	0	0	000			
	52 RUV		S. C.		20.01.2008	0,0 0,0	1.0,1	2,5		- 3	о ; ;	0,0	0,08			450
	52 ROV	2	ő	diffuse fluid		8,6	7,08	-136		21	0,11	2,0	0,18			
	52 ROV	3	C7	diffuse fluid		8,5	6,92	-170		43	0,2	3,6	0,23	4,1		
	52 ROV	4	BG	diffuse fluid		8,9	6,97	-128		20	0,55	9,8	1,25	22,3		
Golden Valley	52 ROV	5	B5	diffuse fluid		8	6,79	-196		56			0			
	52 ROV	9	4	diffuse fluid		8,3	6,84	-186		40			0,02	0,4		244
	52 ROV	7	A3	diffuse fluid		7,8	6,88	-195		22	0	0,0	0			
	52 ROV	8	A2	diffuse fluid		8,9	6,96	-26,3		7	1,04	18,6	2.39	42,7		290
	52 ROV	6	A1	diffuse fluid		8,8	7,29	68,4		-	0,79	14,1	1,65			
	57 ROV	2	60	hot fluid	21.01.2008	max: 371	6.57	10	I	4	7.58	135.4	10.03	179.1		
	57 ROV	9	8	hot fluid			5,38	-290		925	27,01	482,3	30,54	545,4		
Two Boats, bottom	57 ROV	4	C7	hot fluid			2.85	-189		4782	167,5	2991	216	3857	360	
	57 ROV	5	B6	hot fluid			4,51	-274		2561	63,28	1130,0	73,22	-		
	67 ROV	e	D2	hot fluid	24.01.2008		3,51	-224,4		3885	15,68	280,0	21,54	384,6	490	
	67 ROV	4	ട	hot fluid		363	4,01	-207,4		3990	33,94	606,1	33,61	600,2	530	0
:	67 ROV	2	ő	hot fluid		363	2,85	-180,2		7465	40,8	729	44,3	791	540	
Mephisto	67 ROV	9	C7	hot fluid		363	3,62	-215,2		6336	37,39	667,7	46,74	834,6	560	
	67 ROV	7	B6	hot fluid		363	5,06	-241,2		2203	15,34	273,9	13,74	245,4	540	
	67 ROV	ø	B5	hot fluid		363	3,22	-190,8		7593	47,88	855	52,19	932	560	
			1													

Table A2: Results from on-board chemical analyses and measured data (cont.)

* max. T range measured in the same orifice ** T sensor failed

Appendix 3

ROV dive protocols

ArcGIS Mapping with numbers below:

- 1 pelagic sediment (totally covering seafloor)
- 2 rocks (outcropping or blocks)
- 3 hydrothermal sediment
- 4 hydrothermal crust
- 5 active sulfide chimney
- 6 inactive sulfide chimney
- 7 diffuse venting
- 8 bacterial mat
- 9 mussle field
- 10 single mussles

11 - scarp

- 12 fluid sampling
- 13 mussle sampling
- 14 geophysical instrument
- 15 T logger
- 16 T mooring

Atalante Leg 2 **Cruise Number** 35ROV Station Number **Dive Number** #13 Turtle Pits Location 4°48.566′S 12° 22.4497′W Coordinates Water Depth 2988m Atalante Vessel

	Observation
	allowed
	Begin Station
	ROV in Water
10:18:51	Stop at 1013m, pressure drop in Compensator Node 1
10:19:36	Time check - this computer is 6 seconds behind UTC
11:11:35	Bottom sighting
11:13:11	9 m off bottom, not much to see
11:15:01	Directly in fornt of us is Pinnochio apparently, not visible in science lounge
11:15:55	Sheet flow, flat topped, striated surface
11:17:08	Mussels on top of flow, not sure if living or dead
11:18:08	Mussel beds in Turtle Pits
11:21:12	Ship 4 48.5696S 12 22.4497, ROV 4 48.562 12 22.415
11:23:38	Still adjusting winch
11:24:31	Slowly drifting northward, away from pits
	White balance check on cameras
11:27:11	Marker 3 in front of us.
	HD an, go south (young man
	HDTV shows no mussels but white mats
	Shimmering water with hydroth. Deposits
	Marker 2, at foot of Two Boats, net fish
	Marker partially buried in sulphide talus.
	Flying around smoker looking for a good point to sample
	Strange root-like structure at base of smoker, isolated shrimps swimming around
	Still filming HDTV, Southern tower visible in distance.
	9:39:00 10:18:51 10:19:36 11:11:35 11:11:35 11:15:55 11:17:08 11:21:12 11:23:38 11:24:31 11:26:46 11:27:11 11:27:42 11:30:03 11:30:27 11:31:18 11:37:36 11:37:36 11:37:36 11:40:28

- 11:41:05 Preparing to deploy beacon
- 11:41:18 HDtTV off
- 11:47:18 Looking for a place to putr beacon
- 11:50:59 On bottom, placing beacon
- 11:51:10 HDTV On Seafloor near beacon
- 11:52:07 HDTV Off
- 12:09:08 Trying to place beacon 12:13:22 Beacon placed at 12 22:418W 4 48:579S fix from Poseidonia now

12:14:11 HDTV On, fly round of Homer beacon

- 12:15:15 HDTV Off
- 12:17:50 Moving back to Two Boats to take temperature and samples
- 12:19:16 Chimney at Two Boats is 6 m high.
- 12:24:51 Looking for a sampling position
- 12:26:27 Nupsie ab!
- 12:26:51 Another try 12:28:50 Sampling of chimney material not easy, very friable
- 12:33:33 carb in sight
- 12:33:50 preparing for T measurement => KIPS deployment
- 12:35:30 HDTV On Foot of Two Boats smoker (not too exciting, some shrimp)
- 12:36:10 KIPS handle in ORION
- 12:36:28 HDTV Off
- 12:38:08 nozzle placed in smoking exit of chimney.
- 12:39:57 trying to find a suitable site
- 12:44:04 180°C measured max T
- 12:44:28 227°C measured max T
- 12:45:47 exit widened with nozzle
- 12:48:02 nozzle deep in exit 410 Tmax measured
- 12:49:25 starting to fill KIPS bottle C9
- 12:50:30 HD camera on, KIPS nozzle in Two Boats smoker
- 12:51:24 T constant at 407 408°C
- 12:52:42 HD camera off
- 12:53:12 pump shifted off

Actions allowed

HDTV ATA-35ROV_1

HDTV ATA-35ROV_2

DTV ATA-35ROV_3

HDTV ATA-35ROV_4

ATA-35ROV1

HDTV ATA-35ROV_5

12:53:51 pumps on bottle C8	ATA-35ROV2
12:54:24 T max measured is 417°C	
12:58:18 pumps off	
12:58:46 T constant at 407 - 408°C 12:58:59 pumps on bottle C7	ATA-35ROV3
13:03:11 pumps off	ATA BOROVS
13:03:53 measured T: 400 to 410° currently 412°C	
13:04:20 pumps on bottle B6	ATA-35-ROV4
13:07:43 pumps off 13:09:12 pumps on bottle B5	ATA-35ROV5
13:09:12 pumps on bottle bo	ATA-351(013
13:13:32 pumps off	
13:14:14 pumps on bottle B4	ATA-35ROV6
13:18:53 420°C measured max 13:19:14 pumps off, KIPS finished, change to Ti-Majors	
13:19:14 pumps on, KP3 minimud, change to remajors 13:21:20 HDTV On Two Boats smoker again	
13:21:49 KIPS back in garage; perfect drive	HDTV ATA-35ROV_6
13:22:09 HDTV Off	
13:23:23 handling Ti-Majors, positioning bottle D1 13:23:30 HDTV On Preparing Ti-Majors deployment in Two Boats	HDTV ATA-35ROV_7
14.01.2008 13:24 HDTV Off	
13:28:12 positioning Ti-Majors nozzle in the same hole as before	
13:30:51 waiting for "clear" water at the fitting of the nozzle tube	
first try to close the valve of D1; probably problems with closing the valve ; probabby fluid was already 13:36:16 sampled; current attempt interrupted, new try	
13:38:03 fine adjustment of nozzle	
13:43:11 still positioning the nozzle	
13:47:54 Filling of bottle D1 is finished; not clear whether bottle worked properly	ATA-35ROV7
13:56:23 positioning Ti-Majors bottle D2	
13:58:23 positioning the nozzle auf bottle D2 in the hole 14:01:28 waiting for "clear" water at the fitting of the nozzle tube; new try	
14.01.20 waiting for oldar watch at the number of the hozzle table, new hy	
14:06:32 still positioning the nozzle	
14:07:40 HDTV On Ti-Majors D2 in Two Boats chimney	HDTV ATA-35ROV_8
14:08:23 HDTV Off	HDTV ATA-35ROV_8
	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube	HDTV ATA-35ROV_8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again	HDTV ATA-35ROV_8
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 	
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2	HDTV ATA-35ROV_8 HDTV ATA-35ROV_9 ATA-35ROV8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:01.2008 14:35 HD off	HDTV ATA-35ROV_9
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:01:2008 14:35 HD off 14:40:25 positioning of bottle D2 in box	HDTV ATA-35ROV_9
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14.01:2008 14:35 HD off 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was	HDTV ATA-35ROV_9
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled	HDTV ATA-35ROV_9 ATA-35ROV8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14.01:2008 14:35 HD off 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was	HDTV ATA-35ROV_9
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:02 ORION positions in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:01:2008 14:35 HD off 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:53:15 KIPS sampling st the same point; bottle A3	HDTV ATA-35ROV_9 ATA-35ROV8
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:33 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni 14:57:42 seems that bubbles are present inside the fluid 	HDTV ATA-35ROV_9 ATA-35ROV8
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:02 ORION positions in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 next try 14:20:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:30:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:57:42 seems that bubbles are present inside the fluid 15:00:31 positioning of the KIPS nozzle, breaking some parts away 	HDTV ATA-35ROV_9 ATA-35ROV8
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:33 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni 14:57:42 seems that bubbles are present inside the fluid 	HDTV ATA-35ROV_9 ATA-35ROV8
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:53:15 KIPS sampling st the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 positioning of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kips-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on	HDTV ATA-35ROV_9 ATA-35ROV8
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:34:39 sussessful closing of valve of D2 14:30:52 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:53:15 KIPS sampling at the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 posititionig of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:51 positioning of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:51 positioning of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:51 pompta on 15:03:16 measured T: 451°C 	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9 HDTV ATA-35ROV_10
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 next try in the same hole 14:29:37 next try in the same hole 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni 14:53:15 KIPS sampling st the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 positioning of the KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS nozzle, breaking some parts away 15:00:316 measured T: 451°C 15:00:35 pumps off 	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:53:15 KIPS sampling at the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 posititionig of the KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sozzle, breaking some parts away 15:00:216 pumps on 15:03:16 measured T: 451°C 	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9 HDTV ATA-35ROV_10
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:16:02 ORION positions bottle D2 14:16:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:53:15 KIPS sampling st the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 positioning of the KIPS nozzle, breaking some parts atway 15:00:52 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:06:35 pumps on 15:06:36 pumps on 15:06:36 HDTV Off 15:06:36 HDTV Off 15:06:36 HDTV Off 15:07:18 KIPS bottle A2, pump on 15:07:38 HD was running a while, now off 	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9 HDTV ATA-35ROV_10
 14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:19:04 waiting for clear water at the fitting of the nozzle tube 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:16:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:26:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve D2 14:34:39 sussessful closing of valve D2 14:41:55 filled 14:41:55 filled 14:41:55 filled 14:43:32 starting of T measurement with S-Moni in the same hole where Ti-Majors bottle D2 was 14:57:42 seems that bubbles are present inside the fluid 15:00:30 finishing of T measurement with S-Moni in the same hole 14:57:42 seems that bubbles are present inside the fluid 15:00:31 positifioning of the KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS sampling at two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps off 15:06:35 pumps off 15:06:40 HDTV Off 15:07:18 KIPS bottle A2, pump on 15:07:38 HD was running a while, now off 15:12:13 pump off 	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9 HDTV ATA-35ROV_10
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:31:39 sussessful closing of valve D2 14:34:39 sussessful closing of valve D2 14:34:39 sussessful closing of valve D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:53:30 finishing of T measurement with S-Moni 14:53:15 KIPS sampling st the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 posititionig of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps Temperatures: 370, 410, 420, 452 °C; 452 °C stable 15:02:16 pumps on 15:03:16 measured T: 451 °C 15:06:35 pumps off 15:07:18 KIPS bottle A2, pump on 15:07:18 KIPS bottle A2, pump on	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:00 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:02 ORION positions bottle D2 14:16:02 ORION positions bottle D2 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:90 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussessful closing of valve D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:32 starting of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:31 posititioning of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on 15:03:16 measuremt 7:451°C 15:06:35 pumps off 15:06:40 HDTV Off 15:07:18 KIPS bottle A2, pump on 15:07:18 KIPS bottle A2, pump on 15:07:18 KIPS bottle A2, pump on 15:07:18 KIPS bottle A1, pump on 15:14:41 Temperature decreases, now 42°C	HDTV ATA-35ROV_9 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10 ATA-35ROV11
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:16:02 ORION positions bottle D2 14:18:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:20:37 looking for clear water at bottle D2 in the hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:33 waiting for clear water at the fitting of the nozzle tube 14:31:33 waiting for clear water at the fitting of the nozzle tube 14:31:33 bottle D1 for 1-Maijors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve D2 14:34:39 sussesful closing of valve of D2 14:40:25 positioning of bottle D2 in box taking up of 5-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:23 starting of T measurement with S-Moni in the same hole 14:53:36 KIPS sampling at the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 posititionig of the KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on 15:03:16 measured T: 451°C 15:06:35 pumps off 15:06:34 HDTV off 15:07:18 KIPS bottle A2, pump on 15:07:18 KIPS bottle A2, pump on 15:07:13 KIPS pump off, 15:12:13 pump off, 15:12:13 pump off, 15:12:14 pump off, 15:12:14 temperature decreases, now 427°C 15:17:03 KIPS pump off, Temp nozzle stays inside for checking temperature evolution 15:19:84 427-428 °C measured; further positioning for reproducing initial high Temperature (450°C)	HDTV ATA-35ROV_9 ATA-35ROV8 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:16:02 ORION positions bottle D2 14:16:02 ORION positions bottle D2 14:16:02 ORION positions in the chimney; breaking away some parts of the chimney 14:20:37 next try 14:20:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear water at the fitting of the nozzle tube 14:31:33 ready to fire: closing of valve D2 14:34:33 sussessful closing of valve D2 14:34:35 sussessful closing of valve D2 14:34:35 usessful closing of valve D2 14:40:25 positioning of bottle D2 in box taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:32:32 starting of T measurement with S-Moni in the same hole 14:53:16 KIPS sampling at the same point; bottle A3 14:57:42 seems that bubbles are present inside the fluid 15:00:31 posititioning of the KIPS nozzle, breaking some parts away 15:00:32 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on 15:03:16 measured T: 451°C 15:06:340 HDTV Off 15:07:18 KIPS bottle A2, pump on 15:07:38 KIPS bottle A2, pump on 15:07:38 KIPS bottle A1, pump on 15:07:38 KIPS bottle A1, pump on 15:12:240 KIPS pump off, Temp nozzle stays inside for checking temperature evolution 15:19:56 427-428 °C measured; further positioning for reproducing initial high Temperature (450°C) 15:20:55 measured 38°C	HDTV ATA-35ROV_9 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10 ATA-35ROV11
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:29:37 next try 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On TI-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve of D2 14:41:15 filled 14:43:29 sussessful closing of valve of D2 14:41:15 filled 14:43:29 stating of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of the KIPS nozzle, breaking some parts away 15:00:31 positioning of the KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on 15:03:16 measurem T: 451°C 15:06:35 pumps off 15:06:40 HDTV Off 15:07:38 KIPS bottle A2, pump on 15:07:38 KIPS bottle A2, pump on 15:07:38 KIPS bottle A1, pump on 15:12:43 KIPS bottle A1, pump on 15:12:43 KIPS bottle A2, pump on 15:12:43 KIPS bottle A1, pump on 15:12:48 KIPS bottle A	HDTV ATA-35ROV_9 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10 ATA-35ROV11
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:12 next try 14:20:37 looking for locations in the chirmney: breaking away some parts of the chirmney 14:28:09 positioning the nozzle auf bottle D2 in the hole 14:29:37 next try in the same hole 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On Ti-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve O2 14:40:25 positioning of bottle D2 in tox taking up of S-Moni: attempt to measure temerature in the same hole where Ti-Majors bottle D2 was 14:41:15 filled 14:43:25 starting of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni 14:50:31 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of the KIPS nozzle, breaking some parts away 15:00:52 HDTV On, 2nd KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kips-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on 15:03:16 measured T: 451°C 15:06:35 pumps off 15:06:34 DHDTV Off 15:07:38 HD sottle A1, pump on 15:07:38 HD was running a while, now off 15:12:13 pump off 15:12:13 pump off 15:14:41 Temperature decreases, now 427°C 15:17:03 KIPS bottle A1, pump on 15:14:41 Temperature decreases, now 427°C 15:17:03 KIPS pump off, Temp nozzle stays inside for checking temperature evolution 15:19:84 ZF7428 °C measured; further positioning for reproducing initial high Temperature (450°C) 15:20:55 measured 438°C 15:22:36 476°C 15:22:35 506°C max T measured!!	HDTV ATA-35ROV_9 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10 ATA-35ROV11
14:08:23 HDTV Off 14:09:04 waiting for clear water at the fitting of the nozzle tube 14:11:20 drop off of bottle D2 from ORION 14:13:01 successful fishing of the bottle D2 14:15:02 ORION positions bottle D2 14:15:12 next try 14:20:37 looking for locations in the chimney; breaking away some parts of the chimney 14:29:37 next try 14:29:37 next try in the same hole 14:31:23 waiting for clear water at the fitting of the nozzle tube 14:31:30 HDTV On TI-Majors in Two Boats again 14:32:51 not clear whether bubbles inside the fluid or not 14:33:36 ready to fire: closing of valve of D2 14:41:15 filled 14:43:29 sussessful closing of valve of D2 14:41:15 filled 14:43:29 stating of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of T measurement with S-Moni in the same hole 14:50:30 finishing of the KIPS nozzle, breaking some parts away 15:00:31 positioning of the KIPS sampling at Two Boats, Rimicaris sitting in black smoke 15:01:11 Kipps-Temperatures: 370, 410, 420, 452 °C; 452°C stable 15:02:16 pumps on 15:03:16 measurem T: 451°C 15:06:35 pumps off 15:06:40 HDTV Off 15:07:38 KIPS bottle A2, pump on 15:07:38 KIPS bottle A2, pump on 15:07:38 KIPS bottle A1, pump on 15:12:43 KIPS bottle A1, pump on 15:12:43 KIPS bottle A2, pump on 15:12:43 KIPS bottle A1, pump on 15:12:48 KIPS bottle A	HDTV ATA-35ROV_9 ATA-35ROV9 HDTV ATA-35ROV_10 ATA-35ROV10 ATA-35ROV11

15:31:26 S-Moni nozzle deeply inserted into the smoking exit of the chimney	ATA-35ROV13
15:31:40 HDTV On Smoni zoomed in at Two Boats	
15:32:40 HD has been on for a while	HDTV ATA-35ROV_11
14.01.2008 15:34 HD off	
15:36:26 End of S-Moni deployment after 5 minutes	
15:43:01 Deployment of Cu-tube for He-sampling (AA label)	ATA-35-ROV14
15:44:40 HDTV On, He sampling handling	
15:50:08 Cu-tube successfully placed in rigmaster	HDTV ATA-35ROV 12
14.01.2008 15:50 HD off	
15:53:01 funnel of Cu-tube being placed on top of exiting black smoke,	
15:54:02 unexpected chimney collapse	
15:55:53 looking for suitable place to locate the funnel	
15:58:51 HD camera on, He sampling	
15:59:25 black smoke exiting from Cu-tube	
16:00:14 closing Cu tube: top closed	HDTV ATA-335ROV 13
16:01:17 bottom valve closed	
14.01.2008 16:01 HD off	
16:04:24 deployment of second Cu-tube (Label BB)	ATA-35ROV15
14.01.2008 16:05 HD on, Smoke at Two Boats (uninteresting)	HDTV ATA-35ROV 14
14.01.2008 16:07 HD off	
16:09:02 Cu-tube in Rigmaster	
16:10:45 smoke exiting Cu-tube	
16:12:34 upper valve closed	
16:14:12 lower valve closed	
16:24:58 placement of both Cu-tubes into sample box	
16:26:56 next target: taking sulfide rock sample	
16:39:41 some fragments of a sample put into the white plastic box (no sample #) 16:43:09 attempt to use the net for sulfide sampling	
16:46:27 fishing of very fragile samples with the net	ATA-35ROV16
16:47:53 attempt to use the slurp gun for fishing shrimps	
16:54:00 HDTV On Slup gunning shrimps	
16:54:37 taking up slurp gun with ORION	
16:56:03 positioning the slurp gun for shrimp fishing	
16:59:31 slurp on: rock particles and shrimps visible flushing into the bottle 1	ATA-35ROV17
17:05:03 Another try to catch a big shrimp	HDTV ATA-35ROV_15
17:07:28 Changing to bottle 2, slurp gun on	
17:10:46 visible in bottle2: fragments of rocks, dust, shrimps	
14.01.2008 17:11 HD off	
17:14:50 still slurping; seems not very efficient to catch shrimps	
17:17:18 at least one shrimp visible, swimming in the tube above bottle 2	
17:28:21 slurping rock fragments and shrimps, visible in the tube above bottle 2	
17:33:51 loss of slurp gun from ORION	
17:34:00 finishing of slurp gun fishing for bottle 2	ATA-35ROV18
17:35:21 fishing of the "Schlauchschelle" and dropping into the container box	
17:39:19 Southern Tower in sight	
17:40:09 Leaving the bootom	

Cruise Number Atalante Leg 2 37ROV Station Number #14 **Dive Number** Wideawake Location 4°48.549'S 12° 22.5051'W Coordinates Water Depth 2992m Vessel Atalante

Vetadata	Observation
Timecode	allowed

default

- 9:30:00 Begin Station
- 9:39:00 ROV in Water
- 11:12:23 Bottom sighting, unsedimented lava, not fresh flow. 12°22,339W 4° 48,618'S.
- 11:14:00 HDTV On, Flight over Wideawake field, camera too high and Die Fast in picture
- 11:14:54 Going S, mussel beds
- 11:16:23 Mussel bed,
- 11:17:24 Taking close-ups of mussel beds, looking for clams
- 11:17:12 HDTV Off
- 11:18:03 12 22,338W 4 48,624S ROV Position 15.01.2008 11:19 HDTV On, mussel bed
- 11:21:41 Polyps 11:26:09 Swimming worms in front of porch Fish and mussels
 - 11:26:21 HDTV Off

 - 11:29:33 Preparing to place beacon 11:31:00 Beacon at 12 22,342W 4 48,626S
 - 11:33:25 Looking at mussels to see if alive or dead
 - 11:37:26 decide to check around for larger mussel field
- 15.01.2008 11:39 HDTV On, mussel bed
 - 11:43:32 ROV set down, looking for sampling position
- 15.01.2008 11:44 HDTV Off
 - 11:49:11 die-fast machine removed from ROV and employed on seafloor

 - 11:53:00 HDTV On, KIPS sampling of mussel bed 11:53:22 KIPS measurement14 degree W 12 22.339 S 04 48.618 to S 04 48.622 11:54:29 HDTV Off

- 11:54:47 pump is on
- 11:57:18 KIPS zwischen 7 und 11 Grad
- 11:58:57 pump off 11:59:21 KIPS pump on, T varies between 4 and 7 degrees
- 12:03:19 pump off
- 12:04:44 KIPS pump on
- 12:05:57 T zwischen 8 und 11 Grad
- 12:07:13 for one minute T between 4 and 6 degrees

- 12:07:17 pump off 12:10:45 KIPS pump on, 9 degrees 12:12:00 HDTV On, KIPS in mussel bed again
- 12:13:00 HDTV Off
- 12:14:15 pump off

- 12:14:53 KIPS pump on 12:16:17 T = 12 to 16 degrees 12:18:54 pump off 12:20:00 HDTV On, Close-up of mussels
- 12:20:30 HDTV Off
- 12:23:12 try release 8-channel T lance
- 12:29:14 still finding best place to measure with 8 channel lance
- 12:31:05 T in channel ranges from 16.7 to 4.4 12:32:00 HDTV On, 8-channel T lance in mussel bed
- 12:32:43 HDTV Off
- 12:34:05 lance buried in mussel field for about 1/3, rest is out of water
- 12:34:10 announce that measurement will take up to 20 mins 12:50:53 taking lance from bottom; stop of T measurement,B9 35 min, T max 15°C, at the bottom tip
- 12:52:56 next attempt: mussle fishing, use slurp gun 12:53:37 lance back in garage
- 12:56:25 first mussle gripped with ORION
- 13:11:44 plan: taking mussles with net, the fishing shrimp for placing into die-fast
- 13:13:01 taking of net #3
- 13:16:02 trying to fish mussles in net#3 13:29:31 still trying to fish mussles
- 13:40:26 still trying to fish mussles

Actions

allowed

HDTV ATA-ROV37 1

HDTV ATA-ROV37 2

IDTV ATA-ROV37_3

HDTV ATA-ROV37_4

ATA 37ROV-1, Flasche C-9

ATA 37ROV-2 Flasche C-8

ATA 37ROV-3, Flasche C-7

ATA 37ROV-4, Flasche B-6 IDTV ATA-RO\

ATA 37ROV-5, Flasche B-5

HDTV ATA-37ROV_6

ATA 37ROV-6

HDTV ATA-37ROV_7

- 13:44:02 successful fishing of a bunch of mussles
- 13:46:15 successful fishing of another bunch of mussles into the same net 13:49:46 drop of net#3 filled with mussles into box
- 13:51:49 new positioning of die-fast
- 15.01.2008 13:52 HD on, for taking movies of the diffuse fluid field
- 15.01.2008 13:53 HD off
- 13:54:57 taking the slurp gun 13:57:26 attempt to slurp shrimps where the diffuse fluid comes out 14:00:12 first shrimp visible in the tube above the bottle....and finally escaped

 - 14:01:18 slurping more shrimps
 - 14:03:12 a slurped mussle is stucked in the slurp nozzle
 - 14:08:03 attempt to use the slurp gun for picking mussles bunches 14:11:07 finishing of first shrimp sampling into bottle 1; eventually one shrimp inside 14:13:58 new positioning of die-fast on the mussle field with shimmering water
- 15.01.2008 14:17 HD on, for taking movies of the die-fast in the mussle bed
- 15.01.2008 14:18 HD off
- 15.01.2008 14:20 HD on
- 14:21:20 Opening of die-fast
- 15.01.2008 14:21 HD off
 - new positioning of die-fast on the mussle field with shimmering water, since it was located at that 14:24:49 plache where the former mussle sampling with net was performed
 - 14:28:40 starting to take mussles for die-fast
 - 14:33:09 try to use the slurp gun for carrying mussles into the die-fast
 - 14:40:26 finishing of use of slurp gun for mussle fishing
 - notice: all the time gaz bubble visible in the camera observing slurp gun tube 14:41:57 using ORION for taking bunches mussles
 - 14:42:54 dropping of first mussles from the same field of before into die-fast
 - 14:44:43 continuing of dropping mussles into die-fast
- 14:48:00 "the pot is full"; closing the lid 14:51:30 new positioning of die-fast 15.01.2008 14:53 HDTV on MUSSELS IN DIE FAST
- 15.01.2008 14:53 HD off
 - 14:56:35 check if lid of the chamber is closed properly

15:25:24 leave this point heading for another mussel field 15:26:00 HDTV on, flight across Wideawake 15:30:33 heading: 249°, dense thicket of polyps 15:32:18 sedimented lava flow, likely north of Wideawake 15:32:30 HDTV Off 15:34:00 HDTV On, flight back to Wideawake and landing on mussel bed 15:34:25 heading 140°, search for the mussel bed 15:38:50 large area covered densely with mussels, 4°48,639 S; 12°22,356 W 15:47:01 new reading: 4°48,639 S; 12°22,343 W 15:52:05 7,5°C temperature in mussel bed 15:55:50 HDTV Off 15:57:00 HDTV On, KIPS in 2nd mussel field 15:58:16 8-9°C temperature in mussel bed, pump on, filling bottle B4 16:00:04 HDTV Off 16:01:02 HD camera off 16:02:21 pump off 16:05:02 pump on, 5-7°C, filling bottle A3 16:08:19 pump off 16:08:57 pump on, 6°C, filling bottle A2 16:12:46 pump off 16:14:33 pump on, 9°C, filling bottle A1 16:19:26 pump off 16:25:00 HDTV On, just a mussel bed 16:25:11 HDTV Off 16:29:00 HDTV On 8-channel T sensor in 2nd mussel field 16:29:50 measuring with 8-channel T lance, 18° at the tip of lance (C1)

- 16:34:01 hdtv 6ff
- 16:39:49 end of T lance measurement. T max was 22°C
- 16:49:45 lance back in holder
- 16:50:10 leaving ground due to low oil pressure
- 16:53:07 end of dive

ATA 37ROV-9

ATA 37ROV-7

ATA 37ROV-8

HDTV ATA-ROV37_8

HDTV ATA-ROV37_9

HDTV ATA-37ROV_10

HDTV ATA37ROV_11

HDTV ATA-ROV37-12

HDTV ATA-ROV37_13

ATA 37ROV-10 HDTV ATA-ROV37_14

ATA 37ROV-11

ATA 37ROV-12

ATA 37ROV-13

HDTV ATA-ROV37_15

ATA 37ROV-14 HDTV ATA-ROV37_16

Atalante Leg 2 **Cruise Number** 42ROV Station Number **Dive Number** #15 Location Comfortless Cove Coordinates 4°48,188'S 12°22,301'W Water Depth 2996m Atalante Vessel

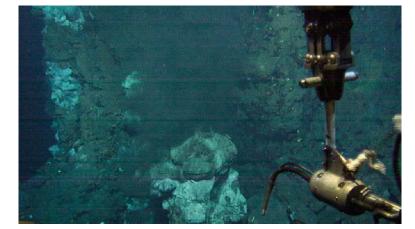
Metadata Timecode default	Observation allowed	Actions allowed
	0 Begin Station	
	0 ROV in Water	
	4 Bottom sighting	
	1 Sheet flow	
	9 Pillows with swediment in gaps	
	8 Lobate flows, flattened pillows	
	5 Hydrothermal deposits	
	10 HDTV On, flight to sister's peak 10 Collapse structures in lava flow, white hydroth. Deposits (mats?)	
	7 Turning to fiund smoker	HDTV ATA-42ROV 1
	5 Lots of old smoker rubble, no active balck smoke to see	
	THDTV Off	
	3 Oops, there it is	
	3 Sister's Peak 4°48,222'S 12°22,270'W	
	9 2nd inactive peak visible	
	2 Waitging for compütter reboot	
11:15:0	3 Still sorting computer out, 16m above ground.	
11:17:0	0 HDTV On, Sister's peak approach and lower third, wobbly	
11:18:4	4 Going to make a vertical profile of the smoker, computer problems sorted out apparently	
	3 Hyrothermal rubble	
	4 4 48, 227´S 12 22,272W	HDTV ATA-42ROV_2
	2 Mussels visible inn HDTV and shrimp	
	8 Some shimmering water seen on flanks of structure	
	1 HDTV close-up of shrimps and shimmering water	
	7 HDTV Off	
	9 Adjusting white balance of cameras	
	5 HDTV on, top of Sister's Peak	
	9 White colour not shrimps, looking with HDTV	
	1 White colour not filamentous, looks like precipitates	HDTV ATA-42ROV 3
	3 Sonar computer crashed again	HDIV ATA-42ROV_3
	6 Chimney 10,3m high	
	6 HDTV off	
	7 HDTV on, top of Sister's Peak again then descent	
	9 Going to try T measurement at top of active smoker	
	8 Going down and around the chimney	HDTV ATA-42ROV 4
	0 cloud of shrimps chasen from chimney	
12.00.0		

12:05:06 about 7m hight, patches of dense shrimps 12:06:26 HDTV off

12:07:27 shimming water, 7m 12:07:55 HDTV on, slow pan of Sister's peak summit 12:10:18 Chimney is from the south side 16m 50cm high 12:12:57 Looking at dead spire 12:14:58 Marker 5 looking 345° 12:19:02 looking 227°, in front of small chimney releasing black smoke 12:20:05 duffuse outflows and dense shrimps, Bathymodiolus 12:27:05 HDTV off

- 12:22:05 HDTV off

12:43:26 opening at the top of little knob, two chimney pieces on porch


12:45:13 computer crashed again

12:48:15 HDTV on, KIPS foot Sister's Peak

HDTV ATA-42ROV_5

42 ROV-1

12:49:19 HDTV off 12:53:07 220°C, KIPS T Sensor close to orifice 12:53:50 360°C 12:57:58 stable 367°C, short-term 370°C 12:58:31 start to sample with KIPS, water depth is 2996,1 m, ROV parking on talus	
13:00:04 pump on, bottle C9, T stable at 367°C	42 ROV-2
13:04:54 pump off	
13:05:26 pump on, bottle C8, T stable at 367°C	42 ROV-3
13:08:54 pump off 13:10:34 pump on, bottle C7, T stable at 368°C	42 ROV-4
13:14:52 pump off	42 100 - 4
13:16:30 pump on, bottle B6, T stable at 368°C	42 ROV-5
13:20:45 pump off	
parking the KIPS took longer than anticipated	
13:42:25 HDTV on, parking KIPS 13:43:24 HDTV off	HDTV ATA-42ROV_7
13.43.24 (10) (0)	

13:49:24	KIPS handle on porch, cannot move to park position anymore	
	prepare to utilize the isobaric sampler	
14:24:49	start taking a sample with the isobaric sampler by opening the valve a full turn	
14:26:42	sample taken	42 ROV-6
14:27:12	closing valve again	
14:55:56	taking Ti-Majors D1 from the box	
15:02:18	trying to positon D1 nozzlet; bad conditions for viewing due to heavy smoke	
15:09:17	positioning of D1 nozzle into exit	
15:11:06	new try	
15:15:51	positoning of D1 nozzlet in exit	
15:17:55	new try	
15:19:07	positoning of D1 nozzlet in exit	
	trying to close the valve of D1; problems with closing the valvve; sample was taken, but eventually	
	only filled partly	42 ROV-7
	stop with the attempt of sampling with Ti-majors; next step: S-Moni measurement	
	dropping of Ti-Majors D1 bottle into the box	
	Taking S-Moni from the box	
	starting measuring with S-Moni	42 ROV-8
	stop T measurement	
	looking for another position for S-Moni	
	starting measuring with S-Moni at another location as before	42 ROV-9
	stop T measurement	
	attempt to measure Temp in the same exit with KIPS	
	positioning of KIPS in the same exit where second S-Moni measuring was performed	
	measured T: max 220°C	42 ROV-10
16:14:44	measured T: max 365°C	
	HD on; moving to the top of Sister's Peak	HDTV ATA-42ROV_8
16:22:58		
	HD on, smoke!	HDTV ATA-42ROV_9
16:31:26		
	HD on, smoker fingers at top SP	HDTV ATA-42ROV_10
16:33:03		
16.01.2008 16:34		HDTV ATA-42ROV_11
	HDTV Off	
	Deployment of KIPS: nozzle apparently inserted in fluid exit but low T reading ("Badewanne")	
16:45:03	still trying to locate position for Sampling hot fluids	
	T sensor of KIPS is faulty: constant readin of 27°C even in background water: plan sample fluids by	
16:47:38		
16:49:06	pumps on filling bottle B5	42 ROV-11
10 51 55	Plan: fill KIPS, fill one Ti-major then proceed towards Golden Valley in order to obtain a basalt	
	sample. Expected time of leaving ground: 17:00	
	pump is off	10 00/ 10
	pumps on filling bottle B4	42 ROV-12
	pump off; KIPS sampling finished.	40 00/ 40

42 ROV-13

16:58:18 pump off; KIPS sampling fir 17:10:01 pumps on filling bottle A3

17:13:47 pumps off 17:13:56 pumps on filling bottle A2 17:17:35 pumps off, end of KIPS sampling 17:30:59 S-Moni deployment in order to obtain Temperature 17:33:20 S-Moni measurement finished 17:42:56 move 20 m North 17:46:50 HDTV on, pillow hill N of SP 17:47:38 pillow flow, looking for sampling site 17:51:22 HDTV off

17:58:25 start sampling a piece of lave crust from pillow; 4°48,159 S, 12°22,298 W 17:59:15 HDTV on, sampling pillow

18:02:38 HDTV off

18:03:41 small piece of lava collected and placed into sampling drawer at front

18:08:24 collecting a second piece, placed in box 3

18:08:28 ROV off bottom

HDTV ATA-42ROV_13

42 ROV-16

42 ROV-14

42 ROV-15

HDTV ATA-42ROV_12

Cruise NumberAtalante Leg 2Station Number46ROVDive Number#16LocationWideawake & Bturtle PitsCoordinates4°48.610'S/12°22.342'WWater Depth2987mVesselAtalante

Metadata Timecode default		Observation allowed	Actions allowed
	8:25:00 9:43:47 10:06:05	1300m	
	11:10:15	2160m 2800m seafloor in sight; ROV 2958m 22 m over ground, some high structure visible 4°48,620'S 12°22,353'W	
	11:12:23 11:15:35 11:16:50 11:18:55	Target find homer beacon, sonar on jumbled flow some mussle patches homer beacon found next action: take mussle sample from this site suitable site for mussle sampling located	
	11:20:48 11:21:16	HD off HDTV On, snails in mussel patch at Wideawake	HDTV ATA-46ROV_1
		HD off Orion takes bio net (no lable) in claw	HDTV ATA-46ROV_2
	11:29:27 11:29:49	HD on, unsuccessful mussel sampling at Wideawake Need to change bionet position in claw HD off orion manoever successful	HDTV ATA-46ROV_3
	11:31:01 11:33:42	HDTV on, SUCCESSFUL MUSSEL sampling HDTV off bionet sampling completed	HDTV ATA-46ROV_4 ATA-46ROV-1
	11:37:52 11:38:14 11:38:58	shimmering water and mussle beds heading 110, search for lava flow front to the east jumbled flow	
	11:40:09 11:43:04	reached flow front of 2002? Flow, lobate HD on, flying east 110 heading over fresh flow HD off 4°48,612'S 12°22,316'W, lobate flow	HDTV ATA-46ROV_5
	11:44:47 11:45:50 11:46:42 11:47:47	HD on, flying over contact and then into old sedimented flow strong sediment cover here, older flow turn heading to 270 to investigate contact HD off	HDTV ATA-46ROV_6
			HDTV ATA-46ROV_7
	11:50:50 11:51:29	4°48,612S 12°22.295'W location of contact and sampling HDTV On, young flow to sampling of old flow HD on without thrusters ROV being pulled to the back, thrusters on	HDTV ATA-46ROV_8
	11:53:19 11:53:30	found nice spot to take basalt sample. Overhang of older lava flow. The younger flow is located in the collapse structure of the older flow. Apparently utilizing the pre-exsisting lava tube drainage system. HDTV Off	
	11:57:45 11:58:04	HD on, sampling old flow with Rigmaster sample in Rigmaster claw, 4°48,612S 12°22.295'W, 2985m HD off working with orion in order to place sample into sample box	ATA-46ROV-2 HDTV ATA-46ROV_9
	12:19:08 12:20:16	relocating for restarting mapping procedures proceeding towards south back in fresh glassy lobate flow HDTV On, flight over new flow	
	12:20:44 12:21:05	crossing from older to younger flow just passed across the mapped (ABE) island of older lava flying over fresh lobate 2002 flow	
	12:23:29 12:24:47 12:25:52 12:28:30 12:29:44	contact to lightly sedimented lava flow 4°48.660 12°22.293'W	HDTV ATA46ROV_10
	12:32:46 12:33:12 12:34:13	Continue flying to the south. Stll young lava flow. HD off HDTV On, southern boundary of flow with skylights in old flow	
	12:35:47 12:36:46	Contact 183 m from last sampling, turning W to check surrounding the older sheet flow is highly sedimented, collapse structure in sight sonar off checking out collapse structure, very nice pillar 4°48,717'S 12°22.290'W	

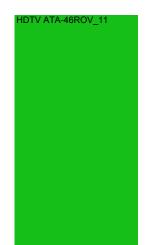
12:39:05 great view of pillar structures! Text book example! 12:40:22 Is the tube flow filled with rubble or younger jumbeld flow? Difficult to make out.

- 12:41:15 Flying to the east heading 90
- 12:41:57 HD still on
- 12:42:18 Flying quickly to the east (0.4 kn)
- 12:43:17 back into older sedmineted lava flow at 64 m distance from the collapse structure examined 12:43:54 HD off
- 12:47:53 moving north now, heading 10
- 12:49:10 back in fresh glassy lobate flow
- 12:49:53 flying across contact, young lobate lava flow overlying older, more sedimented jumbled flow 12:50:51 Flow front apparently shifting estwards.New hHeading 10 to 20
- 12:51:57 small embayment of older lava flow ("Wideawake flow")
- 12:52:20 HD on, old flow
- 12:53:06 fresh young lobate lava from with glasy luster
- 12:53:31 nice plastic deformation texture crossing from older to younger flow; locallized embayment. This serated nature of the contact
- 12:54:25 indicates that we are really close at thr eastern flow marign
- 12:54:49 HD off

Another contact; superbly explosed! Older flow is jumbled with pronounced hummocky structure. 12:56:10 Younger flow is flowing around this structure. Displace nice ropy, floded flow top structure, locally.

- 12:57:03 HDTV On, young flow and eastern contact to Wideawake flow
- 12:59:40 Returning to contact location in a wider turn to the south
- 13:01:30 HDTV Off

back at superb contact site, trying to obtain a sample of the older jumbled flow. It maywell be the wideawake flow (ie., the stuff the the mussles are growing on). However, this is may as well be an 13:04:20 independant flow


- 13:06:44 4°48,656'S 12°22,265'W; 2983 m
- 13:08:35 sampling operations started with Orion
- 13:10:25 Basalt piece placed in Box 1 of sample sledge. Older jumbled flow sampled
- 13:11:40 Heading north, measuring distance fron this sampling site
- 13:13:07 back in fresh glassy lobate flow
- 13:13:28 very nice flow top structures
- 13:13:44 Another contact: local empayment of old jumpled flow.
- 13:14:35 back in fresh glassy lobate flow
- 13:15:49 Another contact, local embaymnet of older jumbeld flow.
- 13:16:12 back in fresh glassy lobate flow
- 13:16:24 lobes on flow top are aligned in N-S direction.
- 13:19:18 Impressing lava tube structures. 83 m from last sampling site. 4°48.606'S 12°22.275'W
- 13:20:18 Heading N on to of the older sheet flow, heavy sediment covering, local collapse structures.
- 13:21:16 Aiming for Turtle Pits beacon.
- 13:27:13 contact fresh lava

18.01.2008 13:28 HD on, west over new flow until a diffuse field found east of Wideawake boundary (i.e. on young flow) HDTV ATA-46ROV 14 13:32:54 HDTV Off

- cluster of yourg mussles at the top of fresh lavas, at S4 48.632S W12 22.331; dusty water, not
- 13:33:09 shimmering
- 13:37:07 aim to inestagate mussle cluster; looking for small species
- 13:39:27 attempt to use slurp gun for small mussles
- 13:43:44 taking slurp gun
- 18.01.2008 13:45 HD on, slurping larger mussels
 - 13:45:43 starting to slurp small mussles into bottle 1 13:50:34 slurp gun back to garage 13:50:42 HDTV Off

 - 13:51:45 attempt to look in detail for the mussle field nearby
- 18.01.2008 13:51 HD on, zoom in on small mussel site
 - 13:56:06 attempt to zoom in with HD to check whether the whitish structures visible are really mussles 13:57:28 taking slurp gun
 - 13:58:36 Slurping young, small mussles into bottle 2

HDTV ATA-46ROV 12

HDTV ATA-46ROV 13

ATA-46ROV-3

ATA-46ROV-4 IDTV ATA-46ROV 15

HDTV ATA-46ROV 16 TA-46ROV-5

14:04:03 HDTV Off	
dropping of slurped mussles into front slit near IB sampler of the box; same smple# as a above.	
14:05:58 INCLUDES basalt glass chips (some appear to have also dropped into box 1)	
14:08:06 finishing slurp gun sampling;aim to fly to Turtle pits	
14:10:48 next step: finding Wideawake beacon	
14:16:06 attempt to get posidonia data failed	
14:17:10 got signal from beacon	
14:19:18 got signal from Turtle Pits beacon: 180m away, heading 305	
14:23:08 Posidonia is running again	
14:25:53 fresh young lobate flow above older lava ; 4° 48.606S 12° 22,369W	
14:26:42 heavy sediment cover	
14:27:12 jumbled flow	
14:27:33 minor sediment cover 14:28:30 old smoker in sight	
14:30:18 Turtle pits beacon in sight	
14:35:05 Southern Tower? in sight	
14:37:36 Two boats in sight	
14:47:01 moving ship	
14:57:40 attempt to find smoker	
14:59:22 smoker in sight, two boats?	
15:01:11 marker in sight;	
15:11:02 waiting for the final ship position	
15:16:11 still waiting for the ship	
15:17:00 finding marker 2, the position where fluid samples from first day were taken	
15:23:02 found lot to park ROV, 4°48.577S and 12°22.412 W	
15:28:07 artificial hole of T measurement from first day still smoking away	
15:32:53 preparing to release the tube = IB sampler	
15:42:04 problems to release the tube	
15:46:47 handing over the tube to the rig master	
little chimney has grown already on the new outlet, broken off to place the tube, will attempt to pick	
15:54:33 up later	
15:56:48 tube apparently place properly	
16:01:32 after new grip on tube with rig master, tube now placed onto vent	
16:07:46 problems to open valve, also funnel no more over vent.	
16:13:00 HDTV On IB-Sampler	HDTV ATA-46ROV_17
16:13:24 HDTV Off	
16:13:28 tube turned so that opening the valve will be easier	
18.01.2008 16:14 HD on, IB sampler at Two Boats	
16:15:30 opening valve! Of IB samples.	ATA-46ROV-6
18.01.2008 16:15 HD off	HDTV ATA-46ROV_18
16:16:30 closing valve	
16:20:00 rigmaster has released the IB sampler	
16:25:45 placing IB sampler into drawer	
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared	
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage	
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats	HDTV ATA-46ROV_19
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off	HDTV ATA-46ROV_19
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C	HDTV ATA-46ROV_19
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV ON, KIPS at Two Boats 16:36:52 T = 412°C 16:37:12 T = 370°C	HDTV ATA-46ROV_19
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C	HDTV ATA-46ROV_19
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off	HDTV ATA-46ROV_19
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit	
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle	HDTV ATA-46ROV_19 ATA-46ROV-7
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off	ATA-46ROV-7
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8	
16:25:45 placing IB sampler into drawer 16:27:53 KIPS liever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps off 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust.	ATA-46ROV-7
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:20 HDTV ON, KIPS at Two Boats 16:34:20 HDTV OT 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked	ATA-46ROV-7
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:45:5 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening	ATA-46ROV-7
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site	ATA-46ROV-7
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS liever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interruption of KIPS sampling, potentially nozzle is blocked 17:17:41 leaving current sampling site 17:19:20 HDTV On, black smoke, nothing else 	ATA-46ROV-7 ATA-46ROV-8
16:25:45 placing IB sampler into drawer 16:27:53 KIPS liever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:19:20 HDTV On, black smoke, nothing else 17:19:20 looking at top of two boats smoker	ATA-46ROV-7
16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site 17:19:40 looking at top of two boats smoker 17:20:11 ≻HDTV Onf	ATA-46ROV-7 ATA-46ROV-8
16:25:45 placing IB sampler into drawer 16:27:53 KIPS is out of garage 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:41:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site 17:19:20 HDTV On, black smoke, nothing else 17:19:40 looking at top of two boats smoker 17:20:11 >HDTV Off 17:22:03 or is it southern tower?	ATA-46ROV-7 ATA-46ROV-8
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS liever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interruption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:14:16 uothing at top of two boats smoker 17:9:00 HDTV Off 17:20:03 or is it southern tower? 17:24:25 looking for a suitable orifice 	ATA-46ROV-7 ATA-46ROV-8
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS liever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:14 leaving current sampling site 17:19:20 HDTV Off 17:20:11 >HDTV Off 17:22:03 or is it southern tower? 17:24:25 looking for a suitable onfice 17:26:16 KIPS deployment 	ATA-46ROV-7 ATA-46ROV-8
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:48:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:20 HDTV On, black smoke, nothing else 17:20:11 >HDTV Off 17:22:03 or is it southern tower? 17:22:03 or is it southern tower? 17:22:04 boking for a suitable orifice 17:22:09 looking for a suitable orifice 	ATA-46ROV-7 ATA-46ROV-8
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site 17:20:10 HDTV On, black smoke, nothing else 17:20:11 >HDTV Off 17:22:03 or is it southern tower? 17:24:25 looking for a suitable orifice 17:26:04 KIPS deployment 17:32:09 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interruption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:14 leaving current sampling site 17:19:20 HDTV On, black smoke, nothing else 17:19:40 looking at top of two boats smoker 17:20:13 vHDTV Off 17:22:03 or is it southern tower? 17:24:25 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18:01:2008 17:39 HD on, bent KIPS 	ATA-46ROV-7 ATA-46ROV-8
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS liever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interruption of KIPS sampling, potentially nozzle is blocked 17:17:41 leaving current sampling site 17:19:20 HDTV On, black smoke, nothing else 17:20:30 or is it southern tower? 17:22:03 P measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18:01:2008 17:40 HD off 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:19:20 HDTV On, black smoke, nothing else 17:19:20 HDTV On, black smoke, nothing else 17:20:11 >HDTV Off 17:22:03 or is it southern tower? 17:24:25 looking for a suitable orifice 17:26:16 KIPS deployment 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18.01:2008 17:39 HD on, bent KIPS 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:14:16 nothing much happening site 17:19:20 HDTV Off 17:20:30 ris it southern tower? 17:22:03 or is it southern tower? 17:26:16 KIPS deployment 17:32:09 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18:01:2008 17:39 HD on, bent KIPS 18:01:2008 17:39 HD on, bent KIPS 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interruption of KIPS sampling, potentially nozzle is blocked 17:17:41 leaving current sampling site 17:19:20 HDTV Off 17:22:03 or is it southern tower? 17:24:25 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18:01:2008 17:40 HD off 17:47:59 reapproaching orifice, T measurement? 17:52:18 RIPS away from orifices 17:52:18 new attempt 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site 17:19:20 HDTV On, black smoke, nothing else 17:19:20 HDTV On, black smoke, nothing else 17:20:10 ray at top of two boats smoker 17:22:13 or is it southern tower? 17:24:25 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18.01:2008 17:39 HD on, bent KIPS 18.01:2008 17:39 HD on, bent KIPS 18.01:2008 17:39 HD on, bent KIPS 18.01:2008 17:39 HD on filtes 17:47:59 reapproaching orifice, T measurement? 17:51:58 KIPS away from orifices 17:52:18 new attempt KIPS T sensor in orifice (max T measured is 300°C But this is not the discharge T, T sensor not 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:20 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:04:52 pumps onf 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interruption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site 17:19:40 looking at top of two boats smoker 17:20:30 r is it southern tower? 17:22:03 or is it southern tower? 17:26:16 KIPS deployment 17:32:09 looking for a suitable orifice 17:32:09 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18.01.2008 17:39 HD on, bent KIPS 18.01.2008 17:39 HD on orifices 17:51:58 KIPS away from orifices 17:51:58 KIPS away from orifices 17:52:18 new attempt KIPS T sensor in orifice (max T measurement? 17:55:20 properly inserted in orifice). 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20
 16:25:45 placing IB sampler into drawer 16:27:53 KIPS fiever measurement is being prepared 16:33:19 KIPS is out of garage 16:33:20 HDTV On, KIPS at Two Boats 16:34:00 HDTV Off 16:36:52 T = 412°C 16:37:12 T = 370°C 16:41:18 T = 380°C 16:41:18 T = 380°C 16:45:55 announcement that T-sensor of nozzle ripped off 16:51:19 KIPS inlet and T nozzle have been twisted during search for hot fluid exit 16:57:54 Filling bottle C9, 180°C measured but sensor about 2 cm displaced from nozzle 17:00:45 pumps off 17:01:52 pumps on, bottle C8 17:04:32 stopped filling of bottle C8. Not enough fluid discharging from KIPS exhaust. 17:06:11 interuption of KIPS sampling, potentially nozzle is blocked 17:14:16 nothing much happening 17:17:41 leaving current sampling site 17:19:20 HDTV On, black smoke, nothing else 17:19:20 HDTV On, black smoke, nothing else 17:20:10 ray at top of two boats smoker 17:22:13 or is it southern tower? 17:24:25 looking for a suitable orifice 17:36:39 T measurement by KIPS sensor at intensely discharging orifice. Abandoned. 18.01:2008 17:39 HD on, bent KIPS 18.01:2008 17:39 HD on, bent KIPS 18.01:2008 17:39 HD on, bent KIPS 18.01:2008 17:39 HD on filtes 17:47:59 reapproaching orifice, T measurement? 17:51:58 KIPS away from orifices 17:52:18 new attempt KIPS T sensor in orifice (max T measured is 300°C But this is not the discharge T, T sensor not 	ATA-46ROV-7 ATA-46ROV-8 HDTV ATA-46ROV_20

NOTE ADDED chimney fragment from Southern Tower in the back of ROV - sample number assigned after dive ATA-46ROV-9

Cruise Number Atalante Leg 2 50ROV Station Number #17 Dive Number Inside Corner High #1 Location 5°05,3771'S 11° 39,393'W Coordinates 3403m Water Depth Atalante Vessel

> 9:30:00 Begin Station 9:40:42 ROV in Water

Observation Metadata allowed Timecode

default

11:08:16 2700 m 11:25:53 20m above bottom 5°05.451 S; 11°39.300 W 11:29:15 bottom sight 11:30:49 heavily sedimented 11:32:56 start traverse with heading 252° 11:40:00 HDTV on, prawn on sedimented seafloor 11:41:08 HDTV off 11:42:00 HDTV On, strange slug 11:47:47 HDTV Off 11:47:35 HDTV on, 5°05.522S; 11°39.428W, still only sediment 11:53:24 HDTV off 11:59:07 sonar shows solid structures in the distance 11:59:25 large boulders, ? Talus; 5°05.524S; 11°39.468W, near WP 1, 3390 m 12:04:48 trying to get a better picture of the rocks, also waiting for the ship 12:06:45 waiting for ship 12:15:28 continue traverse with direction 252°, sedimented area 12:17:52 more boulders, 5°05,545S; 11°39.508W, 3356 m 12:18:54 slope steepens now 12:21:19 reaching foot of the slope at 3320m, start measuring the distance 12:23:59 3300m water depth 12:25:06 more large blocks and plenty of sediment 12:28:46 large boulders 12:31:40 more blocks, 3230m depth, 5°05.620S; 11°39.624W 12:38:29 Large boulder, 3207 depth 12:41:45 sediment 12:42:03 boulder, looking for suitable spot in order to take a rock sample 12:42:46 steep hill side, highly sedimented some blocks sticking out of trhe ground 12:48:24 suitable rock in sight. 5°05.610'S 11°39,658'W, 3143m 12:52:36 sompling of this particular fragment abondoned 12:53:50 proceeding towards 270 12:55:21 new sampling target locallized 12:57:40 proceeding a little further to the west 12:59:05 more large blocks and plenty of sediment 13:02:14 shift change of ROV pilots 13:07:29 more large blocks and plenty of sediment 13:08:16 3110m 5°5,618S 11°39.753W 19.01.2008 13:10 HD on, boulders in sediemtn 19.01.2008 13:11 HD off HDTV ATA-50ROV_7 13:12:24 sampling initiated 13:19:06 sampling abandoned 13:19:45 continue heading 270. bolders and sediment. 13:22:59 another go at sampling 19.01.2008 13:24 HD on, sampling 13:25:32 HD off Sampling was successful! Sample: looks like breccia with thick layer of solidified foram ooze. 13:26:05 5°05.6228 11°39.764'W. 3094m 13:29:58 proceeding to the W. Still large boulders and sediment. 13:34:10 more large blocks and plenty of sediment 13:35:56 sediment 13:36:03 blocks 13:36:22 big blocks 13:37:05 steep rocky cliff, in-situ rocks? 19.01.2008 13:38 HD on, flight over boulder field 13:38:41 terrace full of sediment 13:39:09 5°05.647'S 11°39.831W 3013M 19.01.2008 13:39 HD off

Actions allowed

HDTV ATA-50ROV_3

HDTV ATA-50ROV 5 This video is not present

HDTV ATA-50ROV_8

ATA-50ROV-1

HDTV ATA-50ROV_9

13:40:23 proceeding towards 242, boulders and sediment.	
13:41:09 sediment	
13:41:43 3000 m, sediment	
13:41:58 sediment and boulders	
13:44:31 sediment and boulders. Heading 246, try to find another sample 13:48:07 sediment and boulders. 2960m	
13:52:12 try to take sample	
19.01.2008 13:57 Hd on, sampling attempt	HDTV ATA-50ROV 10
19.01.2008 13:58 HD off	
14:01:40 sampling abandoned	
14:01:53 still slope with abundant blocks and sediment	
	HDTV ATA-50ROV_11
14:06:52 HD on, capture a panoramic view of the slope	(Timemarks wrong on video?)
14:07:52 HD off 14:30:44 2875m depth	
14:36:35 trying to collect a sample	
14:44:00 sediment and boulders	
14:49:40 still trying to sample. 2842m.	
14:50:34 sampling abandoned	
14:52:51 sediment and boulders	
19.01.2008 14:53 HD on, boulders on slope	
19.01.2008 14:54 HD off	HDTV ATA-50ROV_12
15:01:36 trying to take sample	
15:02:17 2810 m 5°05.728'S 11°40.016'W 15:07:15 sampling abandoned	
15:07:15 sampling abandoled 15:08:26 very steep slope, big blocks	
15:09:51 investigating blocks	
15:11:05 proceeding heading 272	
15:11:41 sediment on slope	
15:11:53 heading 290	
15:13:45 5°05.746'S 11°40.045'S 2775 m, ROCK FACE striking N-S	
investigating outcrop: black rock with 10s of cm wide vein running parallel (NO. The white stuff	
15:14:44 is sediment.) and vertically across the outcrop	
15:13:30 HDTV On, big rock face and then nothing 19.01.2008 15:16 HD has been on; now switched off	HDTV ATA-50ROV 13
15:16:53 wall is not really high, flying over	HDIV AIA-SOROV_13
15.10.55 wan is not really mgn, myng over	
15:17:05 HDTV on, massive rocks	
	ATA-50ROV-2
15:17:05 HDTV on, massive rocks15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster!15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw.15:27:58 HD is on and has been on for a while	ATA-50ROV-2
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 	ATA-50ROV-2
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 	ATA-50ROV-2
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 	ATA-50ROV-2 HDTV ATA-50ROV_14
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimmeted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:29 Sedimented terrace, 2772m 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:29 Sedimented terrace, 2772m 15:48:07 waiting for ship 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:29 Sedimented terrace, 2772m 15:45:07 waiting for ship 15:48:07 waiting for ship 15:49:33 ediment and boulders 15:54:71 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:27 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:4 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:29 Sedimented terrace, 2772m 15:45:56 Still heading towards the west. 251 15:49:39 Moving to the west, 250, sediment and boulders 15:54:71 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:65:9 5°5.796'S 11°40.140'W; 2730m 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:25 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:54:71 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:56:59 5°5.796'S 11°40.140'W; 2730m 15:99:03 still large boulder field 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:55:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:59:03 still large boulder field 16:02:35 trying to take sample 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:56:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:56:90 Still large boulder field 16:02:35 trying to take sample 16:10:00 Huge slabby blocks, interlocking 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying arous sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:26 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:30 Moving to the west, 250, sediment and boulders 15:55:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:56:95 \$^5.796'S 11°40.140'W; 2730m 15:59:03 still large boulder field 16:00:01 Huge slabby blocks, interlocking 16:11:32 Steep cliff face of large block 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:56:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:56:90 Still large boulder field 16:02:35 trying to take sample 16:10:00 Huge slabby blocks, interlocking 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768. Sm Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:33:53 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:29 Sedimented terrace, 2772m 15:48:07 waiting for ship 15:45:39 Moving to the west, 250, sediment and boulders 15:55:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:56:39 5°5.796'S 11°40.140'W; 2730m 15:59:30 still large boulder field 16:000 Huge slabby blocks, interlocking 16:11:32 Steep cliff face of large block 16:12:27 reached sedimented op of cliff Observation: In the lower portion of the dive investigated earlier the blocks are slabbx 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:30 2767.5m Total of 16 m for the cliff. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:30 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimented cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:35 Still heading towards the west. 251 15:48:407 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:56:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:59:03 still large boulder field 16:02:35 trying to take sample 16:10:00 Huge slabby blocks, interlocking 16:11:22 Treached sedimented top of cliff Observation: In the lower portion of the dive investigated earlier the blocks were rounded (reminicent of "Wollsack Verwitterung"). In contrast, in this area up here the blocks are slabbx 16:13:02 with sharp argular outlines. 	
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:99 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 HD off 15:38:41 Kock type: Gabbro 19.01.2008 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:56:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:59:03 still large boulder field 16:02:35 trying to take sample 16:11:32 Steep cliff face of large block 16:12:27 reached sedimented top of cliff Observation: In the lower portion of the dive investigated earlier the blocks were rounded (reminicent of "Wollsack Verwitterung"). In contrast, in this area up here the blocks are slabbx 16:16:06 2700m 	
 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:23 moving up the flank of the cliff, starting at 2783.6 m 15:30:25 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabro 19.01 2008 15:38 HD off 15:38:54 Examination finished. Progressing dive. 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying across sedimeted cliff surface 15:45:56 Still heading towards the west. 251 15:45:56 Still heading towards the west. 251 15:48:19 Moving to the west, 250, sediment and boulders 15:56:39 55:796'S 11'40.140'W; 2730m 15:59 55:796'S 11'40.140'W; 2730m 15:59 55:796'S 11'40.140'W; 2730m 15:29:30 still large boulder field 16:12:27 reached sedimented lop of cliff Observation: In the lower portion of the dive investigated earlier the blocks were rounded (reminicent of "Wollsack Verwitterung"). In contrast, in this area up here the blocks are slabbx 16:13:02 With sharp angular outlines. 16:13:02 With sharp angular outlines. 16:16:06 2700m 19.01.2008 16:17 HD on, landing in sedimented talus 	HDTV ATA-50ROV_14
 15:17:05 HDTV on, massive rocks 15:17:31 trying to grab a particular sample (knobly clast on a cliff poarch) with the rigmaster! 15:24:48 sampling SUCCESSFUL. Round knobbly sample placed on poarch. Size ca. Rigmaster claw. 15:27:58 HD is on and has been on for a while 15:30:57 passed fantastic deed sea corals (hydrozoan) living at the cliff edge 15:31:39 2768.8m Still moving up. 15:32:00 2767.5m Total of 16 m for the cliff. 15:33:17 Reached peak of a MEGA-BLOCK. Hence sample take was not in-situ. 15:34:13 Flying around cliff peak. 15:35:39 Examining cliff surface: striation are recognizable. HD still on. 15:37:00 Moving closer. 15:38:14 Rock type: Gabbro 19.01.2008 15:38 HD off 15:39:40 Cliff top colonized by Hydrozoan 15:40:32 Flying aross sedimneted cliff surface 15:44:33 very steep slope, heavily sedimented, abundant ripple 15:45:56 Still heading towards the west. 251 15:48:07 waiting for ship 15:49:39 Moving to the west, 250, sediment and boulders 15:55:47 Large boulder (size range: several m to 10s of meters) field, massive blocks, clast-supported. 15:59:03 still arge boulder field 16:02:35 trying to take sample 16:11:32 Steep cliff face of large block 16:11:32 Steep cliff face of large block 16:12:27 reached sedimented top of cliff Observation: In the lower portion of the dive investigated earlier the blocks were rounded (reminicent of "Wollsack Verwitterung"). In contrast, in this area up here the blocks are slabbx 16:16:06 2700m 	

16:32:39 Preparing for taking a sample from a local scree slope16:32:56 Rigmaster16:32:56 Rigmaster16:34:58 sample with white crust, angular clast, lying on Orion side of poarch16:34:58 sample with white crust, angular clast, lying on Orion side of poarch16:35:55 3575.8157 Jur40 191W 2670m16:36:48 Progressing to the west. Heading 25616:37:55 sediment and boulders16:36:48 Progressing to the west. Heading perhaps visible.16:41:03 Blocks have grey surfaces, some banding perhaps visible.16:41:03 Blocks have grey surfaces, some banding perhaps visible.16:43:18 HDTV Off16:43:18 HDTV off16:43:18 HDTV Off16:45:31 Has boulders are loose - can see collision marks between them16:47:34 Still large, flat blocks,16:45:34 Context of boulders are loose - can see collision marks between them19:01.2008 16:51 HD On, looking for sampling site, small talus16:25:40 Attempting sampling19:01.2008 16:51 HD On, looking for sample site, small talus16:25:40 Attempting sampling19:01.2008 16:53 HD Off19:01.2008 16:53 HD Off19:01.2008 16:54 Compartment 5% 5% 342 * 77? Depth?*17:02:16 11 39,525 50.65.10??? Posidonia problem??17:02:26 50:54.00 11 40.289 is perhaps good fix17:07:33 Blocks becoming more plate-like17:01:16 11 39,525 50.65.10??? Posidonia17:01:16 11 39,525 50.75.11 40.31 IW 2555m19:01.2008 17:28 HD On, in situ gabbro wall17:10:31 HD Off17:10:31 HD Off17:10:31 HD Off17:10:31 HD Off17:10:31 HD Off17	sample placed in box 1 (smaller than sample ATA-ROV-1) This sample is black an shiny and may 16:21:56 be a glassy blast crust or a Mn-crust 16:23:28 5°05.830'S 11°40.170'W 2696 m. About 100m away from WP2 16:24:21 Second sample from this location placed in box 2. 16:28:29 sediment and boulders. Proceeding to W 268 16:29:54 giant scree field. 16:30:05 HD on. 16:31:54 HD off	ATA-50ROV-3 ATA-50ROV-4 No film
16:41:03 Blocks have grey surfaces, some banding perhaps visible. 19:01:2008 16:41 HD On, boulder 16:43:11 Was that banding or sediment? Not sure. HDTV ATA-50ROV_17 16:43:18 HDTV Off 16:43:11 Hage, flat blocks, 16:47:34 Sill large, flat blocks, 16:48:53 These boulders are loose - can see collision marks between them 19:01:2008 16:53 HD On, looking for sampling site, small talus HDTV ATA-50ROV_19 16:15:240 Attempting sampling HDTV ATA-50ROV_19 19:01:2008 16:53 HD Off Got sample, black surface top and bottom, brown fracture surface on side, placed in rear big ATA-50ROV-6 17:01:16 11 39:252 5 06;510??? Posidonia problem?? ATA-50ROV-6 17:02:26 50:540 11:40.289 is perhaps good fix T:05:43 Boulder field All joint surfaces look to dip OUT of teh slope - i.e. Towards the east, perhaps also slightly to the T:06:38 HDTV ATA-50ROV_20 17:07:35 Block specoming more plate-like T:07:153 HDTV ATA-50ROV_20 T:16:11 17:08:10 Ohg material Sightly to the T:16:31 HDTV ATA-50ROV_20 T:17:10:31 17:01:03 HD on	 16:32:56 Rigmaster 16:33:59 sample in rigmaster! 16:34:58 sample with white crust, angular clast, lying on Orion side of poarch 16:35:53 5°5.815'S 11°40.191'W 2670m 16:36:48 Progressing to the west. Heading 256 16:37:55 sediment and boulders 	ATA-50ROV-5
16:48:53 These boulders are loose - can see collision marks between them 19.01.2008 16:51 HD On, looking for sampling site, small talus HDTV ATA-50ROV_19 19.01.2008 16:53 HD Off Got sample, black surface top and bottom, brown fracture surface on side, placed in rear big ATA-50ROV-6 16:55:45 compartment 5°S05,824 ???? Depth?? ATA-50ROV-6 17:01:16 11 39,525 5 06,510??? Posidonia problem?? ATA-50ROV-6 17:02:26 50,840 11 40,289 is perhaps good fix ATA-50ROV-6 17:02:26 50,840 11 40,289 is perhaps good fix HDTV ATA-50ROV_20 17:06:43 Boulder field AII joint surfaces look to dip OUT of the slope - i.e. Towards the east, perhaps also slightly to the HDTV ATA-50ROV_20 17:07:35 Blocks becoming more plate-like HDTV ATA-50ROV_20 17:08:47 Looking at a place which looks like slickensides HDTV ATA-50ROV_20 19:01.2008 17:09 HD on, big gabbro boulder HDTV ATA-50ROV_20 17:10:31 Günter is sure it is slickensides HDTV ATA-50ROV-7 19:01.2008 17:28 HD Onfi atriady ATA-50ROV-7 19:01.2008 17:28 HD On, in situ gabbro wall ATA-50ROV-21 19:01.2008 17:31 HD Off HDTV ATA-50ROV-21	 16:41:03 Blocks have grey surfaces, some banding perhaps visible. 19.01.2008 16:41 HD On, boulder 16:43:11 Was that banding or sediment? Not sure. 16:43:18 HDTV Off 	HDTV ATA-50ROV_17
ATA-50ROV-616:55:45 compartment 5°S05,824 ???? Depth??ATA-50ROV-617:01:16 11 39,525 5 06,510??? Posidonia problem??17:02:26 5 05,840 11 40,289 is perhaps good fix17:02:26 5 05,840 11 40,289 is perhaps good fix17:05:43 Boulder field All joint surfaces look to dip OUT of teh slope - i.e. Towards the east, perhaps also slightly to the17:06:03 S17:07:35 Blocks becoming more plate-like17:07:35 Blocks becoming more plate-like17:08:47 Looking at a place which looks like slickensides19:01.2008 17:09 HD on, big gabbro boulderHDTV ATA-50ROV_2017:10:53 HD Off17:10:53 HD Off17:10:53 HD Off17:16:00 HD Off already17:12:19 Getting a sample. 5 05.827S 11 40.311W 2555mATA-50ROV-719:01.2008 17:28 HD On, in situ gabbro wall17:29:08 Wall strikes 340°17:30:10 Looking to find strike and dip of structuresHDTV ATA-50ROV-2119:01.2008 17:31 HD Off11:00 HD Off	 16:48:53 These boulders are loose - can see collision marks between them 19.01.2008 16:51 HD On, looking for sampling site, small talus 16:52:40 Attempting sampling 19.01.2008 16:53 HD Off 	HDTV ATA-50ROV_19
17:06:03 S17:07:35 Blocks becoming more plate-like17:07:35 Blocks becoming more plate-like17:08:47 Looking at a place which looks like slickensides19:01.2008 17:09 HD on, big gabbro boulder17:10:31 Günter is sure it is slickensides17:10:53 HD Off17:10:53 HD Off17:16:00 HD Off already17:22:19 Getting a sample. 5 05.827S 11 40.311W 2555m19:01.2008 17:28 HD On, in situ gabbro wall17:29:08 Wall strikes 340°17:30:10 Looking to find strike and dip of structures19:01.2008 17:31 HD Off	16:55:45 compartment 5°S05,824 ???? Depth?? 17:01:16 11 39,525 5 06,510??? Posidonia problem?? 17:02:26 5 05,840 11 40,289 is perhaps good fix 17:05:43 Boulder field	ATA-50ROV-6
17:10:53 HD Off-17:10:53 HD Off17:16:00 HD Off already17:18:16 Facing block, steady. Going to sample7:22:19 Getting a sample. 5 05.827S 11 40.311W 2555m17:22:19 Getting a sample. 5 05.827S 11 40.311W 2555mATA-50ROV-719.01.2008 17:28 HD On, in situ gabbro wall17:29:08 Wall strikes 340°17:30:10 Looking to find strike and dip of structuresHDTV ATA-50ROV-2119.01.2008 17:31 HD OffHDTV ATA-50ROV-21	17:06:03 S 17:07:35 Blocks becoming more plate-like 17:08:47 Looking at a place which looks like slickensides 19:01.2008 17:09 HD on, big gabbro boulder	
17:29:08 Wall strikes 340°17:30:10 Looking to find strike and dip of structures19.01.2008 17:31 HD Off	17:10:53 HD Off 17:16:00 HD Off already 17:18:16 Facing block, steady. Going to sample 17:22:19 Getting a sample. 5 05.827S 11 40.311W 2555m	
during coming up: the last wall shows a height of ~ 150 m, monitored by sonar; strike: 330°	17:29:08 Wall strikes 340° 17:30:10 Looking to find strike and dip of structures 19.01.2008 17:31 HD Off 17:32:25 5 05.833S 11° 40,372 2484m end of dive, coming up	HDTV ATA-50ROV-21

Cruise Number Atalante Leg 2 Station Number 52ROV Dive Number #18 Location Golden Valley & Red Lion Coordinates 4° 48.102'S 12° 22.286'W Water Depth 2992m Atalante Vessel

Metadata Observation Timecode

allowed

default

- 9:00:00 Begin Station
- 10:00:00 ROV in Water, problem with Posidonia signal in van, changing cables out whilst diving to 1000m 11:27:20 2473m
- New plan for the dive: Locate golden valley without Posidonia positioning signal. Return ROV on deck 11:35:28 immediately after sampling in order to fix this problem on deck.
- 11:38:14 2820m
- 11:42:34 seafloor in bottom sonar
- 11:43:58 seafloor in view: 2990 m
- 11:44:28 sedimented sheet flow with intense laminar striations
- 11:45:10 search for Sisters peak chimney structure using the sonar
- 11:45:55 great view of sedimented sheet flow plain
- 11:47:23 turning vehicle at 60 degrees intervals in order to locate smoker in the sonar
- 11:52:30 positioning ROV several m above the ground in order to pick up Sisters peak in the sonar
- sonar shows structure that may represent Sisters Peak in the SW. Hence Golden Valley should be 11:59:57 towards the north. Plan: Dive to the north
- 12:02:26 returning to seafloor
- 12:03:01 round circular patches and larger domains filled with sediment on top of sheet flow
- 12:04:08 turning vehicle around: Large sheet flow plain
- 12:04:36 HDTV On, flght over pillows
- 12:04:37 moving northwards
- 12:04:56 hummocky structures
- 12:05:27 contact of sheet flow to overlying pillow flow.
- 12:05:55 climbing up pillow flow front
- 20.01.2008 12:06 HD off
- 12:07:58 very nice pillow flow morphologies, minor sediment in intersticies
- 20.01.2008 12:08 HD on, volcanic flight and first mussel patches
 - 12:10:33 mussels! Dead ones...
 - 12:11:37 trying to follow the "mussle gradient"
 - 12:12:02 living mussles and shimmering water!
 - 12:12:53 HD Off
 - 12:14:10 still trying to locate the valley. Low mussle density
 - 12:15:01 there is the fracture/valley!
 - 12:15:17 HDTV, flying south in volcanic fissure
 - HD on flying southwardthis is the fissure of a major lava flow eruption, passing site of sheet flow 12:15:53 emmissions
 - 12:18:02 great volcanic morphology

- 12:18:52 multiple sheetflow tops and lava tube structures
- 12:20:07 HD still on, "Grand canyon-like" views
- 12:24:56 some dead mussle on fissure floor
- 12:25:26 HD Off
- 12:26:05 plenty of crabs! Sitting on pillows

HD on, lots of mussel patches in valley, most look dead, shimmering water everywhere (looks like 20.01.2008 12:26 activity is waning, far rewer mussels living now than shells lying around.

- 12:27:32 abundant polyps around the mussle beds. Very similar situation to Wideawake.
- 12:29:05 abundant dead mussles
- 12:29:52 following large patches of dead mussles
- 12:30:29 abundant dead mussles
- 12:31:24 shimmering water around. BUT no live mussels near shimmering water. Too hot?

HDTV ATA-52ROV 3

HDTV ATA-52ROV_1

Actions

allowed

HDTV ATA-52ROV_2

still abundant mussles. This is no longer a valley structure. Difficult for orientation. Following towards 12:32:06 the south.

- 12:33:54 abundant dead mussles
- 12:34:18 abundant shimmering water emmitting from interstices of lava lobes.
- We crossed the souther margin of the pillow flow. Jumbles lavaflow morphologies are abundant. ROV 12:35:03 touched the ground=> lava sample of sheet flow sitting on poarch. Abundant hot water emmitting from the seafloor. Becoming more intense: Foggy. However, no
- 12:35:41 macrofauna.
- 12:36:37 Sheet flow top, lightly sedimented.
- 12:38:01 NO more shimmering water. Some (minor) dead mussles.
- 12:38:43 Bach in more active region progressing towards the east. Fissure reappears.
- 12:39:39 Again abundant dead mussle patches and shimmering water.
- 20.01.2008 12:40 HD off
 - 12:40:29 Lifting ROV up into the water column in order to locate Sisters Peak using the sonar.
 - 12:50:03 returning to seafloor
 - 12:50:23 Landed on abundant mussle beds alive and dead mussles + shimmering water
 - 12:51:13 abundant lliving mussles!
 - 12:51:56 passing over steep cliff

 - 12:53:01 floor of fissure colonized by some mussles pilot change, biologists resign to idea to sample whatever they get because orientation remains difficult
 - 13:00:12 without Possidonia
 - 13:08:31 plan to take Ti-majors once find fluid vent
- 20.01.2008 13:17 HD on, mussel patch
- 20.01.2008 13:20 HD off
- 20.01.2008 13:21 HD on, more mussels
- 13:24:29 HD off
- 20.01.2008 13:29 HD on, polyp close up
- 20.01.2008 13:30 HD off
- 20.01.2008 13:30 HD on, shrimp feeding
- 13:31:05 HD off
 - diffuse fluid vent over entire area, trie to measure now T at margin of the mussel field with 8 channel 13:32:53 lance, but difficult to find proper landing place

searching for a proper sampling spot according to KIPS temperature readings. Current readings are in 13:48:27 the 2-5 degree C range

- 13:56:40 T = 6.9°C!
- 14:00:01 HDTV On, view over mussel field whilst sampling
- 14:00:23 HDTV Off

14:03:35 pump off

14:08:40 pump off

14:12:38 pump off

14:17:27 pump off 20.01.2008 14:17 HD off

14:24:07 pump off

14:28:02 pump off

14:33:28 pump off, T = 8.0°C

52 ROV-1	
HDTV ATA-52ROV_9	
52 ROV-2	
52 ROV-3	

52 ROV-3	
52 ROV-4	
HDTV ATA-52ROV_10	
52 ROV-5	
52 ROV-6	
52 ROV-7	

HDTV ATA-52ROV 4

HDTV ATA-52ROV_6 HDTV ATA-52ROV_7

HDTV ATA-52ROV_5

HDTV ATA-52ROV 8

- 13:55:06 T 3-3.5°C and one time 5°
- 13:57:26 T = 8.6°C
- 13:59:38 KIPS pump on, bottle C9, T = 8.9°C

14:04:08 KIPS pump on, bottle C8, T = 8.6°C

14:09:13 KIPS pump on, bottle C7, T = 8.5°C

14:13:10 KIPS pump on, bottle B6, T = 8.9°C

14:20:04 KIPS pump on, bottle B5, T = 8.0°C

14:24:45 KIPS pump on, bottle B4, T = 8.3°C

14:28:43 KIPS pump on, bottle A3, T = 7.8°C

14:15:45 HDTV On, view over mussel field whilst sampling

14.24.42	remove nozzle from site and return it again for a second set of fluid samples	
	KIPS pump on, bottle A2, $T = 8.8^{\circ}C$	52 ROV-8
	pump off	52 ROV-8
14.41.00	Site is called "Clueless Site"	
11.11.51	KIPS pump on, bottle A1, T = 8.8°C	52 ROV-9
	pump off, T remained constant between 8.5 and 8.8°C	321(01)3
	next task will be the 20 minute 8-Channel temperature measurement	
	start deployment of the 8-Channel T-Logger	
	8-Channel T-logger in position, start measuring for 20 minutes, T-max 6°C	52 ROV-10
	stop of T-measurement	02110110
	next step: fishing mussles for Nicole	
	8-Channel T-logger back in garage	
	taking net # B	
	fishing mussles into net # B	52 ROV-11
15:53:22	drop of of net # B into box 1	
	opening of of lid from plastic box	
	taking rock sample covered with bio; sample broke; only small fragments placed into plastic box with	
	lid; no sample number	
	taking another rock sample covered with bio, attempt failed	
	tainkg the shovel for taking a rocks sample	
	HDTV On, tin-panning for rocks	
	taking rock fragments with shovel; surface covered with bio; placing into plastic box	52 ROV-12
16:13:19	HDTV Off	HDTV ATA-52ROV_11
16:28:21	taking a second rock sample with shovel, surface covered with bio; placing into plastic box; same sample numer	
	attempt to place a bio net as marker;	52 ROV-13
	taking the Ti Majors which was lost from porch during operation for rock sampling	
	HDTV On, lookng for somewhere to drop net	
	HDTV Off	HDTV ATA-52ROV_12
	HDTV On, bionet on seafloor	
	placing the bio net as marker; marker gets a sample number	52 ROV-13 HDTV ATA-52ROV 13
20.01.2008 17:02	ווט טוו	HDTV ATA-52RUV_15
17.03.44	sampling location was on the eastern flank of a fissure; a sheet flow is visible not covered with mussles	
	attempt to fly some 100 meters in the direction of "Sisters Peak"; 350° heading; some 100 meters with	
17:03:51	the aim to find to sisters peak	
17:07:23	lobate flow associated with sheet flow	
20.01.2008 17:07	HD on, for the whole flight N across lava lookng for Sister's Peak	
17:10:28	80 m from start of traverse	
	very massive flow of lobates/pillows without bio	
	water seems to get smoky	HDTV ATA-52ROV_14
	looking around if smokers are visible	
	big sediment carpet	
	HDTV Off	
	HDTV On, more flight over seafloor and looking for S.P.	
17:19:24	HDTV Off	HDTV ATA-52ROV_15

17:19:24 HDTV Off 17:20:08 end of dive

HDTV ATA-52ROV

Cruise Number Atalante Leg 2 57ROV Station Number Dive Number #19 Turtle Pits#3 Location Coordinates 4°48,558'S 12°22.463'W Water Depth 2989m Atalante Vessel

Actions Metadata Observation allowed allowed Timecode default 9:00:00 Begin Station 9:36:00 ROV in Water 11:03:43 Bottom sighting 11:14:35 ABE dive weight 11:19:27 Turtle Pits 11:24:14 A smoker is visible, not clear which one it is. 11:30:34 AT southern tower, making HD film as some bubbles coming out 11:34:33 Looks like venting vapour on side of southern Tower 11:37:00 HD did not want to work 11:37:31 Moving to Two Boats 11:40:38 Slowly moving to Two Boats 11:42:17 Marker 2 found 11:43:11 HD On, flying around Two Boats 11:48:18 HD Off 11:55:27 HD On, landing base of Two Boats 11:56:07 HD Off 11:59:29 HD On, base of Two Boats 12:00:19 HD Off 12:03:40 HD On, shrimps and fluid at base of Two Boats 12:04:57 want to meassure temp. 12:05:15 HD off VATA-57ROV 12:05:36 HD On, small smoker with shrimps 12:05:56 HD Off 12:06:48 HD On, more small shrimp on smoker 12:07:19 HD Off 12:11:44 HD On, shrimps and the end of something, smoke in bkgnd 12:13:00 HD Off 12:14:01 Temperature: 334, 370, not hot enough, the vent also does not look very active 12:16:27 Deciding where to go 12:28:45 HD on, fly round top of smoker TA-57ROV 8 (note times v 12:29:10 HD Off 12:32:23 ROV touched smoker 12:49:33 HD On, lots of prop. Wash on top of smoker 12:52:06 HD Off 12:54:03 Want to approach smoker with Rig Master extended 12:59:26 Trying at base of Tower 13:01:35 Landed on SE base of Southern Tower, looks hopeful but is difficult to get to. 13:13:12 taking KIPS for T-measurement; measurement failed 13:19:06 still looking for a good place 13:20:48 HD on, flight arond base of Southern Tower 21.01.2008 13:23 HD off HDTV ATA-57ROV_10 (note times wrong on video) 13:23:00 HD On, top of smoker HDTV ATA-57ROV_11 (times wrong) 13:23:31 HD Off 13:34:09 Taking a large sample from chimney with Riggmaster, placing on porch ATA-57ROV-1 13:39:00 HD On, smoke at top of smoker 13:39:51 HD off HDTV ATA-57ROV_12 (times wrong) 13:55:37 HD on, approach to base of smoker HDTV ATA-57ROV 13 (times wrong) 13:57:18 HD off 14:10:42 taking KIPS for T-measurement 14:17:42 stop of the attempt to measure Temp, 21.01.2008 14:25 HD on, Two Boats from a distance 14:26:50 HD off HDTV ATA-57ROV_14 (times wrong) 14:26:00 HD On, another flight to Two Boats? 14:27:10 HD Off IDTV ATA-57ROV_15 (times wrong) 14:32:20 proceeding to two boats, attempt to measure temp 14:35:00 HD On, rigmaster on smoker outlet 14:35:36 HD Off IDTV ATA-57ROV_16 (times wrong) 14:36:02 now trying to make a vent with rig master 14:41:59 still working with rig master on two boats 14:48:04 several attempts to get a temp reading from a vent 14:52:39 Tmax currently at 200°C 14:55:43 relocating ROV to new positition at two boats vent 15:03:32 still cruising 15:07:56 irrespective of the temperature reading to come, sampling will go ahead now T max now 340°C though opening small, vent openings apparently are very dynamic, they close and 15:16:40 open in a day or two 15:18:17 try to make 340°C vent bigger 15:23:21 another KIPS deployment still at Two Boats 15:32:03 T measurements in the range of 270 to 370°C 15:35:56 pumps on filling bottle C9 measured T is about 220°C however, nozzle is placed more directly above discharging fluid so that ATA-57ROV-2 15:36:56 fliud sample temperatures are probably higher 15:39:24 pumps off 15:39:44 pumps on filling bottle C8 ATA-57ROV-3 15:42:31 pumps off 15:43:06 pumps on filling bottle C7 ATA-57ROV-4

ATA-57ROV-5

15:50:02 pumps off 15:52:03 next deployment: IB sampler

15:46:17 pumps off 15:46:46 pumps on filling bottle B6

15:58:53 still working on putting KIPS in garage... 16:03:35 KIPS in garage. ROV 20 m off the ground

16:07:13 landing on sheet flow, lightly sedimented 16:08:09 great striations!	
16:10:29 still sheet flow	
no more communication to ROV container. Walkie-Talkie stopped working for some non apparent	
16:11:05 reason. Difficult to relocate Turtle Pits. No beacon reading. Trying to locate using Posidonia.	
16:14:50 Dead mussles	
16:14:50 Dead masses	
16:20:02 sheet flow agin	
16:24:49 back at Turtle Pits. Two Boats	
16:35:59 next deployment: IB sampler	
16:37:22 IB sampler opened	ATA-57 ROV-6
16:48:00 HD On, IB Sampler sampling	
16:48:33 HD Off	HDTV ATA-57ROV 17 (times wrong)
16:49:49 HD was on for IB sampling	TIDTV ATA-STROV_T/ (ames wrong)
16:50:59 HD on, trying to close He tube with Orion	
16:51:51 HD off	HDTV ATA-57ROV 18 (times wrong)
17:01:08 IB sampler closed	
17:14:13 Major D2 is next	
17:34:32 could not be released	
17:42:06 try again	
17:54:17 Major D2 released by error, no sample	
18:06:20 stowing IB sampler	
18:32:11 Beacon 11 found and collected	
18:36:28 next target: Wideawake beacon	
crossing from jumbled flow to sedimented lobate flow (mapped as "old flow" in ABE volcanological	
18:38:41 interpretation by C.Devey)	
18:46:46 beacon found even without signal	
18:52:47 Attempt to take mussles with bionet	
19:01:09 chnage of plan: First beacon 10 placed on poarch	
19:01:32 now start of biosampling	
19:04:29 bionet "J" fallen out of Orion into sample box	
19:07:00 "it is one of these fing stupid days"	
19:09:17 bionet in Orion!	ATA-57ROV-7
19:12:31 mussles in bionet!	
19:13:20 HD On, mussel net with Orion	
19:13:58 more mussles	
19:14:12 bionet in big sample box	HDTV ATA-57ROV_19 (times wrong)
19:18:39 HD Off	
19:22:52 manipulating beacon in order to ensure its fixed position	
19:26:44 beacon fixed. Rigmaster bings in second beacon.	
19:29:31 leaving ground	

Cruise Number	Atalante Leg 2
Station Number	63 ROV
Dive Number	#20
Location	Inside Corner High #2
Coordinates	5°05.848'S 11°40.429'W
Water Depth	2400m
Vessel	Atalante

Metadata Timecode default	Observation allowed	Actions allowed
8:50:0) Begin Station	
9:00:0) ROV in Water	
	ROV Descent stop at 1130m ROV decends. 1562m	
	3 2000m	
	Wand in sonar zu sehen in 40m entfernung	
) Bottom sighting, sediment and small stones 20m W of steep wall	
10:41:1	5 No sign of steep wall! Sonar picture probably just this boulder field	
	3 Looking for steep wall. 3 Probably 150m north of steep wall from dive#1 acording to map	
	5°05.798 11°40.368 are ROV coords, 2489m depth, going souith	
	3 Something on sonar in 30m distance	
	3 HDTV On, talus blocks with sed cover 9 Looking at rocks, trying for an interpretation	HDTV ATA-63ROV 1
10:49:2	5 Interpretation difficult due to sediment	
	9 HDTV Off 3 Climbing wall slowly	
10:52:1	Verticval crack - fault or joint	
	HDTV On, joint may be cliff face, dips 70°to E 2476m Strong jointing 70°E, interner Strukturen dip 30° to W	
	A Ruschel-Zone	HDTV ATA-63ROV_2
	I Going to try sampling	
	3 HDTV Off) Deploying Rigmaster	
10:58:0) HDTV On, massive rock wall	
	Attempting sampling, looks very broken, lozenge-shaped pieces 3 HDTV Off	HDTV ATA-63ROV_3
	9 Still trying	
	7 Not sure whether tectonics or rock-type responsible for the look of this rock	
	5 Going to try to put porch on 1 Docked!	
11:11:2	Rocks keep falling down between porch and wall!	
11:12:5	7 A good day for Dan, a bad day for a rock (and one giant leap for mankind) 5° 05.854 11°40.356 2472m rock on porch, sample in-situ	ATA-63ROV-1
	5 Kluftung 70° in den Hang, nach W	
) HD On) Thinly bedded/jointed	HDTV ATA-63ROV_4
11:16:4	3 HD Off	
	I HD On	
	3 Thinly-banked units, jointed dipping steeply W 1 The thick banks have disappeared, looks much more broken. It is tectonic effect	HDTV ATA-63ROV_5
11:19:20	3 HD Off	
	I Looking West onto the short end of the eastward-dipping blocks The cliff is tectonic surface, not just a landslide surface	
11:20:4	7 HD On	
11:21:2:	2 Joint surfaces well seen dipping 70° into cliffs 3 HD Off	HDTV ATA-63ROV_6
11:23:14	t HD On	
	 On E-W striking wall, see two joint systems, one dipping steeply to W, one slightly shallower to E Attempting another sampling 	HDTV ATA-63ROV_7
11:24:5	3 HD Off	
	Sampling attempt, droped in the slips Trying again, huge piece	
	5° 5.863 11°40.369 2430m	ATA-63ROV-2
11:32:5) Wall strikes 300° in sonar The structure which we have been calling joints dippingW looks irreguklar and like banking -	
11:35:3) magmatic contracts/Layering??	
	Small step, in 10m it continues	
	 Going over step Stripes on rock probably sediment 	
11:41:0	Wall strike 315°	
	HD On Want to go W to try and find another wall orientation, we appear to be climbing a joint surface	HDTV ATA-63ROV_8
11:42:5	6 HD Off	
	3 Corner of wall, can look from both sides 3 HD On	
11:44:2	2 Lots of structures dipping to east	
	Already ascended 130m wall Joint system dipping 70° to E is clearly visible	HDTV ATA-63ROV_9
11:46:1	t HD Off	
	5 HD On	
	Lots of tectonic L, to right a big joint HD Off	HDTV ATA-63ROV_10
	3 Heavily tectonised possible fault surface	
	9 Wall strikes 300° in sonar 9 Vertical movement surfaces visible, harnisch is the word which is being bandied about	
	2 Still on wall	
	3 Moving to SE to try and get another viewing angle 4 Heavily colonised surface	
11:54:18	3 Traversing slope to se what is going on	
	3 HDTV On 7 HDTV Off	HDTV ATA-63ROV_11
11:55:4	5 IN small talus pile, looking for a piece to take	
11:56:3	3 Sampling attempt, putting in drawer, box 2	ATA-63ROV-3
	 5°05.919 11°40.382 2324m Sonar shows no hard echos, looks more like talus slope 	
12:06:24	Found a solid face, ascending	
	5 ON broken surface, hoping to see some structure when the surface is continuously breaking I Many more small blocks here, may be different rock although in container does not look like it	
12:14:0	5 HD On	
	3 HD Off 9 Steep slope infront of ROV, possibly parallel to dip direction	HDTV ATA-63ROV_12
12.14.0	· · · · · · · · · · · · · · · · · · ·	

2:17:14	Possibly end of wall, sample attempt HD On, approach for sampling	
2:18:06	HD Off Grabbed, will it fit in drawer?	HDTV ATA-63ROV_13
2:20:56	5 05.927 11 40.433 2265m, box 3	ATA-63ROV-4
	Vehicle still positively buoyant Talus slope	
2:24:33	Top of slope or talus pile. Sonar is also less clear. The big wall is visible on sonar behind through	
	Basic topo map no good in this terrain Still on talus slope	
2:31:40		
	Xenolith in gabbro?? May be a surface covering, not a xeno though	HDTV ATA-63ROV_14
2:32:58		
2:35:24	Joints steep, dipping to NW	
	Rocks more rounded, more sediment and animals - slope older? Sonar picture is diffuse, no wall visible, probably talus + seds.	
2:40:27	Moving N looking for wall	
	On a wall again, now looking 214° Looking for a place to take a sample	
	Massive rock wall	
2:45:30		
2:46:19	Pentagon scalöe bar HD Off	HDTV ATA-63ROV_15
2:47:22	ON bottom, starting sampling	
	Difficult to grab anything 5°05.934'S 11°40.527'W 2175m, let's see if we get a sample	
2:51:22	5°05.931 11°40.527 2175m have a sample now, in box 2 closer to ROV	ATA-63ROV-5
	Still on blocky talus, moderately sedimented Solid wall, still gabbro, less jointing (perhaps reason for old talus, or we are looking at main joint	
2:58:09	surface)	
	Now more broken	
	Main fault surface, dipping east passing through another "Ruschelzone" 2130 m	
3:03:31	Changing course in order to gain another view on the western cliff face	
	looking on western face of cliff, blocky scree ROV pilot shift change	
3:09:43	progressing up the hill. 2113m	
3:10:00	passing plastic bag? NO. Its a "Fächerkoralle". On scree slope. Facing 320. Blocky scree slope.	
3:12:37	Blocky outcrop. 2106m	
	scree slope. Sediment. 2092m climbing scree slope, platy blocks.	
	ROV still facing W: 246	
	Looks like a good spot to take another sample. Also, sonar indicates that speep slope may terminate	
	a little further up. Sample in orion. Placed in box 1 next to shovel. 5°5.968'S 11°40.583'W. 2082m	ATA-63ROV-6
3:29:12	NOTE for the ROV Weight Watchers: After this sample the ROV has no more Buoyancy.	
	After an area dominated by rounded blocks we are back in area with blocks/slabby scree. ROV still travelling westward.	
3:31:26	passing over in-situ outcrop.	
	HD on. In order to document the structures in this upper region. ROV parallel to main thrust plain which is striking 300. 2065m	HDTV ATA-63ROV_16
3:35:17		
	Steep nose ahead. Travelling up this outcrop. Little sediment cover. Abundant Gorgonaria.	
3:41:39 3:42:32		HDTV ATA-63ROV_17
	steep cliff ahead. Climbing steeply facing massive rock outcrop. Strike 330. Rock type: gabbro.	
3:43:15	Still climbing vertically. 1996m	
3:46:48	Reaching blocky scree slope. Abundant sediment.	
	Reached top of 20m high cliff. Terrace covered with blocky scree. Looks like in-situ material. Good opportunity to look for a sampling spot.	
3:51:33	HD on and off.	HDTV ATA-63ROV_18
	passing over in-situ outcrop and in-situ blocky breccia. Found a good spot for sampling	
	Sample in Orion claw. Dropped.	
3:58:39	sample in Orion claw. Too big => dropped.	
	Suitable rock found. 5°6.022'S 11°40.698'W 1978m Placed in big sample box. Middle position. Travelling S in order to return to the old track followed before towards waypoint 3.	ATA-63ROV-7
4:11:15	Strongly sedimented boulder slope. Reached track. Heading upwards.	
	1945m 5°5.987S 11°40.775'W Climbing steep cliff face. Joints running ~N-S.	
4:15:54	Strongly sedimented blocky boulder slope.	
4:16:36	Back in seep rocky outcrop face. Heading 217	
	Found suitable sampling location. Orion deployed	
4:22:51	HD on	
4:24:52	HD off Sample with Hydrozoa shaft. 5°6.013'S 11°40.817'W 1876m Sample in box 3.	HDTV ATA-63ROV_19 ATA-63ROV-8
4:30:44	Traveling across blocky boulder field. Sedimented. Heading 218	
	Blocky outcrops. Huge slabby blocks, lightly sedimented. 1810m. Heading 236	
	Morphology: Steeply terraced terrain.	
4:40:08	just a joint ROV facing 180. 1782m	
4:41:49	In this area the slope is striking N-S with little opportunity to investigate the inner structures (i.e., looking at E-W oriented outcrop faces)	
4:42:58	Looking for suitable sampling spot. However this is rather steep rocky terrain.	
4:45:15 4:45:33		HDTV ATA-63ROV_20
4:46:10	HD on	
4:47:12	HD off Orion deployed but this site is not quite suitable.	HDTV ATA-63ROV_21
	HD on targeting new sampling site.	
4:55:30	HD off	HDTV ATA-63ROV_22
	Sampling successful at new site. 5°6.059'S 11°40.843W 1767m shift change of ROV pilots	
4:58:59	Leaving sampling site in order to put rock sample in a save place on the ROV.	
	Sample placed in big sample box. On the Orion side of sample ROV-7 (below IB sampler) 300° striking cliff surface ahead. Orientation unchanged. Seems peculiar since ridge axsis is striking	ATA-63ROV-9
5:04:04	at 330°	
	HD on, fish	
5:04:19	HD off strongly sedimented terrace. We are travelling westward.	HDTV ATA-63ROV_23
5:04:42		
5:05:45	boulder field with sediment slope is dipping with 30°, sediment covered	

	climbing up	
	surface is covered with sediment and rock debris	
	big blocky debris on sediment covered surface	
15:17:12 15:18:12	searching for a place to park and collect a rock sample	
	rocks look more tectonized than previous exposures	HDTV ATA-63ROV_24
15:19:32		
10.10.02	sampling: 5°6.081 S, 12°40.949 W, 1673.8 m, sample placed in drawer in box 2, on top of everything]
15:25:58	in the back of this box	ATA 63 ROV-10
	continue up the steep slope	
15:34:46		
15-24-52	surface of rocks look darker in comparison to further down, may be even the fresh material is darker, rocks slap more flat	HDTV ATA-63ROV_25
15:35:55		
	black rock sample with white dots (two pieces) in box3 at 5°06.089S 11°40.982W, 1636m	ATA 63 ROV-11
15:48:26		
15:49:31		HDTV ATA-63ROV_26
15:50:47	Dip of the rocks appears to have changed. Was 70° below.	
	The little valley in front has steep flanks. This may be one of the corrugated streaks? Valley is 16 wide and 18 m at its deepest point. The valley is horseshoe shaped. Strike: 260. However, the	
	corrated streaks visible in bathymetric maps are in 100 meters dimensions (each pixel is about	
	200m). Maybe this is a smaller scale version not detectable in bathymetric maps?	
	HD on. There are differences in structure. 1603m	
15:58:45		HDTV ATA-63ROV_27
16:00:09	Steep rocky outcrop. No sediment. Facing 270. Streaky vertical structures. HD on. The rock face is striking N-S. There are prominent slicken side structures! Dip is to steeply to	
16.01.22	the east.	
	1573m Sediment filled crack looks like whitish vein	HDTV ATA-63ROV_28
16:05:04	HD off.	
	HD on. Vertical view on shear zones. Dipping South to southwest.	
16:06:52		HDTV ATA-63ROV_29
16:07:20	Still climbing wall strike is 10°; 60° dipping to the east. Which has a total height in the order of 30 to	
	keep on climbing. 1541m. Cliff face heavily jointed.	
16:12:24	Plan: Taking another sample	
16:13:48	HD on.	
16:14:25	HD off	HDTV ATA-63ROV_30
16:15:00		
	Trying to take sample here.	
16:15:33		HDTV ATA-63ROV_31
	too difficult. Moving to a different spot. The rocks look massive with some jointing. Looks like blocky to columnar jointing.	
16:24:34		
16:25:39		HDTV ATA-63ROV_32
	Moving to yet another site.	
16:31:05	Still having problems with sampling.	
	Sample in Orion claw.	
	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1.	ATA-63ROV-12
16:34:02	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very	ATA-63ROV-12
16:34:02 16:38:19	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure.	ATA-63ROV-12
16:34:02	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on	ATA-63ROV-12
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface.	ATA-63ROV-12
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces.	ATA-63ROV-12
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on	
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank.	ATA-63ROV-12 HDTV ATA-63ROV_33
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree.	
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off	
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented	
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals.	
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:04	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie.	HDTV ATA-63ROV_33
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:42	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off	
16:34:02 16:38:19 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:42 16:50:42 16:50:20	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m	HDTV ATA-63ROV_33
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:42 16:50:42 16:50:20	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample.	HDTV ATA-63ROV_33
16:34:02 16:38:19 16:39:12 16:39:58 16:49:50 16:42:18 16:43:25 16:43:25 16:43:33 16:44:15 16:45:04 16:45:04 16:50:42 16:50:39 16:52:28 16:53:14	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, ice sampling shot!	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:45:39 16:46:10 16:46:28 16:50:42 16:50:20 16:50:39 16:50:29	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102′W 1491m Sample with intense Mn crusting. HD off, nice sampling shot! HD off	HDTV ATA-63ROV_33
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:28 16:50:20 16:50:39 16:52:311 16:54:08	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD off Flot sized, knobbly sample placed in big sampling compartment. Apparently the other samples have	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:28 16:50:42 16:50:42 16:50:39 16:52:28 16:52:28 16:54:48	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD onf Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:46:28 16:50:04 16:56:039 16:52:38 16:53:11 16:54:48 16:54:48 17:06:12	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:20 16:50:20 16:50:39 16:55:11 16:54:48 17:06:12 17:06:50	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off 76°.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move north now	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:28 16:50:20 16:50:29 16:50:29 16:55:28 16:53:11 16:54:48 17:06:12 17:08:09 17:09:14	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move orth now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:42:18 16:43:23 16:44:15 16:45:28 16:50:42 16:50:42 16:50:39 16:52:28 16:53:28 16:54:48 17:06:12 17:06:50 17:08:09 17:09:14 17:09:58	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move adround flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:28 16:50:42 16:50:42 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 16:50:22 16:50:20 17:00:50 17:00:	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:20 16:50:39 16:55:39 16:55:31 16:55:31 16:55:48 17:06:50 17:08:09 17:09:58 17:10:26	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD ON	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:42:18 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:42 16:50:42 16:50:20 16:50:20 16:50:20 16:50:22 16:50:20 17:70:20 17:70:	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102′W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:28 16:50:42 16:50:42 16:50:42 16:50:20 16:50:22 16:55:28 16:53:11 16:55:24 17:75:25 17:75:	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:20 16:50:39 16:55:39 16:55:31 16:55:31 16:55:31 16:55:31 16:55:31 16:55:31 17:06:50 17:08:09 17:09:58 17:10:26 17:11:45 17:11:45 17:11:45 17:11:45 17:13:31 17:13:	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn investigated a vertical structure, more massive to the left, more structured to the right HD Ofn	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13
$\begin{array}{c} 16:34:02\\ 16:38:19\\ 16:39:12\\ 16:39:58\\ 16:40:50\\ 16:42:18\\ 16:43:25\\ 16:43:33\\ 16:44:15\\ 16:45:39\\ 16:46:16\\ 16:50:42\\ 16:50:42\\ 16:50:20\\ 16:50:39\\ 16:55:311\\ 16:55:228\\ 16:55:311\\ 16:54:48\\ 17:06:12\\ 17:06:50\\ 17:08:14\\ 17:09:14\\ 11:09:14\\ 11:09:14\\ 11:09:14\\ 11:09:14\\ 11:09:$	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102W 1491m Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD ON HD ON	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13
$\begin{array}{c} 16:34:02\\ 16:38:19\\ 16:39:12\\ 16:39:58\\ 16:40:50\\ 16:42:18\\ 16:43:25\\ 16:43:33\\ 16:44:15\\ 16:45:39\\ 16:46:16\\ 16:50:42\\ 16:50:42\\ 16:50:20\\ 16:50:39\\ 16:55:311\\ 16:55:228\\ 16:55:311\\ 16:54:48\\ 17:06:12\\ 17:06:50\\ 17:08:14\\ 17:09:14\\ 11:09:14\\ 11:09:14\\ 11:09:14\\ 11:09:14\\ 11:09:$	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491'm Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD Off ND ON investigated a vertical structure, more massive to the left, more structured to the right HD OH ND on nirows like a sediment debris flow (HD on for short time) HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more massive to the left, more structured to the right HD ON investigated a vertical structure, more ma	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:28 16:50:42 16:50:42 16:50:42 16:50:20 16:50:32 16:55:28 16:55:21 16:55:228 16:55:28	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118'S 11°41.102'W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist Isized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On investigated a vertical structure, more massive to the left, more structured to the right HD Off HD Off DON Investigated a vertical structure, more massive to the left, more structured to the right HD Off HD Off DON Investigated a vertical structure, more massive to the left, more structured to the right HD Off HD ON Investigated a vertical structure, more massive to the left, more structured to the right HD Off HD Off DON Investigated a vertical structure, more massive to the left, more structured to the right HD Off HD Off HD On Investigated a vertical structure, more massive to the left, more structured to the right HD Off HD Off	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:29 16:46:28 16:50:20 16:50:39 16:55:22 16:50:39 16:55:21 17:08:09 17:09:58 17:11:45 17:11:	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD of 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. S*6.118'S 11°41.102'W 1491'm Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move ad around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD Off HD Off Notes like a sediment debris flow (HD on for short time) HD On investigated a vertical structure, more massive to the left, more structured to the right HD Off Notes like a sediment debris flow (HD on for short time) HD On narrowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shorel	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:42:18 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:42 16:50:42 16:50:20 16:50:29 16:55:28 16:55:21 17:06:50 17:08:10 17:08:10 17:11:42 17:14:29 17:18:311 17:21:42	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside comer high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102°W 1491m Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move around flat sedimented area, top of escarpment reached move north now Wt y to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On investigated a vertical structure, more massive to the left, more structured to the right HD Off LD On investigated a vertical structure, more massive to the left, more structured to the right HD Off Stops in sonar to the west reached the wall, moving up HD On narrowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shovel sample is pervasively sheared material	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:25 16:45:39 16:46:28 16:50:20 16:50:39 16:52:28 16:53:11 16:55:48 16:55:31 16:55:48 16:55:48 16:55:49 17:06:50 17:08:50 17:09:58 17:09:58 17:11:26 17:11:26 17:11:29 17:15:30 17:18:11 17:21:42 17:21:	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan. Continue straight to the west to reach top of inside corner high structure. HD on HD off Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102′W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have moved around fat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On nirvestigated a vertical structure, more massive to the left, more structured to the right HD Off D Of narrowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shovel sample is pervasively sheared material HD on	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37 ATA 63ROV-14
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:25 16:45:39 16:46:28 16:50:20 16:50:39 16:52:28 16:53:11 16:55:48 16:55:31 16:55:48 16:55:48 16:55:49 17:06:50 17:08:50 17:09:58 17:09:58 17:11:26 17:11:26 17:11:29 17:15:30 17:18:11 17:21:42 17:21:	5°6.104'S 11°41.061'W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD of 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. S*6.118'S 11°41.102W 1491m Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move around flat sedimented area, top of escarpment reached move north now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On investigated a vertical structure, more massive to the left, more structured to the right HD Off Fild LOW ilke a sediment debris flow (HD on for short time) HD On narrowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shore!	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:28 16:55:04 16:46:28 16:55:03 16:55:03 16:55:02 16:55:02 16:55:03 17:06:50 17:06:50 17:06:50 17:10:26 17:11:26 17:11:26 17:11:26 17:11:27 17:13:32 17:15:30 17:18:11 17:22:43 17:22:	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102′W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move orth now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On narowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shovel sample is dipping at shallow angle HD off almost reached the top at 1497 m, looking for final sample	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37 ATA 63ROV-14
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:33 16:44:15 16:45:39 16:46:10 16:46:28 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 16:50:42 17:06:50 17:06:50 17:11:45 17:10:26 17:11:27 17:11:27 17:14:29 17:14:29 17:14:29 17:14:29 17:24:35 17:24:48 17:25:56 17:24:56 17:25:56 17:24:56 17:25 17:25:56 17:25:56 17:25:56	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside comer high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals.Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102′W 1491m Sample with intense Mn crusting. HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move around flat sedimented area, top of escarpment reached move north now Wry to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On investigated a vertical structure, more massive to the left, more structured to the right HD Off Stores in sonar to the west reached the wall, moving up HD On narrowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD Off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shovel sample is pervasively sheared material HD On sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shovel sample is pervasively sheared material HD On	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37 ATA 63ROV-14 HDTV ATA-63ROV_38
16:34:02 16:38:19 16:39:12 16:39:58 16:40:50 16:42:18 16:43:25 16:43:33 16:44:15 16:45:28 16:45:39 16:46:10 16:46:28 16:50:42 17:00:50 17:00:50 17:00:50 17:11:45 17:11:42 17:11:42 17:11:42 17:11:42 17:11:42 17:21:58 17:22:27 17:24:48 17:22:27 17:24:25 17:24	5°6.104°S 11°41.061′W. 1521m. Placed on top of box1. This location here is about 100 m to the north of the planned waypoint 3. The terrain is still very steep. Plan: Continue straight to the west to reach top of inside corner high structure. HD on HD of Climbing to 1510m Facing 270. Moving along surface. Changing position facing 210. Steep rocky black surfaces. HD on Abundant corals. Looking at SW striking flank. Blocky rocky scree. HD off 1493m It is getting more shallow and the rock character has changed. The black rocky scree is sedimented and abundant deep sea corals. SHARKI HD movie. HD Off Reached plateau at 1489 m Taking sample. 5°6.118°S 11°41.102′W 1491m Sample with intense Mn crusting. HD on, nice sampling shot! HD off Fist sized, knobbly sample placed in big sampling compartment. Apparently the other samples have move orth now try to reach the cliff face again, searching for a less sedimented area steep slope down in front, turn west to search for cliff wall appears in sonar to the west reached the wall, moving up HD On narowly spaced exhumation (tectonized) streeks strongly tectonized area, trying to collect sample HD off sampling: 5°6.093 S, 11°41.125 W, 1529 m, small triangular sample placed in drawer in box 1, next to shovel sample is dipping at shallow angle HD off almost reached the top at 1497 m, looking for final sample	HDTV ATA-63ROV_33 HDTV ATA-63ROV_34 HDTV ATA-63ROV_35 ATA-63ROV-13 HDTV ATA-63ROV_36 HDTV ATA-63ROV_37 ATA 63ROV-14

17:30:33 sample placed at the left corner of the porch 17:32:39 ROV is leaving the bottom, (almost) on time! **Cruise Number** Atalante Leg 2 Station Number 67ROV #21 **Dive Number** Location Red Lion 4°48.661S 12°22.606 Coordinates Water Depth 2995 Atalante Vessel

Actions Observation Metadata Timecode allowed allowed default **Begin Station** 9:20:00 ROV in Water 9:30:00 Coordinates wrong in plan, need to move ship 1 mile N 9:51:41 Fahrtleiter not very happy with himself 11:40:37 2966m depth approaching target 11:42:31 bottom contact for ROV 11:47:08 4°47.821/12°22.641 at depth of 3048 m 11:47:43 hackly to pillow flow transition here 11:48:22 Posidonia tells us that ROV direct west of smoker 11:50:10 Proceeding towards east. Aim: locating Red Lion 11:54:30 FOUND smoker! Shrimp Farm. NO shrimp. Apparently no hydrothermal activity. 11:55:06 HD on, Shrimp farm 11:55:47 4°47.822'S 12°22.602'W 3040m 11:59:55 Proceeding towards Tannenbaum smoker 12:00:17 Pillows are intensely covered by hydrothermal sediment HDTV ATA-67ROV 1 Tannnenbaum localted, Mephisto visible in the distance. Tannenbaum still actively discharging black fluids from its top. Vigorous. No shrimp. No apparent biological colonization. Ca. 5m high including 12:01:41 foot hill of sulfide talus. 12:02:53 HDTV Off 12:02:54 HDTV On Tannenbaum 12:04:44 HDTV Off HDTV ATA-67ROV_2 Mephisto located.Hydrothermal discharge at top, three small orifices. Discharge appears reduced compared to last years observations. Also the colonization by shrip is substantially reduced. Only 12:05:43 some white, shrimp patches on the to region. 12:05:50 HD On 12:07:42 HD Off HDTV ATA-67ROV_3 12:07:54 HD ON 12:09:21 HD Off IDTV ATA-67ROV_4 12:10:05 preparing for video mapping 12:12:25 start video mapping 12:14:00 HD On HDTV ATA-67ROV 6 12.14.10 HD Off 12:15:21 HDTV crashed, start all over again 12:17:06 start video mapping again 12:26:39 HDTV circle at foot of structure completed, starting a similar round towards the top of the structure 12:33:42 video mapping finished 12:33:56 moving west to smoker structure that was visible in the back 12:37:19 distance between Mephisto and Tannenbaum measured to be 8 m 12:37:50 HD On 12:38:20 HD on at Sugar Head 12:39:40 shrimps almost gone from Sugar Head, moreover from the entire Red Lion field HDTV ATA-67ROV 7 12:39:59 HD Off 12:42:29 back at Mephisto, searching for landing spot 12:44:50 HD On 12:48:51 landing on top of structure HDTV ATA-67ROV 8 12:48:59 HD Off 12:50:51 start sampling for shrimp with slurp gun 12:55:44 HD On 12:55:59 HD Off 12:57:52 left the ground ... 12:59:23 Back at Mephisto 13:07:10 Still trying to slup shrimp while flying Difficulty is to find a suitable spot for landing and fixing the ROV. Slurping while flying is apparently 13:11:41 not an option. 13:13:59 ROV apparently fixed in the same position than previously, just before slup sampling initiated Slurping going on, apparently 1 or 2 shrimp caught + one carb! Sitting in Slup container 1. Caroussel 13:15:27 turned to position 2. ATA-67ROV-1 13:19:37 One shrimp is caught in the sample shamber. 13:20:40 Trying to obtain samples while flying but there is apparently a lot of turbulence making flying difficult. Trying to suck shrim one by one... But there does not seem to be enough strength in the slurping. However, at least 2 shrimp have been caught. Sample in slurp container 2. Slurp gun container ATA-67ROV-2

13:21:28 shifted to position 3.

13:24:08 Slurp gun broken. T handle ripped off.

13:28:54 ROV pilot shift change.

13:32:14 next operation: Get fluid sample with Ti major.

13:33:17 HD on. Nice picture

13:34:10 HD off	HDTV ATA-67ROV_10
13:37:10 oil bubbles visible in slurp gun image	
13:39:06 slowly approaching top smokers	
13:39:15 HD On	
13:39:45 HD off nice picture of shimmering beehive	HDTV ATA-67ROV_11
13:41:32 New orifice open due to sudden beehive collapse.	
13:45:13 Plan: Fill Ti major bottles	
13:47:18 Ti major number D2 in Orion.	
13:49:42 HD on	
13:50:22 Placing Ti major nozzle in new orifice is difficult	HDTV ATA-67ROV_12
13:54:30 Ti major nozzle upright in orifice	
13:56:44 HD off	
14:01:05 Ti major release is difficult	
Technical note: ROV is loosing oil. Projected time left for diving: 3h 20 min. Priorities: Filling KIPS and	ł
14:05:56 locating oceanographic tools.	
14:07:54 Still working on releasing Ti major	
14:14:43 this Ti major bottle does not seem to be able to be released	
14:15:30 Rigmaster comes to the rescue	
14:26:46 Ti major now held by Rigmaster, will be released with the Orion arm	
14:29:54 Ti major released, D2 sampled	ATA 67ROV-3
14:34:11 compensator pressure is at 50%	
14:36:20 placing Ti major in back part of the sample box	
14:39:36 HD on	
14:40:12 HD off	HDTV ATA-67ROV_13
14:44:42 sampling smaller chimney near to the big hole, believed to be more vigorously emanating	
14:46:31 measured T max is 340°C, 365°C	
14:48:17 pump on, filling bottle C9, clear fluid at exhaust	ATA 67 ROV-4
14:49:27 HD on	
14:51:46 pump off, then pump on	HDTV ATA-67ROV_14
14:51:51 filling bottle C8, T stable at 363°C	ATA 67 ROV-5
14:52:23 HD off	
14:54:29 pump off	
14:54:39 pump on, filling bottle C7	ATA 67 ROV-6
14:58:45 pump off	
14:58:58 pump on, filling bottle B6	ATA 67 ROV-7
15:03:14 pump off and on again, filling bottle B5, clear fluid coming out of exhaust	ATA 67 ROV-8
15:05:43 pump re-started for bottle B5	
15:07:37 pump off, KIPS sampling finished	
15:15:55 filling He tube at large orifice where beehive structure "collapsed" before	
15:17:12 He tube filled	ATA 67 ROV-9
15:19:13 compensator pressure is at 30% ! Coming up	
15:19:35 ROV off bottom	

Cruise Number Atalante Leg 2 68ROV Station Number #22 **Dive Number** NW of Comfortless Cove area Location 4°48.152'S 12°22.381'W Coordinates Water Depth 2995 Atalante Vessel Observation Actions Metadata allowed allowed Timecode default Begin Station 17:17:15 U17r.U17r ROV in water. Starting dive to recover oceanographic tool. 17:20:57 U17r.U17r No Posidonia??? 17:26:00 U17r.U17r Posidonia Si, oui, JA. 17:26:21 U17r.U17r 350m 18:32:27 U18r.U18r bottom recognized with ROV sonar 18:33:16 U18r.U18r bottom visible, depth 3002 m, position 4°48.090'S and 12°22.384'W 18:36:38 U18r.U18r ROV over pillow lavas with plenty of sediment filling in between, searching for mooring 18:39:44 U18r.U18r ROV flies 270 18:40:12 U18r.U18r jumbled flow with no sediment, i.e. Is younger 18:42:58 U18r.U18r course now 295 18:43:32 U18r.U18r now at predicted mooring location 18:44:09 U18r.U18r heading bit north, heavily jumbled flow, hummocky terrane 18:46:17 U18r.U18r 4°48.098'S and 12°22.451'W 18:47:53 U18r.U18r now checking terrane in south, heavily jumbled, hummocky terrane, bit sediment 18:50:03 U18r.U18r proceeding south 18:50:35 U18r.U18r 4°48.136 and 12°22.432 entering pillow terrane, pillows are above jumbled flow! 18:52:19 U18r.U18r heading east, jumbled terrane with sediment 18:52:55 U18r.U18r now pillows with seds with initial transitions to tubular flow 18:56:35 U18r.U18r heading north 18:57:40 U18r.U18r heading west 12°22.405W and 4 48.110'S 18:58:35 U18r.U18r jumbled flow no sed 12°22.458'W and 4°48.119'S marks contact of jumbled flow against pillow, pillow appears younger, 19:02:23 U19r.U19r however, pillowed flows has more sediment... 19:06:38 U19r.U19r 12°22.470'W 4°48.132'S jumbled flow 19:10:46 U19r.U19r continue to head east 19:13:22 U19r.U19r 12°22.427 and 4°48.098'S, contact jumbled (so far) into pillow 19:15:41 U19r.U19r pillows with abundant collapse structures 19:18:09 U19r.U19r 12°22.405 and 4°48.104'S, turning south 19:19:53 U19r.U19r heading west 4°48.109 and 12°22.403 pillows with sediment 19:22:11 U19r.U19r all jumbled now with no sediment perhaps lobate at tip transitional to pillow, only lobate can collapse to form jumbled, thus jumbled against pillows, both have same age 19:26:38 U19r.U19r continue west in jumbled flows 19:30:31 U19r.U19r 12°22.472'W and 4°48.1109 S, heading south 19:30:54 U19r.U19r now into pillows then into jumbled 19:32:59 U19r.U19r 12°22.467'W and 48.116°S heading E 19:33:49 U19r.U19r still jumbled 19:36:29 U19r.U19r heading north 12.22.433'W and 4°48.097'S 19:38:12 U19r.U19r heading east 12.22.432 and 4.48.096'S 19:39:04 U19r.U19r contact to Pillow flow marked by lobate structures 19:39:51 U19r.U19r big pillows 19:40:59 U19r.U19r looking around. Pillows everywhere 19:42:11 U19r.U19r 22.412W 48.087S Pillows 19:43:35 U19r.U19r Turned back W. Crossing over into jumbled flow. 19:48:13 U19r.U19r jumbled flow heading W 19:53:57 U19r.U19r No Posidonia readings. Turning back east. 19:54:44 U19r.U19r still jumbled flow Crossing into lobate flow overlying jumbled flow to the east. However, as usual this lobate to pillowed flow appears to be more strongly covered by sediment than the jumbled flow. Still it is lying on top of 19.56.51 U19r U19r it... 19:59:19 U19r.U19r moving upwards, 3004m This is a pillow mound. 20:03:23 U20r.U20r Turning around. Pillows everywhere. 3004m 20:04:54 U20r.U20r 22.417'W 48.068'S Pillows 20:10:15 U20r.U20r Heading West 20:10:36 U20r.U20r Back in jumbled flow 20:10:47 U20r.U20r Rather: contact zone between lobate flow structures and jumbled flow. 20:11:30 U20r.U20r Heading further south over jumbled flow 20:12:28 U20r.U20r 22.439'W 48.094'S jumbeld flow. 3006 m 20:14:20 U20r.U20r Heading west accoss jumbled flow 20:15:42 U20r.U20r jumbeld flow. 3008m. Still heading West. 20:18:06 U20r.U20r heading north 20:19:14 U20r.U20r jumbled flow. 3010m 20:21:30 U20r.U20r turning around. Jumbled flow everywhere. 20:23:25 U20r.U20r Jumbled flow. Steeply hummocky terrain. 20:24:09 U20r.U20r Heading south. 20:26:02 U20r.U20r Heading east. Jumbled flow. 20:26:27 U20r.U20r Contact to lobate flow in the east appears. Clearly this is overlying the jumbled flow! 20:27:28 U20r.U20r Turning around. To the south: Jumbled flow. 20:28:21 U20r.U20r 22.451'W 48.072'S: Contact zone. 20:29:22 U20r.U20r Lobate to pillowed flow. 20:30:01 U20r.U20r Pillows. 3008m 22.421'W 48.067'S Pillow flow. Apparently the pillow flows are enclosing the jumbled flow to the 20:31:08 U20r.U20r north.

- 20:36:19 U20r.U20r Heading south. 20:36:47 U20r.U20r 22.417'W 48.084'S Pillows. 3005m, 20:38:46 U20r.U20r Turning around. To the west there is the transition to lobate flow. 20:39:53 U20r.U20r Heading south across pillows. 20:41:19 U20r.U20r 22.400'W 48.120'S Pillows. 3002m

- 20:41:19 U20r.U20r 22:40 W 40:120 3 Finows. 300211 20:44:56 U20r.U20r pillows 20:45:26 U20r.U20r Heading W crossing into jumbeld flow 20:45:43 U20r.U20r jumbeld flow. 3005m. 20:48:44 U20r.U20r 22:436'W 48:123'S jumbled flow. 3005 m
- 20:49:36 U20r.U20r heading west
- 20:54:36 020r. U20r Treading west 20:51:20 U20r U20r Crossing over contact: Lobate flow overlying jumbled flow. Lobate is about 1m thick at most. 20:54:06 U20r.U20r 22:480'W 48.127'S 20:55:31 U20r.U20r Heading south. 20:58:38 U20r.U20r heading north 22:472 and 4° 48.138S 20:59:14 U20r.U20r continue in jumbled flow

- 21:02:09 U21r.U21r 12°22.447W 04°48.124S heading east
- 21:02:58 U21r.U21r continue in jumbled flow, turning to 110°

- 21:02:05 021r.021r in pillows 22:408 and 48:116 21:09:15 U21r.U21r in pillows 22:408 and 48:116 21:09:15 U21r.U21r 22:393 and 48:113 turning W 21:10:33 U21r.U21r Peading west in pillows 21:14:34 U21r.U21r 22:430 and 48:115 in jumbled flow continue west 21:19:57 U21r.U21r 22:450 and 48:116 break of search in jumbled flow
- 21:31:30 U21r.U21r 22:400 and 40. To break of search in Jumbled flow 21:31:00 U21r.U21r abandoned attempt to get a nice piece of jumbled flow 21:34:07 U21r.U21r abandoned attempt to get a nice piece of jumbled flow 21:34:22 U21r.U21r ready for take off 21:36:55 U21r.U21r we have a lift off

Cruise Number Station Number **Dive Number** Location Coordinates Water Depth Vessel

Atalante Leg 2 70ROV #23 5°S Fracture Zone 4°56.420'S / 11°37.044 4765m Atalante

Metadata Observation allowed

Timecode default

Begin Station

- 10.45.00 ROV in Water
- 13:04:39 at bottom, depth 4864 m!!, coordinates 11°36.987W 4°56.473S
- 13:08:19 test have started, working with Orion arm
- 13:16:38 one horizontal thruster seems dead as of 4300 m, possible water ingression
- video looks at our payload: painted styrofoam cups. The question is: will they be more compressed at 13:17:12 this depth than before (at 3000 m)
- 13:25:12 test start
- 13:59:21 tests ongoing
- 14:08:20 sediment on porch, drawer does not open, will try to wipe off with knife
- feedback problem with Orion, extra 180 bars starts causing more problems than hoped, thus problems 14:09:22 getting knife out with Orion
- 14:17:24 porch cleared with knife, but drawer still does not open
- 14:19:52 drawer opens! Orion has still a feedback problem, operation thus difficult
- 14:20:59 knife put back, this time into drawer
- 14:33:08 ongoing tests of unknown nature 14:42:33 a rock in the sediment
- 15:06:22 attempt to deploy a marker; can be difficult, since the orion has problems
- 15:11:43 Orion has still problems; delay in operation; moves very slowly and not accurate
- 15:13:06 stop the attempt to work with Orion
- 15:16:28 stop to work with Orion
- 15:44:40 technical tests completed
- 15:44:48 HD on
- 15:47:02 Heading N
- 15:48:34 HD off
- 15:50:01 Sonar: big boulders ahead at about 30 m distance
- 15:50:38 passing over sediment with occational rocks
- 15:51:53 rocky blocks and boulders partly covered by sediment. 4840m
- 15:54:04 Proceeding to the N
- 15:55:11 sediment
- 15:55:38 Sonar: blocks in about 20 m distance
- 15:56:22 reached foot of rocks boulder rising about 10 m from 4820m.
- 15:58:59 Sonar: Boulder ahead.
- 16:00:02 Heading N. Over sediment.
- 16:00:50 4800. Sediment.
- 16:02:20 ROV speed: ca. 1 km/h.
- 16:03:12 4780m Sediment. Heading N.
- 16:08:47 Located plastic water bottle on the seafloor sediment. 4772m
- 16:10:24 Heading N. Reaching sedimented boulder.
- Climbing up steep E-W striking cliff face. Looks like in-situ outcrop. Plan: Take sample with Rigmaster 16:11:13 (since Orion is out of action...)
- 16:11:41 HD On
- 16:13:55 HD has been on for a while in order to document the outcrop. 4760m. 4°56.347'S 11°37.055'W We may spend some time here since getting a sample from this deep outcrop would be important for 16:18:49 comparison with the previous samples from shalower depths.

Morphology of the outcrop surface looks distinctive from the previous dives. Knobbly texture suggests a

- 16:21:44 serpentinic lithology. However, maybe this is gabbro with a different type of weathering/alteration. 16:24:37 Orion deployment. At least a try. However, movements are hardly controlable...
- 16:31:01 Orion is catastrophic, parked and de-activated
- 16:33:35 Rigmaster not good at this place,
- 16:35:34 Rock looks massive but heavily jointed, probably Serpentinite
- 16:36:04 HD On
- 16:37:21 HD Off
- 16:41:12 Attempting landing
- 16:51:55 Atempting sampling 4°56.336'S 11°37.057'W 4753m
- Sample taken, hopefully it will go on porch. Crumbled and just fell on porch, front right position on the 16.53.37 porch, in front of Orion
- 17:02:28 crumbly piece of rock, totally different from inside corner high, could be serpentinite
- 17:13:22 HD on, rocks look more and more like serpentinite
- 17:14:21 HD off
- 17:16:01 climbing up heading N, rocky boulders and sediments. 4710m
- 17:17:21 approaching steep cliff
- 17:17:54 HD On
- 17:18:01 60° dipping, N-S striking fractures.
- 17:19:01 HD off, has been on for a while.
- 17:20:02 4690m

17:21:01 HD on. Investigating vertical structure. May be just a feature due to particular sediment cover 17:22:27 HD off. The strucure is due to sediment dripping down a rock face.

Climbing up passing blocky boulders and sediment covered slopes. Rock still look similar to the lithology 17:26:49 sampled below

17:27:46 HD on.

HDTV ATA-70ROV_1

Actions

allowed

HDTV ATA-70ROV_2

HDTV ATA-70ROV_3

ATA-70ROV-1

HDTV ATA-70ROV_5

HDTV ATA-70ROV_4

HDTV ATA-70ROV_6

17:27:59 Blocks present may be different types of lithologies. Investigating some whitish looking blocks. HDTV ATA-70ROV_7 17:29:09 HD off. White block may be solidified sediment toumbled down from above 17:29:39 The knobbly rock type appears to be mixed with more blocky to platy rock types. 17:30:58 Retrying Orion with one function disabled (6 of 7 working functions) 17:32:08 HD on 17:32:28 some blocks are banded HDTV ATA-70ROV_8 17:32:50 HD off. 17:37:22 Looking for parking spot in order to take a sample 17:41:40 Trying to work with Orion arm. 17:44:22 Difficult. Looking for other spot. 17:46:14 Reached steep nose-like rock cliff. Climbing up over sedimented boulder field. 4652 m. NO biology. 17:48:46 Found a new place for sampling operations. 17:51:20 "What a guy" Sample in Orion claw. Very elegantly done. 17:53:56 4°56.258'S 11°37.055'W 4654m ATA-70ROV-2 17:56:26 Placing dislodged Timajor bottle in big sampling box. So it is savely stowed now. 18:00:29 Based on morphology of the rocks there appear to be more blocky lithologies and more knobbly rocks. HD on. Strange breccia-like rock with white matrix. Rounded clasts (got rounded when rolling down this 18:01:32 slope). Internal layering visible. 18:02:36 HD off HDTV ATA-70ROV_9 18:03:14 climbing up. 4630m 18:04:10 Scree slope of rocky blocks. Little sediment cover. "Felsenmeer" 18:06:23 Probably formed as an avalanche deposit. This is a tectonically active zone! 18:06:58 Parking in order to take samples. 18:07:43 HD on. Pictures of "Felsenmeer" HDTV ATA-70ROV_10 18:08:14 HD off whitish rock sample (strongly rounded) breaks apart under Orion claw. Foraminiferous Ooze? Placed in 18:11:10 Box 1. 4°56.231'S 11°37.073'W 4617m ATA-70ROV-3 ATA-70ROV-4 18:15:26 Placed big platy block of Gabbro in the big sample box. Outside margin. 18:18:27 sediment and some boulders. 4605m Left "Felsenmeer" 18:20:25 Passing white rounded blocks and black platy blocks. 18:20:52 35° slope, strike 270 (E-W). Turning to get images of the slope that we have been traveling up. Apparently we have moved up into differnt lithologies now. The earler rock types below (serpentinite) are no more present up here. Rather this looks like avalanche and scree deposits fed by gabbroic 18:22:34 lithologies further up slope. 18:23:56 "Hangschutt" deposits. 18:24:15 Passing possible in-situ cliff of gabbro? 18:26:37 Scree slope with sediment locally with apparently young, unsedimented blocky avalanche patches. 18:27:52 Climbing N. 4557m, sedimented scree slope. 18:28:41 occational white block, rounded together with dark platy blocks 18:32:29 Step in the topo., looks like massive gabbro makes a small cliff 18:32:53 HD On 18:33:50 HD Off HDTV ATA-70ROV_11 18:42:12 4°56.145'S 11° 37.088'W 4515m ATA-70ROV 5 18:51:09 In situ, we will take a sample 18:51:35 HD On HDTV ATA-70ROV_12 18:52:59 HD Off 18:55:24 Landed, full of sed. Clouds 18:58:35 4°56.124'S 11°37.111'W 4468m. Sample taken and put on top of 1a ATA-70ROV 6 19:02:06 Large wall in front of us. 19:04:09 Going sidewaysw to look at slope 19:10:27 Think we are still in gabbros 19:12:57 Big gabbro block 19:14:20 HD On 19:14:32 Heavily tectonised HDTV ATA-70ROV_13 19:15:11 Banded, bands dipping ca. 45° to E, start of cliff 4350m 19:16:14 HD Off 19:16:21 Going back down for sample, cliff is >20m high and vertical 19:19:42 HD On 19:20:52 Lava tube cut so that cooling joints visible, although Günter thinks it is a shear zone HDTV ATA-70ROV 14 19:21:09 HD Off 19:23:41 HD On 19:24:10 HD Off HDTV ATA-70ROV 15 19:27:17 Going to land, no sampling possible in hover 19:28:08 HD On 19:29:36 HD Off HDTV ATA-70ROV_16 19:32:29 No chance to take sample, going up 19:34:37 HD On 19:35:21 HD OffWe see small intrusions with hyaloclastites around HDTV ATA-70ROV 17 19:37:02 HD On 19:38:50 OK; Günter may be correct, several zones with lineations dipping 45° to E. HDTV ATA-70ROV_18 19:39:30 HD Off 19:42:08 Going in again ATA-70ROV_7 19:44:17 Sample grabbed 4 56.046'S11°37.131 4343m in Box 2 19:45:06 Hdon HDTV ATA-70ROV 19 19:45:15 HD Off 19:46:52 Cliff strikes E-W, difficult to determine orientation of other structures 19:47:27 Schichten 50° nach SE einfallen, lineation is 20 ° on this 19:50:42 Still climbing up the cliff, 4310m Lithology unchanged. 19:52:32 Steep vertical cliff face. Some biology, occational sediment dusting.

19:54:00 Reaching strongly sedimented portion of slope. 4295m Still rising steepl but with thich sediment cover.

19:54:53 4292m

19:56:00 Climbing steep cliff. 4289m

19:59:27 HD On 20:00:18 Going to structure dipping to ESE	HDTV ATA-70ROV_20
20:01:48 HD Off 20:02:46 Wall is vertical, the marks on wall dip to E and S, perhaps two ages of structures	
20:03:20 HD On	
20:04:20 HD Off 20:06:46 Going in for sample	HDTV ATA-70ROV_21
20:09:31 HD On	
20:09:46 HD Off 20:12:40 Sample grabbed 4 56.028 11 37.114 4252m taken on the fly, put in box 3	HDTV ATA-70ROV_22 ATA-70ROV_8
20:13:00 HD On	
20:14:49 HD Off 20:16:47 Break in slope, 4242 m depth	HDTV ATA-70ROV_23
20:20:42 Strike E-W, dip to S with 45°, clearly visible on sedimented slope	
20:22:03 Taking a sample, easy to get. But didn't work 20:26:24 Joints dipping to W with 80°	
20:29:24 4 56.006 S 11°37.118 4218m sampling atempt	
20:31:20 HD On 20:32:12 HD Off	HDTV ATA-70ROV 24
20:32:18 Seespinne (8 legs)	
20:34:11 Steep slope down to S	
20:37:11 Looks massive, lots of joints, not apparently fully deformed 20:38:45 4 55.990 11 37.124 4175m, sample in box 2	ATA-70ROV_9
20:38:58 HD On	
20:39:14 HD Off 20:40:58 HD On	HDTV ATA-7ßROV_25
20:41:56 HD Off	HDTV ATA-70ROV_26
20:42:04 HD On 20:42:14 Hyaloclastites in background E-W strike, 80° S dip	HDTV ATA-70ROV_27
20:42:51 HD Off	
20:43:35 HD On	
20:48:17 HD Off 20:48:38 Steep wall again	HDTV ATA-70ROV_28
20:49:20 HD On	
20:49:54 HD Off 20:51:27 Last sampling attempt	HDTV ATA-70ROV_29
20:51:35 HD On	
20:52:41 HD Off Even Jürgen and Günter think that this is volcanic!! 20:53:29 Completely steep wall, different rock type	HDTV ATA-70ROV_30
20:54:08 HD ON	
20:55:06 HD Off 20:56:57 HD On	HDTV ATA-70ROV_31
20:58:44 HD Off	HDTV ATA-70ROV_32
20:59:26 sonar shows a flat surface some 300 m above 21:00:02 wall: strike 25°, dip SW 30° ???	
21:06:10 HD on for landscape pictures	
21:06:45 HD off 21:07:43 planning to collect a sample	HDTV ATA-70ROV_33
21:13:58 collect a sample at: 4°55.983 S, 11°37.113 W, 4063m, placed in large box in the bac	k ATA 70ROV-10
21:21:31 HD on - fish 21:22:09 HD off	HDTV ATA-70ROV_34
21:23:59 more sedimented somwhat flat area	
21:27:07 crossing a large flat surface, sediment covered, some blocks, looked more like gabbi 21:30:05 depth is 4000m in contrast to existing map that shows 3900m	ro
21:30:51 again some rocks	
21:33:58 Strike E-W, dip to S with 25 to 30° 21:37:21 collect a sample at: 4°55.895 S, 11°37.148 W, 3996m, angular+platy, placed in box 3	2 ATA 70ROV-11
21:43:34 steepness of the slope is increasing again which fits the topographic map	
21:45:26 HD on, rocks look more volcanic again 21:46:42 HD off	HDTV ATA-70ROV 35
21:54:34 slope shows lots of sediment and debris flows/talus, no real outcrop for sampling	
21:58:58 HD on, looking for spot to sample 22:00:15 collecting sample at: 4°55.816 S, 11°37.166 W, 3897m, placed in the back box, fist s	ATA 70ROV-12
22:03:04 HD off	HDTV ATA-70ROV_36
22:07:54 changing NNW, topographic map shows a high 22:09:56 HD on	
22:10:34 HD off	HDTV ATA-70ROV_37
22:11:55 HD on	HDTV ATA-70ROV 38
22:12:23 HD off 22:13:58 HD on	
22:16:55 HD off	HDTV ATA-70ROV_39
22:17:13 collecting a small sample of presumed serpentinite breccia, placed in the back box 22:26:17 HD on	ATA 70ROV-13
22:26:58 HD off	HDTV ATA-70ROV_40
22:27:28 problems with thruster 22:28:53 4° 55,765 S, 11° 37.201 W, 3825m (noted a few moments later)	
22:29:45 collecting another sample at 4°55.757 S, 11°37.212 W, 3815m, box 2, front part	ATA 70ROV-14
22:32:08 ROV leaving the bottom 22:33:42 HD on	
22:34:16 HD off	HDTV ATA-70ROV_41