R/V Shumpu Maru Cruise SU9506
1 Cruise Narrative
1.1 Highlights
Expedition Designation
 Shumpu Maru Cruise SU9506
Chief Scientists
 Leg 2:Tomoaki HINATA, Kobe Marine Observatory(KMO)
Ship
 R/V Shumpu Maru
Ports of Call
 Leg 2:Komatsushima to Kochi
Cruise Dates

Leg 2:June 30 to July 7, 1995

1.2 Cruise Summary

The cruise track and station locations of leg 2 are shown in Figure 1. The ship departed Komatsushima on June 30, 1995, and made 6 CTD/rosette stations of a section PR17. 4 XBT stations were made between CTD/rosette stations. To first CTD/rosette station the ship reached at 1728 UTC on July 3, from last station departed at 2049 UTC on July 4.

The CTD is EG&G NBIS Mark III B(6500 db type, no oxygen sensor). Water sampleswere collected from 1.7 liter Niskin bottles mounted on the General Oceanics Rosette multisampler. However, surface water samples were collected by a bucket.

1.3 List of Principal Investigators

The principal investigators for all the parameters measured on the cruise are listed in Table 1.

Table 1: Principal Investigators for All Measurements

Name	Responsibility	Affiliation
Kouji KADONO	Oxygen, Nutrients, PH	KMO
Tatsushi SHIGA	CTD, Salinity	KMO

1.4 List of Cruise Participants

The cruise participants for leg 2 are listed in Table 2.

Table 2: Cruise Participants for leg 2

Name	Responsibility	Affiliation
Tomoaki HINATA	Chief Scientist CTD Hardware	КМО
Kouji KADONO	Oxygen, Nutrients, PH	KMO
Tatsushi SHIGA	Salinity	KMO
Satoshi SUGIMOTO	CTD Software	KMO
Syuji TUBAKI	Oxygen, Nutrients, PH	KMO
Tomoaki NAKAMURA	Oxygen, Nutrients, PH	KMO
Toru SATO	Watch Stander	KMO
Kiyoshi MURAKAMI	Watch Stander	KMO

2 Measurement Techniques and Calibrations

2.1 CTD

The CTD is EG&G NBIS Mark III B(6500 db type, no oxygen sensor). NEC PC9801T with a 8 MByte of memory and 128MB type 3.5" MO unit was used as the primary data collection device, and all CTD data was backed up onto the degital audio tape.

A HP 9000 Series 300 model 330(Hewlett Packard) with a 4 MByte of memory was used as the data monitoring device.

The temperature and pressure sensor were calibrated at the calibration facility of S¥E¥A CO., LTD before the cruise. The results are shown in Table 3. Temperature and pressure calibration values are used to correct CTD data, by polynominal fitting. The polynominal equation are shown in Table 4. We decided that by the minimum AIC procedure.

Notice that the upcast pressure data is corrected by the equation with the observed maximum pressure value, because of the hystersis correction. See reference (1).

Table 3: The temperature and	pressure sensor calibration values
Temperature(Caliblated on De	
Standard Temperature	-
1.0070	1.0000
2.0072	2.0004
3.0075	3.0009
4.0071	4.0006
5.0070	5.0005
6.0058	5.9995
7.0061	6.9998
8.0065	8.0002
9.0068	9.0002
10.0069	10.0002
11.0070	11.0002
12.0067	12.0000
13.0078	13.0010
14.0078	14.0008
17.5074	17.4993
20.0375	20.0295
25.2492	25.2397
30.1643	30.1531
-	ted on December 8, 1994, pre-cruise)
	CTD Pressure
0.0	0.7
98.0	98.2
293.9	294.2
489.9	490.0
979.8	979.7
1959.5	1958.8
2939.3	2937.6
3919.0	3916.3
4898.8	4895.4
5878.5	5875.0
Pressure(decreasing, calibia	ted on December 8, 1994, pre-cruise)
	CTD Pressure

KMO

0.0	1.5
98.0	99.6
293.9	295.9
489.9	492.3
979.8	982.8
1959.5	1962.1
2939.3	2940.6
3919.0	3918.9
4898.8	4897.1
5878.5	5875.0

Table 4: The Calibration equation

Real	:	Correctted	value
Obs	:	Observed v	alue

Real = a * (Obs ^ 4) + b * (Obs ^ 3) + c * (Obs ^ 2) + d * Obs + e

	Temperature	Pressure(increase)	Pressure(decrease)
a =	0.193268E-7	114242E-13	0.169394E-13
b =	135107E-5	0.978989E-10	270993E-9
с =	0.390830E-4	190550E-6	0.164660E-5
d =	0.999648	1.000733	0.997075
e =	0.734023E-2	0.211994	677825

The conductivity sensor were calibrated at sea using data from the analysis of salinity collected at 5 stations. The salinometer is AUTOSAL 8400B(Guildline) for the analyses of salinity of the water samples. The results are shown in Table 5.

We assumed that the bias equal 0 because that was less than 0.001. Standard Sea Water batch of P124 was used to standardize the Autosal. The precision of the salinity determination of the water samples was 0.00014 PSS derived from the standard deviation of the 22 water samples collected from the same bottle.

We find the slope value is less than usual, but we determined this by the samples from the bottom(more than 4000m depth) to the surface, and these calibration constants in Table 5 let the salinity value of CTD fit to that of the samples.

Table 5: The conductivity sensor calibration constants

Bias	Slope
0	0.99868

When calculating salinity, we use the response time 0.032 second of temperature sensor. We determined the time by the method described in reference (2).

The Fast Temperature sensor may have influence on the temperature data.

All the reported conductivity(salinity) is calibrated for the cell material deformations. See reference (1).

The temperature of "SU9506.SEA" and "SU????_?.CTD" files is described with the international temperature scale of 1990, ITS-90.

2.2 Oxygen Measurements

The determination of dissolved oxygen was done by the modified version of the Winkler method described in reference (3).

No estimation of accuracy and precision and reagent blank has been done. The concentration in umol/kg were converted from the concentration in umol/l using the density calculated from the temperature and salinity when rosette sampling.

2.3 Nutrients Analyses

The nutrients analyses were done by the Technicon Auto Analyzer II described in reference (3). No estimation of accuracy and precision has been done.

The concentration in umol/kg were converted from the concentration in umol/l using the density calculated from assuming the room temperature 20BC and salinity 34.5 psu.

2.4 PH measurements

The PH measurements were done by the PH meter(Denki Kagaku keiki co.,ltd) described in reference (3). No estimation of accuracy and precision has been done.

Notice that the order of measurements is 0.01.

2.5 Notes for the SU9506.SUM, SU9506.SEA and SU????_?.CTD files

The first 2 characters of the file name of *.SUM, *.SEA and *.CTD files are SU for R/V Shumpu maru of Kobe Marine Observatory. These characters are followd by the last two digits of the year and the month for the *.SUM and *.SEA files. For the *.CTD files, the characters SU are followed by the unique station number and the cast number given by the Japan Meteorological Agency.

In "SU9506.SUM", we leave some position column blank(when bucket was used) because not recorded.

In "SU9506.SEA", we leave "sample number (SAMPNO)" column of the surface layer blank, because of using bucket.

All water sample quality flags during this cruise were "3"(or "4", "5", "9"), because the no estimation of accuracy and precision has been made.

2.6 References

- CTD calibration and Processing Methods used by Woods Hole Oceanographic Institution(DRAFT), Robert Millard and Keqi Yang, April 20, 1992.
- (2) CTD Data Kousei no Tebiki, JODC manual guide No.4, Masaki KAWABE and Kiyoshi KAWASAKI, March, 1993.
- (3) Kaiyo Kansoku Shishin (Manual of Oceanographic Observation), Oceanographic Society of Japan, 1970