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ABSTRACT: The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between 9 

Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered 10 

in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and 11 

copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os 12 

isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. 13 

S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the 14 

mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic 15 

plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang 16 

tectonic belt，meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from 17 

collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been 18 

a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the 19 

mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base 20 

of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of 21 

the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, 22 

resulting in mineralization. 23 
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1. Introduction 47 

 48 

The Yangla copper deposit is located in the Yangla area of the Henduan Mountains in Deqin County, 49 

Yunnan Province, southern Tibet. A team from the Yunnan Geology and Exploration Bureau discovered 50 

the deposit in 1965 in the course of mapping and exploring the area, mining of the Yangla copper deposit 51 

started in November 2007. The deposit was investigated by the third Regional Geological Survey Team of 52 

Sichuan Province, the third Team of Yunnan Geology and Exploration Bureau, the China University of 53 

Geosciences, the Yichang Institute of Geology and Mineral Resources, and the Chengdu Institute of 54 

Geology and Mineral Resources, among others (Qu et al., 2004). The deposit has copper reserves of 1.2 Mt 55 

(Yang, 2009), and given its location in the Jinshajiang tectonic zone (Pan et al., 2001), this region has great 56 

potential for further exploration. Previous studies have reported the structural characteristics (Lin and 57 

Wang, 2004), geochemical characteristics of the ores and the rocks in the Yangla copper deposit (Wei et al., 58 

1997; Pan et al., 2000), however, the ore genesis of the deposit is still debated. Wei et al. (1999) suggested 59 

that the deposit is a VMS type, a conclusion later supported by Pan et al. (2003). Based on geochemical 60 

evidence of ore-bearing skarns, Lu et al. (1999) and Wei et al. (2000) concluded that the deposit is a 61 

skarn-type deposit related to the Yangla granodiorite. Lin et al. (2004), Hu et al. (2008), Li et al. (2008) and 62 

Liu et al. (2009) suggested that the deposit is structurally controlled.  63 

Recent mining exposures at the Yangla copper deposit provided an ideal opportunity for detail 64 

underground investigation and systematic sampling. In this paper, we present a comparison of the REE and 65 

trace element compositions of the ores with those of the Yangla granodiorite, S, Pb isotopic composition, 66 

and molybdenite Re–Os isotopic dating of the Yangla copper deposit. We discuss the origin of ore-forming 67 

materials and the ore genesis of the Yangla copper deposit. The results contribute to our understanding of 68 

the genesis of the Yangla copper deposit and will guide further exploration in the region. 69 
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 70 

2.  Economic geology of the Yangla copper deposit 71 

 72 

The Jinshajiang–Lancangjiang–Nujiang region in southwestern China is located in the eastern part of 73 

the Tethyan–Himalayan tectonic belt, and also in the tectonic junction between Gondwanaland and Eurasia 74 

(Hou et al., 2003). Several of the Paleozoic sutures in the region provide a record of the history of the 75 

Paleo-Tethys Ocean, which consists of four paleooceanic basins: the Ganzi–Litang, Jinshajiang, 76 

Lancangjiang and Changning–Menglian oceans from east to west (Jian et al., 2009). The birth and final 77 

closure of the Paleo-Tethys Ocean are associated with the breakup and assembly of Gondwanaland (Xiao et 78 

al., 2008). It has been commonly accepted that the Changning-Menglian Suture Zone is the main boundary 79 

that separates the Yangtze Block from Gondwanaland (Jian et al., 2009), and that the Changdu-Simao and 80 

Zhongza micro-continental Blocks were marginal terranes of the Yangtze Block (Wang et al., 2000; 81 

Metcalfe, 2002; Zhu et al., 2011). 82 

The Yangla copper deposit is located in the middle part of the Jinshajiang tectonic belt (Fig. 1). The 83 

Jinshajiang tectonic belt, regionally situated between Zhongza block to the east and Changdu-Simao block 84 

to the west, which developed in the late Paleozoic due to subduction of the Jinshajiang Oceanic block, and 85 

has experienced multiple tectonic processes (e.g., rifting, extension, subduction, and continent–continent 86 

collision) during the latest Permian to latest Middle Triassic. 87 

 88 

2.1. Stratigraphy 89 

 90 

The Jinshajiang tectonic belt has been subjected to intense compression during the geological 91 

evolution of the Jinshajiang–Lancangjiang–Nujiang region; consequently, the rocks are fragmented and 92 
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faults are widely developed. No stratigraphy is preserved: the various rock types occur as fragments (Feng 93 

et al., 1999) that show no common stratigraphy, occurring instead as mélange (Qu et al., 2004). Previous 94 

studies proposed various stratigraphic schemes for the Yangla area (He et al., 1998; Qu et al., 2004; Zhu et 95 

al., 2009). Surface rocks are dominated by the Gajinxueshan Group, which is a suite of sediments, 96 

including quartz schist, biotite plagioclase gneiss, metasandstone, quartzite, marble, slate, volcanoclastics, 97 

and andesite, with ages ranging from the Neoproterozoic to the Carboniferous. The ore deposit at Yangla is 98 

hosted in the Devonian Jiangbian suite (marble interlayered with sericite quartz schist and 99 

amphibole-bearing andesite), Devonian Linong suite (sericite slate, metasandstone, and marble), and Early 100 

Carboniferous Beiwu suite (compact massive basalt, tuff, and interlayered sericite-bearing slate and marble) 101 

(Fig. 1). 102 

 103 

2.2. Structure 104 

 105 

The Yangla copper deposit is located between the N–S- trending Jinshajiang and Yangla faults. These 106 

faults were active beginning in Early Paleozoic, were subducted and subjected to compression during the 107 

Indosinian (Triassic Period), and were reactivated as sinistral strike-slip faults during the Himalayan 108 

Tectonic Period. Second-order faults (dipping to the NW) formed during the Himalayan, with lengths of 109 

several kilometers and widths of tens of meters. The second-order faults intersect each other, with most 110 

being thrust faults or strike-slip faults. (Gan et al., 1998; Zhan et al., 1998). 111 

 112 

2.3. Intrusive Magmatism 113 

 114 

In the Yangla region, a granitic intrusion is exposed in the northern Jiaren granite belt, which trends 115 
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N–S in the western part of the Jinshajiang tectonic zone. Most of the granite occurs as stocks. The main 116 

granitic intrusion is the Linong granodiorite (Fig. 2), which is located in the middle of the Yangla ore 117 

district and is offset by the F4 fault, with 2 km long (N–S) and 1.5 km wide (E–W) at the surface, covering 118 

an area of 2.64 km2. Most of the intrusion is overlain by Quaternary sediment, meaning it has an irregular 119 

distribution at the surface. The wall rock is the Devonian Linong suite and the Jiangbian suite, which both 120 

occur as xenoliths in the Linong granodiorite. The granodiorite can be divided into a marginal facies (40% 121 

of the total surface area) and a center facies (60%), separated by a transition zone. The grainsize of the 122 

granodiorite varies from medium-fine to medium-coarse, and it varies in composition from intermediate at 123 

the center to acid at the margin. The granitic belt intruded the Gajinxueshan Group. Alteration of the wall 124 

rock has produced hornfels and skarn, as well as fine veins of copper mineralization and disseminated 125 

copper deposits. 126 

The granodiorite is off-white in color, hypautomorphic and medium-coarse grained, with both 127 

compact massive and banded structure. The mineral assemblage is plagioclase (40%), K-feldspar (15%), 128 

quartz (25%), hornblende (15%), and biotite (5%), with minor zircon and apatite. The plagioclase is mainly 129 

zoned andesine, and alteration is dominated by sericitization, amphibolization, biotitization, and locally 130 

chloritization and prehnitization. 131 

 132 

2.4. Geological characteristics of the deposit 133 

 134 

The Yangla copper deposit is divided into five ore blocks: Jiangbian, Linong, Lunong, Jiaren, and 135 

Beiwu. The Linong ore block is the largest, and the KT2 and KT5 orebodies of the Linong ore block are the 136 

only parts of the Yangla copper deposit mined today. KT2 and KT5 is bordered by a series of gently 137 

dipping imbricate thrust faults. The orebodies dip 20°–40° to the west, although the dip increases to 50° at 138 
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deeper levels (Fig. 3), and the average grade of copper in the ore is 1.03%. The hanging wall and the 139 

footwall of the orebodies consist of sandstone, marble, sericitic slate, and granodiorite. The alteration 140 

minerals include pyrite, chalcopyrite, galena, sphalerite, magnetite, limonite, and malachite. The most 141 

abundant ore minerals are chalcopyrite, pyrite, bornite, chalcosine, pyrrhotite, galena, sphalerite, and 142 

magnetite. The chalcopyrite, bornite, chalcosine are associated with Pb, Zn, Ag, Au, Bi, Sn, As, and Sb.  143 

Oxidized ore consists of malachite, azurite, tenorite, and limonite, and gangue minerals are diopside, 144 

actinolite, garnet, quartz, calcite, mica, and feldspar. The ore show hypidiomorphic, mist-like texture, 145 

filled-sponge, striped, cracked and porphyroid textures. The ore body includes compact massive structure, 146 

disseminated structure, and fine veiny structure. 147 

 148 

3. Samples and analytical methods 149 

We analyzed samples of ores and the Yangla granodiorite of the Yangla copper deposit. Samples of 150 

copper ore and the granodiorite were collected from the Lunong and Linong ore block in the Yangla copper 151 

deposit. The samples were analyzed for major elements, trace elements, and rare earth elements (REEs) at 152 

the Institute of Geophysics and Geochemistry Exploration, Chinese Academy of Geoscience, Langfang, 153 

China. The major elements, trace elements and REEs were analyzed by ICP–MS, for details of the 154 

analytical procedure, see Zhu et al. (2009). 155 

The sulfur isotopic compositions of 9 sulfide samples were analyzed on a MAT 251E gas mass 156 

spectrometer by using Cu2O to oxidize the sulfides at the Geological Analysis Laboratory under the 157 

Ministry of Nuclear Industry, Beijing, China. The analytical procedure usually yielded an in-run precision 158 

of 0.2‰. The calibrations were performed with regular analyses of internal δ34S standard samples. 159 

    The lead isotopic compositions of 9 sulfide samples were analyzed on a MAT 261 mass spectrometer 160 

using the thermal ionization crosssection analytical technique at the Stable Isotope Laboratory of the 161 
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Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China. The precision of the 162 

208Pb/206Pb measurements (1µg of Pb) is ≤0.005%, and the measured ratios (2σ) of international standard 163 

sample NBS981 are 208Pb/206Pb =2.16736±0.00066, 207Pb/206Pb = 207Pb/206Pb =0.91488±0.00028, and 164 

206Pb/204Pb= 16.9386±0.0131. 165 

Five molybdenite samples were collected from quartz and sulfide veins in the orebody of the Yangla 166 

copper deposit. The molybdenite was separated by heavy liquid separation and handpicked under a 167 

binocular microscope. 187Re and 187Os contents were measured using a TJA PQ ExCell ICP–MS housed in 168 

the Re–Os Laboratory, China Testing Center of Geology Experimentation, Beijing, China. For details of 169 

the analytical procedure, see Smoliar et al. (1996). 170 

 171 

4.  Analytical results 172 

 173 

4.1. Geochemical characteristics of copper ores 174 

 175 

Table 1 lists the trace element and REE contents of copper ores from the Lunong and Linong ore 176 

blocks. The ores contain low concentrations of trace elements (∑REE=11.5 µg/g–59.2 µg/g), and the 177 

chondrite-normalized REE patterns show that LREEs slope gently to the right and HREEs are relatively flat 178 

with low concentrations (Fig. 4a). LREEs and HREEs are not obviously fractionated, with LREE/HREE = 179 

2.1–6.3 (average, 3.4) and (La/Yb)N = 0.9–7.5. Most of the samples show a negative Ce anomaly 180 

(δCe=0.6–0.8) and possess a positive or negative Eu anomaly (δEu=0.6–1.4). Primitive-mantle-normalized 181 

trace element patterns for the copper ores (Fig. 4b) show an enrichment in large ion lithophile elements (Rb 182 

and Pb) and a strong depletion in Ba and Sr.  183 

 184 
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4.2. Geochemistry of the Yangla granodiorite 185 

 186 

Table 2 lists the major element, trace element, and REE composition of the Linong granodiorite. The 187 

granodiorite shows little chemical variation, being characterized by high contents of Si (SiO2 = 58.3 188 

wt.%–69.8 wt.%, with the average at 63.8 wt.%) and Al2O3 (13.4 wt.%–19.8 wt.%; average, 15.9 wt.%), 189 

low contents of Ti (TiO2 = 0.4 wt.%–0.5 wt.%; average, 0.4 wt.%) and MgO (1.5 wt.%–1.7 wt.%; average, 190 

1.6 wt.%), and high Mg# (Mg# = Mg2+/(Mg2+ + TFe3+) × 100) (Mg# = 38–64; average, 49). The granitoids 191 

has a high alkali content (K2O+Na2O = 6.0wt.%–8.3wt.%; average, 6.8wt.%) with a δ ratio (δ = 192 

[(K2O+Na2O)2]/[(SiO2 – 43)](wt.% ratio)) of 1.7–2.6 (average, 2.3).  193 

The granodiorite is enriched in light REEs (LREEs), has a slightly negative Eu anomaly, and low 194 

contents of Y and Yb. Chondrite-normalized REE patterns show that LREEs slope to the right and that 195 

heavy REEs (HREEs) are relatively flat, with low HREE contents (Fig. 5a). The granodiorite contains 196 

medium to low REE contents (∑REE = 85.0 µg/g–119.2 µg/g; average, 104.5×10–6 µg/g), of which LREEs 197 

and HREEs are highly fractionated ((La/Yb)N = 8.9–12.4; average, 10.7; (La/Sm)N = 4.7–5.8; average, 5.3).  198 

Primitive-mantle-normalized trace element patterns for the granodiorite (Fig. 5b) show enrichment in 199 

large ion lithophile elements (Rb, K, Pb), strong depletion in Ba, Nb, P, and Ti, and flat Dy–Lu. 200 

 201 

4.3. S and Pb isotopic composition 202 

 203 

    The data listed in Table 3 show that the δ34S values of sulfides from the Yangla copper deposit vary 204 

from -9.8‰ to -0.9‰, but are mainly within the range of -4.2‰ – -0.9‰. 205 

The data listed in Table 4 show that the sulfides are very homogeneous in their Pb isotopic 206 

composition, 208Pb/204Pb= 38.655–38.732, 207Pb/204Pb=15.703–15.735, 206Pb/204Pb=18.326–19.038.  207 
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 208 

4.4. Molybdenite Re–Os isotopic dating 209 

 210 

Analyses of 5 molybdenite samples from the Yangla copper deposit are reported in Table 5. Five 211 

molybdenite samples yield model ages ranging from 229.7±3.3 to 233.0±3.4 Ma. The data, processed using 212 

the ISOPLOT/Ex program ISOPLOT 3.00 program (Ludwig, 2003), yielded a well-constrained 187Re-187Os 213 

isochron age of 233.3±3 Ma, with MSWD=0.31 and an initial 187Os of -0.77±0.93×10-9 (Fig. 6). The 214 

nearly identical model age and isochron age suggest that the analytical results are reliable. 215 

 216 

5.  Discussion 217 

 218 

5.1. Origin of ore-forming materials 219 

 220 

Yangla copper deposit is hosted mainly by the gently dipping thrust faults near the Yangla 221 

granodiorite. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, 222 

and the Yangla granodiorite formed at 234.1±1.2 to 235.6±1.2 Ma (Indosinian) (Yang et al., 2011), the 223 

metallogenesis is therefore slightly younger than the crystallization age of the granodiorite, indicating a 224 

temporal and spatial link between the deposit and the granodiorite. 225 

Besides the ∑REE contents, the patterns of REEs also differ between the copper ores and the 226 

granodiorite. The chondrite-normalized REE patterns of the granodiorite shows that LREEs slope to the 227 

right, with a weak negative Eu anomaly. The ores contain low REE contents, as well as LREEs and HREEs 228 

are not obviously fractionated; most of the samples possess a negative Ce anomaly and a positive or 229 

negative Eu anomaly. Comparing figure 5a with 4a reveals that the hydrothermal overprinted ore body is 230 
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lower in REE, probably because the hydrothermal fluid was rich in complex REE ligands that were leached 231 

them from the rock fragments to the ore body. Europium occurred as Eu3+ dominantly at more oxidizing 232 

condition and lower temperature, resulting in the form of negative Eu anomaly. Whereas Eu3+ can be 233 

reduced to Eu2+ under reducing conditions and increased temperature, resulting in positive Eu anomaly. Eu 234 

anomaly of the copper ores in the Yangla copper deposit have a following regularity: obvious positive Eu 235 

anomaly→slightly positive Eu anomaly→obvious negative Eu anomaly from the deep ore bodies to the 236 

shallow bodies, indicating the ore-forming fluids experienced a process from reducing conditions to 237 

oxidizing conditions. Under oxidizing conditions, unlike other trivalent REE ions, Ce3+ can be readily 238 

oxidized to Ce4+, and then precipitated in the form of CeO2 or absorpted onto the surface of secondary 239 

minerals, thus the ore-forming fluids were depleted in Ce, resulting in negative Ce anomalies in the ores 240 

(Kerrich and Said, 2011). 241 

The δ34S values of sulfides from the Yangla copper deposit vary from -9.8‰ to -0.9‰ (Fig. 7), a 242 

difference of 10.7‰. This range of isotopic values from the Yangla copper deposit indicate simultaneous 243 

incorporation of heavy and light sulfur in the hydrothermal fluids from which the ores were deposited. The 244 

most abundant ore minerals in the Yangla copper deposit are pyrrhotite, pyrite, chalcopyrite, the variation 245 

range and average of S isotopic composition from the sulfides represent S isotopic composition of the 246 

ore-forming fluids. Of the 9 sulfides analysed from the deposit, 8 have δ34S values between -4.2‰ to 247 

-0.9‰ with the average at -2.2‰, indicating a much greater contribution from the mantle to the 248 

ore-forming fluids (Harris et al., 2005; Li et al., 2006). 249 

 The data of sulfide minerals from the deposit straddle above the supracrustal lead evolution curve 250 

(Fig. 8a), and cross the orogenic evolution curve to the supracrustal lead evolution curve (Fig. 8b). The data 251 

reflects Pb mobilization from an only granulite and contributions of typical upper crustal Pb. Note that the 252 

granulites may be in an upper crustal position at the time of Pb mobilization. The Pb isotopic values of all 253 
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samples from the Yangla copper deposit were calculated according to the equations Δγ = (γ − γM)×1000/γM 254 

and Δβ = (β − βM)×1000/βM (γ: 208Pb/204Pb of sample, γM: 208Pb/204Pb of mantle = 37.47, β: 207Pb/204Pb of 255 

sample, βM: 207Pb/204Pb of mantle = 15.33, Zhu, 1998),which can help in establishing the source of Pb 256 

through values of Δγ and Δβ (Fig. 9). Sulfides from the Yangla copper deposit plot in the field of the upper 257 

crust and mantle, caused by subduction-related magmatism. These results suggest that the ore-forming 258 

materials in the sulfide stage of the deposit may be derived from the Yangla granodiorite (Zhou et al., 259 

2011). 260 

 261 

5.2. Ore genesis  262 

 263 

The Jinshajiang Oceanic plate was subducted to the west, beneath the Changdu-Simao block, in the late 264 

Early Permian, resulting in the formation of a series of imbricate trust faults, dipping gently to the NW, 265 

which formed in a setting of E–W compression in the Jinshajiang tectonic belt (Macpherson and Hall, 2002; 266 

Love et al., 2004). 267 

Shallow subduction of the Jinshajiang Ocean beneath the continent interior (Burchfiel et al., 1992) 268 

resulted in a temperature gradient near the subducting plate, with the maximum temperature near the site 269 

where the subducting plate was close to the overriding plate. The subducting plate was subjected to 270 

metamorphism and partial melting, and the overriding crust was thickened by the addition of subducting 271 

plate and stacking of the upper plate (Mo et al., 2007). The resulting rise in isotherms led to partial melting 272 

of the lower crust over the subducting plate (Li et al., 2011), producing magma that ascended to the upper 273 

crust to form granite (Hezarkhani, 2006; Karsli et al., 2010). The zircon U–Pb age of the Yangla 274 

granodiorite (Yang et al., 2011), combined with its geochemical characteristics, indicates this rock is 275 

collisional, resulting from the partial melting of thickened lower crust (Wei et al., 1997). Gao et al. (2010) 276 
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recognized the geochemistry of the granodiorite is in keeping with that of C-type adakites, which was 277 

triggered by westward subduction of the Jinshajiang Oceanic plate under a tectonic setting of compression. 278 

Subduction of the Jinshajiang oceanic plate resulted in channel flow within the mantle wedge over the 279 

subducting plate (Mcinnes and Cameron, 1994; Pearce, 1995), whereby low-density material ascended and 280 

high-density material descended (Cooke et al., 2005). This circulation resulted in the accumulation of large 281 

amounts of gas–liquid fluid in the mantle wedge (Du, 2009; Wei et al., 2010), derived from the mantle and 282 

containing ore-forming material (Drummond et al., 2006; Walshe et al., 2011).  283 

In the early Late Triassic, which was a time of transition from collision-related compression to 284 

extension in the Jinshajiang tectonic belt (Mo et al., 1993; Wang et al., 1999, 2002; Li et al., 2003), the 285 

thrust faults were E-W tensional, it would have been a favorable environment for ore-forming fluids (Kühn 286 

and Gessne, 2006). The Jinshajiang Oceanic block was subducted westward at a low angle, resulting in 287 

partial melting of the lower crust (Sajona et al., 2000), and the ascent of the magma provided a channel for 288 

the ore-forming fluid in the mantle wedge (Mungall, 2002; Luo et al., 2008). After the magma arrived at 289 

the base of the early-stage Yangla granodiorite, the platy nature of the granodiorite body would have 290 

shielded late-stage magma from the fluid. The magma would have cooled slowly, and some of the 291 

ore-forming fluid in the magma would have entered the low-angle thrust faults near the Yangla granodiorite, 292 

resulting in mineralization (Fig. 10).  293 

 294 

6.  Conclusions 295 

 296 

    (1) S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore‒forming materials 297 

were derived from the mixture of lower crust and upper mantle, also with the magmatic contributions.  298 

    (2) Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, 299 
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therefore, the age of metallogenesis is slightly younger than the crystallization age of the Yangla 300 

granodiorite. 301 

    (3) The Jinshajiang Oceanic block was subducted to the west, resulting in the formation of a series of 302 

gently dipping thrust faults in the Jinshajiang tectonic belt，meanwhile, accompanied magmatic activities. 303 

During a transition in geodynamic setting from collision-related compression to extension, the thrust faults 304 

were E-W tensional, it would have been a favorable environment for ore-forming fluids. The ascending 305 

magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at 306 

the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have 307 

shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the 308 

ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla 309 

granodiorite, resulting in mineralization. 310 
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Fig. 1.  Geological map of the Yangla copper deposit (after Qu et al., 2004) . 465 
1. Paleogene; 2. Upper Triassic; 3. Lower Triassic; 4. Upper Permian; 5. Lower Permian; 6. Gajinxueshan group; 7. 466 
Ultrabasic rock; 8. Carboniferous; 9. Devonian; 10. Silurian; 11. Ordovician; 12. Proterozoic; 13. Quartzdiorite; 14. 467 
Granitoids; 15. Copper deposit; 16. Fault; 17. Geological boundary; 18. Yangla mineral district; 19. Region of interest; Ⅰ. 468 
Yangtze block; �. Ganzi-Litang melange belt; �. Yidun arc belt; �. Zhongza-Zhongdian block; �. Jinshajiang melange belt; 469 
�. Jiangda-Weixi arc belt; �. Changdu-Simao block; �. Lancangjiang melange belt; �. Chayu block; �. Tuoba-Yanjing arc 470 
belt; Ⅺ. Nujiang melange belt. 471 
 472 
Fig. 2.  Geological sketch map of the Yangla copper deposit (after Yang, 2009). 473 
1. Quaternary slope material; 2. Beiwu suite: massive basalt interlayered with sericite slate and marble; 3. Linong suite: 474 
sericite slate, metasandstone, and marble; 4. Jiangbian suite: marble, sericite slate, and metasandstone; 5. Plagiogranite; 6.  475 
Granodiorite; 7. Ore body and corresponding number; 8. Boundary between alteration zones; 9. Sericite-chlorite alteration 476 
zone; 10. Hornfels alteration zone; 11. Skarnization alteration zone; 12. Quartz–sericite alteration zone; 13. Chlorite–epidote 477 
alteration zone; 14. K-feldspar–quartz alteration zone; 15. Sericite–calcite alteration zone. 478 
 479 
Fig. 3.  No.13 prospecting line profile map in the Linong ore block of the Yangla copper deposit (after Yang, 2009). 480 
1. Explosive breccia; 2. Metasandstone; 3. Marble; 4. Granodiorite; 5. Drilling and numbers; 6. Tunnel and numbers 481 
 482 
Fig. 4.  Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element patterns (b) for copper ores 483 
of the Yangla copper deposit. 484 
 485 
Fig. 5.  Chondrite-normalized REE patterns (a) and primitive-mantle-normalized trace element patterns (b) for the Linong 486 
granodiorite (chondrite and primitive mantle data are from Sun and McDonough, 1989). 487 
 488 
Fig. 6.  Re–Os isochron diagrams for the molybdenite samples from the Yangla copper deposit 489 
 490 

Fig. 7.  Composite sulfur isotopic composition histogram of the Yangla copper deposit. 491 

 492 
Fig. 8.  Lead isotope compositions (207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb) of samples from the 493 
Yangla copper deposit plotted in the model lead evolution diagrams of Zartman and Doe(1981). 494 
M. mantle-source lead; O. orogenic belt-source lead; U. supracrust-source lead; L. lower crust-source lead. 495 
 496 

Fig. 9.  Δγ-Δβ diagram of ore lead from the Yangla copper deposit (after Zhu, 1998). 497 

 498 
Fig. 10.  Schematic cross-section through the Yangla copper deposit (modified from Pearce, 1995). 499 
1. Crust; 2. Mantle lithosphere; 3. Mantle asthenosphere; 4. Plate motion; 5. Mantle fluid advection. 500 
 501 


