
D
R

A
FT

Workshop�Sript:

Sienti� Figures with GMT4β

& Bash�Programming

Malte Thoma

∗

Otober 1, 2012

!!! This is a draft !!!

Please be aware that it ontains several errors.

However, feel free to use it to learn something about

GMT and bash-programming.

Please send omments and orretions to Malte.Thoma�awi.de

I hear and I forget.

I see and I remember.

I do and I understand.

(Confuius)

∗
Many thanks to Jörg Robl for his ontributions to setions 1.1 and 7.1, Christoph Oelke for his ontribution to setion 5.4, Florian

Wobbe and Vikram Unnithan for their additional ideas for setion 5 as well as Tobias Linke for the translation of this sript.

1

D
R

A
FT

2 CONTENTS

Contents

1 Introdution 5

1.1 �What is GMT?� . 5

1.2 O�ial doumentation . 5

1.3 Prerequisites for this workshop . 6

1.4 Working Environment . 6

2 Simple maps 7

2.1 Command line . 7

2.2 Shell-Sript . 7

2.3 Explanations to the use of psoast . 8

2.4 Exerise 1: psoast . 8

3 X�Y�plots with the ommand psxy 9

3.1 Usage of standard input . 9

3.2 Exerise 2: psxy, axis labels, olor . 10

3.3 Reading input from a �le . 11

3.4 Exerise 3: psxy, pstext, speial haraters . 12

4 Linux-tools & bash-programming 13

4.1 Exerise 4: psxy, grep, awk, logarithmi projetion . 14

4.2 Some hints for bash programming . 16

4.3 Funtions and queries in the bash . 16

4.4 Command line arguments for bash programs . 18

4.5 Exerise 5: Command line arguments for bash programs . 19

4.6 Inidental remark . 20

4.7 Additional exerise 6: bash-programming . 20

5 Maps, ities, legends and more 23

5.1 Exerise 7: Extern data, transpareny, pslegend . 23

5.2 Exerise 8: Something about projetions . 25

5.3 Exerise 9: Plotting ship trak GPS-data on a map . 26

5.4 psxy and the date format . 26

6 Representation of data with two independant variables 29

6.1 Simple 3D graphs with psxyz . 29

6.2 Exerise 10: psxyz . 29

6.3 2D graphs with grdontour . 30

6.4 Exerise 11: grdontour . 30

6.5 2D plots with grdimage . 31

6.6 Exerise 12: grdimage . 31

6.7 Exerise 13: 3D graphs with grdview . 32

7 Creation of grid �les in the netCDF-format 34

7.1 Digital height models . 35

7.2 Exerise 14: DEMs and xyz2grd . 36

7.3 Gridding of data . 37

D
R

A
FT

LIST OF FIGURES 3

A Colormaps 40

B Useful tools 42

B.1 Distane of two points on the earth surfae . 42

B.2 Tangent . 42

B.3 Correlation oe�ient . 43

C Sample Solutions 44

C.1 Solution to Exerise 5 . 44

C.2 Solution to Exerise 6 . 45

C.3 Solution to Exerise 7 . 47

C.4 Solution to Exerise 8 . 48

C.5 Solution to Exerise 9 . 50

C.6 Solution to Exerise 12 . 51

C.7 Solution to Exerise 14 . 53

Bash�sripts, examples and solution

2.1 First example: psoast . 7

3.1 psxy, usage of standard input . 9

3.2 psxy, gmtmath, input from a �le . 11

4.1 psxy, grep and awk . 14

4.2 psxy, minmax, bash programming, grep and awk . 17

4.3 bash-program to write a header or a footer for GMT �gures. 18

5.1 psxy with date format . 27

6.1 psxyz . 29

6.2 grdontour . 30

B.1 Calulation of the distane (in km) between two points with given geographial oordinates. 42

B.2 Calulation of a tangent for a (x, y) dataset. 42

B.3 Calulation of the orrelation oe�ients (and the varianes) of a (x, y) Dataset. 43

C.1 Exerise's solution 5 (write_head_foot.sh) . 44

C.2 Exerise's solution 6 (bash_task.sh, Part 1) . 45

C.3 Exerise's solution 6 (bash_task.sh, Part 2) . 46

C.4 Exerise's solution 7 (land_oloured.sh) . 47

C.5 Exerise's solution 8 (projetions_task.sh, Part 1) . 48

C.6 Exerise's solution 8 (projetions_task.sh, Part 2) . 49

C.7 Exerise's solution 9 (nmea.sh) . 50

C.8 Exerise's solution 12 (grdontour_task.sh, Part 1) . 51

C.9 Exerise's solution 12 (grdontour_task.sh, Part 2) . 52

C.10 Exerise's solution 14 (dem.sh, Part 1) . 53

C.11 Exerise's solution 14 (dem.sh, Part 2) . 54

List of Figures

3.1 Example for psxy . 10

3.2 Example for psxy und pstext . 13

4.3 Example for a logarithmi projetion and gmtset . 14

D
R

A
FT

4 LIST OF FIGURES

4.4 Plot for Exerise 6. 21

5.5 Examples for reative use of psoast, psxy and pslegend. 24

5.6 Projetions and node onnetions on a sphere I . 25

5.7 Projetions and node onnetions on a sphere II . 25

5.8 Plotting a ship trak from GPS-data. 26

5.9 Examples for date and time sales . 28

6.10 Example for psxyz and Exerise 10. 33

6.11 Examples for grdontour and Exerise 11. 33

6.12 Topography of Europe and the Alps with grdimage. 33

6.13 Topography of Europe and the Alps with grdview. 34

7.14 Graphi representation of the SRTM30-data (several examples). 38

A.15 The RGB olor sheme . 40

A.16 The GMT CPT olormaps . 41

D
R

A
FT

1 Introdution 5

1 Introdution

1.1 �What is GMT?�

GMT stands for Generi Mapping Tools. It is a software pakage that an be used for proessing and graphial

representation of data. The GMT developers summarise it as follows:

GMT is a free, open soure olletion of ≈ 60 UNIX tools that allow users to manipulate (x, y) and (x, y, z)

datasets (inluding �ltering, trend �tting, gridding, projeting, et.) and produe Enapsulated PostSript

File (EPS) illustrations ranging from simple x-y plots through ontour maps to arti�ially illuminated

surfaes and 3-D perspetive views in blak and white, gray tone, hahure patterns, and 24-bit olor. GMT

supports 25 ommon map projetions plus linear, log, and power saling, and omes with support data suh

as oastlines, rivers, and politial boundaries.

GMT was and still is being developed by Paul Wessel and Walter Smith. The software is liensed under the GNU-

liense. GMT is written in ANSI C standard (Kernighan & Rihi 1988) and therefore runs on nearly every system

where a C-ompiler is available. It runs under Windows, Unix, Linux, MaOS, BEOS and other operating systems,

but full performane an only be ahieved in ombination with shell-programming. For this reason the ombination

of Unix/linux and GMT has been established. If someone wants to stik to Windows, the Linux emulation CYGWIN

is an option.

GMT an be handled via ommand lines (similar to DOS) or, more e�iently, using shell sripts. There is no GUI

(Graphial User Interfae) with menu ontrol or buttons to lik on. This may appear to be a disadvantage at �rst,

but working intensively with GMT this proves to be its atual strength.

Most Windows appliations more and more beome �Swiss Army knives� (and hene need more and more resoures).

In ontrast, GMT hose to use UNIX. Eah task is arried out by a small and �exible program. This modular onept

makes it possible to inorporate � via shell programming and Unix/Linux � tools suh as awk, at, grep et. into

GMT-shell-sripts. The advantages are obvious:

1. Only the programs needed are loaded into the memory.

2. Eah of those programs is tiny in omparison to proprietary software as ArView, CorelDraw, or Word.

3. Eah individual operation is independent. Hene, errors an be loalised easily.

4. The individual tools an be ombined in shell sripts, data an be transfered via pipes.

Maps and graphis in many well-known journals suh as JGR, EOS, EPSL and others are in large parts omputed

with GMT. This is on the one hand due to its speial �exibility through sript programming, on the other hand due

to the aestheti value of the maps.

1.2 O�ial doumentation

The o�ial GMT doumentation an be onsulted online:

http://gmt.soest.hawaii.edu/gmt/html/gmt_servies.html

In partiular, there is a number of helpful supplements that are beyond the sope of this workshop. This inludes,

amongst others:

• Compilation of all GMT ommands.

• Explanation of all possible projetions with a graphial example.

• A useful 'ook-book' whih inludes numerous examples for omplex graphis.

• The tehnial referene with tables for patterns, otal odes for speial haraters, fonts and range of olors.

D
R

A
FT

6 1 Introdution

1.3 Prerequisites for this workshop

• A linux aount (username and password) is essential.

• Knowledge of the funtionality of a shell (or xterm) where ommands an be prompted.

• Knowledge of the most important UNIX-ommands. These are (without laiming to be omplete): mkdir, ls,

d, p, mv, rm, man, hmod, ssh, sp. Please make yourself familiar with them, if you do not know them.

You an do this for instane by onsulting the online manuals (e.g. man ls or man man). It is not neessary to

know all options of a ommand. It is su�ient to know what the ommand generally does and how to obtain

more information about the options (with man).

• Knowledge about the funtionality of the <TAB>�key and the ↑�key in the shell (or xterm).

• Knowledge about the X-Windows lipboard (ut & paste).

• A omputer with a omplete GMT installation needs to be aessible. If this is not the ase on a loal mahine,

you have to use ssh to log in to the respetive mahine (possibly with an expliit X- rediretion), e.g. ssh -X

limbig.dmawi.de.

• You need a text editor and know how to use it. Examples for text editors are vi, vim, jed, joe, emas. An

example for a graphial text editor would be gedit. It is important that you feel familiar with your editor. If

you do not have su�ient experiene with any one, I reommand joe � it is small, fast, on�gurable, potent and

has a good help funtion. Online help and tutorial an be found here:

http://heather.s.udavis.edu/matloff/publi_html/Joe/NotesJoe.NM.html

The following tasks must be performed with the text editor:

� open a �le

� save a �le

� lose the editor

� mark, opy and move words, lines, paragraphs

� �nd & replae (if possible with 'plaeholders' or so alled regular expressions)

1.4 Working Environment

• Create a working diretory (e.g.: mkdir GMT)

and move into this diretory (d GMT)

• Exeute the following ommands

mtn -d mtn.db db init

mtn -d mtn.db pull apps3.awi.de de.awi.GMTCourse

mtn -d mtn.db o -b de.awi.GMTCourse

to set up your monotone-database, pull the GMT-example sripts from the server, and to hekout the de.awi.GMTCourse

branh.

• To get updates later, you might have to use

mtn -d mtn.db pull apps3.awi.de de.awi.GMTCourse

(mtn pull from within your de.awi.GMTCourse diretory might be enough, if the defaults are set aordingly.)

mtn update (from within your de.awi.GMTCourse diretory)

• Create your working diretory you want to run the ourse in, e.g. mkdir ourse

• Exeute p de.awi.GMTCourse/gmtdefaults4.base ourse/

D
R

A
FT

2 Simple maps 7

2 Simple maps

2.1 Command line

Entering the ommand

psoast -JN0/15 -R-180/180/-90/90 -Bg30/g15 -G150 -A10000

shows the PostSript-ode reated by psoast in the shell (the meaning of the individual options will be explained in

2.3). In general that does not make muh sense; it is more useful to rediret the output into a �le with the extension

.ps (hint: use the ↑-key):

psoast -JN0/15 -R-180/180/-90/90 -Bg30/g15 -G150 -A10000 > bsp.ps

The �le bsp.ps now ontains the �gure reated by psoast and an be viewed, e.g. with the program gv: gv bsp.ps.

2.2 Shell-Sript

If a ommand is used regulary (with slightliy hanged options), it is ompliated to enter it manually every time. To

avoid that typing work, one an use a bash-sript to exeute several ommands in a row. For our examples the sript

would look like that:

psoast -JN0/15 -R-180/180/-90/90 -Bg30/g15 -G150 -A10000 > bsp.ps

gv bsp.ps

It would work, but it has some (more or less) obvious disadvantages. A better example is Sript 2.1. In the next

setion the reurrent elements of bash-programming are explained by looking at that sript.

Sript 2.1 First example: psoast

1 #!/ bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3 OUT=psoast . ps

4 PRO=−JN0/15

5 REG=−R−180/180/−90/90

6 ANN=−Bg30/g15

7

8 # This i s a omment

9 psoast $PRO $REG $ANN −G150 −W1 −A10000 > $OUT

10

11 gv $OUT

12 rm $OUT # Another omment

• The �rst line fores the exeution of the sript as a bash-sript (independent from the shell atually used). That

line should be found in every sript.

• Line two ensures a onsistent default .gmtdefaults4 at the beginning of our sript.

• In the lines three to six the variables OUT, PRO, REG and ANN are assigned (attention: no spae before and behind

the =).

• Comments in bash-sripts begin with a #.

• The lines nine, eleven and twelve ontain the atual ommands.

• Options are passed to a program (in this ase psoast) with a leading -.

• A $ (as found in the lines nine, elven and twelve) in ombination with a variable returns its value.

• Line twelve deletes the reated �le.

• Blank lines are for better readability.

In general, there are two reasons to save options (or something else) in variables (and not enter them diretly):

D
R

A
FT

8 2 Simple maps

1. Very long options (e.g. -B) make it hard to understand the sript and

2. options that are used more than one had to be adjusted in all loations in the sript if the value of the option

hanges. (In Sript 2.1 this is only relevant for the output-�le psoast.ps (OUT), but it is still ommon sense to

use variables for regulary used options as -J and -R.)

Options that are just relevant for one ommand (in this example it is -G, -W und -A) are written diretly behind

the ommand.

2.3 Explanations to the use of psoast

The options for the ommand psoast used in Sript 2.1 shall be explained:

• -J de�nes the kind of projetion (in the example N is hosen, a 'Robinson'-projetion). More information about

the di�erent kinds of projetion an be found in Setion 8, the GMT-manual

http://gmt.soest.hawaii.edu/gmt4/gmt_servies.html or simply (but without examples) with the om-

mand man psbasemap.

• -R sets the plotted region (in this ase the whole earth).

• -B sets the labels of the axes (here none), the ti-interval (here none) and the size of the grid (here 30

◦
in

X-diretion (longitude) and 15

◦
in Y-diretion (latitude)).

• -G de�nes the olor of dry land (0=blak, 255=white).

• -W sets the line width for the boarder of the ontinents.

• -A sets the minimum size of strutures (in km

2
) that are shown in the map. Anything smaller will not appear

in the plot.

2.4 Exerise 1: psoast

1. Open three xterms and plae them on the display so you an work with all of them (alternatively you an replae

one xterm with a graphial editor like gedit).

2. Move into your working diretory for this ourse, e.g, with

d ∼/GMT/ourse

(this holds for all examples in this ourse).

3. Copy the Sript 2.1 with the ommand

p ∼/de.awi.GMTCourse/in_psoast.sh .

and open it with your favourite editor.

4. Chek if the sript is exeutable fron within a xterm. (ls -l should show an x for the user aess permissions.

If it is not exeutable use the ommand hmod u+x in_psoast.sh to hange the aess permission (u=user,

+=add, x=exeutability).)

5. Exeute the bash-sript, by entering the ommand ./in_psoast.sh. As result a plot should appear on the

display.

6. Open the manpage for psoast in another xterm (man psoast).

7. Experiment with the di�erent parameters of the option and read the orresponding setion in the manpage:

(a) Test other gray tones -G (Colors are subjet to Exerise 2).

(b) Test whih hanges an be ahieved by using the option -I (with di�erent values).

() Test whih hanges an be ahieved by using the option -N (with di�erent values).

(d) Try other values for the region -R.

(e) Test other projetions (e.g. -JW0/15, -JQ180/15). Attention: Not every projetion is apable of displaying

the whole earth from pole to pole. An example for that is the merator-projetion (next point):

(f) Test the projetion option -JM15. Adjust the region option -R until you don't have any error messages. Try

di�erent regions.

D
R

A
FT

3 X�Y�plots with the ommand psxy 9

(g) Test e.g. -JS10/90/15 -R-30/50/35/72 and -JS0/90/15 -R-30/50/35/72.

What is the di�erene?

(h) Try to reate a title and axes labels with option -B, man psbasemap might be helpful. If you an not solve

this task, wait for Sript 3.1 where option -B will be explained in all details.

3 X�Y�plots with the ommand psxy

The most ommon task is the graphial representation of a funtion y = f(x). Therefore, the ommand psxy is used.

There are two possibilities to submit data to psxy (and most other GMT-ommands), one an use an ASCII-�le or the

standard input. Both possibilities are introdued in this hapter. (For the sake of ompleteness it is to be mentioned

that all GMT-ommands are also able to read binary data (instead of ASCII), but this is rarely pratially relevant.)

3.1 Usage of standard input

In this setion it is explained how data is read via standard input. Furthermore some of the many plot options o�ered

by psxy are explained. Starting point for this setion is Sript 3.1.

Sript 3.1 psxy, usage of standard input

1 #!/ bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3

4 OUT=psxy1 . ps

5 PRO=−JX15/10

6 REG=−R0/10/1/8

7 ANN=−B1/0.5

8

9 psxy $REG $PRO $ANN <<END > $OUT

10 0 1

11 1 2

12 2 5

13 3 4

14 8 8

15 10 7

16 6 2

17 END

18

19 gv $OUT

20 ps2 ra s t e r −A −Te $OUT

21 rm $OUT

• The <<END in line eight signi�es 'reading standard input till END (in line 16) is reahed'. Important:

� The �nal string (here END) must always start in the �rst olumn.

� After the �nal string must be line break (and no blank harater or <TAB>).

� The string END is arbitrary, every random string an be used.

• The ommand ps2raster -A is useful to remove the white frame around the postsript-plot. That might make

sense when the plot is to be used in another doument (e.g. LaTeX). The option -Te reates an eps-�le, other

options are e.g. jpeg or png. Further information an be found in the ps2raster-manualman ps2raster. Examine

the di�erene with gv!

Figure 3.1 shows the plot from Sript 3.1 and what an be ahieved by adjusting some options and parameters (see

Exerise 2).

D
R

A
FT

10 3 X�Y�plots with the ommand psxy

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

D
is

ta
nc

e
(m

)

0 2 4 6 8 10

Time (s)

Example 2

Figure 3.1: Plot from Sript 3.1 before (left) and after (right) hanging some options and parameters.

3.2 Exerise 2: psxy, axis labels, olor

1. Copy the Sript 3.1 with the ommand

p ∼/de.awi.GMTCourse/in_psxy.sh .

and exeute it.

2. The option -J de�nes the projetion method, the X stands for a linear projetion. The two following numbers

set the size of the plot in m.

(a) Modify the numbers slightly.

(b) Remove the seond number and the /, what does it mean?

3. Try to �nd out what's the meaning of parameter -R and modify it.

4. The option -B is quite powerful and therefore quite omplex. To hek out the apabilities of this option try the

following modi�ations:

(a) Slightly modify the two numbers.

(b) leave out the seond number and the /.

() Try the following: ANN=-B1/1SWne. The letters represent the four ardinal diretions.

i. Swith the apital and the small letters.

ii. Completely remove single letters.

(d) Frame-tis and gridlines an be reated with f and g. Test ANN=-B1f0.5g2/1f0.75g5SWne and hange the

values of the parameters until the result is satisfying.

(e) Now add axis labels ANN=-B1:x-axis:/1:y-axis:SWne

(f) and a title ANN=-B1:x-axis:/1:y-axis::.Example2:SWne.

(g) All former labels did not inlude any blank spaes. But at least in the title a blank spae in front of the 2

would make sense. To ahieve that two points have to be taken are of:

i. The whole title must be set in (single or double) quotation marks. Otherwise the variable ANN is only

assigned until the �rst blank spae and the rest an not be interpreted by the shell.

ANN=�-B1:x-axis:/1:y-axis::.Example 2:SWne�

ii. To make GMT read the whole option -B (not only till the �rst blank spae following Example) the

variable $ANN must be set in double quotation marks:psxy $REG $PRO �$ANN�<<END>$OUT. Single quo-

tation marks would prevent the shell from interpreting $-sign as the value of ANN � the shell would

just submit the $ANN to GMT.

D
R

A
FT

3 X�Y�plots with the ommand psxy 11

A neessity for blank spaes exists in axis labelling when it omes to units, experiment with it!

5. The read data pairs are onneted with a line as standard option, but psxy o�ers a great number of options to

modify the representation of the data:

(a) Add the option -L to fore the representation as a losed traverse.

(b) Replae the -L by -S0.3 (S stands for symbol, für irle).

() Add -G150 (olor of the points).

(d) Add -W5 (lines around the points), try to �nd out what the number behind the -W does.

(e) Replae -S0.3 by -Sa0.5 (the a stands for star), what does the number mean? Modify it!

(f) Add a -N, wath the boundary points.

(g) Read the setion of the manpage of psxy that deals with the symbols. Try other symbols. (Attention: some

symbols need more than two data rows.)

(h) Add an error estimator (in y-diretion).

(i) For the blak and white reprentation GMT uses grey-sale values from 0 (blak) till 255 (white). For the

representation of olors the RGB olor model is used. In this model eah of the olors red, green and blue

is assigned a number between 0 and 255.

i. Change the olor of the symbols with the option -G e.g. to -G200/100/0.

ii. Change the olor of the lines (option - W), e.g. to -W5/0/100/200.

With support from FigureA.15 on page 40 it should be easy to work with RGB olor model, try other

olors!

3.3 Reading input from a �le

An important premise for reading data from a �le is the existene of one. In Sript 3.2 two �les eah with two rows

are reated with gmtmath. gmtmath is a alulater that works with Reverse Polish Notation. More information an be

found in the manpage of gmtmath (man gmtmath). Here it is su�ient to understand that the x-axis ranges from 0 to

100 and that the square root of x is alulated at equally distributed sampling points with a step size of 10 and 1.

Sript 3.2 psxy, gmtmath, input from a �le

1 #!/ bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3

4 OUT=psxy_datei . ps

5 IN1=psxy_datei_a . dat

6 IN2=psxy_datei_b . dat

7 PRO=−JX15/10

8 REG=−R0/100/0/10

9 ANN="−B10 : x : / 1 : sq r t (x) : : . B e i s p i e l 3 :SWne"

10

11 gmtmath −T0/100/10 T SQRT = $IN1

12 gmtmath −T0/100/1 T SQRT = $IN2

13

14 psxy $REG $PRO "$ANN" $IN2 −W5/0/0/200 t20_10 :0 −K > $OUT

15 psxy $REG $PRO $IN1 −St0 . 3 −N −G200/0/0 −W5/0 −O >> $OUT

16

17 gv $OUT

18 rm $OUT $IN1 $IN2

As it is not possible to plot lines and points in one single psxy ommand, psxy is alled twie with di�erent options.

Most options of the ommand psxy have already been disussed in Sript 3.2 and Exerise 2, so only new options (and

their parameters) are explained.

• The option -W plots a solid line as standard. To reate a dashed line, the parameter t has to be added.

D
R

A
FT

12 3 X�Y�plots with the ommand psxy

� The number of pixels to be drawn (here 20).

� The seperator _

� The number of pixels not to be drawn (here 10).

� One :

� The number of pixels before the �rst pixel is drawn (here 0).

• The PostSript ode reated by the �rst psxy ommand in line 13 must not be losed (i.e. it must be written

no footer). This an be prevented by the option -K.

• The PostSript ode reated by the seond psxy ommand in line 14 must not

� have a header. This is ahieved by the option -O.

� overwrite the output �le, but append the ode, therefore >> is used instead of >.

• The axes labels ($ANN) just need to be written one � so it is missing in line 14.

3.4 Exerise 3: psxy, pstext, speial haraters

1. Copy the Sript 3.2 with the ommand

p ∼/de.awi.GMTCourse/in_psxy_file.sh .

and exeute it.

2. Permute the two variables $IN1 and $IN2 in the lines 14 and 15. Try to understand what hanged (afterwards

restore the original order.)

3. Remove the title.

4. Experiment with other settings for the parameter t in the option -W.

5. One of the most ommon mistakes working with GMT is the wrong usage of the options -K and -O, often in

ombination with mixing up > and >>. To be able to reognize the ause for the error ontaining (or missing :-)

plot, the following errors are simulated:

(a) Remove the -K in line 13 (undo!).

(b) Remove -O in line 14 (undo!).

() Change >> to > in line 14 (undo!).

6. Add a text to the plot by working through the following points.

(a) The seond psxy ommand must not write a footer.

(b) Add the following lines to line 15 in the sript

i. pstext $REG $PRO -O <<END >> $OUT

ii. 12 5 12 0 0 MC The root funtion

iii. END

You should understand the �rst and the third line (otherwise ask!). Bring to your mind what the additional

information behind pstext means. (Why -O? Why no -K? Why <<END>>?) Exeute the modi�ed sript, a

text should appear in the plot.

() Open the manpage for pstext (man pstext) and try to �nd out what the seven parameters read via standard

input mean.

(d) Change the position of the text so it starts at (x,y)=(5,9), therefore three parameters must be hanged.

(e) Try font No. 33 (but never hand in a plot with a alligraphi font otherwise loss of points is unpreventable

;-). All available fonts an be found in the in Setion 1.2 mentioned Tehnial Referene Appendix G.

(f) Change the text olor.

(g) Change the bakround olor of the text.

(h) Try to add a seond text line without using a new pstext ommand.

(i) The seond line should ontain the text �Kroneker symbol: δij � (refer to the Tehnial Referene Appendix

F).

D
R

A
FT

4 Linux-tools & bash-programming 13

(j) Experiment in a third line with the German umlauts. Use the following table (or look in the appendix of

the GMT�ookbook):

Charater-enoding sheme Charater-enoding-sheme

Charater

ISOLatin1+ Standard +

Charater

Standard+ ISOLatin1+

Ä \304 \276 ä \344 \342

Ö \326 \331 ö \366 \363

Ü \334 \335 ü \374 \370

ÿ \337 \373
In the �le .gmtdefaults4 standard harater-enoding sheme is de�ned. Sine GMT4β shemes an be

used. With the ommand gmtset CHAR_ENCODING = <Charater-enoding-sheme> the enoding-sheme

an be hanged. All otal odes an be found in the Tehnial Referene in Appendix F.

7. Compare Figure 3.2 with your own plot and try to �nd the ause for eventually existing di�erenes.

0

1

2

3

4

5

6

7

8

9

10

sq
rt

(x
)

0 10 20 30 40 50 60 70 80 90 100

x

The root function
The Kronecker symbol: δij

The German umlauts: äöü ß ÄÖÜ

Figure 3.2: After ompleting Exerise 3 the �gure for the modi�ed Sript 3.2 should look roughly like that.

4 Linux-tools & bash-programming

In most ases there is no �le with just two olumns whih happen to be exatly the one you like to plot. So it is

neessary to have a tool to hoose the olumns (and/or rows) to be plotted. GMT is not able to proess anything else

than the �rst olumns. But that is not neessary anyway. It was a deliberate deision in the developement of GMT

not to program anything that other programs are already able to do. As two of the most important programs in this

ontext grep and awk shall be introdued in this setion. The most ommon usage of these programs (in onnetion

with GMT) is demonstrated in Sript 4.1.

• grep reads in a �le (but is also able to read from standard input) and gives bak only the rows mathing a

ertain pattern. grep o�ers numerous options. In this ase -v is used, whih returns all lines not mathing the

pattern. A ommentary line is onventionally marked by a #, the grep in line nine �lters all the lines starting

with that harater and returns the other lines in standard output.

• The | is a pipe. That means that the ouput of the left ommand is used as input for the right ommand. In

that ase the result of the pipe is: awk reeives the output of grep as input and psxy uses the output of awk as

input. The line breaks after the pipes Sript 4.1 are only reasoned by readability and are not obligatory.

D
R

A
FT

14 4 Linux-tools & bash-programming

Sript 4.1 psxy, grep and awk

1 #!/ bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3

4 OUT=grep_awk_1a . ps

5 IN=./data/grep_awk . dat

6 PRO=−JX15/10

7 REG=−R0/635/0/0.7

8 ANN="−B100 : Frequeny in Hz : / 0 . 1 : Amplitude in �~m�~m:SWne"

9

10 grep −v '#' $IN |

11 awk '{ p r in t $1 , $4 } ' |

12 psxy $REG $PRO "$ANN" −W5/200/0/0 > $OUT

13

14 gv $OUT

15 ps2 ra s t e r −A −Te $OUT

16 rm $OUT

• awk is atually a powerful (sript) programming language. In onnetion with GMT only few of its abilities are

used. awk an read ommands from a �le, but in our ase it is more e�etive to add the ommands diretly

following the all of awk. Therefore, the ommands must be enlosed in '{...}'. The most often used awk

ommand is print. With option $1 the �rst oloumn is returned, with $2 the seond oloumn and so on...

4.1 Exerise 4: psxy, grep, awk, logarithmi projetion

1. Create the subdiretory data and opy the �le ontaining the data:

p ∼/de.awi.GMTCourse/data/grep_awk_1.dat ./data/.

Take a look at the data in the �le (use joe or emas or less or at or ...).

2. Copy the Sript 4.1 with the ommand

p ∼/de.awi.GMTCourse/grep_awk_1a.sh .

and exeute it.

3. Sometimes the linear projetion is not the most suitable one. To use a logarithmeti projetion, the following

hanges have to be made:

(a) The projetion has to be hanged: PRO=-JX15/10l. The l e�ets that the y-axis uses a logarithmi sale.

Try to exeute the sript after this hange and �nd out what auses the error!

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
m

pl
itu

de
 in

 µ
m

0 100 200 300 400 500 600

Frequency in Hz

1e−05

0.0001

0.001

0.01

0.1

A
m

pl
itu

de
 in

 µ
m

−3

−2

−1

0

1

2

3

P
ha

se

0 100 200 300 400 500 600

Frequency in Hz

Figure 4.3: Example for Sript 4.1 (left) and Exerise 4 (right).

D
R

A
FT

4 Linux-tools & bash-programming 15

(b) Change the region option to REG=-R0/635/1e-4/0.7. Why is the amplitude of some of the frequenies

missing? Change the region so that the amplitude an be plotted for all frequenies.

() For aption of the axis in a logarithmi projetion only the values 1, 2 or 3 should be used. (That means

the value 0.1 of the option -B has to be replaed.) Test all three values for the y-Axis. For using �3 �

you will have to hange the height of the plot to be able read the aption. What is the e�et of the three

possibilities?

(d) Try to use a logarithmi sale for the x-axis as well (undo!)

4. Sometimes it makes sense to write two graphs in one �gure. That requires the following steps:

(a) The �rst psxy ommand must not write a footer.

(b) The phase is in the 5th olumn in the data �le. Plot this olumn in another olor. (You have to use psxy

in ombination with grep and awk.)

() As it does not make sense to use a logarithmi sale for the phase, you have to de�ne a new projetion

variable for the psxy ommand that does not ontain l.

(d) You will see that you need another region for the y-axis. Add a seond variable for the region. As it is in

general, the region to be plotted is not known. Enter the following line in a shell (not the sript):

grep -v '#' data/grep_awk_1.dat | awk '{print $1,$5}' | minmax

The GMT-ommand minmax returns the mininmum and the maximum of all entered olumns. It is possible

to format this output in a way it an be used by psxy as region option:

grep -v '#' data/grep_awk_1.dat | awk '{print $1,$5}' |minmax -I1/1

This output is exatly what we want to write into the seond region variable. In the shell sript it an be

used like that:

REG2=`grep -v '#' data/grep_awk_1.dat | awk '{print$1,$5}' | minmax -I1/1`

Important are the two reversed single quotation marks at the beginning and the end of the ommand whose

result is to be written into the variable. This quotation mark an be reated (in joe) by pressing (maybe

twie) the key ombination SHIFT + <key between ÿ and Bakspae> on a German keyboard.

(e) The aption of the axis has to be hanged for the phase. De�ne a seond variable that plots the aption

of the axis on the right side und use this variable as option for the psxy ommand that plots the phase.

Compare your plot with �gure 4.3.

(f) To plot the aption of the axis in the same olor as the graph, one parameter in the �le .gmtdefaults4 has to

be hanged. This an be done from inside the sript by using the ommand gmtset BASEMAP _FRAME_RGB =

200/0/0. BASEMAP_FRAME_RGB is the parameter that needs to be altered and 200/0/0 is the orresponding

olor. (A list of all parameters in .gmtdefaults4 an be alled by man gmtdefaults.) To reate the three

di�erent olored aptions of the axes in Figure 4.3 (right), three ommands with eah a ertain option -B

are neessary. The two y-axes an be reated simultaneously with the orresponding plot, the aption of the

x-axis either by a psxy ommand that reeives no data via standard input or (simpler) with the ommand

psbasemap.

5. awk an do muh more: hange the awk-ommand reading in the amplitude to awk '{print $1,sqrt($2*$2+$3*$3)}'.

(Remember: The seond olumn ontains the real part, the third one the imaginary part). The same plot should

appear. If the plot has hanged, omment out the following pipe and the psxy ommand and take a look at the

output of the two di�erent awk ommands via standard output. If you �nd a di�erene think about possible

reasons. If you are not sure, ask, this is important! The solution to this problem (and many other problems as

well): Every sript using awk should ontain the ommand LANG=C diretly behind the �rst line.

6. Change the awk ommand reading the phase: Do not use the �fth oloumn but alulate the phase from the real

and imaginary part by using the funtion atan2(y,x).

7. Write the awk ommand if(i++%5==0) in front of one of the print ommands. What is hanging (and why)?

D
R

A
FT

16 4 Linux-tools & bash-programming

4.2 Some hints for bash programming

As omplex programs without any errors are hardly written on the �rst go, it is of advantage to test a ode every

time after implementing an extension. In many ases a syntax error is the ause for an abnormal termination. The

following hints should make it possible to loate the error and orret it.

• Often it is useful to hek if a variables value is what you expet it to be. This an be done with the ommand

eho $OUT.

• The ommand exit terminates a bash sript at any given point.

• Single lines an be ommented out by using the #.

If you have knowledge in proedural programming

1

, you will be familiar with the onepts introdued in this setion

and you will just have to get used to the syntax.

4.3 Funtions and queries in the bash

A strength of programming languages is the possibility to perform similar tasks with slightly hanged parameters with

minimal e�ort. An example (though not the best) is the sript of the last exerise, where the program psxy is alled

twie with preeeding grep and awk. Even though it is not neessary in this ase, that sript an be used to show how

suh a struture is realized. Sript 4.2 shows a bash sript, that ontains two funtions. The essential parts of this

sript shall be explained in this setion.

• Copy the Sript 4.2 with the ommand

p ∼/de.awi.GMTCourse/in_bash.sh . and exeute it.

• Funtions are initiated by the keyword funtion, followed by the name of the funtion and the (optional)

parenthesis (). The body of the funtion is bordered by urly brakets {...}.

• The funtions must be loated ahead of of the main program. In Sript 4.2 the main program only ontains

the de�niton of some variables, the all of the funtion plot_ps, the ommand to display the plot gv and the

ommand rm to remove the reated �le.

• Variables delared within a funtion should be (if possible) loal to prevent side e�ets in other parts of the

program.

• One disadvantage of Sript 4.2 is the neessity to use psxy to reate an empty �gure ontaining just a header.

• In line 14 a loop is started that ends in line 20. The loop is run twie, one time variable i is assigned the value

Amplitude, the seond time the value Phase.

• In every run of the loop the funtion set_parameter is alled at the beginning, then the de�ned parameters are

used to

1. set the parameter BASEMAP_FRAME_RGB with the ommand gmtset to the value of $COLOR,

2. reate a temporary �le, that ontains just the two olumns of the input data whih shall be plotted,

3. set the region option with the minmax ommand and

4. reate the plot by using psxy.

The only thing new (besides the loop itself) is the usage of the variables in ombination with awk: Before the

ommand (enlosed in '{...}') the option -v is used to set the awk variable to the value of the bash variable

COLUMN. This is neessary beause within the awk ommands the (global) bash variables are not known.

• The funtion set_parameter writes the one parameter passed to it to the variable WHAT, this is just a matter of

larity.

1

A proedural programming language uses algorithms to formulate the neessary proedures. In general the following elements are used:

variables, arithmetis, queries, loops and funtions. Examples for this lass of programming languages are amongst others Pasal, Basi,

Fortran und C. Another approah is modular programming. Here, the fous is on subdividing and enapsulating the data in single modules.

Examples are e.g. C++ and Java.

D
R

A
FT

4 Linux-tools & bash-programming 17

Sript 4.2 psxy, minmax, bash programming, grep and awk

1 #!/ bin/bash

2 LANG=C

3

4 p gmtdefau l t s4 . base . gmtdefau l t s4

5

6 OUT=bash1 . ps

7 PRO=−JX15/10

8 IN=./data/grep_awk_1 . dat

9 TEMP_DAT=tmp . dat

10

11 ###

12 fun t i on plot_ps ()

13 {

14 psxy $PRO −R0/1/0/1 −K << END > $OUT

15 END

16 f o r i in Amplitude Phase ; do

17 set_parameter $ i

18 gmtset BASEMAP_FRAME_RGB = $COLOR

19 grep −v '#' $IN | awk −v =$COLUMN '{ pr in t $1 , $ } ' > $TEMP_DAT

20 l o a l REG=`minmax $MINMAX_INC $TEMP_DAT`

21 psxy $REG $PRO "$ANN" −W5/$COLOR −K −O $TEMP_DAT >> $OUT

22 done

23

24 l o a l ANNAB=−B100 : "Frequeny in Hz" : / Sn

25 gmtset BASEMAP_FRAME_RGB = 0/0/0

26 psbasemap $REG $PRO "$ANNAB" −O >> $OUT

27 }

28

29 ###

30 fun t i on set_parameter ()

31 {

32 l o a l WHAT=$1

33 i f [$WHAT == Amplitude ℄ ; then

34 MINMAX_INC=−I1 /0 .1

35 ANN="−B100 : Frequeny in Hz :W"

36 COLUMN=4

37 COLOR=200/0/0

38 e l i f [$WHAT == Phase ℄ ; then

39 MINMAX_INC=−I1 /1

40 ANN="−B/1g100 : Phase :E"

41 COLUMN=5

42 COLOR=0/0/200

43 e l s e

44 eho " e r r o r in ' selet_for_gmt () ' "

45 e x i t 1

46 f i

47 }

48

49 ###

50

51 plot_ps

52

53 gv $OUT

54 rm $OUT $TEMP_DAT

• By using an if-query the parameters are set. Important in this ontext is

� the semikolon ; before then has the same e�et as a line break.

� The square brakets [...℄ must be surrounded by blank hars (or a line break).

� The == is a test-query, whih is not to be mixed up with the assignment =.

D
R

A
FT

18 4 Linux-tools & bash-programming

4.4 Command line arguments for bash programs

Only if a program an be started with ommand line arguments it is really versatile. For example it might be helpful

to have a program that writes a postsript header or footer depending on the ommand line argument. This program

ould replae the psxy ommand in line 12 of Sript 4.2.

This program needs two values, the name of the postsript-�le and the information if a header or a footer is to be

written. Both ould (theoretially) follow the all of the program (e.g. write_head_foot.sh datei.ps F) and then

be read within the sript with $1 and $2. In this simple ase that might even be su�ient. But already interhanging

the arguments would result in a problem � and this method is totally inadequate if you need a sript that reads an

undertermined number of arguments (as every GMT ommand does).

Sript 4.3 bash-program to write a header or a footer for GMT �gures.

1 #!/ bin/bash

2 ##

3 fun t i on usage ()

4 {

5 eho −e "\n Usage : ` basename $0 ` has to be a l l e d with \n\n"\

6 " −O<PostSr ipt−Fi le> (output f i l e)\n"\

7 " −w<[K|O℄> (wr i te header (K) or f o o t e r (O))\n"

8 e x i t 1

9 }

10 ##

11 fun t i on hek_args ()

12 {

13 OUT=NONE

14 HEADFOOT=NONE

15 FORCE=FALSE

16 whi le getopts fO :w: OPT ; do

17 ase $OPT in

18 O) OUT=$OPTARG ; ;

19 w) HEADFOOT=$OPTARG ; ;

20 ∗) usage ; ;

21 esa

22 done

23 i f [$OUT == NONE ℄ ; then usage

24 e l i f [$HEADFOOT != K −a $HEADFOOT != O ℄ ; then usage

25 f i

26 }

27 ##

28 fun t i on write_head_foot ()

29 {

30 i f [$HEADFOOT == K ℄ ; then

31 psxy −R0/1/0/1 −JX1 −$HEADFOOT /dev/ nu l l > $OUT

32 e l s e

33 psxy −R0/1/0/1 −JX1 −$HEADFOOT /dev/ nu l l >> $OUT

34 f i

35 }

36 ##

37 hek_args $∗

38 write_head_foot

The bash o�ers an easy solution to this problem. The program in Sript 4.3 is admittedly omparatively long, but

in return it is robust and easily expandable (an advantage not to be underestimated). The new elements of this Sript

are explained in this setion.

• Every program should ontain a usage() funtion, that explains what it does and whih options are o�ered.

� The -e option of the eho is explained in the manpage (read it!).

� Whereas $1 and $2 refer to the �rst and seond argument passed to a bash program, $0 ontains the name

of the program (inluding its path). The program basename removes all the path information from the �le

name. Take a look at the really short manpage!

D
R

A
FT

4 Linux-tools & bash-programming 19

� The \ at the end of a line auses the program to ignore the line breaks, otherwise the eho ommand would

have to be written in every line.

� As the funtion usage() is only alled if an error ours, it terminates the program with exit. The 1 behind

exit is the exit value of the program. Conventionally a program returns the value 0 if it ran suessfully

and a number unequal zero if errors oured. This exit value an be read by the parent program. What is

the advantage of this onept? If you do not see it, ask!

• As �rst step the main program alls the funtion hek_args() with the argument $*. That means all argu-

ments are passed to the funtion. hek_args() heks if the program has all the neessary arguments and if

the parameters are valid. If anything is not orret, the funtion usage() is alled and terminates the program.

� At �rst the two variables OUT and HEADFOOT are initialized � otherwise there might our problems with the

if query. Try to understand what ould ause these problems. If it is not obvious to you, run the program

without it and/or ask.

� The while loop exeutes the intern bash ommand getopts until all ommand line arguments are proessed.

The �-� before the argument is removed and the rest is written to the variable OPT. The string O:w: indiates

on the one hand that only the arguments O and w are valid, on the other hand (beause of the �:�) that

they need a parameter, whih is saved in the variable OPTARG. (There are also arguments with no parameter,

what is the di�erene?)

� The ase-query is an alternative (in this ase a good one) to multiple if queries. Try to realize what is

happening there and under whih irumstanes usage() is alled.

� At the end of the funtion it is heked if all onditions for a suessful run are ful�lled. An output �le

must be de�ned (that is not alled NONE) and the option -w must have been passed either the parameter K

or the parameter O. The -a in line 23 represents the logial and.

• If no problems our, the funtion write_head_foot() is alled and writes the postsript header or footer. As

psxy needs input data the (empty) �le /dev/null is read in.

4.5 Exerise 5: Command line arguments for bash programs

1. Copy the Sript 4.3 with the ommand

p ∼/de.awi.GMTCourse/tools/write_head_foot_start.sh ∼/bin/.

(Perhaps you will have to reate the target diretory with mkdir �rst.)

2. Make sure the diretory ∼/bin exists and exeute the sript in an xterm (without options).

3. Exeute the sript twie, write a header in the �rst and a footer in the seond run. Take a look at the result

with gv <file.ps>.

4. Add an optional option to the program that deides whether an existing output �le shall be overwritten when

writing a header. The new option shall be adressed by -f (fore).

(a) Supplement the funtion usage() �rst.

(b) Initialize the variable FORCE with the value FALSE in the funtion hek_args()

() Modify the while-loop, so the all of the funtion with the option -f

i. does not ause a mistake,

ii. sets the value of the variable FORCE to TRUE.

(d) With the ommand if [-e $OUT ℄ one an hek whether a �le exists. Add this test at an appropriate

loation and terminate the program with an explaining error message if the variable FORCE is not set

aordingly.

5. Compare your program with the sample solution in Appendix C.1. This solution inludes further expansions.

Deide if you want to use this or your own solution for future work with GMT.

6. Change line 14 of the example Sripte 4.2 so it uses the the new program write_head_foot.sh.

D
R

A
FT

20 4 Linux-tools & bash-programming

4.6 Inidental remark

Now you know the basi GMT-ommands (e.g. psxy, pstext and minmax), some useful Linux-tools (e.g. grep and

awk) and the essential elements of bash-programming (e.g. loops, queries, funtions, ommand line arguments, ...).

With these tools it is possible to write omplex programs for the visualisation of two-dimensionl data with GMT.

The Additional Exerise 6 deepens the so far aquired knowledge of bash-programming with a hallenging example.

As the work through this exerise might take several hours and this workshop is foussed on the visualisation of data

with GMT, you should only start this exerise if you have su�ient time or otherwise go forward to Setion 5.

4.7 Additional exerise 6: bash-programming

This exerise is way more demanding then the ones you have done before. The bash sript you have to write in order

to reate Figure 4.4 is about 100 lines long, so it may take a while until you get a satisfying result. But if you take

your time to understand eah step, you will be in the position to write bash sripts for omplex tasks on your own.

When done, you an ompare your solution with the sample solution in the Appendix C.2. Do not get disouraged if

an error message ours instead of the expeted result at the �rst go. In most ases a typing error, a missing blank

har or a quotation mark too muh or too less is the ause for the error. Do not be afraid to ask if you an not �nd

an error or understand an idea.

1. Copy the �le

p ∼/de.awi.GMTCourse/data/bash_task.dat ./data/.

Take a look at the �le (it is best viewed with tabulator size 12, whih an be set easily in joe by pressing �T and

hosing the orresponding option with the ursor keys). This �le ontains the mean value, the quadrati mean

value and the variane for eah 20 (randomly hosen) points in time for di�erent sample sizes. In this exerise a

bash sript is to be written that plots this data (ompare Figure 4.4).

2. Open the (new) �le aufg5.sh in an editor and take are that

(a) the �le is exeuted as a bash sript,

(b) the variable LANG is set to C,

() the variable IN is de�ned and ontains the path of the input �le,

(d) the variables TDAT and TDAT2 de�ne two temporary �le names,

(e) the variable PRO=-JX15/6 is de�ned,

(f) the variable OUT is de�ned and set to the name of the PostSript-�le.

3. Save the sript.

4. Make the sript exeutable and test it (it should be exeutable without any error messages). While proeeding in

this exerise exeute the program after eah hange in the sript. Syntax errors have to be orreted immediately

(!), otherwise the program an not be developed in a rational manner.

5. As we want to have several plots in one PostSript-�le, it is neessary to deide how header and footer of the

PostSript-�le shall be reated. The easiest solution is to use the program write_head_foot.sh written in

Exerise 5. Call it twie, one to write a header and one to write a footer. If an error should our during

the exeution of the extern sript (e.g. beause the output-�le already exists and no option -f was passed) the

program should be terminated immediately. This an be ahieved by testing the exit value of the extern sript

with the line

if [$? -ne 0 ℄; then exit 1; fi

(�$?� ontains the exit value of the program alled last and �-ne� stands for not equal).

6. Take a look at the output of the sript by adding the ommand gv $OUT and exeuting it.

7. Write a ommand that deletes the temporary �les and the PostSript-�le at the end of your bash-sript.

8. Call the funtion plot_all() between the two alls of write_head_foot.sh.

9. Write the funtion plot_all(). It should ontain

D
R

A
FT

4 Linux-tools & bash-programming 21

0.075

0.080

0.085

0.090

0.095

V
ar

ia
nc

e

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

500 Sampling Size

0.075

0.080

0.085

0.090

0.095

V
ar

ia
nc

e

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

2000 Sampling Size

0.075

0.080

0.085

0.090

0.095

V
ar

ia
nc

e

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

10000 Sampling Size

0.30

0.32

0.34

0.36

0.38

S
qu

ar
ed

 M
ea

n
V

al
ue

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

500 Sampling Size

0.30

0.32

0.34

0.36

0.38

S
qu

ar
ed

 M
ea

n
V

al
ue

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

2000 Sampling Size

0.30

0.32

0.34

0.36

0.38

S
qu

ar
ed

 M
ea

n
V

al
ue

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

10000 Sampling Size

0.46

0.48

0.50

0.52

0.54

M
ea

n
V

al
ue

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

500 Sampling Size

0.46

0.48

0.50

0.52

0.54

M
ea

n
V

al
ue

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

2000 Sampling Size

0.46

0.48

0.50

0.52

0.54

M
ea

n
V

al
ue

0 10 20 30 40 50 60 70 80 90 100

Time Sampling Point

10000 Sampling Size

Figure 4.4: Plot for Exerise 6.

D
R

A
FT

22 4 Linux-tools & bash-programming

(a) a loop over the three values M, QM and V.

(b) a all of the funtion selet_one() with the urrent value of the loop variable.

10. Write the funtion selet_one(), that aomplishes the following points

(a) Save the passed argument in the variable WHAT.

(b) Depending on the value of the variable WHAT the variables

i. COLUMN (oloumn of the input data),

ii. ANNTXT (label of the y-axis),

iii. ANNINC (inrement of the y-Axis, use the value 0.2 to start with) and

iv. OFFSET (assign value 0 for M and 8.5 for QM and V. The meaning of this variable will beome lear in

the framework of this exerise.

should be set in an if query. Remember to ath potential errors with an else query.

() De�ne the variable ANN:

i. The inrement of the x-axis shall be 10.

ii. The label of the x-axis shall be time sampling point.

iii. For the y-axis the formerly de�ned values shall be used.

(d) Read the seond, the one orresponding to the variable COLUMN and the third oloumn from the input �le

and write the result in the temporary �le $TDAT. Use the programs grep and awk (remember the -v option

for the awk ommand!).

(e) De�ne the variable REG and use the program minmax with the option -I1 to write the region option to it.

(f) Write a loop over the three values 500, 2000 and 10000 (the numbers orrespond to the three sampling

sizes). The loop body should ontain the following ommands:

i. An if query that sets for eah of the three possible values of the loop variable

A. another olor (e.g. COLOR=200/0/0)

B. the variable OFFSET=0 for all but the �rst run of the loop.

ii. An awk ommand, that reads the lines from the �le $TDAT for whih the ondition �third oloumn of

the line is equal to the string "Size="<sample size> � is true and writes them into the �le $TDAT2.

iii. The all of the funtion plot_one().

11. Write the funtion plot_one(), that uses GMT-ommands to plot the data in the �le $TDAT2. The following

ommands should be used:

(a) A psxy ommand, that plots the points in the orresponding olor. Use the variables ANN, REG, PRO and

COLOR. Attention: The variable COLOR ontains just the RGB olor ode and (unlike the other variables)

not a letter that de�nes the kind of option. Also, use the option -Y$OFFSET, -K and -O. Chek if the sript

produes graphial output.

(b) You will notie that the saling of the x-axis and y-axis is inadequate.

i. Modify the saling of the axis by hanging the parameter -I of the ommand minmax to -I10/0.1.

ii. It is better to hoose the y-inrement depending on the data. De�ne a new variable YINC at the right

loation and set it to an appropriate value.

iii. Create an axis aption with additional 'frametis' (ompare Figure 4.4), by using YINC and ANNINC in

the de�nition of ANN. (Attention: a$YINCf$ANNINC an not work beause f is interpreted as part of the

variable $YINC. To solve the problem use double quotation marks at the right loation.)

() Now try to onnet the points with a line by using a seond psxy ommand. The result will not be su�ient.

i. Try to understand why; it might help to take a look at the �le $TDAT2. That an be done e.g. by

using the ommand at $TDAT2 at the appropriate loation (here!) in the sript (man at explains

the ommand). As it is enough to see the data one (from the �rst run of the loop), it makes sense to

terminate the bash-program with exit afterwards.

D
R

A
FT

5 Maps, ities, legends and more 23

ii. You will realize the data is unsorted; the psxy ommand onnets the data points in the given (and in

this ase pointless) order.

iii. To sort the data use the program sort. The output of sort an (and should) be diretly passed to

psxy via a pipe.

iv. Probably the plot is still not orret. To understand the reason take a look at the output of sort: The

sorting is performed alphanumeri.

v. Open the manpage of sort und searh for the option -n. Now you should be able to reate the �gure

(ompare Figure 4.4).

(d) To hange the order of the plots (the mean value �rst, the variane last) you have to

i. hange one loop

ii. modify the de�nition of the variable OFFSET at two loations.

(e) Until now one an not see in the �gure whih olor belongs to whih sample size. Therefore the ommand

pstext is used.

i. Pass the sampling size to plot_one() and save it within the funtion to a new variable.

ii. The y-position of the text must also be passed to the funtion plot_one(), as it must not be onstant

(test it with a onstant position �rst if you don't know why). Add the new variable YTXTPOS at the

right loation, pass it to plot_one() and hange that funtion aordingly.

iii. Write a all of the pstext ommand, that reads in the text to be displayed via standard input (<<END).

12. After �nishing this exerise your �gure should look like Figure 4.4. Try to understand eventually existing

di�erenes.

5 Maps, ities, legends and more

With psoast it is quite easy to generate maps in 25 di�erent projetions with rivers, politial boarders and so on.

But in many ases it is neessary to add point data (e.g. postions of volanoes, ities or deposits) with symbols and

text as a seond layer in suh a map. How that works is explained in this hapter.

5.1 Exerise 7: Extern data, transpareny, pslegend

In this exerise Figure 5.5 shall be generated. Though it is not really aestheti due to too many olors and being

overloaded, one gets to know some useful tools and options during its reation.

1. Write a bash-sript that generates a map showing Germany and its politial boarders in Merator projetion.

As region option use -R4/18/45/56 (omp. Fig. 5.5).

2. GMT omes with a database of the politial boarders, but it an not assign losed traverses to ountries. For

this purpose, external data (e.g., from the internet) is needed. For the purpose of this workshop you'll �nd the

neessary data in textttde.awi.GMTCourse/data/germany2pts.txt.

3. Take a look at the data with an editor. It onsists of of several segments (why?). GMT is also able to proess

multi-segment files. If you take a look at the manpage of psxy you will learn that therefore the option -M

must be used and the segments are separated by a >.

4. Use this dataset to olor Germany (ompare Figure 5.5).

5. Plot the

(a) Water areas,

(b) rivers,

() state boarders and

(d) a sale (try gmtset LABEL_FONT_SIZE = xx or gmtset ANNOT_FONT_SIZE = xx to set font size).

D
R

A
FT

24 5 Maps, ities, legends and more

5˚

5˚

10˚

10˚

15˚

15˚

46˚ 46˚

48˚ 48˚

50˚ 50˚

52˚ 52˚

54˚ 54˚

56˚ 56˚

0 100 200

km

S

E

N

W

Berlin

Münster

Munich

Legend
cities volcano
restricted area Germany

0 100 200 300
km

GMT-Workshop

Figure 5.5: Examples for reative use of psoast, psxy and pslegend.

(e) a diretional rose

with one additional psoast ommand.

6. To display ities in the map open a new �le (e.g. german_itys.txt) and enter for the ities (e.g.) Münster,

Munih and Berlin in the �rst oloumn the longitude, in the seond the latitude, in the third the name of the ity

and in the fourth the number of inhabitants. Instead of the German umlauts you have to use the orresponding

otal odes (see p. 13).

7. Use awk and psxy to plot the ities as dots. Calulate the size of the dots automatially by a suitable saling of

the number of inhabitants.

8. Use awk and pstext to label the ities. To generate the neessary input for pstext, the ommand awk '{print

$1, $2-0.2,12,0,1,"MC",$3}' $INC is quite handy ($INC is the variable where the input �le german_itys.txt

is saved). Try to understand (eventually onsult man pstext) what's happening.

9. It is also possible to use your own (or prede�ned) symbols (de�ned by a polygon) by using the ommand psxy

-Sk. A list with all prede�ned symbols an be found in

$GMTHOME/share/ustom/. For example you an reate a volano eruption in Munih by using the prede�ned

symbol volano. To read only the line with �Munih� from the input �le one an use the ommand awk '{if($3

== "Munih") print $1,$2}' $INC as �lter.

10. Draw a �restrited area� around the volano eruption. Use the ommand psxywith the option -Gp300/8:F0/255/64B-.

Read the manpage, to �nd out what p300/8 means. Vary the values! Unfortunately the manpage is not om-

plete. Behind the �:� is delared whih olors are used as forground (F) and bakground(B). The - does not

stand for a olor, but a transpareny (a markedly useful feature).

11. It was possible to generate legends with several pstext and psxy ommandy.However, sine GMT4β the pslegend

ommand makes life a lot easier. Take a look at the manpage (espeially the given examples) and try to reate

D
R

A
FT

5 Maps, ities, legends and more 25

120˚ 180˚ 240˚ 300˚ 0˚ 60˚
−60˚

−40˚

−20˚

0˚

20˚

40˚

60˚

80˚

Habana

Tokyo

Mumbai

Chicago

Mercator
Great Circle (psxy)
Loxodrome (psxy −A)
Spherical Earth Projection (project)
Plane Earth Projection (project −N)

180˚

200˚

220˚

24
0˚

26
0˚

280˚
300˚

320˚

340˚
0˚

20˚

40˚

60
˚

80
˚

100˚

120˚

140˚

160˚

Habana

Tokyo

Mumbai

Chicago

Gnomonic
Great Circle (psxy)
Loxodrome (psxy −A)
Spherical Earth Projection (project)
Plane Earth Projection (project −N)

180˚
200˚

220˚

24
0˚

26
0˚

280˚

300˚

320˚

340˚
0˚

20˚

40˚

60
˚

80
˚

100˚

120˚

140˚

160˚

Habana

Tokyo

Mumbai

Chicago

Lambert
Great Circle (psxy)
Loxodrome (psxy −A)
Spherical Earth Projection (project)
Plane Earth Projection (project −N)

Figure 5.6: Examples for di�erent projetions and node onnetions on a sphere.

180˚
200˚

220˚

24
0˚

26
0˚

280˚

300˚

320˚

340˚
0˚

20˚

40˚

60
˚

80
˚

100˚

120˚

140˚

160˚

Habana

Tokyo

Mumbai

Chicago

Stereographic
Great Circle (psxy)
Loxodrome (psxy −A)
Spherical Earth Projection (project)
Plane Earth Projection (project −N)

−80˚ −80˚
−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚
80˚ 80˚

Habana

Tokyo

Mumbai

Chicago

Hammer
Great Circle (psxy)
Loxodrome (psxy −A)
Spherical Earth Projection (project)
Plane Earth Projection (project −N)

180˚

180˚

200˚

200˚

220˚

220˚

240˚

240˚

260˚

260˚

280˚

280˚

300˚

300˚

320˚

320˚

340˚

340˚

0˚

0˚

20˚

20˚

40˚

40˚

60˚

60˚

80˚

80˚

100˚

100˚

120˚

120˚

140˚

140˚

160˚

160˚

180˚

180˚

−80˚ −80˚
−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚
80˚ 80˚

Habana

Tokyo

Mumbai

Chicago

Gall−Peters
Great Circle (psxy)
Loxodrome (psxy −A)
Spherical Earth Projection (project)
Plane Earth Projection (project −N)

Figure 5.7: Additional projetion examples.

a legend as seen in Fig. 5.5. To set the font size in the legend you an use gmtset ANNOT_FONT_SIZE = xx.

5.2 Exerise 8: Something about projetions

GMT omes with many many projetions. Not all projetions are suitable for all tasks. Keep in mind, that the

interpretation of geographial sienti data may depend on the projetion!

1. Take a look at Figure 5.6 and try to understand the di�erene of the lines in onnetion with the applied

projetion.

2. Copy the following sript to your working diretory

p ∼/de.awi.GMTCourse/projetions_start.sh .

3. Try to understand what the sript does and what the di�erent lines mean in eah projetion.

4. Adjust the sript so that it shows the reated map in the following additional projetions: Stereographi, Hammer,

and Gall-Peters (see Figure 5.7).

5. Note: The one-world maps, sold by many alternative stores, usually apply the Gall-Peters projetion. Why?

6. Compare your solution with those in C.4.

D
R

A
FT

26 5 Maps, ities, legends and more

7˚00' 7˚15' 7˚30' 7˚45' 8˚00' 8˚15' 8˚30' 8˚45' 9˚00'

53˚30'

53˚45'

54˚00'

Figure 5.8: Plotting a ship trak from GPS-data.

5.3 Exerise 9: Plotting ship trak GPS-data on a map

We have introdued many tools to apply our knowlegde to a simple appliation: Consider some �les with given GMP-

data. Your job is to visualize the trak. In this example we have two GPS-�les (one for eah day) we will plot on a

map of the German Bight.

1. Copy the following GMP-�les to your working diretory

p ∼/de.awi.GMTCourse/data/nmea.day[12℄ ..

2. Take a look at those �les, this is the NMEA-output of a GPS. The longitude and latitude information we need has

to be extrated from the lines starting with $GPGGA. Aording to http://www.gpsinformation.org/dale/nmea.htm,

the geographial information within the NMEA-reord is oded as

4807.038,N Latitude 48 deg 07.038' N

01131.000,E Longitude 11 deg 31.000' E

3. Write a bash-sript:

(a) Write a loop over both nmea.day �les

(b) Extrat the lines starting with $GPGGA (hint: use grep �)

() Use awk to extrat the degrees and minutes (with substr) and alulate deimals from the minutes.

(d) Write the result into one or two �les.

(e) Create a �gure looking similar to Figure 5.8.

4. Many solutions are possible, ompare yours with

∼/de.awi.GMTCourse/nmea.sh.

5.4 psxy and the date format

A new feature sine GMT4 are time axes in XY-plots. It is easy to use the time format in the ISO-8601 norm, but

individual formats an be de�ned as well. Here one example for the de�nition of absissa and ordinate:

-R/2001-01-01T00:00:00/2001-03-15T12:00:00/40/80 X-axis from 1.1.01 till 15.3.01, 12:00

-JX16.5T/3.0 Width of the time axis: 16.5 m, height of the plot: 3 m

The label of the axis an be set via -B. With gmtset TIME_LANGUAGE <language> it is possible to swith between

di�erent languages. This is illustrated in Sript 5.1. -B[p℄ de�nes the primary label, -Bs the seondary label. In the

upper part for example the �rst labelled intervall is the year (-1Y), the seond is the month, every third month is

labelled in an abbreviated form (Jan, Feb et.) (3O), every month gets a frameti (1o) and every 12th (12o) is marked

by a line. Please note that the y-axis aption for -Bs is not plotted (/a0f0).

An overview of the many date and time options for GMT4 an be found under

http://gmt.soest.hawaii.edu/gmt4/do/html/GMT_Dos/node22.html or diretly by using 'man gmtdefaults'.

D
R

A
FT

5 Maps, ities, legends and more 27

Sript 5.1 psxy with date format

1 #!/ bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3

4

5 OUT=date_format . ps ; PRO=−JX16 .5T/3

6

7

8 gmtset TIME_LANGUAGE us # oben ###

9 gmtset PLOT_DATE_FORMAT o # o : month only

10 gmtset TIME_FORMAT_PRIMARY Ao # Ao: abbrev iated month in ap i t a l l e t t e r s

11

12 #X−Ahse Time

13 dat11=2001−01−01T00 : 0 0 : 0 0

14 dat12=2003−01−01T00 : 0 0 : 0 0

15 #Y−Ahse

16 dat21=40

17 dat22=80.1

18

19 psbasemap −R$dat11 / $dat12 / $dat21 / $dat22 $PRO −X3 −Y15 \

20 −B3Of1o : "" : / a20f10g20 : " va lue" :WSe −Bsa1Yg12o/ a0f0 −K > $OUT

21

22 psxy −R $PRO −W7/50 −O −K <<EOF >> $OUT

23 2001−03−12 69

24 2001−07−02 66

25 EOF

26

27 gmtset TIME_LANGUAGE f r # Middle ###

28 gmtset PLOT_DATE_FORMAT −"dd o" # rep la ing the leading zeros with '− '

29 gmtset PLOT_CLOCK_FORMAT hh # hour only

30

31 dat11=2001−01−01T00 : 0 0 : 0 0

32 dat12=2001−01−05T00 : 0 0 : 0 0

33

34 psbasemap −R$dat11 / $dat12 / $dat21 / $dat22 $PRO \

35 −B6hf1h/a20f10g20WSe −Bsa1Df1hg1d/ a0f0 −Y−5 −K −O >> $OUT

36

37 psxy −R $PRO −W7/50 −K −O <<EOF >> $OUT

38 2001−01−03T06 : 4 1 : 0 0 53

39 2001−01−03T19 : 4 1 : 0 0 59

40 EOF

41

42 gmtset TIME_LANGUAGE no # unten ######################################

43 gmtset PLOT_CLOCK_FORMAT hh :mm

44 gmtset TIME_FORMAT_SECONDARY fD # fD : f u l l name of day in smal l l e t t e r s

45

46 dat11=2001−02−02T00 : 0 0 : 0 0

47 dat12=2001−02−04T11 : 0 0 : 0 0

48

49 psbasemap −R$dat11 / $dat12 / $dat21 / $dat22 $PRO \

50 −B6Hf2h/a20f10g20WSe −Bsa1Kg1d/ a0f0 −O −K −Y−5 >> $OUT

51

52 psxy −R $PRO −W7/50 −O <<EOF >> $OUT

53 2001−02−02T11 : 5 9 : 0 0 51

54 2001−02−02T14 : 5 9 : 0 0 71

55 EOF

56

57 gv $OUT &

58 ps2 ra s t e r −A −Te $OUT

59 rm $OUT

The required settings are e.g. ontrolled by gmtset TIME_LANGUAGE,

PLOT_DATE_FORMAT, PLOT_CLOCK_FORMAT, TIME_FORMAT_PRIMARY, or TIME_FORMAT_SECONDARY.

D
R

A
FT

28 5 Maps, ities, legends and more

40

60

80

va
lu

e

JAN APR JUL OCT JAN APR JUL OCT
2001 2002

40

60

80

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

1 Janvier 2 Janvier 3 Janvier 4 Janvier

40

60

80

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

Fredag Lørdag Søndag

Figure 5.9: Three examples for date and time sales: Sript 5.1.

D
R

A
FT

6 Representation of data with two independant variables 29

6 Representation of data with two independant variables

For the representation of data that depends on two variable, GMT o�ers plenty of possibilities. In this hapter,

the programs psxyz (Setion 6.1), grdontour (Setion 6.3), grdimage (Setion 6.5) and grdview (Exerise 13) are

introdued. Finally the onversion of data to a format readable for GMT will be subjet to Chapter 7.

6.1 Simple 3D graphs with psxyz

The most simple method to represent 3D data graphially is o�ered by the ommand psxyz. It is introdued in Sript

6.1.

Sript 6.1 psxyz

1 #!/ bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3

4 OUT=psxyz_1a . ps

5 PRO="−JX15/10 −JZ5"

6 REG=−R0/10/0/8/0/10

7 ANN=−B1 : x−ax i s : / 1 : y−ax i s : / 2 : z−ax i s :SWneZ

8 ANG=−E135/30

9

10 psxyz $REG $PRO $ANN $ANG −So0 . 4 −G0/0/200 <<END>$OUT

11 0 1 1

12 1 2 2

13 2 5 3

14 3 4 4

15 8 8 5

16 10 7 6

17 6 2 7

18 END

19

20 gv $OUT

21 ps2 ra s t e r −A −Te $OUT

22 rm $OUT

The options of the ommands psxy and psxyz do not di�er substantially so in this setion only new elements are

disussed.

• The projetion now ours not only in two but in three dimensions. Therefore, additionally to -JX, -JZ is used.

• The region option -R is enhaned by z

min

and z

max

.

• The axis option -B now ontains an additional third part for the z-axis.

• The biggest di�erene is the option -E, where the viewing angle is set by azimuth and elevation.

• The input data must (of ourse) onsist of three olumns (for some symbols even more).

6.2 Exerise 10: psxyz

1. Copy Sript 6.1 with the ommand

p ∼/de.awi.GMTCourse/psxyz_1a.sh .

and exeute it.

2. Vary the parameters of the projetions -JX and -JZ.

3. Change the Z to z in the axis option -B, or ompletely delete this har. What happens?

4. Experiment with di�erent viewing angels.

5. Test other symbols in di�erent sizes.

6. Try to reate the right graph in Figure 6.10. At �rst think about the di�erenes between the left and the right

graph. Use the manpage of psxyz and proeed step by step!

D
R

A
FT

30 6 Representation of data with two independant variables

6.3 2D graphs with grdontour

psxyz is unsuitable for the visualisation of 2D-�elds, like elevation. Suh data must be �gridded � before it an be

plotted. How to reate grid �les is subjet to Chapter 7. This Setion is about the visualisation of an existing grid

�le. The easiest possibility to plot 2D-�elds is a ontour plot. In Sript 6.2 a simple example an be found.

Sript 6.2 grdontour

1 #/bin/bash

2 p gmtdefau l t s4 . base . gmtdefau l t s4

3

4 PRO=−JL10/43.5/35/50/15

5 REG=−R−10/30/35/59

6 ANN=−B10f5g5/5 f5g2 . 5

7 OUT=grdontour . ps

8 INGRD=./data/ etopo5 . grd

9

10

11 psoast $REG $PRO $ANN −G200 −K > $OUT

12 grdut $REG −Geurope . grd $INGRD

13 grdontour $REG $PRO europe . grd −O −C500 −A1000 >> $OUT

14

15 gv $OUT

16 ps2 ra s t e r −A −Te $OUT

17 rm $OUT europe . grd

• An Azimuthale-Lambert-Projetion (-JL) is used. More information an be found in the manpage of psoast,

psbasemap or the o�ial doumentation of GMT (see Chapter 1.2).

• The variable INGRD ontains the path of the �le with the gridded data.

• The ommand grdontour plots the ontour lines.

6.4 Exerise 11: grdontour

1. Get the topography from ftp://ftp.awi.de/inoming/mthoma/etopo5.grd

2. Copy the Sript 6.2 with the ommand

p ∼/de.awi.GMTCourse/grdontour.sh .

and exeute it.

3. Open man grdontour and use it to solve the following tasks.

(a) Find out what is the matter with the two options -A and -C (with their urrent values) and vary their

values.

(b) Add a yellow box as bakground for the aption.

() Add the option -G and try di�erent parameters.

(d) Add a unit to the labels of the ontour lines.

(e) Sale the data so the unit an be km.

4. Finally the plot should look like the entral plot in Figure 6.11.

5. Now the sript will be expanded, so that di�erent regions an be plotted with the sript.

(a) Create a loop over the values Europa and Alpen.

(b) Within the loop the two funtions selet_region() and plot_ps() shall be alled.

i. Write the funtion plot_ps(). This funtion shall ontain

A. the formerly used GMT ommands,

B. gv $OUT and

C. rm $OUT.

D
R

A
FT

6 Representation of data with two independant variables 31

(In this ase ps2raster is not neessary.)

ii. Write the funtion selet_region(). In this funtion the variables PRO, REG, ANN and OUT shall be set

in an if-query depending on the variable passed to the funtion. Use the following values for projetion

and region for the Alps: PRO=-JC10/45.5/15 (Cylindri-Cassini-Projetion) and REG=-R5/15/43/48.

() The graph of the Alps should �nally look like the right one in Figure. 6.11.

6.5 2D plots with grdimage

For the representation of ontour lines, the abilities of grdontour are obviously limited: There are areas with large

and areas with small height gradients and therefore the density of ontour lines varies strongly. More beautiful �gures

an be reated by grdimage.

6.6 Exerise 12: grdimage

1. Enhane the sript you wrote for Exerise 11 with the new funtion hek_args(), where the arguments passed

to the sript are evaluated (ompare Sript 4.3 and Exerise 5).

(a) The Region shall be set with the Argument -r ([E℄urope, [A℄lps).

(b) The graphi representation shall be set with the argument -r (grd[℄ontour, grd[i℄mage).

2. Initialize the variables in a way that a all of the program without arguments results in the �gure known from

Exerise 11.

3. Write an usage()-funtion that explains the supported arguments.

4. Test your program with di�erent options.

5. Now add an if-query for the variable of the graphi representation to the funtion plot_ps(). Do not forget to

ath potential ouring errors with else.

6. Add the following three lines to the part exeuted if grdimage is to be used

(a) CPT=olor.pt

(b) makept -Ctopo -T-7000/3500/1000 > $CPT

() grdimage $INGRD $REG $PRO -C$CPT > $OUT

and exeute the sript with the option to use grdimage; test both regions.

Probably you will be a bit disappointed by the result, but that an be hanged. Anyway at �rst some basis

shall be explained.

(a) The program grdimage needs a olormap, that ontains the information whih values are assigned to whih

olor. This olormap is read in by the option -C.

(b) In this ase the name of the olormap is saved in the variable CPT.

() To reate the olormap the ommand makept is used. The most important options for this program are:

i. -T sets the olors with the lowest and the highest value and de�nes the distane between the di�erent

olors

ii. -C is referene to a so-alled master- olormap. The ontained olors are saled aording to the option

-T. GMT o�ers several pre-de�ned olormaps (Figure A.16), individual ones an be reated if neessary.

7. Add a psoast ommand that plots the oastline. As resolution hoose intermediate and neglet strutures

smaller than 1000 km

2
.

8. Add a legend for the used olormap with the ommand pssale. Use the option

-D7.5/-1/15/0.5h -B1500:Topography:/:m:

9. You will see that the plot is partially out of the visible domain. You an hange that by adding a bigger o�set

in y-diretion in the �rst GMT-ommand with the option -Y5.

D
R

A
FT

32 6 Representation of data with two independant variables

10. Test the option -I and -E of the ommand pssale.

11. Test other values for the -D option of the ommand pssale (undo!).

12. Change the inrement in the option -T of the makept ommand (e.g. 100 or 3000).

13. Test (with di�erent inrements) how a ontinuous olor gradient a�ets the plot.

14. Test other olormaps, onsult Figure A.16 for the seletion.

15. Use the GMT-program grdgradient to inrease the height of the strutures in the plot:

(a) De�ne the variable GRADGRD=gradient.grd.

(b) The ommand

grdgradient $INGRD -G$GRADGRD -Ne0.6 -A0/270

alulates the derivative in the diretions de�ned by the option -A and normalized by the values set in the

option -N. Further information an be aquired with man grdgradient.

() Add the reated gradient �le to the grdimage ommand with the option -I.

16. Exeute the sript. You will realize that it takes a long time. That is beause the input �le for the topome-

try/bathymetry ontains the data for the whole earth. It would be absolutely su�ient to apply the ommand

grdgradient (and all following) just to the domain that is going to be plotted. Therefore take the following

steps:

(a) De�ne a new variable INGRDCUT=in_tmp.grd

(b) Open man grdut and and use it to �nd out how to ut out the target domain.

() Replae $INGRD by $INGRDCUT where neessary.

17. Test di�erent parameters for the options -N and -A of the ommand grdgradient.

18. You will realize that the representation of Europe is quite good while the input data (with the 5 minutes

resolution) is apparently not su�ient for the Alps. This problem an be solved with the ommand grdsample:

Write an if-query that takes the following steps for the Alps:

(a) De�ning the variable INGRDCUT2=in_tmp_2.grd,

(b) Calling the ommand grdsample and interpolating the topography in a resolution of one minute to the �le

$INGRDCUT2 and

() Moving (not opying!) the �le $INGRDCUT2 to $INGRDCUT.

Attention: The ommand grdsample does not reate any new data but interpolates between the existing data

and reates new sample points. So the new result does not get any better but is just more beautiful (at least in

most ases).

19. Use di�erent olormaps depending on the region of interest.

20. By using the ommand makept one an abandon the option -T and the values in the master-pt-�le will be

used as limits. Test that ommand with di�erent olormaps!

21. Delete all temporary reated �les within the sript.

22. Compare the plots your sript generates with Figure 6.12.

23. Compare your solution with the sample solution in Appendix C.6.

6.7 Exerise 13: 3D graphs with grdview

A more plasti representation than with grdimage an be reated with grdview. The options and parameters of both

programs are pretty similar, that is why it only takes little e�ort to modify the solution of Exerise 12 (whih an be

found in Appendix C.6) so it uses grdview.

1. Enhane the desription of the parameter -g in the usage() funtion, so it overs the use of grdview (parameter

v).

D
R

A
FT

6 Representation of data with two independant variables 33

0

1

2

3

4

5

6

7

8

9

10

x−axis

0
1

2
3

4
5

6
7

8

y−axis

2
4

6
8

1
0

z−
a

xi
s

0

1

2

3

4

5

6

7

8

9
10

x−axis

0

1

2

3

4

5

6

7

8

y−
ax

is

2
4

6
8

10
z−

ax
is

Figure 6.10: Example for psxyz and Exerise 10.

−10˚

−10˚

0˚

0˚

10˚

10˚

20˚

20˚

30˚

30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

−2000

−2000

−2000−1
00

0

−1000

−1000

−1000

0

0

0

0

0

0
0

0

0

0

0
0

0

1000
1000

10
00

1000

10001000
1000

1000
10

00 1000

1000

2000

−10˚

−10˚

0˚

0˚

10˚

10˚

20˚

20˚

30˚

30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

−2 km

−1 km 0 km

0 km

0 km

1 km

1 km

1 km

1 km

2 km

5˚

5˚

6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

11˚

11˚

12˚

12˚

13˚

13˚

14˚

14˚

15˚

15˚

43˚ 43˚

44˚ 44˚

45˚ 45˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

0 km

1 km

1
km

1
km

1 km

1 km 2 km

2
km

2
km

2 km
2 km

Figure 6.11: Examples for grdontour and Exerise 11.

−10˚

−10˚

0˚

0˚

10˚

10˚

20˚

20˚

30˚

30˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

50˚ 50˚

55˚ 55˚

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000

Topography

m

5˚

5˚

6˚

6˚

7˚

7˚

8˚

8˚

9˚

9˚

10˚

10˚

11˚

11˚

12˚

12˚

13˚

13˚

14˚

14˚

15˚

15˚

43˚ 43˚

44˚ 44˚

45˚ 45˚

46˚ 46˚

47˚ 47˚

48˚ 48˚

−6000 −4000 −2000 0 2000

Topography

m

Figure 6.12: Topography of Europe and the Alps with grdimage.

D
R

A
FT

34 7 Creation of grid �les in the netCDF-format

2. Many ommands in the the funtion plot_ps an be used for both, grdimage and grdview, therefore the

implementation elif [$HOW == i -o $HOW == v ℄; then is reasonable.

3. pssale shall be alled at last and write the footer.

4. Modify the program so the ommand line option -gv suppresses the exeution of grdimage and psoast but

grdview is alled. Additional to the options used by grdimage, grdview needs the following parameter: -JZ3

-E200/40 -Qi

(a) The options -JZ3 -E200/40 are already known from Setion 6.1 (psxyz).

(b) The option -Qi ontrols the style of the representation. More information an be found in the manpage

(man grdview).

5. Now you should be able to generate the two plots in Figure 6.13 with your sript.

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000

Topography

m

−6000 −4000 −2000 0 2000

Topography

m

Figure 6.13: Topography of Europe and the Alps with grdview.

7 Creation of grid �les in the netCDF-format

The programs grdontour, grdimage and grdview are all reading in grid �les as input data. A grid �le ontains all

neessary information in binary form so the data an be saved ompatly and proessed quikly. To save these infor-

mations GMT uses the netCDF (Unidata Network Common Data Form) format

2

. Not all soures (internet, researh

institutes, own measurements, ...) provide data in the netCDF-format, therefore in most ases a data enversion will

be neessary. In the simplest ase the data is available in a three-oloumned-table (as ASCII-�le) with an equidistant

(x, y, z) triple. If the domain is known (it an be get with with minmax) and the onstant distane of the data points

as well, this data an be onverted to the netCDF format with the ommand xyz2grd -R<Region> -I<dx[/dy℄>.

Binary data an also be onverted to the netCFD format with xyz2grd, but in this ase further information (in form

of options) is required. These will be topi to Setion 7.1.

If the data is not available equidistant, it has to be gridded. That means, the existing data is interpolated or

extrapolated on an equidistant grid. This proedure is error prone as � depending on the used algorithm � the original

information an be distorted (See Setion 7.3).

2

http://www.unidata.uar.edu/pakages/netdf/.

D
R

A
FT

7 Creation of grid �les in the netCDF-format 35

7.1 Digital height models

A good topograhy data is available from the SRTM (Shuttle Radar Topography Mission,

http://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission). The data an be downloaded in di�erent

resolutions:

SRTM30: The SRTM30 dataset an be seen as the legitimate suessor of GTOPO30. Both datasets have a resolution

of 30� or round about 1 km. But the SRTM30 data is way more preise. That is mainly beause the SRTM30

dataset ontains only data from one soure (radar antenna of the spae shuttle), not to mention the better

tehnology. All data south of 60

◦

S and north of 60

◦

N is more or less idential with GTOPO30, beause there

were no new measurements in this area. As the the dataset is quite large, it is devided in 28 parts.

SRTM3: The SRTM3 Data results from the same raw data as SRTMP30, but it has a resolution of 3� or round about

90m.

The onversion of data to the netCDF-format is sometimes quite troublesome. Basially every data soure requires

di�erent options and parameters. In the best ase the dataset onsists of a long list of height values, better binary than

ASCII (muh faster). For the onversion GMT provides the tool xyz2grd

3

. The doumentation of the SRTM-data is

supplied with the data. If you e.g. want to represent the Alps, the data of interest an be found in the �le e020n90.

Get the data (inuding the meta-information) from ftp://ftp.awi.de/inoming/mthoma/e020n90.tar.gz extrat

the �le and take a loser look at the header:

BYTEORDER M

LAYOUT BIL

NROWS 6000

NCOLS 4800

NBANDS 1

NBITS 16

BANDROWBYTES 9600

TOTALROWBYTES 9600

BANDGAPBYTES 0

NODATA -9999

ULXMAP 20.00416666666667

ULYMAP 89.99583333333334

XDIM 0.00833333333333

YDIM 0.00833333333333

From these information the paramters for xyz2grd must be extrated. Open the manpage of xyz2grd for better

understanding of the following information.

• -R20/60/40/90

results from ontent of the doumentation.

• -Ge020n90.grd

Choose a name.

• -I0.5m

XDIM and YDIM set the resolution in x- and y-dietion. 0.00833333333333

◦
orresponds to 0.5 minutes.

• -N-9999

If there are regions without values in the dataset (e.g. sea) this value is assigned. In ase of SRTM30 it is −9999.

• -F

Fore Pixel Registration (Grid Registration is standard in GMT and does not need an option). Basially there

are two possibilies to save extensive data: The data points an refer to the intersetion of grid lines or just to the

spae in between them (see table). This is an important information for GMT as the number of sample points

in rows and olumns and therefore the overall number of data points is hanged.

3

If you have a not doumented binary format that you want to onvert - do not even think about it! (Exept you have really muh time

and onsider yourself being quite frustration tolerant :-)

D
R

A
FT

36 7 Creation of grid �les in the netCDF-format

Grid Registration Pixel Registration

graphi

olumns

x
max

−x
min

I
+ 1 = 60−20

0.008333333333
+ 1 = 4801 x

max

−x
min

I
= 60−20

0.008333333333
= 4800

rows

y
max

−y
min

I
+ 1 = 90−40

0.008333333333
+ 1 = 6001 y

max

−y
min

I
= 90−40

0.008333333333
= 6000

This is how one an see that the SRTM30 Data uses the Pixel Registration format and therefore the parameter

-F is neessary. (The SRTM3 data uses the Grid Registration format!!!).

• -ZTLhw

If you try to take a look at the �le e020n90.dem with an editor you will see pretty fast that it is a binary �le.

Basially the binary format is the best way to store large amounts of data as it an be saved with minimum

spae requirements and proessed quite fast. Unfortunately, it is also a bit harder to onvert. Generally, it is

ommon that the data of a domain is written line by line from the top left to the bottom right orner. This is

what the parameters TL stand for (top-left, that is default in GMT and an be dropped in this ase).

The last two parameters are way more deliate. As you might know from programming C, Fortran or Pasal

et., there are a ouple of di�erent numerial types of variables whih di�er in the overed number range and

preision. But they also di�er in the required memory and here the trouble starts. xyz2grd needs to know what

kind of number is used in the soure �le. In the manpage of xyz2grd is a list of all supported numerial formats.

If working with DEMs you an always start with trying the parameter h. In programming C and C++ this is

type short. It is meant to save integers with a relatively small range of numbers. Normally 2 byte are provided.

Thus, for the oding of a short-value are 16 bit available (216 = 65536 possibilities). One unsigned short is

therefore able to ode a number range from 0 − 65535. A signed short divides the number range equally in

positive and negative values and lies onsequently between −32.768 and 32.767 - virtually perfet for a digital

height model.

If parameter h happens to be not working and xyz2grd results in an error message, the orret data type has

to be alulated. Number of lines × Number of olumns = Number of data points or 6000× 4800 = 28800000.

Now we take a look at the size of our DEMs (ls -l e020n90.dem). The �lesize is 57600000 byte.

�lesize / number of data points = memory per data point or 57600000/28800000 = 2.

As you an see every data point in the SRTM30 dataset has 2 byte available. As it has to be possible to save

negative height values one an logially onlude that the �le format signed short 2-byte integer (or parameter

h) must be used.

The parameter w (byte swapping) is neessary beause most height models are reated on Unix-workstations.

The CPUs of workstations (big endian) save numbers onsisting of several bytes in a di�erent order than x86

CPUs of desktop omputers (little endian).

7.2 Exerise 14: DEMs and xyz2grd

1. With the information of the last setion, you should now be able to

(a) download the DEMs e020n90.tar.gz and w020n90.tar.gz

(b) onvert them to the netCDF format and

() hek the reated .grd �le with grdinfo.

2. Use the information ontained in grdut and grdpaste to generate a grid �le for the region -R5/30/43/52.

3. Chek the new grid �le with grdinfo.

4. Another test of the grid �le an be performed with grd2xyz. As the test of this high resolution dataset would

take too long and this tutorial is mainly about the funtionality of the programs, resample the dataset with

grdsample to an interval of 1◦ × 1◦ degree and use grd2xyz on the result. You should be able to interprete the

output produed by the shell.

D
R

A
FT

7 Creation of grid �les in the netCDF-format 37

5. Plot the SRTM30-data with grdimage. Use the Lambert-projetion -JA18.5/47/15 and the region -R10/43/28/51r.

Find out what the r stands for. Use one of the olormaps GMT_topo.pt, GMT_relief.pt or GMT_globe.pt.

These an be found in the diretory $GMTHOME/share/pt/. Use grdgradient -A0/270 -Ne0.6 to reate a

gradient �le and plot a legend with pssale.

Hint: As long as you experiment with the di�erent parameters you should use the saled-down grid �le to de-

rease omputing time. Figure 7.14 ontains several examples whih an be used as orientation. Note that the

areas with no valid data (NAN, not a number) are masked in di�erent olors. If a *.pt-�le does not ontain any

information for the olor of NAN (a line starting with N), the value set in .gmtdefauts will be used. This value

an be rede�ned with the ommand gmtset COLOR_NAN = 0/50/150.

6. GMT is also suitable to mask ertain area of data.

(a) Use the dataset of the Austrian boarder de.awi.GMTCourse/data/austria2pts.txt for the next task.

(b) Use the ommand grdmask to reate a new grid dataset. Assign 1 to all points inside (and on) and 0 to all

points outside the Austrian boarders. The domain and the grid interval must be idential to the dataset

whih shall be masked. Try to understand the ommand

grdmask austria2pts.txt -I0.5m -R5/30/43/52 -F -N0/1/1 -Gmask.grd

by reading the manpage.

() Use the ommand grdmath to multiply the two grid datasets:

grdmath mask.grd <grid file>.grd MUL = austria.grd

Try to �nd out what this operation does. The ommand grdmath is quite powerful and enables numberous

alulations, therefore a loser look at the manpage is reommended.

(d) Plot the new grid �le austria.grd with grdimage.

7. Plot the SRTM30-data with grdview. Chek out di�erent -Q paramters. (Attention: -Q reates a �le three

times as big as -Qi and the parameter -Qs makes this ratio even bigger then 75.)

A sample solution an be found in Appendix C.7.

7.3 Gridding of data

GMT o�ers three programs to grid data. In this ontext �gridding� refers to onverting unevenly distributed ASCII-

data to the netCDF-format. The program xyz2grd does not belong to this ategory as it does not grid the data but

just onverts it from ASCII (respetively binary) to netCDF. As it would go far beyond the sope of this workshop

to disuss the di�erent gridding algorithms, this setion shall just introdue the three programs provided by GMT.

More detailed information and examples an be found in the Cookbook in the setions 7.12 and 7.14�7.16. Generally

it has to be stated that there is no optimal gridding algorithm as the best hoie of program strongly depends on the

appliation and the existing data.

• triangulate

Gridding by Delauney-Triangulation: The existing (unevenly distributed) data points are onneted with the aim

of reating preferably equilateral triangles. This is ahieved by maximizing the minimum angle in all triangles.

� A value is alulated for all points loated inside a triangle.

� By using the distane to eah orner of the triangle as a weighting fator these values an easily be omputed.

� Points outside of the triangulated domain are not assigned any value (respetively NAN, in other words:

There is no extrapolation).

� No point has a value smaller or bigger than the three loal triangle points.

� The omputed grid is not di�erentiable as points of disontinuity might arise where two neighbouring grid

points are loated in di�erent triangles. That is physially not orret!

� By using the ommand grdfilter the �eld an be made di�erentiable via smoothening it.

DRAFT

3
8

7
C
r
e
a
t
i
o
n
o
f
g
r
i
d
�
l
e
s
i
n
t
h
e
n
e
t
C
D
F
-
f
o
r
m
a
t

10˚

10˚

15˚
15˚

20˚ 20˚

25˚

25˚

45˚
45˚

50˚
50˚

−
10000
−

9000
−

8000
−

7000
−

6000
−

5000
−

4000
−

3000
−

2000
−

1000 0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Elevation

m

globe

10˚

10˚

15˚
15˚

20˚ 20˚

25˚

25˚

45˚
45˚

50˚
50˚

−
10000
−

9000
−

8000
−

7000
−

6000
−

5000
−

4000
−

3000
−

2000
−

1000 0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Elevation

m

globe

10˚

10˚

15˚
15˚

20˚ 20˚

25˚

25˚

45˚
45˚

50˚
50˚

−
8000

−
7000

−
6000

−
5000

−
4000

−
3000

−
2000

−
1000 0
1000
2000
3000
4000
5000
6000
7000
8000

Elevation

m

relief

10˚

10˚

15˚
15˚

20˚ 20˚

25˚

25˚

45˚
45˚

50˚
50˚

−
7000

−
6000

−
5000

−
4000

−
3000

−
2000

−
1000 0

1000

2000

3000

4000

5000

6000

7000

Elevation

m

topo

10˚

10˚

15˚

15˚

20˚

20˚

25˚

25˚

45˚

4
5
˚

50˚

5
0
˚

−
6000

−
4000

−
2000

0
2000

4000
6000

E
levation

m

F
i
g
u
r
e
7
.
1
4
:
G
r
a
p
h
i

r
e
p
r
e
s
e
n
t
a
t
i
o
n
o
f
t
h
e
S
R
T
M
3
0
-
d
a
t
a
(
s
e
v
e
r
a
l
e
x
a
m
p
l
e
s
)
.

D
R

A
FT

7 Creation of grid �les in the netCDF-format 39

• nearneighbor

For every point it is searhed for existing data points in a given searh radius -S that is devided in a ertain

number of diretional sektors -N. From every setor the losest point is hosen and the value is alulated by a

weighted mean value from all setors.

� There is no extrapolation. Points with no valid data points in the searh radius are assignened the value

NAN.

� nearneighbor works best if the existing data points have about the same diretion in x- and y-diretion as

otherwise the searh radius would have to be a funtion of the searh diretion.

• surfae

Is able to alulate good looking and smooth grids.

� For every point of the grid a value is alulated (extrapolation!).

� At the boundary points extremes might appear, espeially if the distane to the losest existing data point

is large.

� As an iterative method is used, the alulation of a grid with surfae takes signi�antly longer than it

would take with triangulate or nearneighbor.

� Before using surfae one should use blokmean, blokmedian or blokmode to alulate a loal mean

value for the data set.

To onlude this setion it shall be mentioned what Walter Smith, one of the two GMT developers, had to say

onerning the well-known gridding algorithm kriging :

Stritly speaking, kriging is a partiular interpolation tehnique, and GMT does not have anything that does exatly this.

By experimenting with the option swithes on surfae or nearneighbor you may get a result that is just �ne for what you had

in mind, and may be lose to what kriging would do.

For those who are interested:

kriging (named after a South Afrian mining geologist) refers to interpolation by the following proess:

1. Determine the autoovariane funtion of the data (the kriging literature refers to this in the somewhat transposed form

of a �semi-variogram�).

2. Interpolate the data by a moving weighted average proess, using the autoovariane to determine the weights so as to

minimize the expeted squared error in the interpolated estimate.

While this sounds good in theory and is optimal in the sense of minimizing the expeted squared error, in pratie there

are some issues to ontend with. First, the error minimization and the optimality an only be established for data having

ertain statistial properties (stationarity, ergodiity, and some restritions on the form of the autoovariane funtion), and

many datasets won't have these properties (stationarity, for example, so one has to remove a trend surfae �rst and then

do kriging on the residuals). Seond, a pratial algorithm annot o�er omplete freedom in determining the autoovariane

funtion empirially from the data; instead, algorithms support only one or a few funtional forms for what kriging alls

the �semi-variogram�, and one uses the data to �t parametri models to this and then uses this for the interpolation. This

pratial restrition means that the assumed form of the autoovariane atually employed by the routine is not the true

autoovariane of the data, and this means that the optimality has been destroyed. So kriging is optimal in theory but maybe

not in pratie. Finally there is the problem of how you get a good estimate of a semi-variogram or a ovariane funtion

from data sparsely and irregularly spaed in the �rst plae � these things are most easily alulated from gridded data, but

if you had a grid you wouldn't be kriging in the �rst plae. Conerns about these issues have stopped me from writing a

kriging program for GMT so far. (This wasn't a problem for Krige in his original appliation; he was given samples (rok

ores drilled) on an equidistant grid and his problem was to estimate the properties in the gaps between samples.)

In a ertain sense, both nearneighbor and surfae are also interpolating by moving weighted averages. This is obvious for

nearneighbor and less obvious, though embedded in the �nite di�erene equations, for surfae. Thus both of these methods

an give a result something like kriging; the only question is whether the hoie of weighting sheme in these algorithms is

lose to what kriging would have hosen, or lose to optimal. By playing with the tension parameter in surfae you an hange

the weighting, whih hanges the power spetrum of the solution, whih is equivalent to hanging its autoovariane funtion.

D
R

A
FT

40 A Colormaps

A Colormaps

D
R

A
FT

rgb{Farbmodell

b=0

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=32

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=64

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=96

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=128

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=160

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=192

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=224

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

b=255

0

0

32

32

64

64

96

96

128

128

160

160

192

192

224

224

256

256

Figure A.15: The RGB olor sheme

D
R

A
FT

A Colormaps 41

D
R

A
FT

cool

0.00 0.25 0.50 0.75 1.00

copper

0.00 0.25 0.50 0.75 1.00

cyclic

0 90 180 270 360

drywet

0 3 6 9 12

gebco

−7000 −5250 −3500 −1750 0

globe

−10000 −5000 0 5000 10000

gray

0.00 0.25 0.50 0.75 1.00

haxby

0 8 16 24 32

hot

0.00 0.25 0.50 0.75 1.00

jet

0.00 0.25 0.50 0.75 1.00

nighttime

0.00 0.25 0.50 0.75 1.00

no_green

−32 −16 0 16 32

ocean

−8000 −6000 −4000 −2000 0

paired

0 3 6 9 12

panoply

0 4 8 12 16

polar

−1.0 −0.5 0.0 0.5 1.0

rainbow

0.00 0.25 0.50 0.75 1.00

red2green

−1.0 −0.5 0.0 0.5 1.0

relief

−8000 −4000 0 4000 8000

sealand

−5625 −3750 −1875 0 1875

seis

−1.0 −0.5 0.0 0.5 1.0

split

−1.0 −0.5 0.0 0.5 1.0

topo

−7000 −3500 0 3500 7000

wysiwyg

0 5 10 15 20

Figure A.16: The GMT CPT olormaps

D
R

A
FT

42 B Useful tools

B Useful tools

GMT an also be used for data analysis, some useful sripts an be found in this setion.

B.1 Distane of two points on the earth surfae

Sript B.1 Calulation of the distane (in km) between two points with given geographial oordinates.

1 #!/ bin/sh

2 LANG=C

3

4 usage="Usage : ` basename $0 ` lon1 l a t 1 lon2 l a t 2 "

5

6 i f ["$#" != "4" ℄ ; then

7 eho $usage

8 ex i t 1

9 f i

10

11 eho −n "Distane (km) : "

12 p r o j e t −C$1/$2 −E$3/$4 −G1000 −Q | t a i l −1 | ut −f 3

B.2 Tangent

Sript B.2 Calulation of a tangent for a (x, y) dataset.

1 #!/ bin/bash

2 # Linear Regression f (x)=a+bx from two−olumn data f i l e (x , y)

3

4 DATA=$1

5

6 XMIN=`minmax −C $DATA | awk '{ p r in t $1 } ' `

7 XMAX=`minmax −C $DATA | awk '{ p r in t $2 } ' `

8 ##

9

10 trend1d −Fxy $DATA −N2 −V > /dev/ nu l l 2> t

11 A0=`grep "Polynomial " t | awk '{ p r in t $5 } ' `

12 A1=`grep "Polynomial " t | awk '{ p r in t $6 } ' `

13

14 eho " f (x) = $A0 + $A1 ∗ x"

15 rm t

D
R

A
FT

B Useful tools 43

B.3 Correlation oe�ient

Sript B.3 Calulation of the orrelation oe�ients (and the varianes) of a (x, y) Dataset.

1 #!/ bin/bash

2 LANG=C

3 #Diese Berehnung stimmt mit der in Fahlexikon Physik S.500

4 # angegebenen Formel ueberein .

5

6 DATA=$1

7

8 Variane_y=` trend1d −N1 −Fr $DATA | awk '{ s += $1∗$1 ; } END { pr in t s /NR} ' `

9 Variane_r=` trend1d −N2 −Fr $DATA | awk '{ s += $1∗$1 ; } END { pr in t s /NR} ' `

10

11 KK=` a l "−p on f i g (\ " d i sp l ay \" , 2) ; on f i g (\ " l eadze ro \" , 1) ; \

12 on f i g (\ " t i l d e \" , 0) ; sq r t (1 − $Variane_r / $Variane_y) " | t a i l −n1 `

13

14 #eho "Variane_y = $Variane_y"

15 #eho "Variane_r = $Variane_r"

16 #eho "Kor r e k l a t i on s k o e f f i z i en t = $KK"

17 eho $KK

Addtitional to trend1d, whih was used in these examples, GMT provides many more tools to analyse and/or

modify data, e.g. trend2d, grdtrend, grdfft, grdfilter, fitirle, ...

D
R

A
FT

44 C Sample Solutions

C Sample Solutions

C.1 Solution to Exerise 5

Sript C.1 Exerise's solution 5 (write_head_foot.sh)

1 #!/ bin/bash

2 LANG=C

3 ##

4 fun t i on usage ()

5 {

6 eho −e "\n Usage : ` basename $0 ` has to be a l l e d with \n\n"\

7 " −O<PostSr ipt−Fi le> (output f i l e)\n"\

8 " −w<[K|O℄> (wr i te header (K) or f o o t e r (O))\n"\

9 " [−e ℄ (r eaze s eps , ju s t va i l d f o r −wO)\n"\

10 " [− f ℄ (f o r e , ove rwr i t e s PostSr ipt−F i l e)\n"\

11 " [− s ℄ (show r e s u l t i n g po s t s r ip t f i l e)\n"\

12

13 e x i t 1

14 }

15 ##

16 fun t i on hek_args ()

17 {

18 OUT=NONE

19 HEADFOOT=NONE

20 FORCE=FALSE

21 whi le getopts efO : sw : OPT ; do

22 ase $OPT in

23 O) OUT=$OPTARG ; ;

24 e) EPSI=TRUE ; ;

25 f) FORCE=TRUE ; ;

26 s) SHOW_PS=TRUE ; ;

27 w) HEADFOOT=$OPTARG ; ;

28 ∗) usage ; ;

29 esa

30 done

31 i f [$OUT == NONE ℄ ; then usage

32 e l i f [$HEADFOOT != K −a $HEADFOOT != O ℄ ; then usage

33 f i

34 }

35 ##

36 fun t i on write_head_foot ()

37 {

38

39 i f [$HEADFOOT == K ℄ ; then

40 i f [−e $OUT −a $FORCE == FALSE ℄ ; then

41 eho −e "\nError : '$OUT' e x i s t s , use the −f opt ion to ove rwr i t e\n"

42 usage

43 f i

44 psxy −R0/1/0/1 −JX1 −$HEADFOOT /dev/ nu l l > $OUT

45 e l s e

46 psxy −R0/1/0/1 −JX1 −$HEADFOOT /dev/ nu l l >> $OUT

47

48 i f ["$EPSI" ℄ ; then

49 ps2 ra s t e r $OUT

50 rm $OUT

51 l o a l OUT=${OUT%.ps } . eps

52 f i

53

54 eho " $OUT reated "

55 i f [$SHOW_PS ℄ ; then gv $OUT; f i

56 f i

57 }

58 ##

59 hek_args $∗

60 write_head_foot

61 e x i t 0

D
R

A
FT

C Sample Solutions 45

C.2 Solution to Exerise 6

Sript C.2 Exerise's solution 6 (bash_task.sh, Part 1)

1 #!/ bin/bash

2 LANG=C

3

4 IN=./data/bash_task . dat

5 TDAT=a5_tmp. dat

6 TDAT2=a5_tmp2 . dat

7 OUT=bash_task . ps

8 PRO=−JX15/6

9 ##

10 fun t i on plot_one ()

11 {

12 l o a l ANZREAL=$1

13 l o a l YTXTPOS=$2

14 psxy "$ANN" $REG $PRO −S0 . 3 −G$COLOR $TDAT2 −K −O −Y$OFFSET >> $OUT

15 s o r t −n $TDAT2 | psxy $REG $PRO −W3/$COLOR −K −O >> $OUT

16 pstext −R0/10/0/10 $PRO −K −O −G$COLOR <<END >> $OUT

17 9 . 8 $YTXTPOS 13 0 1 MR $ANZREAL Sampling S i z e

18 END

19 }

20 ##

21 fun t i on se let_one ()

22 {

23 l o a l WHAT=$1

24

25 i f [$WHAT == M ℄ ; then

26 l o a l COLUMN=4

27 l o a l ANNINC=0.01

28 l o a l ANNTXT="Mean Value"

29 l o a l OFFSET=8.5

30 l o a l YINC=0.02

31 e l i f [$WHAT == QM ℄ ; then

32 l o a l COLUMN=5

33 l o a l ANNINC=0.01

34 l o a l ANNTXT="Squared Mean Value"

35 l o a l OFFSET=8.5

36 l o a l YINC=0.02

37 e l i f [$WHAT == V ℄ ; then

38 l o a l COLUMN=6

39 l o a l ANNINC=0.0025

40 l o a l ANNTXT=Variane

41 l o a l OFFSET=0

42 l o a l YINC=0.005

43 e l s e

44 eho " e r r o r in ' se let_one () ' "

45 e x i t

46 f i

47 l o a l ANN="−B10f5 : Time Sampling Point : / a"$YINC" f "$ANNINC" :$ANNTXT:SWne"

48

49 grep −v '#' $IN | awk −v =$COLUMN '{ pr in t $2 , $, $3} ' > $TDAT

50 l o a l REG=`minmax −I10 /$YINC $TDAT`

D
R

A
FT

46 C Sample Solutions

Sript C.3 Exerise's solution 6 (bash_task.sh, Part 2)

51 f o r i in 500 2000 10000 ; do

52 i f [$ i == 500 ℄ ; then

53 l o a l COLOR=200/0/0

54 l o a l YTXTPOS=9

55 e l i f [$ i == 2000 ℄ ; then

56 l o a l COLOR=0/0/200

57 l o a l YTXTPOS=8.2

58 l o a l OFFSET=0

59 e l i f [$ i == 10000 ℄ ; then

60 l o a l COLOR=0/200/0

61 l o a l YTXTPOS=7.4

62 l o a l OFFSET=0

63 e l s e

64 eho " e r r o r in ' se let_one () ' "

65 ex i t

66 f i

67 awk −v w=$ i '{ i f ($3==" S i z e="w) pr in t $1 , $2 } ' $TDAT > $TDAT2

68 plot_one $ i $YTXTPOS

69 done

70 }

71 ##

72 fun t i on p l o t_a l l ()

73 {

74 f o r i in V QM M; do

75 se let_one $ i

76 done

77 }

78 ##

79 . . / t o o l s /write_head_foot . sh −O$OUT −wK −f

80 i f [$? −ne 0 ℄ ; then ex i t 1 ; f i

81 p l o t_a l l

82 . . / t o o l s /write_head_foot . sh −O$OUT −wO

83

84 gv $OUT

85 ps2 ra s t e r −A −Te $OUT

86

87 rm $OUT $TDAT $TDAT2

D
R

A
FT

C Sample Solutions 47

C.3 Solution to Exerise 7

Sript C.4 Exerise's solution 7 (land_oloured.sh)

1 #!/ bin/bash

2 LANG=C

3

4 p gmtdefau l t s4 . base . gmtdefau l t s4

5

6 OUT=land_oloured . ps

7 IN=data /germany2pts . txt

8 INC=data/ german_itys . txt

9 PRO=−JM15

10 REG=−R4/18/45/56

11 ANN=−B5/2WSEN

12 RP="$PRO $REG −K −O"

13

14 gmtset CHAR_ENCODING = Standard+

15

16 fun t i on plot_karte ()

17 {

18 gmtset BASEMAP_TYPE fany

19 psoast $RP "$ANN" −G200 −Na −Dh −A100 >> $OUT # Map with gray ountr ies

20 psxy $IN $RP −m −G200/0/0 −L >> $OUT # Germany in red

21 gmtset LABEL_FONT_SIZE = 12 # Font s i z e o f the uni t 'km'

22 gmtset LABEL_OFFSET = 0 .1

23 # Rivers , Sea , Boarders , Sa l ing

24 gmtset HEADER_FONT_SIZE 14 HEADER_OFFSET 0 .1

25 psoast $RP −S32/155/128 −Lf6 /55.5/52/200 k+l −Tf6 /54 .2/1 .7/3 −W0 −I1 −I2 −I8 −Dh −Na/5 −A100 >> $OUT

26 awk '{ p r in t $1 , $2 , 0.15+$4/5 e6 } ' $INC |

27 psxy $RP −S −G0/0/200 >> $OUT # Ci t i e s as points

28 awk '{ i f ($3 == "Munih") p r in t $1+.1 , $2+.15 , 1} ' $INC |

29 psxy $RP −Skvolano −G200/200/0 −W2/0 >> $OUT # Munih as vulano

30 awk '{ i f ($3=="Munih") p r in t $1 , $2 , 6} ' $INC |

31 psxy −L $RP −Gp300/8 :F0/255/64B− −W2/0 −Skpentagon >> $OUT # Restr i ted area

32

33 awk '{ p r in t $1 , $2−0.2 , 12 , 0 , 1 , "MC" , $3 } ' $INC |

34 pstext $RP −G255 >> $OUT # Caption of the i t i e s

35

36 # legend

37 gmtset ANNOT_FONT_SIZE = 12

38 ps legend −L1 .0 $RP −Dx0/0/8 .5/3 .5/BL −F −G255 << END >> $OUT

39 H 14 1 Legend

40 D 0 .5 2t10_10 :0

41 N 2

42 V 0 .3 2

43 S 0 . 3 0 . 2 0/0/200 0 0 . 6 i t i e s

44 S 0 . 3 kvolano 0 . 4 200/200/0 2 0 . 6 volano

45 S 0 . 3 n 0 . 3 p300 /8 :F0/255/64B− 0 0 . 6 r e s t r i t e d area

46 S 0 . 3 g 0 . 3 200/0/0 0 0 . 6 Germany

47 V 0 .3 2

48 N 1

49 D 0 .5 2t10_10 :0

50 G 0 .2

51 M 10 52 300+ l+j r f

52 G −0.1

53 L 12 33 MC GMT−Workshop

54 END

55 }

56

57 write_head_foot . sh −O$OUT −f −wK

58 plot_karte

59 write_head_foot . sh −O$OUT −s −wO −Te

D
R

A
FT

48 C Sample Solutions

C.4 Solution to Exerise 8

Sript C.5 Exerise's solution 8 (projetions_task.sh, Part 1)

1 #!/ bin/bash

2 LANG=C

3

4 CITIES= i t i e s . txt

5

6 fun t i on i t i e s ()

7 {

8 rm $CITIES 2> /dev/ nu l l

9 eho "−82.3833 23 .1333 Habana" >> $CITIES

10 eho " 139 .7 35 .6833 Tokyo" >> $CITIES

11 eho " 72.850342 19.023174 Mumbai" >> $CITIES

12 eho "−87.654419 41.851151 Chiago" >> $CITIES

13 }

14

15 fun t i on pro j ()

16 {

17 l o a l POPT=`awk −vl1=$1 −vl2=$2 '{ i f (l 1==NR) { x1=$1 ; x2=$2 }

18 i f (l 2==NR) { y1=$1 ; y2=$2 }

19 } END { p r i n t f ("−C%f/%f −E%f/%f " , x1 , x2 , y1 , y2)} ' $CITIES `

20

21 l o a l DIST=100 # distane of projeted nodes in km

22 p r o j e t $POPT −Q −G$DIST $3 # i f $3 i s s e t to −N a ' f l a t earth ' i s assumed

23 }

24

25

26 fun t i on p l o t ()

27 {

28 l o a l p=$1

29 l o a l OUT=projet ion_$p . ps

30 l o a l REG=−R−180/180/0/90

31 l o a l ANN=−Ba20g20/a20g20

32 l o a l PRO

33

34 i f [$p == "Merator" ℄ ; then

35 ANN=−Ba60g20/a20g20SWne

36 REG=−R110/470/−60/80

37 PRO=−JM16

38 e l i f [$p == "Gnomoni" ℄ ; then

39 PRO=−JF0/90/72/14

40 e l i f [$p == "Lambert" ℄ ; then

41 PRO=−JA0/90/14

42 e l i f [$p == " Ste r eog raph i " ℄ ; then

43 PRO=−JS0/90/14

44 e l i f [$p == "Hammer" ℄ ; then

45 PRO=−JH16

46 REG=−R−180/180/−90/90

47 e l i f [$p == "Gall−Peters " ℄ ; then

48 PRO=−JY0/45/16

49 REG=−R−180/180/−90/90

50 e l s e

51 eho "Unknown Pro j e t i on "

52 e x i t 1

D
R

A
FT

C Sample Solutions 49

Sript C.6 Exerise's solution 8 (projetions_task.sh, Part 2)

53 f i

54

55 l o a l RP="−K −O $REG $PRO"

56

57 . . / t o o l s /write_head_foot . sh −wK −O$OUT −f

58

59 ## oas t l i ne

60 psoast $RP $ANN −Dl −A15000 −G220 −S191/239/255 −W0.5 p >> $OUT

61

62 psxy $CITIES $RP −W5/255/127/0 >> $OUT # great i r l e

63 psxy $CITIES $RP −W5/204/0/0 −A >> $OUT # loxodrome

64

65 # another way of p l o t t i n g the great i r l e (between Habana&Tokyo)

66 pro j 1 2 | psxy $RP −W5/50/200/255 t10_30 :0 >> $OUT

67 pro j 2 3 | psxy $RP −W5/50/200/255 t10_30 :0 >> $OUT

68 pro j 3 4 | psxy $RP −W5/50/200/255 t10_30 :0 >> $OUT

69

70 # another way of p l o t t i n g the loxodrome (between Mumbai&Chiago)

71 pro j 1 2 −N | psxy $RP −W5/0/0/200 t10_30 :0 >> $OUT

72 pro j 2 3 −N | psxy $RP −W5/0/0/200 t10_30 :0 >> $OUT

73 pro j 3 4 −N | psxy $RP −W5/0/0/200 t10_30 :0 >> $OUT

74

75 ## p lo t i t y points and annotate

76 psxy $CITIES $RP −S0 . 2 −G255/255/0 −W >> $OUT

77 awk '{ p r in t $1 , $2 , 12 , 0 , "Helvet ia−Bold" , "TC" , $3 } ' $CITIES |

78 pstext $RP −Dj0 . 2 −W255 >> $OUT

79

80 eho "L 14 1 BC $p" > $$

81 eho "S 0 .55 − 1 − 5/255/127/0 1 . 2 Great C i r l e (psxy)\n" >> $$

82 eho "S 0 .55 − 1 − 5/204/0/0 1 . 2 Loxodrome (psxy −A)" >> $$

83 eho "S 0 .55 − 1 − 5/50/200/255 t10_30 :0 1 . 2 Sphe r i a l Earth Pro j e t i on (p r o j e t) " >> $$

84 eho "S 0 .55 − 1 − 5/0/0/200 t10_30 :0 1 . 2 Plane Earth Pro j e t i on (p r o j e t −N)" >> $$

85 ps legend $RP −Dx0/0/8/2.7/BL −G200 −F $$ >> $OUT

86 rm $$

87

88

89 . . / t o o l s /write_head_foot . sh −wO −O$OUT

90 eho "$OUT wri t ten "

91 gv $OUT

92 ps2 ra s t e r −A −Te $OUT

93 }

94

95 i t i e s

96 f o r p in Merator Gnomoni Lambert S t e r eog raph i Hammer Gall−Peters ; do

97 p l o t $p

98 done

99 rm $CITIES

D
R

A
FT

50 C Sample Solutions

C.5 Solution to Exerise 9

Sript C.7 Exerise's solution 9 (nmea.sh)

1 #!/ bin/bash

2 LANG=C

3

4 p gmtdefau l t s4 . base . gmtdefau l t s4

5

6 gmtset PLOT_DEGREE_FORMAT +ddd :mm

7

8 fun t i on get_data ()

9 {

10 f o r ((i =1; i <=2;++i)) ; do

11 grep '^$GPGGA' data/nmea . day$i | awk −F, '{ lon=subs t r ($5 , 1 , 3) ;

12 l a t=subs t r ($3 , 1 , 2) ;

13 lon2=subs t r ($5 , 4) / 6 0 . ;

14 l a t 2=subs t r ($3 , 3) / 6 0 . ;

15 p r in t lon+lon2 , l a t+l a t 2 } ' > $$. $ i

16 done

17 }

18

19 fun t i on p l o t ()

20 {

21 l o a l OUT=nmea . ps

22

23 l o a l COL1=200/0/0

24 l o a l COL2=200/100/0

25

26 l o a l REG1="−R7/9/53 .3/54 .22 "

27 l o a l PRO1="−JM15"

28

29 l o a l W=7.85 E=7.95 S=54.13 N=54.2

30 l o a l REG2="−R$W/$E/$S/$N"

31 l o a l PRO2="−JM5"

32

33 l o a l PCOAST="−K −O −G220 −S191/239/255 −W0.5 p/0 "

34

35 . . / t o o l s /write_head_foot . sh −O$OUT −f −wK

36

37 psoast $PCOAST $REG1 $PRO1 −Dh −Ba0 .25 g0 .25/ a0 . 25 g0 . 25NEsw >> $OUT

38 psxy −R −J −K −O −L −W3/0/0/200<<END >> $OUT

39 $W $S

40 $W $N

41 $E $N

42 $E $S

43 END

44 psxy −R −J −K −O $$.1 −W5/$COL1 >> $OUT

45 psxy −R −J −K −O $$.2 −W5/$COL2 >> $OUT

46

47 gmtset BASEMAP_FRAME_RGB 0/0/200

48 psoast $PCOAST $REG2 $PRO2 −Df −B10 −X1 −Y1 >> $OUT

49 psxy −R −J −K −O $$.1 −W5/$COL1 >> $OUT

50 psxy −R −J −K −O $$.2 −W5/$COL2 >> $OUT

51

52 . . / t o o l s /write_head_foot . sh −O$OUT −wO

53 ps2 ra s t e r −A −Te $OUT

54 rm $OUT

55 gv ` eho $OUT | sed ' s / . ps / . eps/g ' `

56 }

57

58 get_data

59 p l o t

60 rm $$.∗

D
R

A
FT

C Sample Solutions 51

C.6 Solution to Exerise 12

Sript C.8 Exerise's solution 12 (grdontour_task.sh, Part 1)

1 #/bin/bash

2 LANG=C

3

4 in t i = 7 :

5 f l o a t f = 1 . 5 ;

6 s t r i n g s = " ha l l o " ;

7

8

9

10 INGRD=./data/ etopo5 . grd

11 WORKGRD=work . grd

12 ##

13 fun t i on usage ()

14 {

15 eho −e "\n Usage : ` basename $0 ` has to be a l l e d with \n\n"\

16 " −r<Region> ([A℄ lpen , [E℄ ropa ; d e f a u l t : both)\n"\

17 " −g<Darste l lung> (grd [℄ ontour , grd [i ℄ mage , grd [v ℄ iew ; d e f au l t :)\n"

18 e x i t 1

19 }

20 ##

21 fun t i on hek_args ()

22 {

23 REGION="A E"

24 HOW=

25 whi le getopts g : r : OPT ; do

26 ase $OPT in

27 r) REGION=$OPTARG ; ;

28 g) HOW=$OPTARG ; ;

29 ∗) usage ; ;

30 esa

31 done

32 }

33 ##

34 fun t i on s e l e t_reg i on ()

35 {

36 WHAT=$1

37 OUT=ontour_image_$WHAT"_"$HOW. ps

38 i f [$WHAT == E ℄ ; then # Europa

39 PRO=−JL10/43.5/35/50/15

40 REG=−R−10/30/35/59

41 ANN=−B10f5g5/5 f5g2 . 5

42 MASTERCPT=r e l i e f

43 e l i f [$WHAT == A ℄ ; then # Alpen

44 PRO=−JC10 /45.5/15

45 REG=−R5/15/43/48

46 ANN=−B1f1g1/1 f1g1

47 MASTERCPT=sea land

48 e l s e

49 eho " e r r o r in ' s e l e t ' "

50 e x i t 1

51 f i

52

53 grdut $INGRD −G$WORKGRD −R$REG

54 }

55 ##

56 fun t i on plot_ps ()

57 {

58

59 i f [$HOW == ℄ ; then

60 psoast $REG $PRO $ANN −G200 −K > $OUT

D
R

A
FT

52 C Sample Solutions

Sript C.9 Exerise's solution 12 (grdontour_task.sh, Part 2)

61 grdontour $REG $PRO $WORKGRD −O −C0.25 −A1/200/200/0 −G15/100 \

62 −Z0 .001 −Nkm >> $OUT

63 e l i f [$HOW == i −o $HOW == v ℄ ; then

64 l o a l CPT=o l o r . pt

65 l o a l GRADGRD=grad i en t . grd

66 # INGRDCUT=in_tmp . grd

67 # grdut $INGRD −G$INGRDCUT $REG

68

69 i f [$WHAT == A ℄ ; then

70 l o a l INGRDCUT2=in_tmp_2 . grd

71 grdsample $WORKGRD −G$INGRDCUT2 −I1m

72 mv $INGRDCUT2 $WORKGRD

73 f i

74

75 makept −C$MASTERCPT −Z > $CPT

76 grdgrad ient $WORKGRD −G$GRADGRD −Ne0 .6 −A0/270

77 i f [$HOW == i ℄ ; then

78 grdimage $WORKGRD $REG $PRO −C$CPT −K −Y5 −I$GRADGRD > $OUT

79 psoast $REG $PRO $ANN −W3 −O −K −A1000 −Di −I1 >> $OUT

80 e l s e

81 grdview $WORKGRD $REG $PRO −C$CPT −K −Y5 −I$GRADGRD −JZ3 −E200/40 −Qi > $OUT

82 f i

83 p s s a l e −O −C$CPT −I −E −D7.5/−1/15/0.5 h −B2000 : Topography : / :m: >> $OUT

84 rm $CPT $GRADGRD

85 e l s e

86 eho " e r r o r in ' plot_ps ' "

87 e x i t 1

88 f i

89 eho " '$OUT' reated "

90 gv $OUT

91 ps2 ra s t e r −A −Te $OUT

92 rm $OUT

93 }

94 ##

95

96 hek_args $∗

97

98 f o r i in $REGION; do

99 s e l e t_reg i on $ i

100 plot_ps

101 done

102 rm $WORKGRD

D
R

A
FT

C Sample Solutions 53

C.7 Solution to Exerise 14

Sript C.10 Exerise's solution 14 (dem.sh, Part 1)

1 #!/ bin/bash

2 LANG=C

3

4 fun t i on dem2grd ()

5 {

6 f o r i in 1 2 ; do

7 i f [$ i == 1 ℄ ; then

8 l o a l ZIN=./data/ e020n90 . t a r . gz

9 l o a l REG=−R20/60/40/90

10 GIN[$ i ℄=./ data/e020n90 . grd

11 e l i f [$ i == 2 ℄ ; then

12 l o a l ZIN=./data/w020n90 . t a r . gz

13 l o a l REG=−R−20/20/40/90

14 GIN[$ i ℄=./ data/w020n90 . grd

15 e l s e

16 eho ERROR

17 ex i t 1

18 f i

19

20 l o a l IN=` ta r −−wi ldards −t "∗DEM" −z f $ZIN `

21 i f [! −e $IN ℄ ; then

22 eho " ex t ra t ing $IN from $ZIN"

23 ta r −−wi ldards −x "∗DEM" −z f $ZIN

24 f i

25 i f [! −e ${GIN[$ i ℄ } ℄ ; then

26 eho " g r idd ing >$IN< => ${GIN[$ i ℄ } "

27 xyz2grd $REG $INC −G${GIN[$ i ℄ } −N−9999 −F −ZTLhw $IN

28 #grdinfo ${GIN[$i ℄}

29 f i

30 done

31 }

32

33 fun t i on get_reg ion_of_interest ()

34 {

35 i f [! −e $AGRD ℄ ; then

36 grdpaste ${GIN [1 ℄ } ${GIN [2 ℄ } −G$$

37 grdut $$ $CUTREG −G$AGRD

38 rm $$

39 #grdinfo $AGRD

40 f i

41 i f [! −e $ASGRD ℄ ; then # resample for rougher re so lu t i on

42 grdsample $AGRD −G$ASGRD $LOWINC

43 f i

44 }

45

46

47 fun t i on plot_ps ()

48 {

49 l o a l MCOL=$1

50 l o a l HOW=$2

51 l o a l COL=$GMTHOME/ share / pt/GMT_$MCOL. pt

52 l o a l GRD=$AGRD

53 l o a l PRO=−JA18 .5/47/15

54 l o a l REG=−R10/43/28/51 r

55 l o a l ANN=−B5g5/5 g5

56

57 gmtset COLOR_NAN = 0/50/150

58 i f [$MASK == FALSE ℄ ; then

59 l o a l GIN=$GRD

60 l o a l OUT=dem_HOWMCOL. ps

D
R

A
FT

54 C Sample Solutions

Sript C.11 Exerise's solution 14 (dem.sh, Part 2)

61 e l s e

62 l o a l MASKDATA=./data/ au s t r i a 2p t s . txt

63 grdmask $MASKDATA $INC $CUTREG −F −N0/1/1 −Gmask . grd

64 grdmath mask . grd $GRD MUL = t . grd

65 l o a l GIN=t . grd

66 l o a l OUT=dem_mask_HOWMCOL . ps

67 f i

68

69 grdgrad ient $GIN −Ggrad . grd −A0/270 −Ne0 .6

70 i f [$HOW == I ℄ ; then

71 grdimage −C$COL $GIN $PRO $REG "$ANN" −Igrad . grd −K > $OUT

72 p s s a l e −D16 .5/5 . 1/9/0 . 5 −E −I −O −K −C$COL −B1000 : Elevat ion : / :m:/ >> $OUT

73 eho " 11 .15 0 14 0 0 MC $MCOL" |

74 pstext −JX15 −R0/10/0/10 −N −O >> $OUT

75 e l i f [$HOW == V ℄ ; then

76 PROZ=−JZ5

77 grdview $PROZ −C$COL $GRD $PRO $REG "$ANN" −Igrad . grd −K −E150/40 −Q > $OUT

78 p s s a l e −D4.5/1/9/0 . 5h −E −I −O −C$COL −B2000 : Elevat ion : / :m:/ >> $OUT

79 e l s e

80 eho "Error in ' plot_ps () $HOW' "

81 ex i t 1

82 f i

83

84 gv $OUT

85 # ps2raster −A −Te $OUT $OUT. eps i

86 ps2 ra s t e r −A −Te $OUT

87 eho " reated ` eho $OUT | sed ' s / . ps / . eps / ' ` "

88 # eps2eps $OUT. eps i $OUTEPS

89 rm $OUT $OUT. ep s i grad . grd t . grd 2> /dev/ nu l l

90 }

91

92

93 INC=−I0 . 5m

94 LOWINC=−I1

95 AGRD=./data/ a lp . grd

96 ASGRD=./data/ alp_small . grd

97 CUTREG=−R5/30/43/52

98

99 dem2grd

100 get_reg ion_of_interest

101

102

103 #AGRD=$ASGRD; INC=$LOWINC # omment for high re so lu t i on

104

105 MASK=FALSE

106 f o r i in topo r e l i e f g lobe ; do

107 plot_ps $ i I

108 done

109 plot_ps r e l i e f V

110 plot_ps topo V

111 MASK=TRUE

112 plot_ps g lobe I

113 e x i t 0

