# WEGENER

### Introduction

- Since 1998, northeast Siberian permafrost sequences have been analyzed as frozen paleoenvironmental archives of the last ~200,000 years (joint Russian-German science cooperation "SYSTEM LAPTEV SEA"). Organic matter (OM) properties were used as an important paleo proxy
- This study summarizes regional datasets on the quality and quantity of fossil OM in permafrost sequences of NE Siberia:
- $\rightarrow$  to show the permafrost carbon pool heterogeneity related to paleoenvironmental dynamics, and
- $\rightarrow$  to improved estimations of permafrost organic carbon stocks.
- OM distribution in the upper permafrost zone up to 100 m depth in the Northeastern Siberian Arctic indicates considerable variability of OM between different stratigraphical units, between same stratigraphical units at different study sites, and even within stratigraphic units at the same site.



# **Quality and Distribution of Frozen Organic Matter** (Old, Deep, Fossil Carbon) in Siberian Permafrost

Lutz Schirrmeister (1), Jens Strauss (1), Sebastian Wetterich (1), Guido Grosse (2), and Pier Paul Overduin (1) (1) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Dept. of Periglacial Research, Potsdam, Germany (Jens.Strauss@awi.de), (2) Geophysical Institute, Permafrost Laboratory, University of Alaska Fairbanks, Fairbanks, USA



**Eemian ice wedge casts** 

**Dmitry Laptev Strait** 

Early Weichselian alluvial deposits

Studied section of different stratigraphical units from Bolshoy Lyakhovsky Island (site 16),

#### Study sites of permafrost archives in NE Siberia with fossil OM data sets Western Laptev Sea:

(1) Cape Mamontov Klyk

#### Lena Delta:

(2) Turakh Sise Island, (3) Ebe Sise Island (Nagym), (4) Khardang Island, (5) Kurungnakh Sise Island Central Laptev Sea:

(6) Bykovsky Peninsula, (7) Muostakh Island New Siberian Archipelago:

(8) Stolbovoy Island, (9) Bel'kovsky Island, (10) Kotel'ny Island (Cape Anisii), (11) Kotel'ny Island (Khomurganakh River), (12) Bunge Land (low terrace), (13) Bunge Land (high terrace), (14) Novaya Sibir Island, (15) Maly Lyakhovsky Island

#### Dmitry Laptev Strait:

(16) Bol'shoy Lyakhovsky Island (Vankina river mouth), (17) Bol'shoy Lyakhovsky Island (Zimov'e river mouth), (18) Cape Svyatoy Nos, (19) Oyogos Yar coast

#### Indigirka-Kolyma lowland:

(20) Duvanny Yar (Lower Kolyma R.)

(21) Kytalyk (Berelekh R.), (22) Pokhodsk (Kolyma Delta)

|                                                  | absolute<br>ice content (wt%) |                          | TOC (wt%)    |                       | TIC (wt%) |                      | C/N    |       | <b>đ</b> <sup>1</sup> ³‰ vs VPDB) |                     |                          |
|--------------------------------------------------|-------------------------------|--------------------------|--------------|-----------------------|-----------|----------------------|--------|-------|-----------------------------------|---------------------|--------------------------|
|                                                  | 0 20 40 60 80 1               | 00 0.01                  | 0.1 1 10     |                       | 0 2 4 6   | 8                    | 0 10 2 | 20 30 | <b>40</b>                         | -32 -30 -28 -26 -24 | 4 -22                    |
| Holocene thermo-<br>erosional valley             |                               | 44.2 ± 9.0<br>n = 22     |              | 5.3 ± 4.9<br>n = 52   | ╂┤        | 0.2 ± 0.2<br>n = 22  |        |       | 11.8 ± 3.2<br>n = 50              |                     | -27.63 ± 0.87<br>n = 52  |
| Late Glacial to<br>Holocene<br>thermokarst       |                               | 44.4 ± 16.0 _<br>n = 67  |              | 5.9 ± 9.0<br>n = 148  |           | 0.2 ± 0.3<br>n = 114 | +      |       | 10.0 ± 5.4<br>n = 133             |                     | -27.93 ± 1.33<br>n = 139 |
| Holocene cover                                   |                               | 47.4 ± 14.6 _<br>n = 20  |              | 10.9 ± 12.2<br>n = 50 |           | 0.6 ± 0.6<br>n = 37  |        |       | 14.9 ± 5.8<br>n = 42              |                     | -27.98 ± 1.320<br>n = 49 |
| Taberites                                        |                               | 28.8 ± 4.8<br>n = 4      |              | 2.7 ± 1.4<br>n = 9    |           | 0.4 ± 0.1<br>n = 9   |        |       | 7.3 ± 3.4<br>n = 9                |                     | -29.47 ± 1.55<br>n = 9   |
| Late Weichselian<br>Ice Complex                  |                               | 38.3 ± 12.5<br>n = 66    |              | 2.2 ± 0.9<br>n = 109  | -+18-1    | 0.4 ± 0.2<br>n = 94  |        |       | 9.3.0 ± 2.3<br>n = 112            |                     | -25.58 ± 0.70<br>n = 111 |
| Middle Weichselian<br>Ice Complex                |                               | 40.3 ± 12.8 _<br>n = 234 |              | 3.7 ± 4.2<br>n = 359  | -         | 0.4 ± 0.5<br>n = 289 | +      |       | 10.6 ± 5.2<br>n = 311             |                     | -26.38 ± 1.26<br>n = 338 |
| Early to Late<br>Weichselian<br>fluvial deposits |                               | 22.4 ± 11.3 _<br>n = 313 |              | 0.4 ± 1.3<br>n = 426  | +         | 0.1 ± 0.1<br>n = 352 | +      |       | 8.8 ± 8.8<br>n = 79               |                     | -25.70 ± 1.31<br>n = 99  |
| Eemian<br>thermokarst<br>lake deposits           |                               | 29.0 ± 8.3 _<br>n = 37   |              | 3.1 ± 4.0<br>n = 75   | +         | 0.6 ± 0.9<br>n = 61  |        |       | 10.2 ± 3.7<br>n = 37              |                     | -27.50 ± 0.70<br>n = 36  |
| Pre Eemian<br>floodplain                         |                               | 32.6 ± 8.3 _<br>n = 23   |              | 1.0 ± 0.7<br>n = 119  |           | 0.3 ± 0.1<br>n = 15  | -      | _     | 6.5 ± 5.0<br>n = 16               |                     | -25.05 ± 0.29<br>n = 18  |
| Late Saalian<br>ice-rich deposits                |                               | 58.7 ± 20.1 _<br>n = 20  |              | 6.2 ± 4.1<br>n = 14   | -         | 1,82 ± 3.0<br>n = 9  | ┥┝-Ш-  |       | 14.2 ± 4.8<br>n = 14              | -                   | -27.89 ± 1.03<br>n = 14  |
| Q1 Q3                                            | Box plot gra                  | oph displays th          | e minimum. r | naximum. n            | nedian.   |                      |        |       |                                   |                     |                          |

min max median ower quartile and upper quartile

#### Stratigraphical classification of permafrost deposits by organic matter signatures, Schirrmeister et al. (2011)

| Stratigraphical<br>Units                        | lce Content<br>[wt%]               | Bulk<br>Density<br>[g cm⁻³], | Total<br>organic<br>carbon<br>[wt%], | Carbon<br>inventory<br>[kg C m <sup>-3</sup> ] | SD    |
|-------------------------------------------------|------------------------------------|------------------------------|--------------------------------------|------------------------------------------------|-------|
| Holocene thermo-erosional valley                | $44.2 \pm 9.0$                     | 0.781                        | 5.3 ± 4.9                            | 41.42                                          | 40.87 |
| Holocene thermokarst                            | $44.4\ \pm 16.0$                   | 0.775                        | $6.9\ \pm9.0$                        | 53.51                                          | 77.22 |
| Holocene cover                                  | $\textbf{47.4}\ \pm \textbf{14.5}$ | 0.686                        | $10.9\ \pm 12.9$                     | 74.73                                          | 96.26 |
| Taberites                                       | $28.8\ \pm 4.8$                    | 1.242                        | $\textbf{2.7}\ \pm \textbf{1.4}$     | 33.55                                          | 17.82 |
| Late Weichselian<br>Ice Complex                 | $\textbf{38.3}\ \pm \textbf{12.5}$ | 0.958                        | $\textbf{2.2}\ \pm \textbf{0.9}$     | 21.08                                          | 11.92 |
| Middle Weichselian<br>Ice Complex               | $40.5\ \pm 12.8$                   | 0.892                        | $\textbf{3.7}\ \pm \textbf{4.1}$     | 33.23                                          | 40.07 |
| Early to Middle Weichselian<br>fluvial deposits | $\textbf{22.4}\ \pm \textbf{11.3}$ | 1.434                        | $0.5\ \pm 1.4$                       | 7.17                                           | 18.72 |
| Eemian lake deposits                            | $29\ \pm 8.3$                      | 1.236                        | $\textbf{3.2}\ \pm \textbf{4.2}$     | 39.57                                          | 50.10 |
| Pre Eemian floodplain                           | 32.6 ± 8.3                         | 1.129                        | $1.0\ \pm 0.8$                       | 11.29                                          | 8.28  |
| Saalian Ice Complex                             | 58.7 ±20.1                         | 0.347                        | 5.3 ± 4.3                            | 18.41                                          | 34.93 |
| Carboningentary estimates                       |                                    |                              |                                      |                                                |       |

Carbon inventory estimates



## EGU2013-12417



several components of arctic periglacial landscapes

#### Conclusion

- Carbon contents, OM qualities and decomposition degrees are highly variable and connected to changing paleoenvironmental conditions
- $\rightarrow$  Interglacial & interstadial periods: High TOC contents, high C/N, low  $\delta^{13}C \rightarrow$  less-decomposed OM accumulated under wet, anaerobic soil conditions.
- $\rightarrow$  Glacial & stadial periods: Less variable, low TOC, low C/N, high  $\delta^{13}$ C values  $\rightarrow$  stable environments with reduced bioproductivity and stronger OM under dryer, aerobic soil decomposition conditions.
- OM release to the ocean, lakes, rivers and the atmosphere due to permafrost degradation (e.g. thermokarst, thermal erosion, coastal erosion) and microbial decomposition.
- The landscape average is likely about 30 % lower than previously published permafrost carbon inventories
- Still large uncertainties in carbon estimations/ calculations.
- $\rightarrow$  Detailed mapping of permafrost deposits especially of Ice Complex (Yedoma-type) and thermokarst deposits (Alas-type), their distribution and thickness are essential for OM pool estimation.
- $\rightarrow$  Measurements and estimations on OM available for decomposition are necessary.