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Ensemble-based Kalman smoother algorithms extend ensemble Kalman filters

to reduce the estimation error of past model states utilizing observational

information from the future. Like the filters they extend, current smoothing

algorithms are optimal only for linear models. However, the ensemble methods

are typically applied with high-dimensional nonlinear models, which also

require the application of localization in the data assimilation. In this paper,

the influence of the model nonlinearity and of the application of localization

on the smoother performance is studied. Numerical experiments show that

the observational information can be successfully utilized over smoothing lags

several times the error doubling time of the model. Localization limits the

smoother lag by spatial decorrelation. However, if the localization is well tuned,

the usable lag of the smoother, and hence the usable amount of observational

information, is maximized. The localization reduces the estimation errors of

the smoother even more than those of the filter. As the smoother reuses the

transformation matrix of the filter, it profits stronger from increases of the

ensemble size than the filter. With respect to inflation and localization, the

experiments also show that the same configuration that yields the smallest

estimation errors for the filter without smoothing also results in the smallest

errors of the smoothed states. Thus, smoothing only adds the lag as a further

tunable parameter.
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1. Introduction

Data assimilation with ensemble-based filter algorithms is

performed to obtain estimates, e.g. of the model state,

by combining the model prediction and observational

data that are available until the time when the filter

analysis step is computed. The sequential data assimilation

methods with alternating forecast phases and analysis

steps provide a trajectory of state estimates, each using

the observations available until the time of the analysis.

Reanalysis applications estimate the state over a time period

in the past. Thus, observations for the full time interval

are available at the time when the reanalysis is computed.

For this application, a retrospective analysis is of interest in

which also future observations during the time interval are

used for the estimation of past states. Ideally, one can utilize

the observational information from the full reanalysis time

interval to estimate the state trajectory during this interval.

This application is called smoothing.

Smoothing can be performed with ensemble-based

algorithms. A first ensemble smoother was derived by van

Leeuwen and Evensen (1996). This formulation exhibited

a limited performance with nonlinear models, which was

attributed to the fact that the method did not perform

sequential updates but a backward smoothing operation of

the full time interval using ensemble forecasts over the

same time interval (Evensen and van Leeuwen 2000). The

performance of ensemble smoothers was improved by a

sequential formulation termed Ensemble Kalman Smoother

(EnKS, Evensen and van Leeuwen 2000; van Leeuwen

2001). Evensen (2003) discussed that smoothing can be

performed as a computationally cheap extension of the

Ensemble Kalman Filter because the smoother computes

a state correction at a previous time by combining the

ensemble members at that time with weights given from

the filter analysis at the current time. The computing cost

of the smoother has been further discussed by Ravela and

McLaughlin (2007), where a cost-reduction is proposed that

avoids the recursive update at previous times. A review of

different smoother formulations was conducted by Cosme

et al. (2012). Ensemble-smoothers have been applied to

complex models, for example, for state estimation in the

North Atlantic Ocean (Brusdal et al. 2003), in an idealized

atmospheric model (Khare et al. 2008), and in an idealized

configuration of a high-resolution ocean model (Cosme

et al. 2010).

Khare et al. (2008) examined the performance of

ensemble smoothers in relation to the ensemble size and

the accuracy of the observations. Their experiments showed

that localization resulted in reduced errors in the smoothed

states. Next to an idealized atmospheric model, the 40-

dimensional model by Lorenz (1996) was used to study the

smoother performance. Khare et al. (2008) pointed to the

relevance of sampling errors, e.g. due to small ensembles, in

limiting the time lag over which a smoother can be applied.

The lag at which the smallest errors were obtained was

limited by spurious correlations caused by sampling errors.

The effect was also discussed by Cosme et al. (2010) in

case of a high-resolution ocean model. While the models

used by Khare et al. (2008) and Cosme et al. (2010)

were nonlinear, the influence of the nonlinearity was not

examined. However, Khare et al. (2008) noted that the time

evolution of ensemble perturbations is better approximated

by linearized dynamics with a smaller ensemble spread.

Further, Cosme et al. (2010) mention the expectation that

nonlinearity will lead to a decorrelation of the different

times involved in the smoothing and hence a convergence

of the smoothed state estimate.

Ensemble Kalman smoothers, as other linear

smoothers, are only optimal for linear dynamics (Cohn

et al. 1994). In this case, the ensemble smoother solution

becomes equivalent to the estimates obtained by 4-

dimensional variational assimilation methods (Fisher

et al. 2005) if the initial ensemble represents the same

covariance matrix as used in the variational method. While

the smoother is suboptimal for nonlinear systems, the

previous studies demonstrated that a smoother can still
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improve the state estimates. However, it is still unknown to

which extent the nonlinearity influences the smoother.

To this end, this study focuses on two aspects:

First, the influence of model nonlinearity on the smoother

performance is assessed for an example application.

Second, as high-dimensional models typically require the

application of localization, the effect of the localization

on the smoother performance is examined. In section 2,

an ensemble smoother is formulated as the extension of

an ensemble square-root Kalman filter. The smoother is

then applied in twin assimilation experiments with the 40-

dimensional Lorenz-96 model in section 3. By varying

the forcing parameter of this low-dimensional model, the

nonlinearity of the model is controlled and the smoother

performance is studied in dependence of the nonlinearity.

The influence of localization is assessed by varying the

localization radius and the ensemble size. Subsequently, the

application of the smoother to a realistic large scale ocean

circulation model is discussed in section 4. The findings of

the experiments are summarized and conclusions are drawn

in section 5.

2. Filter and Smoother Algorithms

A smoother algorithm can be formulated as an extension

of an ensemble-based filter. In this study, the smoother is

discussed in the context of the Error Subspace Transform

Kalman Filter (ESTKF, Nerger et al. 2012b). However,

due to the similarity to other algorithms like the Ensemble

Transform Kalman Filter (ETKF, Bishop et al. 2001),

LETKF (Hunt et al. 2007), or the SEIK filter (Pham

2001), the application in these filters is analogous. Also, the

smoother extension of the SEEK filter (Cosme et al. 2010)

is similar.

2.1. Error Subspace Transform Kalman Filter (ESTKF)

In all ensemble-based Kalman filters, the state vector xl

of size n and the corresponding error covariance matrix

Pl represent the state of a physical system and its error

estimate at time tl. These quantities are represented by an

ensemble of m vectors x(j), j = 1, . . . ,m, of model state

realizations. The state estimate is given by the ensemble

mean

xl :=
1

m

m∑
j=1

x
(j)
l . (1)

Using the matrix of ensemble perturbations

X
′
l := Xl −Xl (2)

with the ensemble matrix Xl :=
[
x
(1)
l , . . . ,x

(m)
l

]
, shortly

referred to as the ensemble, and Xl := [xl, . . . ,xl], Pl is

given as the ensemble covariance matrix

Pl :=
1

m− 1
X′

l (X
′
l)
T

. (3)

A forecast ensemble Xf
k at the observation time tk

is computed by integrating the state ensemble using the

numerical model. The vector of observations yk of size p is

related to the model state by yk = Hk(x
f
k) + εk, where H

is the observation operator. The vector of observation errors,

εk, is assumed to be a white Gaussian distributed random

process with covariance matrix R.

For the ESTKF, the forecast covariance matrix Pf
k is

written as

Pf
k =

1

m− 1
LkL

T
k (4)

where Lk is a matrix of size n× (m− 1) defined by

Lk := Xf
kT. (5)

The matrix T projects the ensemble matrix onto the error

subspace represented by the ensemble. It has size m×
(m− 1) and is defined by:

Tj,i :=




1− 1
m

1
1√
m

+1
for i = j, j < m

− 1
m

1
1√
m

+1
for i �= j, j < m

− 1√
m

for j = m

(6)

Geometrically, T is the Householder matrix associated with

the vector m−1/2(1, . . . , 1)T .
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For the analysis, one defines a transform matrix Ak of

size (m− 1)× (m− 1) by

A−1
k := ρ(m− 1)I+ (HkLk)

TR−1
k HkLk (7)

where I is the identity and ρ with 0 < ρ ≤ 1 is the

“forgetting factor” that is used to implicitly inflate the

forecast error covariance estimate. Using Ak, the analysis

covariance matrix is given by

Pa
k = LkAkL

T
k . (8)

The analysis ensemble is computed as a correction of

the ensemble mean and a transformation of the ensemble

perturbations. The analysis state estimate is computed from

the forecast using a combination of the columns of the

matrix Lk by

xa
k = xf

k + Lkwk. (9)

with the weight vector wk of size m− 1 given by

wk := Ak (HkLk)
T
R−1

k

(
yk −Hkx

f
k

)
. (10)

The ensemble is now transformed as

Xa
k = Xa

k + LkWk (11)

where the weight matrix Wk is defined by

Wk :=
√
m− 1CkT

TΛ . (12)

Here, Ck is the symmetric square root of Ak that

is computed from the singular value decomposition

UkSkVk = A−1
k such that Ck = UkS

−1/2
k UT

k . The

matrix Λ of size m×m is an arbitrary orthogonal matrix or

the identity. The vector (1, . . . , 1)T has to be an eigenvector

of Λ to ensure that the ensemble mean is preserved.

For efficiency, the computation of the analysis state

estimate, Eq. (9), and the transformation of the ensemble

perturbations, Eq. (11), can be combined into a single

transformation as

Xa
k = Xf

k + L
(
Wk +Wk

)
(13)

with Wk := [wk, . . . ,wk]. In addition, the term HkLk in

equations (7) and (10) is typically computed as (HkX
f
k)T.

Thus, T operates on the p×m matrix HkX
f
k , while Hk

operates on each ensemble state. Further, the matrix L in

Eq. (13) can be replaced by its definition Xf
kT. Then, the

matrix T can be applied from the left to the small m×m

matrix Wk +Wk.

2.2. Localization

Localization allows ensemble Kalman filters to operate

successfully with small ensembles in high-dimensional

models. For the ESTKF, the domain localization of

the SEIK filter (Nerger et al. 2006) with observation

localization (Hunt et al. 2007) is used. Here, a short review

for the local ESTKF is provided.

For the domain localization, the analysis and the

ensemble transformation of the ESTKF are performed in a

loop through disjoint local analysis domains. In the simplest

case, each single grid point is updated independently. For

each local analysis domain, the observations are weighted

by their distance from this domain by multiplying the

matrix R−1 element-wise with a localization matrix D̃.

D̃ is constructed from a correlation function with compact

support such that observations beyond a certain distance

obtain zero weight. These observations can be neglected

for the local analysis update. The local analysis domain

will be denoted by the subscript σ. The domain of the

corresponding observations of non-zero weight is denoted

by δ. Dropping the time index k for compactness, the

ESTKF with localization can now be written as

Xa
σ = Xf

σ + Lσ ([wδ, . . . ,wδ] +Wδ) (14)

wδ = Aδ(HδL)
T
(
D̃δ ◦R−1

δ

)(
yo
δ −Hδxf

)
, (15)
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A−1
δ = ρδ(m− 1)I+ (HδL)

T
(
D̃δ ◦R−1

δ

)
HδL , (16)

Wδ =
√
m− 1CδT

TΛ . (17)

Here, ◦ denotes the element-wise product. The matrix Cδ is

the symmetric square root of Aδ.

In the numerical experiments, the matrix D̃δ is

constructed using a 5th order polynomial function (Eq.

4.10 of Gaspari and Cohn 1999), which mimics a Gaussian

function but has compact support. The distance at which the

function becomes zero defines the localization radius.

2.3. The smoother extension ESTKS

The smoother extension of the ESTKF is formulated

analogously to the ensemble Kalman smoother (EnKS,

Evensen 2003). The sequential smoother computes a state

correction at an earlier time tk−l with lag l, utilizing the

filter analysis update at time tk.

For the smoother, the notation is extended according

to the notation used in estimation theory (see, e.g., Cosme

et al. 2010): A subscript i|j is used, where i refers to the

time that is represented by the state vector and j refers to

the latest time for which observations are taken into account.

Thus, the filter analysis state xa
k is written as xa

k|k and the

forecast state xf
k is denoted as xf

k|k−1. The superscripts a

and f are redundant in this notation.

To formulate the smoother, the transformation equa-

tion (13) is first written as a product of the forecast ensemble

with a weight matrix as

Xa
k|k = Xf

k|k−1Gk (18)

with

Gk := 1(m) +T
(
Wk +Wk

)
. (19)

Here the relation X
f

k|k−1 = Xf
k|k−11(m) is used with the

matrix 1(m) that contains the value m−1 in all entries. If

no inflation is applied, the smoothed state ensemble at time

tk−1 taking into account the observations up to time tk is

computed from the analysis state ensemble Xa
k−1|k−1 as

Xa
k−1|k = Xa

k−1|k−1Gk . (20)

The smoothing at time ti with i = k − l by future

observations at different analysis times is computed by

multiplying Xa
i|i with the corresponding matrices Gj for all

previous analysis times tj , i < j ≤ k. Thus, the smoothed

state ensemble is given by

Xa
i|k = Xa

i|i

k∏
j=i+1

Gj . (21)

Equations (18) to (21) are likewise valid for the global and

local filter variants. Thus, Gk can be computed for the

global analysis and then applied to all rows of the global

matrix Xa
i|j , or for the local weights of section 2.2 and

applied to the ensemble of the corresponding local analysis

domain σ. In the following sections, Xa
i|k will be referred to

as the filter solution if i = k and as the smoother solution in

the case of i < k.

For the case that covariance inflation is applied, it

has to be accounted for in the smoother calculations. As

discussed by Cosme et al. (2010), the equation for the

temporal cross-covariances does not contain a model-error

term. Hence, an ensemble that was inflated by a forgetting

factor has to be deflated for the application in the smoother

step. For the ESTKS with inflation, one has to define the

weight matrix for smoothing by

G̃k := 1(m) + ρT
(
Wk +Wk

)
. (22)

The application of ρ in Eq. (22) removes the inflation from

the weight matrices that has been introduced by Eq. (7)∗.

For the smoother step, the deflated matrix G̃k is used in Eq.

(21), while for the filter Gk defined by Eq. (19) is used.

∗The factor ρ used here is distinct from the factor
√
ρ used by Cosme

et al. (2010). The difference is required because in the ESTKF the
inflation is applied in the computation of the matrix A (Eq. 7), which
is computationally cheaper than the direct inflation of the ensemble
perturbations in Cosme et al. (2010) because of the smaller size of A.
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6 L. Nerger et al.

The smoother can also be applied in the case that the

matrix Λ in Eq. (12) is a random matrix. This is due to the

fact that the random transformation of a filter analysis at

time tk is contained in the forecast and analysis ensembles

at future times.

2.4. Properties of the smoother with linear and nonlinear

systems

The ensemble smoothers like the ESTKS in section 2.3 are

optimal for linear dynamical systems in the sense that the

forecast of the smoothed state ensembleXa
i|k with the linear

model until the time tk results in a state ensemble that is

identical to the analysis state ensemble Xa
k|k. This property

can be easily derived by applying the linear model operator

Mk,i with Xf
k,i = Mk,iX

a
i|i and using Eq. (18) recursively.

With Eq. (21) one obtains for ρ = 1, i.e. no model errors,

Xa
k|k = Mk,iX

a
i,i

k∏
j=i+1

Gj = Mk,iX
a
i,k . (23)

If the model operator Mk,i is an orthogonal matrix, the

forecast will preserve the ensemble variance. In this case,

the smoothing will result in constant smoother errors over

the full time interval [t0, tk]. Such an orthogonal matrix is,

for example, given by the linear advection model used by

Evensen (2004).

The formulation of the smoother used in section

2.3 hides the fact that the smoothing involves the cross-

covariances between the analysis ensemble at the filter time

and the ensemble at smoothing time. This can be seen

from the alternative formulation for the state correction by

smoothing that is used in the EnKS (see Evensen 2003):

xa
i|k = xa

i|k−1 +X′a
i,k−1(X

′a
k,k)

TE (24)

with E given by

E := HT
k

(
HkP

f
kH

T
k +R−1

k

)−1 (
yk −Hkxf

k|k−1

)
.

(25)

This alternative formulation shows that the smoothing will

only have an effect if the ensembles at the filter and

smoothing times are correlated.

The behavior of the smoother in the case a linear

system with known model and observation error covariance

matrices was examined by Cohn et al. (1994). In this

situation, the smoother is guaranteed to reduce the error

variance of the smoothed state estimate as long as the

state errors at the times i and k are correlated. If the

errors are uncorrelated, the smoothing has no effect. Cohn

et al. (1994) also found that model errors lead to a

faster convergence of the smoother such that the error

reduction stagnates for shorter lags than without model

errors. Overall, it should be desirable to be able to smooth

over a long lag, because then more observations are taken

into account. This will be particularly beneficial if the

observations are incomplete.

Ensemble smoothers add the issue of sampling errors

caused by small ensembles. Sampling errors in the initial

ensemble matrix Xa
0|0 will deteriorate the quality of

the weight matrix Gk at all times of the assimilation

process. This will lead to suboptimal filter analysis state

estimates (through Eq. 18), but also suboptimal ensemble

transformations in the smoother (Eq. 20). The additional

error reduction from the filter error by the smoother will be

smaller than without sampling errors. However, in a linear

system, the smoother does still reduce the errors of the

smoothed state estimates and converges for large lags.

Cosme et al. (2010) mention that the cross-correlation

might fade with the time distance between filter analysis

and smoothing due to model errors or nonlinearities.

They demonstrate that for an erroneous parameterization

of the model errors by a too small covariance inflation,

the estimation errors can increase beyond a certain

optimal lag. Their example used a nonlinear high-resolution

ocean model, but it was not examined whether the error

increase was due to the model error parameterization or

the nonlinearity. While for a linear system, the cross-

correlations are ideally used for smoothing, the nonlinearity
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can result in cross-correlations that are inconsistent with

the underlying linearity-assumption of the smoother. The

optimality of the smoother does no longer hold due to these

spurious cross-correlations. Thus, in case of nonlinearity,

the smoother performance is influenced by a combination

of existing, but fading cross-correlations as well as spurious

cross-correlations. While the spurious cross-correlations

result in a limitation of the smoother in reducing the

estimation errors similar to the decorrelation, they can also

deteriorate the smoothed state estimates for long lags. This

combined effect will be examined in the following sections.

3. Numerical Experiments

3.1. Experimental setup

In this section, the behavior of the ESTKS is examined

in identical twin experiments using the model by Lorenz

(1996); Lorenz and Emanuel (1998), denoted below as

L96 model. The L96 model is a simple nonlinear model

that has been used in several studies to examine the

behavior of different ensemble-based Kalman filters (e.g.

Anderson 2001; Whitaker and Hamill 2002; Ott et al.

2004; Sakov and Oke 2008; Janjić et al. 2011). For the

experiments, the implementation by Nerger et al. (2012a),

including the regulated localization, has been extended by

the smoother. The time integration is computed using the

fourth-order Runge-Kutta scheme with a non-dimensional

time-step size of 0.05. The model as well as the filter

and smoother algorithms are part of the Parallel Data

Assimilation Framework (PDAF, Nerger et al. 2005; Nerger

and Hiller 2013, http://pdaf.awi.de).

The model state dimension is set to n = 40. At this

dimension, the ESTKF can be successfully applied without

localization. To examine the influence of the nonlinearity on

the smoother without a possible inference by localization,

results for global filters are discussed first. Subsequently,

the influence of the localization is examined.

The nonlinearity of the L96 model can be controlled by

a forcing parameter F (see Lorenz and Emanuel 1998). The

model results in a periodic wave with wave number 8 for

F ≤ 4. Perturbations of this wave are damped over time.

For F > 4, the model develops a non-periodic behavior.

The strength of the nonlinearity can be specified by the

Lyapunov time λ−1, which is the asymptotic time at which

a small deviation grows by a factor given by the exponential

constant e. For the L96 model, λ−1 was described by

Karimi and Paul (2010) for F > 4 by the function λ−1 =

123.8F−2.6 + 0.158. A related measure of error growth

is the error doubling time (see, e.g., Lorenz and Emanuel

1998), which is approximately given by ln(2)λ−1.

For the twin experiments, a trajectory representing the

truth is computed over 21000 time steps initialized with a

state of constant value of 8.0, but with x20 = 8.008 (see

Lorenz and Emanuel 1998). Observations of the full state

are assimilated, which are generated by adding uncorrelated

normally distributed random noise of variance one to the

true trajectory. The observations are assimilated with an

offset of 1000 time steps to omit the spin-up period of the

model. The initial ensemble for all experiments is generated

by second-order exact sampling from the variability of

the true trajectory (see Pham 2001). All experiments are

performed over 20000 time steps. The ensemble size is

set to 34 members. The forgetting factor is tuned for each

experiment to obtain a minimal estimation error.

To vary the nonlinearity of the experiments, two sets

of experiments are conducted. First, the forcing parameter

F is varied between 1 and 10 to change the nonlinearity of

the model dynamics. In these experiments the observations

are assimilated after each time step. In the second set, the

forcing parameter is kept constant and the time interval

between the analysis steps is increased from 1 up to

9. With the longer forecast phases, the nonlinearity of

the assimilation problem increases because the model

nonlinearity acts longer on the ensemble states.

With the L96 model, the filter performance can depend

on the initial ensemble (see, e.g., Fig. 4 of Nerger et al.

2012a). The experiments performed here are generally in

the parameter regime where the filter estimates are robust.
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8 L. Nerger et al.

Thus, the estimation errors of the filter show only small

variations in the time-mean estimation errors. However,

the variation for different initial ensembles concerns the

determination of the optimal smoother lag as will be visible

in the error bars of the figures discussed below. To take

this behavior into account, each experiment defined by the

parameter set of forgetting factor, forcing parameter F , and

length of forecast phase is repeated 10 times with different

random numbers for the initial ensemble generation. The

assimilation performance is then assessed using the analysis

root mean square (RMS) error for each experiment over

the last 18000 time steps of each experiment. The first

2000 time steps are omitted to exclude the initial transient

phase of the assimilation from the computation. The RMS

errors are then averaged over each set of 10 experiments

with different random numbers for the ensemble generation.

We refer to this mean error as MRMSE. The error bars

for the optimal lag show the median, maximum, and

minimum values for each set of 10 experiments. Because

the filter itself is influenced by the nonlinearity, the MRMSE

obtained with the smoother is considered relative to that of

the filter.

3.2. Smoother behavior with varying forcing

Figure 1 shows the MRMSE as a function of the smoother

lag for five different values of the forcing parameter F .

The MRMSE is very small for F ≤ 4 where the L96-

model exhibits a periodic behavior. For F > 4, the MRMSE

increases strongly. In addition, the typical influence of the

smoother becomes visible. The MRMSE obtained with the

filter is reduced by the smoother. For short lags, each

additional lag results in a strong reduction of the MRMSE.

However, for increasing lags the MRMSE curve flattens

and reaches an asymptotic value where the MRMSE shows

only a small variation for different lags. The common

interpretation for the smoother performance as a function

of the lag (see Khare et al. 2008; Cosme et al. 2010)

is that for short lags, the cross-correlations between the

ensembles at different times provide useful information to

reduce the error in the state estimate. The cross-correlations

fade over time due to model errors, dissipative dynamics, or

nonlinearities of the dynamics. This results in a lower bound

of the estimation errors. However, for the cases with F > 5

a small increase of the MRMSE is observed at the beginning

of the asymptotic regime (it is too small to be visible in Fig.

1). The increase shows that there is an influence of spurious

correlations that can slightly deteriorate the smoothed state

estimate.

As an effect of the nonlinearity, it is visible in Fig. 1

that the lag at which the asymptotic MRMSE is reached

decreases for larger F . To quantify the influence of the

forcing parameter on the smoother, the optimal lag lopt is

considered. In general, lopt should be the lag at which the

minimal MRMSE is obtained. However, as this happens in

the range of lags where the MRMSE curve is very flat, we

found more accurate results when lopt is defined as the lag

where the slope of the MRMSE as a function of the lag

decreases below a limit. For the analysis below, the limit

was set to 5 · 10−6. This value was chosen to be as small as

possible while avoiding fluctuation effects in measuring lopt

that would lead to overly big error bars.

The results shown in Fig. 1 are obtained with the

choice of the forgetting factor for each forcing that results

in the minimal MRMSE for the filter analysis. This optimal

forgetting factor is ρ = 1.0 for F ≤ 4.5 and then decreases

about linearly to ρ = 0.96 for F = 10. In the experiments

discussed below, the same value of the forgetting factor was

optimal for the filter and the smoother for all cases with

lopt > 0. Thus, the forgetting factor does not need to be re-

tuned if a smoother is added to a filtering system. If the

forgetting factor is reduced below its optimal value, i.e. the

inflation of the forecast covariances is too large, the value of

the MRMSE increases, both for the filter and the smoother.

In addition, lopt is reduced. This is caused by larger changes

of the state by the smoother due to the increased inflation.

These erroneous changes impact the smoothing already for

smaller lags and lead to a stronger increase of the MRMSE.

If the inflation is reduced by increasing the forgetting factor
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from its optimal value, the filter tends to diverge. This effect

is caused by the fact that the optimal inflation is close to

the choice where filter divergence occurs (see Sakov and

Oke 2008). Usually, the forgetting factor that results in the

minimal MRMSE also resulted in the largest lopt. If the

forgetting factor would be kept fixed at a low value like 0.96,

which is optimal for F = 10, the inflation would be too big

for weaker model forcing. In these cases, the MRMSE is

larger than for the optimal choice of ρ and lopt is reduced.

However, also with constant ρ, lopt decreases when the

forcing is increased.

The solid line in the left panel of Fig. 2 shows lopt for

m = 34 and different values of the forcing. The optimal lag

is zero for the periodic cases (F ≤ 4). Thus, the filtered state

estimate shows the smallest errors, while the smoothing

increases the MRMSE. To interpret this behavior one has

to consider that the MRMSE is computed over the last

18000 time steps of each experiment. As perturbations of

the wave are damped by the model for F ≤ 4, there is the

special situation that the filter can already yield the best

state estimate. Mainly, the data assimilation speeds up the

convergence to the truth during the initial transient phase.

At the beginning of the assimilation process, the smoothing

is also beneficial and lopt is larger than zero. However, after

the transient phase, the smoothing results in an over-fitting

to the data, which has much larger errors with a standard

deviation of one. Hence, the smoother increases the errors.

In the non-periodic cases (F > 4), perturbations of the

wave are amplified by the model dynamics. For F = 4.5,

lopt jumps to the largest tested lag of 200 time steps, both

for the MRMSE computed over 18000 time steps or the full

20000 time steps of each experiment. With growing forcing,

lopt shrinks and reaches 58 time steps for F = 10. Figure 2

shows also the estimated error doubling time multiplied by

7. Between F = 4.5 and 8, lopt is close to this function.

However, for larger F , lopt decreases slower than the error

doubling time.

The right panel of Fig. 2 shows the MRMSE at lopt

for m = 34 as a function of the forcing parameter. For

F > 4, the MRMSE first increases strongly, but then the

growth becomes slower. The same behavior is visible for the

MRMSE obtained with the filter. Comparing the MRMSE

for the filter with the minimum MRMSE obtained with the

smoother, one finds that the smoother reduces the MRMSE

to about 50% for all forcings with F > 4.

The previous studies on ensemble smoothing (Khare

et al. 2008; Cosme et al. 2010) stress the impact of

sampling errors on the smoother performance. Further,

the effect of sampling errors in increasing the need of

the ensemble inflation was discussed by Bocquet (2011).

The optimal lag will obviously be influenced not only

by the nonlinearity of the dynamics but also by sampling

errors. In the experiments, the standard deviation of the

observation errors is kept constant, such that the sampling

errors in the observations are constant on average. Further,

the degrees of freedom for the analysis are constant for a

fixed ensemble size. Finally, due to the used 2nd-order exact

sampling, the relevant errors are well sampled as long as

the number of positive Lyapunov exponents that result in

dynamical instabilities is smaller than the ensemble size.

This condition is fulfilled, as for F = 10 the number of

positive Lyapunov instabilities is 14 (Lorenz and Emanuel

1998) while it is less for smaller F . For F = 8, the

experiments with localization in section 2.2 also confirm

that the sampling is very good for m = 34. To examine the

influence of sampling errors caused by a smaller ensemble,

Fig. 2 shows also lopt for an ensemble of 20 states. The

smaller ensemble results in a curve that is parallel to that

for m = 34 but shifted to smaller lags. For F > 4.5, lopt

for m = 20 is about 4.5 times the error doubling time. In

addition, the error reduction due to smoothing is only about

40%. If also the observational information is further reduced

by observing only each second grid point, the optimal lag is

reduced to 4.0 times the error doubling time and the error

reduction by the smoother is reduced to about 35% (not

shown).

Overall, the experiments with varying forcing show

that the decorrelation of the ensembles at the smoother and
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filter times occurs over shorter time intervals for stronger

nonlinearity. The optimal lag of the smoother is a few times

the error doubling time of the model. The factor to the error

doubling time depends on the sampling errors and shrinks

for larger sampling errors. The relative error reduction by

the smoother is decreased if the sampling errors are larger

due to a smaller ensemble. However, the relative error

reduction did not show a dependence on the model forcing.

3.3. Smoother behavior with increasing forecast length

Increasing the forecast length for a fixed forcing parameter

F also increases the nonlinearity of the data assimilation

process. However, while the forcing determines the

nonlinearity of the model dynamics, the forecast length ∆t

determines the length over which the nonlinear dynamics

act on the ensemble members.

To assess the influence of the forecast length,

experiments with fixed forcing values of between 5 and 8

are performed. As in the case of varying forcing, the optimal

choice of the forgetting factor depends on ∆t. For F = 5 it

shrank about linearly from ρ = 0.99 when assimilating at

each time step to ρ = 0.85 for ∆t = 9 time steps. A much

stronger inflation was required for F = 8 where ρ had to

be reduced to 0.51 for ∆t = 9 to obtain stable results with

minimal errors. Because the ensemble size and observation

error variance are kept constant, sampling errors are also

constant in these experiments.

When the nonlinearity in the assimilation process is

increased by larger choices of ∆t, the influence of spurious

correlations grows. The spurious correlations are caused by

the violation of the assumption that the cross-correlations

between the ensembles at the filter analysis time k and

the smoother time k −∆t are linear (see section 2.4). The

spurious correlations result in a smaller error-reduction by

the smoother and in a stronger error increase when the lag is

increased beyond lopt. The largest error increase beyond lopt

was obtained for ∆t = 9, hence for the largest nonlinearity

tested in the experiments. For F = 8 and ∆t = 9, the

smoother impact to decrease the RMS error was reduced

to only 25% of its maximal value at lopt. If the inflation was

not carefully tuned, the smoother state estimate could even

be worse than the estimate of the filter.

If ∆t is increased for a fixed value of F , lopt decreases

as is shown in the left panel of Fig. 3. As before, a

larger forcing results in a smaller lopt. This holds for all

forecast lengths. Compared to the case when observations

are assimilated at each time step, a forecast length of 9 time

steps resulted in a reduction of lopt to 51% for F = 5 and to

about 25% for F = 8. In the latter case, lopt is only 18 time

steps, which corresponds to 2∆t or about twice the error

doubling time.

The increase in nonlinearity caused by larger ∆t, also

reduces the performance of the smoother relative to the

filter. The right panel of Fig. 3 illustrates the influence

by showing the MRMSE for the smoother at lopt and the

MRMSE for the filter. The MRMSE grows for increasing

forcing. For fixed forcing, the MRMSE of both the filter

and the smoother grow about linearly with ∆t. The increase

is faster for larger forcing. For the larger forcing, the

impact of the smoother on the MRMSE for the assimilation

with ∆t = 1 increases (see also Fig. 2). However, the

ability of the smoother to reduce the estimation errors

with growing forecast length decreases for larger forcing.

For F = 5, the difference between the MRMSE for the

filter and the smoother is almost constant. However, the

difference between the MRMSE for the filter and the

smoother decreases for growing ∆t in case of the larger

forcings. In the case of the largest nonlinearity (F = 8,

∆t = 9 the error reduction is only 0.7%.

The experiments show that the different influences of

the forcing on the model nonlinearity and the forecast length

on the duration of the nonlinear action of the dynamics

during the ensemble integration result in different influences

on the smoother performance. The stronger nonlinearity

reduces lopt in both cases. This is caused by a combination

of a faster decorrelation of the ensembles at the filter and

smoother times and by spurious correlations that violate

the assumption of linear correlations in the smoother.
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However, while for short forecast lengths the stronger

model nonlinearity results in a larger positive influence of

the smoother, this influence is strongly reduced for long

forecasts.

3.4. Influence of localization

The experiments discussed in the previous sections used

the global filter to assess the impact of the nonlinearity on

the smoother performance without a possible influence of

localization. However, high-dimensional data assimilation

applications typically require the use of localization. The

localization down-weights or even removes long-range

covariances between different grid points. This method

should also have an effect on the smoother, which is studied

in this section. Here, the ESTKF algorithm with observation

localization is applied with the L96 model with a fixed

forcing parameter of F = 8. Ensemble sizes m = 34 and

m = 20 are used to assess the impact of the localization in

cases where the global filter is also successful. However,

the localization allows to use even smaller ensembles.

To examine the impact of small ensembles, m = 15 and

m = 10 are also considered below. As in the previous

experiments, the forgetting factor ρ was tuned to obtain

minimal RMS errors. Values between 0.98 and 0.9 were

required. The forgetting factor was closest to one for

those localization lengths where minimal RMS errors were

obtained.

Localization in smoothers with the L96 model was also

discussed by Khare et al. (2008). That study used a different

sampling method from our experiments. However, the

results discussed here are consistent with the previous study

but provide more insights into the effect of localization on

smoothing.

For the localized filter and smoother, the top left panel

of Fig. 4 shows the MRMSE as a function of the lag for the

four different ensemble sizes. For each ensemble size, the

localization radius was chosen so that the MRMSE of the

filter was minimal. As expected, the MRMSE grows with

decreasing ensemble size. Also it is visible that the optimal

lag shrinks when the ensemble size is reduced.

The optimal lag lopt as a function of the localization

radius is shown in the top right panel of Fig. 4. Localization

radii up to 80 grid points have been used for the two larger

ensembles. With the smaller ensembles, the assimilation

becomes unstable with very large error bars for larger

localization radii. The figure focusses on the parameter

region where stable results are obtained. As the model

domain has a size of 40 grid points, a localization radius

of more than 20 grid points implies that all observations

are used for each local analysis. However, the weight of

the observations is still reduced according to their distance.

The localization radii that result in the biggest lopt are rather

large with 50 grid points for m = 20 and 80 grid points for

m = 34. The optimal lags are longer with localization than

for the global analysis. Thus, the smoother profits from the

reduction of the influence of spatial long-range covariances

by localization.

The influence of the localization is also visible in the

MRMSE shown in the bottom left panel of Fig. 4. The

MRMSE for both the filter and the smoother are smaller

with localization than for the global analysis. For m = 34,

the improvement is very small with 1.5% for the filter

and 5.6% for the smoother, which shows that the sampling

quality of the ensemble is very high. However, even form =

34, the filter and the smoother profit from the localization.

For m = 20, the localization shows a bigger influence due

to the larger sampling errors in the ensemble-estimated state

error covariance matrix. With localization the MRMSE of

the smoother is reduced by up to 32% compared to the

global analysis. These results are qualitatively consistent

with those reported by Khare et al. (2008). However, the

experiments also show that the positive influence of the

localization is larger for the smoother than for the filter.

This effect is visible in the bottom right panel of Fig. 4 that

shows the difference in the MRMSE from the smoother and

the filter. For m = 34 and m = 20, the error reduction by

the smoother is larger with localization than with the global
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analysis. Also, there is an optimal localization radius where

the relative impact of the smoother is the largest.

Small ensembles can only be used with localization.

The required localization radius decreases with the

ensemble size. For m = 15 and m = 10, Fig. 4 shows that

also lopt decreases with the ensemble size. In addition, the

MRMSE of the filter and the smoother increase. However,

the bottom left panel of Fig. 4 shows that the smoother still

has a large impact on the MRMSE even for m = 10. The

localization radius significantly influences the MRMSE of

the smoother and the filter. The smallest MRMSE of the

filter as well as the smoother are obtained for the same

localization radius. The bottom right panel of Fig. 4 also

shows that the differences between the MRMSE obtained

with the filter and smoother become smaller if the ensemble

size is reduced. Thus the positive effect of the smoother is

reduced. This is in accordance with the inferior sampling

quality of the ensemble covariance matrix for decreasing

ensemble sizes. The sampling errors deteriorate the weight

matrix Gk, which results in the overall larger MRMSE. The

smoother is more strongly influenced by the sampling error

than the filter, because the weight matrices Gi are reused to

perform the smoothing. The inferior sampling quality also

leads to the reduced lopt for smaller ensembles. Conversely,

the fact that the difference between the MRMSE of the filter

and the smoother (Fig. 4, bottom right) grows for larger

ensembles indicates that the smoother profits more from the

improved sampling than the filter.

For all ensemble sizes, Fig. 4 shows that the MRMSE

for the smoother and the filter are smallest for the same

localization radius. In addition, the error reduction by the

smoother from the MRMSE of the filter (bottom right panel

of Fig. 4) is maximal for this localization radius. Thus, the

effect of minimizing the MRMSE of the filter by varying

the localization radius is amplified in the smoother.

Overall, the experiments show that the influence of

localization on the smoother is analogous to its influence

on the filter. The same localization radius results in

minimal MRMSE for both the filter and the smoother. The

MRMSE from the smoother is slightly more reduced by

the localization than the filter errors. The optimal lag also

varies with the localization radius and becomes maximal for

a localization radius slightly bigger than the value where the

errors are minimal.

4. Smoother behavior with a global ocean model

4.1. Experimental setup

The experiments with the small L96 model allow to vary

the nonlinearity in a systemic way. However, the model

includes only simplified dynamics. To obtain insight in

the smoother behavior with a complex model, twin data

assimilation experiments with the finite-element sea-ice

ocean model (FESOM, Danilov et al. 2004; Wang et al.

2008; Timmermann et al. 2009) are conducted. FESOM

uses finite elements to solve the hydrostatic ocean primitive

equations. Unstructured triangular meshes are used, which

allow for a varying resolution of the mesh. A global

configuration with a horizontal resolution of about 1.3◦ and

refinement in the equatorial region (see Wang et al. 2012)

is used here. The model uses 40 vertical levels. The model

is forced by the interannually varying data documented

by Large and Yeager (2009). The global ocean model

configuration shows only weak nonlinearity, which could

only be increased by generating a higher-resolved model

mesh. Accordingly, the experiments can only access the

behavior of the smoother in case of the complex model

without examining its dependence on nonlinearity.

For the data assimilation, FESOM was coupled to

PDAF (Nerger et al. 2005; Nerger and Hiller 2013) into

a single program that allows to perform the assimilation

experiments on parallel computers. The state vector has a

size of about 10 million. It includes the sea surface height

(SSH) and the 3-dimensional fields temperature, salinity,

and the velocity components. For the twin experiments, the

model was initialized from a spin-up run and a trajectory

over one year was computed. This trajectory contains the

model fields at each tenth day and represents the “truth” for
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the assimilation experiments. An ensemble of 32 members

is used, which is generated by second-order exact sampling

from the variability of the true trajectory (see Pham 2001).

The initial state estimate is given by the mean of the

true trajectory. Pseudo observations of the SSH at each

surface grid point are generated by adding uncorrelated

random Gaussian noise with a standard deviation of 5 cm

to the true model state. The analysis step is computed after

each forecast phase of 10 days with an observation vector

containing about 68000 observations. Each experiment was

conducted over a period of 360 days.

The experiments use the ESTKF with observation

localization. The localization length was set to 1000 km.

This choice resulted in the smallest time-mean RMS errors

compared to other radii in the the range between 600 and

1400 km. A forgetting factor ρ = 0.9 is used to inflate the

estimated variance of the forecast ensembles.

4.2. Impact of smoothing with the global ocean model

The impact of assimilating the pseudo observations is

assessed in terms of the RMS error for each analysis

time. Figure 5 shows the RMS error over time. As the

mean state is a rather unrealistic initial state estimate,

the RMS error is already strongly reduced at the first

analysis time. After about 5 analysis cycles, the assimilation

process reaches its asymptotic phase during which the RMS

error shows only small variations. The RMS error for the

smoother is displayed in Figure 5 for a lag of 17 analysis

steps, corresponding to 170 days, which is the optimal lag

computed as in section 3.

The time-mean RMS error obtained with the smoother

for varying lags relative to the error obtained with the

filter is shown in the left panel of Fig. 6. The error is

averaged over the asymptotic period (days 60 to 360) of

the experiment. The smoother reduces the RMS error by up

to 9%. Small lags up to about 100 days have the strongest

effect in reducing the RMS error from its value without

smoothing, but up to about 200 days, the further error

reduction is still visible.

Overall, the effect of the smoother on the sea surface

height is very similar to the case of the small L96 model.

For shorter lags, each additional previous analysis step that

is smoothed has a strong positive effect. The effect of the

smoothing then stagnates such that for longer lag lengths the

RMS error remains almost constant. For the complex ocean

model, it is visible that smoother lags up to 200 days have

positive impacts, with each additional lag being beneficial in

reducing the RMS error. The strongest impact is achieved

by the smoothing over the first lags up to 50 days. This

behaviour of the smoother is similar to that described by

Cosme et al. (2010). However, that study found shorter

optimal lags, which is likely due to the finer resolution of

their model and more frequent analysis steps.

With respect to computing times, the extension of

the filter method by the smoothing adds only a little

time. For the FESOM model, the ensemble integration

was fully parallelized, thus 32 model integrations were

performed concurrently. A single experiment took about

5300 seconds using 2048 processor cores. The analysis step

was computed using 64 processor cores. For the filter alone,

the analyses took about 50 seconds. The smoothing took

up to 100 seconds for the longest lag of 35 analysis steps.

Thus, the filter analysis and smoothing took less than 3%

of the execution time. Nonetheless, the time for smoothing

can exceed the time required for the application of the filter

for long lags. Apart from the computing time, the memory

requirement can become limiting for long lags. This is

because the past state ensemble needs to be stored for each

smoothed lag.

4.3. Multivariate impact of smoothing

The assimilation experiments with the FESOM model

perform multivariate assimilation. Thus, next to the

observed SSH fields, all other fields in the state

vector are updated by the filter and the smoother. The

multivariate corrections utilize the ensemble-estimated

cross covariances between the observed SSH field and the

unobserved fields.
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The right panel of Fig. 6 shows the relative RMS error

averaged over the asymptotic period (days 60 to 360) for

the 3-dimensional temperature and salinity fields as well as

the two horizontal velocity components. The relative RMS

errors for the different fields depend differently on the lag.

For salinity, the error decreases by up to 2.9% for long

lags similarly to the decrease in the error of the sea surface

height. For the temperature and the zonal velocity fields,

the relative RMS errors decrease up to a lag of 40 days and

increase again for longer lags. For the meridional velocity

a strong decrease of the error is visible up to a lag of 30

days. For lags between 40 and 170 days, the error shows a

further slow decrease. The error decrease then stagnates, but

for lags beyond 250 days the error increases slighty.

The optimal lags for the different fields are summa-

rized in Table I together with the error reduction obtained by

the smoother. The optimal lags are distinct for the different

fields. While the optimal lags for temperature and zonal

velocity are relatively short with 40 days, the optimal lags

for the other fields are quite long with 170 to 180 days. A

short optimal lag for the temperature field was attributed by

Brusdal et al. (2003) to the direct influence of the surface

temperature to the surface temperature forcing applied to

the model.

The different optimal lags point to the question how

to define the optimal lag in multivariate smoothing. When

the short lag of 40 days would be used, which is optimal

for temperature and zonal velocity, the observational

information is not optimally used for the other model fields.

On the other hand, a long lag of 170 days would be far

beyond the optimal lag for temperature and zonal velocity.

At the ocean surface this long lag would even deteriorate

the meridional velocity field (not shown). Instead of using a

cautiously chosen short lag, one might consider to perform

the smoothing over distinct lags for the different fields. This

method could optimize the impact of the smoother for each

field, but it could also negatively affect the balances in the

model state.

Considering that the localization radius was set to

1000km one might worry whether the long lags of up to

180 days are physically plausible. The expectation is that

the circulation information should have moved out of a

localization region within a few weeks. The experiments

show that most of the observational information is used

for lags up to 50 days. For longer lags the changes to

the model fields caused by the smoother are about one

order of magnitude smaller than for short lags. However,

the changes to the model fields are similarly distributed

over the whole model domain for both the short and long

lags. The smoother does not improve the state estimate

at all locations, however, for short lags the improvements

dominate clearly. Over all, the experiments do not allow

to conclude whether the improvements for long lags are an

effect of the numerics or whether not all information at all

places in the global ocean mesh has been advected away

allowing for further successful smoothing.

The multivariate assimilation utilizes the estimated

cross-covariances between the SSH field and the other

fields. A larger ensemble is expected to better represent

the cross-covariances. The experiments with the L96 and

localization indicated that an increasing ensemble size can

improve the smoother to a larger amount than the filter.

Increasing the ensemble size for the assimilation with

FESOM from 32 to 48 members does also improve the

estimates by both the filter and the smoother. However, the

smoother impact grows with the increasing ensemble. The

change in the error reduction varies for the different fields.

It is smallest for the SSH with about 4% and largest for

the meridional velocity with 43% for a lag of 170 days.

Thus, also in case of the complex global ocean model, the

smoother does profit more from increasing the ensemble

size than the filter.

5. Summary and Conclusion

This study examined how an ensemble smoother is

affected by the nonlinearity in a numerical model and

by localization. A smoother based on the error-subspace
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transform Kalman filter (ESTKF) was used in the numerical

experiments. However, analogous results can be expected

with smoother extensions of filters like the ETKF and the

SEEK filter, as the equations of these algorithms are very

similar to those of the ESTKF.

Twin experiments with the 40-dimensional Lorenz96

model showed an optimal smoothing lag at which the root

mean square error of the state estimate was minimal. The

experiments demonstrated that, with a nonlinear model,

the smoother can utilize the observational information to

reduce the estimation errors for lags up to a few times

the error doubling time of the model. Thus, the optimal

lag becomes shorter when the nonlinearity of the model

dynamics increases. The optimal lag was between 2 and

8 times the error doubling time of the Lorenz96 model,

but depended also on the ensemble size that influenced the

sampling errors in the experiments. For a fixed ensemble

size, the factor of the optimal lag to the error doubling

time was nearly constant if the model nonlinearity was

varied. The optimal lag also decreased with increasing

nonlinearity of the assimilation process caused by longer

forecast phases. The experiments with the Lorenz96 model

also showed that the overall error-reduction that can be

obtained with the smoother depends on the nonlinearity

of the model dynamics that was controlled by a forcing

parameter. If the time interval between successive analysis

steps was increased, the maximal reduction of the RMS

errors by the smoother remained almost constant for small

nonlinearity where the forecast length was well below the

error doubling time. For larger forcing, when the maximal

forecast length was closer to the error doubling time, the

influence of the smoother decreased with growing forecast

lengths.

The application of localization resulted in a stronger

improvement of the smoothed state estimates compared to

the filter estimates without smoothing. Thus, the smoother

profits more than the filter from the damping of spurious

correlations by the localization. The performance of the

smoother to reduce the errors of the filter depended on

the localization radius. However, the smoother showed

the strongest reduction of the errors from the filter for

the same localization radius for which the filter provided

the smallest errors. The optimal lag decreased with the

ensemble size due to the reduced sampling quality of the

ensemble covariance matrix.

The experiments in this study used an inflation of

the ensemble covariance matrix with a constant forgetting

factor that was tuned to obtain the smallest possible RMS

errors for the filter. The tuning showed that the filter and the

smoother result in minimal RMS errors for the same choice

of the forgetting factor. Thus, the tuning performed for a

filter with constant forgetting factor is likewise valid for the

smoother. Accordingly, the smoother can be added to an

existing assimilation system without re-tuning the filtering

system. However, the smoother lag should be carefully

chosen to maximize the benefit of the smoother.

Experiments using a global ocean circulation model

with weak nonlinearity showed results that are consistent

with those obtained with the Lorenz96 model. Also here

the smoother can be applied using the same inflation as

tuned for the filter. The study of the multivariate smoother

impact showed distinct optimal lags for different fields.

Thus, one either needs to choose the same lag for all fields

as a compromise and one might choose different lags for

different model fields.

Synthetically generated observations were used in the

experiments performed here. In case of real observations,

possible representativeness errors of the observations as

well as biases will also influence the smoother. This

influence will be considered in a future study.

Increasing the ensemble size had a stronger positive

effect on the smoothed than on the filtered fields for both

models. Thus, as the ensemble size is typically chosen upon

the consideration of computing cost and quality of the state

estimates from the assimilation process, it might be worth

reconsidering the ensemble size when a smoother is added

to a filtering system.
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Nerger L, Janjić T, Schröter J, Hiller W. 2012a. A regulated localization

scheme for ensemble-based Kalman filters. Q. J. Roy. Meteor. Soc.

138: 802–812.
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Table I. Impact of the smoother relative to the filter analysis for the mean RMS error over 360 days.

Field error reduction optimal lag
SSH 9.0% 170
temperature 1.0% 40
salinity 2.9% 180
merid. velocity 1.3% 170
zonal velocity 0.9% 40
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Figure 1. Mean RMS error (MRMSE) in dependence on the smoother lag for five cases with different forcing F .
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Figure 2. Left: Optimal smoother lag lopt as a function of the forcing F for m = 34 (solid) and m = 20 (dashed). The estimated error doubling time
multiplied by 7 (dotted) is very similar to the optimal lag for m = 34. Right: Minimum MRMSE for m = 34 at the optimal lag in dependence of the
forcing F (dashed) and MRMSE for the filter (solid).
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Figure 3. Left: Optimal smoother lag lopt as a function of the observation interval for four different forcings. The error bars show the variation of the
optimal length over the 10 repetitions of each experiment. Right: Minimum MRMSE at lopt in dependence of the forecast length (dashed line). Shown
is also the MRMSE for the filter (solid line).
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Figure 4. Behavior of the smoothing in case of localization. Top left: MRMSE as a function of the lag for the optimal localiztion radius, Top right: lopt
as a function of the localization length. Bottom left: Minimum MRMSE at lopt in dependence of the localization length (dashed) and MRMSE for the
filter (solid). Bottom right: Difference of the MRMSE of the smoother and the filter. The thin dashed lines show the values for the global analysis for
m = 34 and m = 20. For the smaller ensembles a global analysis is not possible.
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Figure 5. RMS errors over time for the assimilation of pseudo SSH data into the global FESOM model. (thick line) Saw tooth line showing RMS errors
from alternating forecasts and analysis steps; (thin line) the smoothed state for a lag of 170 days.
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Figure 6. RMS errors relative to the RMS error obtained with the filter for different lags for the assimilation of pseudo SSH data. (left) relative RMS
error for the sea surface height; (right) relative RMS errors for unobserved fields.
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