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INTRODUCTION

The Bering Sea consists of two nearly equal parts, a
shallower northern shelf area with a shelf break at about
150 m water depth and a deeper southern part, which
are separated by a narrow strip of the continental slope
and continental rise (Fig. 1). The submarine Shirshov
Ridge is located in the deeper western part of the Bering
Sea. It extends almost north–south for about 700 km
separating the Komandorsky (to the west) and Aleutian
(to the east) basins and has a width of about 200 km in
the north and 20 km in the south [1]. The ridge has two
topographic highs, which rise above the basin bottom
from 2000–2500 m in the north to 1000–2000 m in the
south. The water depth ranges along the ridge crest from
233 m in the north to 2800 m in the south. The slope
angle varies from 1.5°–4° in the north and up to 10° in
the south. The ridge is separated from the continental
slope (abreast the Cape Olyutorsky) by a transverse fault
and cannot be considered as its geological extension [2].

Nowadays, the northern part of the ridge (to approx�
imately 57°N) constitutes together with the continental
shelf and slope an area where terrigenous sedimentation
predominates, whereas its southern portion with the
deep�sea basins and the Bowers Ridge is dominated by

diatom ooze sediments [3, 4]. It should be noted that
two zones of low�silica diatom oozes were encountered
in the center of Russia’s part of the shelf and southward
from St. Matthew Island [1].

Recent studies demonstrated that the river terrige�
nous flux to the existing sediment budgets of the Bering
Sea is 157.1 million tons per year (9/10 of which is sup�
plied by the Yukon River off Alaska), and the coastal
abrasion supply is 200–400 million tons per year (dom�
inated by Asian coastal material). It is known that mate�
rial produced by coastal abrasion is deposited near the
coastline. Existing surface water circulation patterns
(Fig. 1) indicate that the annual sediment flux from the
Bering Sea through the Bering Strait (maximum 58 m
deep) to the Chukchi Sea ranges from 112 to 158 mil�
lion tons [1]. The seasonal ice cover persists in the
northern part of the sea for at least five months per year
and for seven months in the extreme north [1]. The
southern part of the sea is presently almost ice�free. The
annual primary production of the basin is estimated as
150–500 g C/m2 on the continental margin and 50–
100 g C/m2 in the deep sea [5]. In the northern part of
the deep Bering Sea, the oxygen minimum zone pres�
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ently develops at water depths of 380–1200 m, being
particularly distinct between 600 and 1100 m [6].

The history of Quaternary sedimentation at the
Shirshov Ridge is still poorly understood. The only data
available in the literature are those on sediment core
DM 2594 [7] from the southern edge of the ridge
(Fig. 1). The core records revealed that terrigenous sed�
imentation occurred at the end of Marine Isotopic
Stage (MIS) 3, during MIS 2, and at the beginning (up
to 9.07 cal. kyr BP) of MIS 1 and was followed by a
period of diatom ooze deposition. The lithological and
mineralogical boundaries coincide, indicating a change
in provenance from the areas adjoining the coast of the
Bering Sea (primarily, Alaska) to presumably the Aleu�
tians [3].

A 1815 cm�long sediment core (S0201�2�101�KL)
was recovered from the northern slope of the Shirshov
Ridge at a water depth of 607 m during the R/V
“Sonne” (Germany) cruise of 2009 carried out within
the framework of the German–Russian KALMAR
project (Fig. 1). We report the results of the study of the
sediment core with emphasis on the history of terrige�
nous sedimentation. The investigation of other cores
recovered during this project is under way, and only pre�
liminary stratigraphic and paleooceanological data are
now available [8–11].

FACTUAL MATERIAL AND METHODS

Shipboard studies included visual core description
(R. Tiedemann and D. Nuernberg), physical property

logs, and color core photographs (R. Tiedemann,
D. Nuernberg, L. Max, and J.�R. Riethdorf) [6]. The
same authors were responsible for the stratigraphic sub�
division of the sediment core. The upper part of the core
was used for the accelerator mass spectrometric radio�
carbon dating of the planktonic foraminifera. An age
model for the cored section [11] was constructed based
on AMS radiocarbon dates and correlation with color
reflectance logs (color b*), δ18O records, and XRF
Ca/Ti scanning data (Table 1).

The core was subsampled for analysis at 15–20�cm
intervals in Moscow. Shore�based laboratory studies
included grain�size analysis (L.A. Zadorina, Vernadsky
Institute of Geochemistry and Analytical Chemistry,
Russian Academy of Sciences), bulk sediment
(M.A. Levitan and K.V. Syromyatnikov) and clay min�
eral composition of the <2�µm size fraction (V.L. Luk�
sha), chemical analysis by X�ray fluorescence
(I.A. Roshchina), and correlation and factor analysis of
data on the grain size, mineralogy, and chemical com�
position of sediments (T.G. Kuzmina).

In wet�sieve analysis, the boundaries between gravel,
sand, silt, and clay were placed at values of 2, 0.063, and
0.002 mm, respectively. The clay minerals were ana�
lyzed on a DRON�3M diffractometer with a copper
anode, using the technique described by Biscaye [12].
Bottom sediments used in XRF analysis were not
washed to remove sea salt, following the procedure
described in detail by I.A. Roshchina [13]. A total of
90 sediment samples were analyzed.
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Fig. 1. Location of the cored section at the Shirshov Ridge and present�day surface circulation in the Bering Sea [46].
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RESULTS AND DISCUSSION

Lithology. Based on the component analysis data, all
the samples used in this study are terrigenous sediments.
The grain�size results are presented in Table 2. Based on
these data, three major types of lithologies were recog�
nized: dominant, minor, and rare. Dominant litholo�
gies are silts and clayey silts containing less than 10% of
the >0.063�mm size fraction. Minor lithologies are silts
with some amounts of sand (10–16% of the >0.063�mm
size fraction). Rare lithologies are silty sands, mictites,
and sandy–clayey silts, in which the >0.063�mm size
fraction is higher than 16% reaching a maximum value
of 60% (1675–1570 cm depth interval). Interestingly,
almost all maxima in the distribution of this fraction are
reflected in magnetic susceptibility values (Fig. 2), sug�
gesting that at least part of this fraction is represented by
ferrimagnetic particles. A few peaks in the distribution
of the sand fraction (1674–1675, 1654–1655, 1494–
1495 cm) show no correlation with the susceptibility
maxima. This is indicative of a high proportion of
coarser gravel material.

The component analysis of bulk sediments shows
that light�colored and clay minerals dominate the sedi�
ment (27–30% each), with 11–18% each of colored
minerals and rock fragments. Opaque minerals, volca�
nic glasses, remains of siliceous (diatoms and siliceous
sponge spicules) and carbonate (bivalves, foraminifera,
and calcareous nannofossils) organisms occur in trace
amounts up to a few percent. Some grains contain frag�
ments of radiolarian tests and authigenic pyrite occur�
ring either as isolated grains or framboids within diatom
frustules. The volcanic glasses in the sediments are
dominated by green varieties above 920 cm and brown
varieties below this level. Except for the above�men�
tioned interval of abundant sand fractions, all the max�
ima in the >0.063�mm size fraction can be accounted
for by the contribution of ice�rafted material. The sam�
ples corresponding to these maxima contain well�
rounded sand�sized quartz grains, which may indicate
their possible transport by one�year ice.

Diagrams showing the relationship between the clay
and sand versus silt fractions are of certain interest
(Fig. 3). Some samples contain more than 70% silt,
irrespective of the proportion of sand (Fig. 3a). Never�
theless, a negative correlation between the fractions is
quite evident within the entire sample set (R2 = 0.7263).
These relations may indicate different mechanisms of
transportation and deposition of both fractions. For
much of the section, the sand�sized terrigenous parti�
cles may have been rafted by sea ice (occasionally ice�
bergs?), but the silts must have been transported by riv�
ers. However, the silt and sand fractions of samples from
the sandy interval also show a negative correlation.

Table 1. The age model of sediment core SO201�2�101KL,
modified after [11]

Depth, cm Calendar age, 
kyr BP

Analytical 
technique

Marine
isotopic stage 

(MIS)

4 12.9 1 2

10.5 13.56 2 2

41 14.6 3 2

67 15.4 3 2

90.5 17.25 2 2

190.5 25.74 2 2

234 28.6 3 3

249 30.3 3 3

260.5 32.0 2 3

274 33.5 1 3

280 35.1 1 3

284 35.7 1 3

302 36.9 1 3

349 39.7 1 3

387 43.1 1 3

454 46.9 1 3

514 51.6 1 3

650 56.6 1 3

685 57.8 1 3

723 59.7 1 3

799 64.1 1 4

923 71.7 1 4

1004 76.4 3 5

1023 77.8 3 5

1092 84.4 1 5

1142 89.1 1 5

1236 94.5 3 5

1301 103.5 3 5

1526 116.0 4 5

1591 126.0 4 5

1611 129.0 4 5

1631 135.0 4 6

1646 140.0 4 6

1762 150.0 4 6

1816 156.0 4 6

Note: 1, age determined by correlation with reference sediment
column SO201�2�85KL using XRF Ca/Ti core scanning
data; 2, AMS 14C; 3, correlation of the b* values deter�
mined from color reflectance in reference column NGRIP;
and 4, correlation of δ18O values with those in reference
column LR04.
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Table 2. Grain�size determinations in bottom sediments (fraction size in mm, fraction content in wt %)

Interval, cm >2 2–1 1–0.5 0.5–0.25 0.25–0.125 0.125–0.063 0.063–0.01 0.01–0.002 <0.002 Lithotype

34–35 0.02 0.01 0.01 0.04 0.17 0.75 35.47 35.63 27.91 Silt
54–55 0.04 0.13 0.04 0.08 0.71 1.38 38.29 29.93 29.43 Silt
74–76 – – 0.05 0.08 0.55 1.04 41.26 38.21 18.8 Silt
94–95 – 0.01 0.03 1.05 3.53 2.16 30.56 28.06 34.60 Clayey silt

114–115 0.13 0.03 0.13 0.19 3.83 4.46 32.24 32.46 26.53 Silt
134–135 0.06 0.01 0.09 0.14 1.55 2.55 33.94 33.25 28.41 Silt
154–155 – 0.03 0.07 0.14 2.36 2.60 33.04 32.69 29.06 Silt
174–175 – 0.07 0.03 0.14 2.50 2.92 36.77 32.01 25.56 Silt
214–215 – 0.51 0.11 0.16 2.50 3.62 34.08 31.76 27.26 Silt
234–235 0.39 0.10 0.10 0.26 6.18 5.99 26.24 32.62 28.13 Silt with sand
254–255 1.40 0.02 0.04 0.19 3.22 5.15 35.09 29.43 25.47 Silt with sand
274–275 0.65 0.11 0.12 0.34 4.87 4.20 33.13 30.91 25.67 Silt with sand
294–295 0.31 0.01 0.08 0.23 4.36 6.17 33.51 31.27 24.06 Silt with sand
314–315 0.12 0.15 0.15 0.27 5.08 6.16 35.89 33.08 19.10 Silt with sand
354–355 0.35 0.13 0.13 0.17 1.40 2.14 37.22 29.84 28.62 Silt
374–375 0.10 0.10 0.10 0.13 2.46 2.03 39.39 28.03 27.66 Silt
394–395 – 0.25 0.04 0.17 2.08 2.95 38.09 23.16 33.26 Clayey silt
414–415 – 0.04 0.04 0.09 0.94 2.69 32.99 33.89 29.33 Silt
434–435 0.41 0.22 0.10 0.16 1.05 3.84 32.55 32.77 28.91 Silt
454–455 – 0.34 0.17 0.29 7.33 7.46 29.96 26.80 27.64 Silt with sand
474–475 – 0.18 0.22 0.26 1.83 3.95 33.50 33.72 26.34 Silt
494–495 – 0.04 0.06 0.08 0.50 2.50 34.93 32.51 29.38 Silt
514–515 0.67 0.29 0.24 0.58 2.06 3.93 32.57 30.50 29.16 Silt
534–535 – 0.05 0.09 0.38 0.66 3.61 21.75 38.51 34.95 Clayey silt
554–555 – 0.02 0.05 0.40 0.94 3.67 32.97 32.37 29.39 Silt
574–575 – 0.11 0.08 0.27 0.65 2.89 37.23 30.21 28.57 Silt
594–595 – 0.08 0.04 0.08 0.65 2.59 33.90 31.55 31.11 Clayey silt
614–615 – – 0.01 0.21 1.54 2.28 39.91 24.51 31.53 Clayey silt
634–635 – – 0.06 0.08 1.31 2.39 35.92 31.87 28.37 Silt
654–655 – 0.01 0.02 0.05 0.33 1.35 36.23 34.51 27.51 Silt
674–675 – – 0.05 0.20 0.66 2.16 28.97 36.51 31.46 Clayey silt
694–695 0.47 – 0.06 0.08 0.67 1.24 36.54 31.44 29.5 Silt
714–715 – 0.05 0.01 0.17 1.29 1.71 34.28 32.25 30.23 Clayey silt
734–735 – – 0.09 0.32 4.22 4.59 34.59 26.31 29.89 Silt
754–755 – 0.19 0.13 0.15 2.00 2.3 33.60 30.39 31.25 Clayey silt
774–775 – – 0.04 0.07 1.00 1.58 35.85 31.04 30.41 Clayey silt
794–795 0.37 0.09 0.08 0.06 0.31 0.97 36.28 33.27 28.57 Silt
814–815 – 0.40 0.24 0.24 4.05 2.94 23.65 37.59 30.88 Clayey silt
841–842 – – 0.05 0.23 1.82 3.58 34.36 32.71 27.25 Silt
854–855 2.53 0.55 2.09 0.23 3.05 4.52 29.41 31.44 26.19 Silt with sand
874–875 – 0.16 0.10 0.14 1.89 1.27 34.73 31.41 30.24 Clayey silt
894–895 – – 0.13 0.18 1.24 2.4 34.26 32.28 29.51 Silt
921–922 0.87 – 0.18 0.11 0.73 1.9 36.70 32.11 27.4 Silt
934–935 0.09 – 0.03 0.10 1.05 2.55 35.23 33.28 27.68 Silt
954–955 – – 0.06 0.09 0.94 2.34 38.00 28.65 29.92 Silt
974–975 – – 0.04 0.07 0.36 1.01 35.76 32.24 30.52 Clayey silt
994–995 – – 0.04 0.05 0.49 1.17 36.16 33.29 28.81 Silt

1016–1017 – 0.12 0.67 0.36 2.57 3.14 33.31 31.05 28.79 Silt
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Table 2. (Contd.)

Interval, cm >2 2–1 1–0.5 0.5–0.25 0.25–0.125 0.125–0.063 0.063–0.01 0.01–0.002 <0.002 Lithotype

1034–1035 – – 0.03 0.07 0.67 1.4 34.48 34.70 28.66 Silt

1054–1055 – – 0.07 0.19 1.42 3.14 37.48 30.18 27.51 Silt

1074–1075 – – 0.19 0.22 2.32 4.64 37.70 28.43 26.51 Silt

1094–1095 – 0.10 0.11 0.14 1.4 3.06 41.03 27.51 26.65 Silt

1114–1115 – – 0.20 0.14 3.44 5.18 32.73 28.64 29.68 Silt

1134–1135 0.02 0.04 0.10 0.11 2.23 3.04 35.32 33.27 25.86 Silt

1154–1155 – 0.33 0.13 0.13 1.94 3.01 38.01 29.73 26.72 Silt

1174–1175 – 0.25 0.08 0.17 2.03 5.06 32.79 29.06 30.55 Clayey silt

1194–1195 – – 0.12 0.12 1.94 4.25 35.50 27.00 31.07 Clayey silt

1214–1215 – – 0.08 0.12 1.12 5.22 35.38 35.54 22.54 Silt

1234–1235 – 0.03 0.03 0.06 0.71 3.43 35.44 30.06 30.24 Clayey silt

1254–1255 – 0.12 0.03 0.06 0.90 2.7 35.96 31.46 28.77 Silt

1274–1275 – – 0.06 0.07 0.22 0.87 37.67 34.50 26.62 Silt

1294–1295 0.12 – 0.08 0.08 0.15 0.46 42.62 35.53 20.96 Silt

1314–1315 – 0.02 0.06 0.09 0.90 2.81 36.89 31.44 27.79 Silt

1334–1335 – 0.01 0.02 0.08 1.48 1.94 36.88 30.97 28.63 Silt

1354–1355 0.08 0.08 0.12 0.15 0.71 2.3 33.86 33.47 29.22 Silt

1374–1375 – 0.03 0.06 0.10 0.58 1.55 35.26 34.46 27.95 Silt

1394–1395 0.05 0.09 0.19 0.42 1.35 1.68 51.63 35.62 8.96 Silt

1414–1415 0.04 0.31 0.09 0.22 0.84 1.95 37.14 33.14 26.26 Silt

1434–1435 1.96 0.33 0.24 0.29 1.0 1.2 35.53 35.72 23.72 Silt

1454–1455 1.28 0.04 0.24 0.20 0.52 0.72 33.38 33.63 30.0 Clayey silt

1474–1475 – 0.20 0.20 0.20 0.72 0.72 39.25 35.64 23.07 Silt

1494–1495 7.62 0.82 0.45 0.41 1.03 1.94 31.23 30.12 26.37 Silt with sand

1514–1515 0.78 0.16 0.20 0.33 0.90 0.61 34.29 33.88 28.84 Silt

1534–1535 0.39 0.24 0.58 0.34 0.83 1.85 39.18 31.7 24.89 Silt

1554–1555 2.28 0.11 0.11 0.42 0.69 1.91 36.06 32.08 26.34 Silt

1574–1575 7.75 1.09 0.76 1.15 32.26 20.52 14.68 11.3 10.48 Silt with sand

1594–1595 – 0.25 0.32 1.08 36.61 12.48 20.01 16.09 13.17 Silt with sand

1614–1615 – 0.05 0.14 0.34 18.34 6.03 32.77 22.25 20.08 Mictite

1634–1635 – 0.45 0.54 0.49 4.79 7.07 36.76 25.58 24.33 Silt and sand

1654–1655 0.29 0.06 0.23 0.69 11.0 6.77 31.09 28.55 21.31 Silt and sand

1674–1675 – 0.10 0.10 0.34 15.27 2.5 32.50 24.91 24.28 Silt and sand

1694–1695 0.16 0.16 0.32 0.16 2.26 9.69 38.29 25.69 23.26 Silt with sand

1714–1715 – 0.05 0.14 0.24 1.34 4.20 38.47 31.89 23.68 Silt

1734–1735 – 0.04 0.09 0.13 1.45 5.26 37.82 29.91 25.30 Silt

1754–1755 – – 0.10 0.10 0.50 2.48 39.15 30.72 26.96 Silt

1774–1775 – 0.19 0.24 0.94 2.30 5.17 35.65 30.67 24.84 Silt

1794–1795 – 0.05 0.09 0.19 1.59 4.26 36.27 30.55 26.99 Silt

1814–1815 – 0.12 0.09 0.12 1.28 5.72 40.56 29.71 22.41 Silt

Note: Blank entry denotes the absence of the fraction.
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The relationship between silt and clay is of interest as
well (Fig. 3b). It is evident that a few samples taken
entirely from the sandy interval show a positive correla�
tion between clay and silt, whereas the majority of other
samples show a negative correlation. The negative cor�
relation likely indicates washing out of the fine�grained
clay fraction by bottom currents. Similar situations were
also described on the slopes of the Lomonosov Ridge in
the central Arctic Ocean [14] and the continental slope
of the Kara Sea [15]. Variations in the silt/clay ratio can
potentially be used to provide a semiquantitative esti�
mate of fluctuations of the bottom currents. Most of the
samples have a silt/clay ratio of 2.0–3.0; values higher
than 3.0 suggest an increase in bottom current velocity,
which is characteristics of layers (from bottom to top) at
74, 314, 1214, 1294, 1394, 1434, 1474, and 1814 cm.
Silt/clay ratios of 1.0–2.0 correspond to a decrease in
bottom current velocity at 394, 534, and 814 cm. There�
fore, it can be concluded that moderate current veloci�
ties dominated during this time interval.

Based on the available data, it can be concluded that
the entire section is a monotonous sequence of terrige�
nous sediments. The uppermost 3 m of the section is
dominated by green, olive�grey, and greenish�grey sed�
iments. From 3 to 9.1 m, the sediment is mostly dark
olive�grey and grades to dark grey below this level to
15.7 m. The sandy interval contains black sandy turbid�
ites (1594–1574 cm) with abundant mica and gravel
clasts within the basal layers, as well as a minor debrite
layer consisting of coarse grey detrital sand (1675–
1674 cm) with abundant bivalve shell fragments. This
sandy interval is underlain by finer grained dark grey
and dark olive�grey sediments.

This monotonous sequence contains sporadic small
(up to 1 cm) rock fragments and calcitic bivalve debris
(Fig. 2). At certain levels (5 and 935 cm), elevated dia�
tom contents were observed in the sediments. The layer
at 829 cm contains a small lens of light grey volcanic
ash, less than 1 cm thick. As was previously noted, this
monotonous section is only disturbed by the sandy
interval (1675–1570 cm) containing a single layer of
sandy turbidites and laminae of sands, mictites, and
sandy silts, up to 30 cm thick, probably representing
grain�flow deposits or debrites. The same silts occur
above and below this interval.

Minor bioturbation structures are common
throughout the section; horizontal lamination and nor�
mal graded bedding were observed in the sandy interval.

Based on the above data, the section was subdivided
into three lithostratigraphic subunits (from top to bot�
tom): member 1 (0–1570 cm) comprising sub�mem�
bers 1a (0–310 cm), 1b (310–910 cm), and 1c (910–
1570 cm); member 2 (1570–1675 cm); and member 3
(1675–1815 cm, this was not penetrated completely)
(Fig. 2).

Clay minerals. Since the cored section consists pre�
dominantly of silts, fine�grained non�clay detrital min�
erals become common in the clay fraction. These are
mainly quartz, plagioclase, and hornblende grains.

Dioctahedral finely dispersed micaceous clay min�
erals (d060 = 1.49–1.50 Å) are the dominant mineral
phases. The X�ray diffraction data proved most of these
minerals to be illitic materials with Al and Fe cations in
octahedral positions. More hydrated phases, such as
hydromica with up to 10–15% expandable layers are
less common. Moreover, the diffractograms of the glyc�
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erolated samples often show a weak reflection typical of
minerals containing up to 25–30% smectite layers.
These seem to be mixed�layer illite–smectite formed by
the intense supergene alteration of micaceous minerals.
It should be noted that the number of samples contain�
ing such mixed�layer minerals is greater in the lower
part of the column.

Chlorite is another important component of the
clay material. The X�ray diffraction data show that
the chlorite is trioctahedral ferromagnesian and well
crystallized in most samples. The first�order chlorite
reflection at 13.8–13.9 Å usually increases in inten�
sity after calcining.

The fine clay fraction incorporates so�called
expandable clay minerals, including smectites and
mixed�layer smectite–illite with the predominance of
smectite interlayers. Their joint consideration is rea�
sonable, because the glycerol�saturated samples of
these minerals exhibit a similar first�order reflection
at 17–18 Å, and the proportions of different compo�
nents in the mixed�layer materials are estimated from
the 9–10 Å peaks [16]. The interlayer cations are
mostly divalent (Mg > Ca), and only a few samples
from the uppermost three meters of the section con�
tain smectite layers with monovalent Na. The great
majority of the expandable components is attributed to
disordered mixed�layer minerals with 70–90% smec�
tite interlayers.

Table 3 shows the results of the semiquantitative
analysis of clay minerals in the <2 µm size fraction. Four
groups of clay minerals were identified: illites and
hydromicas (called for brevity illites), chlorites, smec�
tites and mixed�layer minerals (called for brevity smec�
tites), and kaolinites.

Qualitative characterization of clay minerals identi�
fied in the cored section is given below. The basal por�
tion of the section (from the base to approximately
1250 cm) exhibits little variations in the clay minerals.
The micaceous minerals are dominated by aluminous
low�Fe illite (the intensity ratio of the second� and first�
order reflections, I002/I001, is 0.30–0.34). Mixed�
layer illite–smectite minerals with a ratio of 0.70–0.75 :
0.25–0.30 are also abundant. The expandable minerals
(with dominant smectite interlayers) contain a series of
labile structures with up to 70–100% smectite interlay�
ers. The sand�rich interval 1550–1600 cm is character�
ized by a higher content of ferromagnesian chlorite and
a lower content of mixed�layer minerals.

The overlying member (1114–1234 cm) of homoge�
neous grayish green clayey–silty sediments is character�
ized by the highest fraction of expandable minerals (up
to 32–35%), which are primarily mixed�layers with
70–90% smectite interlayers.

Upsection (up to about 755 cm), the samples exhibit
layer�to�layer variations in the composition and pro�
portions of phyllosilicates. An interval of abundant
smectite structures is distinguished between 934 and
974 cm, and the micaceous components contain a sig�
nificant amount of hydromica.

The uppermost part of the section (above 755 cm)
exhibits a sharp increase in the amount of illites; they
contain more iron (I 002/I 001 = 0.27–0.29), and the
percentage of hydromica remains about constant
throughout the interval. As was previously noted, smec�
tites from the uppermost 3�m interval are characterized
by the presence of interlayer Na cations.

We distinguished two major assemblages of clay min�
erals (minerals are in order of increasing content):
(1) kaolinite–chlorite–smectite–illite and (2) kaoli�
nite–smectite–chlorite–illite. In the first assemblage,
the illite/smectite and chlorite/smectite ratios are lower
than those in the second assemblage. Eight intervals
were identified on the basis of clay mineral assemblages
in the cored section. The intervals 455–675 and 1095–
1355 cm are dominated by assemblage I; 34–275, 675–
755, and 1355–1655 cm are dominated by assemblage
II; and 275–455, 755–1095, and 1655–1815 cm are
characterized by fine interlayering of both assemblages.

The distribution of clay minerals and variations in
proportions of minerals and mineral assemblages from
base to top in the cored section are shown in Fig. 4. In
the eighth interval (1815–1655 cm), illite content
decreases cyclically upward, while the proportions of
the remaining minerals fluctuate around constant val�
ues. The seventh interval (1655–1355 cm) exhibits
strong variations in the proportions of all clay minerals,
and chlorite is generally more abundant than in the pre�
vious interval. The sixth interval (1355–1095 cm) is
characterized by the high average smectite content.
Illite is present in small amounts and shows an upward
decrease. Chlorite and kaolinite are present in small but
fairly constant amounts. In the fifth interval (1095–
755 cm), the contents of all clay minerals are almost
constant, but smectite and chlorite appear in more vari�
able proportions than in the overlying sediments. In the
fourth interval (755–675 cm), illite content remains
constant but slightly higher as compared to the fifth
interval, whereas chlorite and kaolinite tend to decrease
and smectite increases. In the third interval (675–
455 cm), the contents of all clay minerals are constant,
and smectite is always abundant. Illite content
decreases slightly upward with a distinct decrease in the
illite/chlorite ratio. In the second interval (455–
275 cm), illite and chlorite contents are constant, with
a decrease in smectite and increase in kaolinite con�
tents. The first interval (275–34 cm) shows high illite
(especially in the last three samples), chlorite, and
kaolinite and low smectite contents.
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Besides the boundaries between the assemblages and
fine interlayering intervals, additional boundaries can
be distinguished on the basis of variations in the con�
tents and ratios of different clay minerals. For example,
boundaries were placed at 75, 365, 890, 1175, 1315,
1425, 1540, and 1750 cm (Fig. 4).

As can be seen in Fig. 4, the distribution of the
assemblages exhibits cyclic variations, making two
complete cycles (34–670 cm and 670–1350 cm) and
one incomplete cycle (from 1350 cm to the bottom of
the hole). Each complete cycle shows the following suc�
cession (from bottom to top): kaolinite–chlorite–
smectite–illite assemblage, fine interlayering of both
assemblages, and kaolinite–smectite–chlorite–illite
assemblage.

A comparison of the distribution of lithostrati�
graphic units (members and sub�members) and clay
mineral assemblages revealed that sub�member 1a cor�
responds mainly to the kaolinite–smectite–chlorite–
illite assemblage, in which the proportions of the major
groups of clay minerals are fairly similar to their average
values in the modern sediments of the Yukon Delta and
Arctic continental margin of Alaska (which are also
related to Yukon sediment supply [17]) (Table 4). The
composition of clay minerals in the middle course of the
Yukon River is different from that of the Yukon Delta in
a sharp decrease in smectite and an increase in chlorite
components [18]. Sub�member 1b is dominated by the
kaolinite–chlorite–smectite–illite assemblage,
whereas sub�member 1c exhibits both the dominance
of the assemblages and their fine interlayering. Sub�
member 2 is dominantly kaolinite–smectite–chlo�
rite–illite, and sub�member 3 shows interlayering of
both assemblages.

The observed ratios between the minerals may
reflect climatic and hydrodynamic conditions, as well as
their sources. It is well known in the Arctic Ocean, e.g.,
on the continental margin of the Laptev Sea, that sedi�
ments of cold stadial periods have higher illite content,
and those of warm periods have higher smectite content
[19]. The same results were reported from the south�
eastern part of the Bering Sea [20]. The data in Table 3
and Fig. 4 show that the influence of climate on clay
minerals in the cored section (based on the high illite
and low smectite contents and elevated illite/chlorite
ratio) becomes relatively clear in the three uppermost
samples, i.e., at 34–76 cm (deglacial sediments,
Table 1). The second interval with the elevated
illite/chlorite ratio is found between 460 and 650 cm.
As previously noted, high illite content was observed
in the upper 755 cm of the section.

There is abundant evidence on the effect of the set�
tling velocity of sediment particle on the proportions of
clay minerals [21]. Considering the above observations

on the relations between bottom current velocity and
clay fraction content, a strong hydrodynamic effect
might be expected to influence the ratios of clay miner�
als and the content of the <2�µm size fraction; e.g., this
fraction should correlate positively with smectite and
negatively with illite. The correlation matrix (Table 5)
indicates the presence or absence of correlations
between the four groups of minerals and the content of
the <2�µm size fraction. As can be seen, the only signif�
icant correlation is that for chlorite (r = –0.318).
Therefore, the hydrodynamic factor is not dominant.

Table 5 also shows that the clay minerals can be cat�
egorized into three groups based on the correlation
coefficients. The first group is illite, which exhibits a
negative correlation with, primarily, smectite and chlo�
rite and no correlation with kaolinite; the second group
is chlorite and kaolinite; and the third group is smectite,
which has a strong negative correlation with all other
clay minerals. Generally, none of the clay minerals
shows any positive correlation with other minerals.
These results can be explained by the wide development
of Early Paleozoic greenstone facies metamorphic
rocks in Central Alaska; they are dominated by quartz–
muscovite–chlorite schists locally intercalated with
mafic metavolcanic rocks [22]. Chlorite and mica
hydration products are obviously derived from this
source. The Arctic climatic conditions of Alaska, which
seem to have persisted since the Late Miocene, could
also be important factor of illite enrichment. Smectite
could also be supplied by soil erosion and weathering of
Late Cenozoic (6–0 Ma) mafic volcanics, which are
abundant along the western Alaskan margin and on the
Bering Sea shelf [23]. An additional contribution of vol�
canic material from Kamchatka and even from the
Aleutian Arc to the Shirshov Ridge area has to be taken
into account. The reliable recognition of sources
requires special methods and is beyond the scope of this
study. Kaolinite is most likely derived from the Carbon�
iferous sedimentary rocks hosting coal deposits in the
Yukon–Tanana Upland [24].

Our results suggest that there are at least two groups
of clay minerals, the old Paleozoic and young Pleis�
tocene. The first group includes hydromica, partly illite,
chlorite, kaolinite, and part of smectite. They represent
the composition of clay minerals from the Lower Pale�
ozoic shales of Central Alaska, which were metamor�
phosed to the greenstone facies, as well as from other
Paleozoic rocks of this area. The average contents of
these minerals in the <2�µm size fraction from the
Pleistocene rocks considered here is estimated as fol�
lows: 42–46% illite and hydromica, 20–25% chlorite,
7–10% kaolinite, and, probably, up to 5% smectite. The
young clay minerals are part of illites (averaging 10%),
mixed�layer minerals, and part of smectites (totaling
about 13–15%). The young illites formed largely under
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Table 3. The content of clay minerals in the <2�µm size fraction (% rel.), mineral ratios, and mineral assemblages

Sample, cm Illite Chlorite Smectite Kaolinite Illite/Chlorite Illite/Smectite Chlorite/Smectite Assemblage

34–35 58 24 9 9 2.4 6.4 2.7 2

54–55 61 21 10 8 2.9 6.1 2.1 2

74–76 63 17 10 10 3.7 6.3 1.7 2

94–95 53 25 14 8 2.1 3.8 1.8 2

114–115 55 19 16 10 2.9 3.4 1.2 2

134–135 53 24 13 10 2.2 4.1 1.8 2

154–155 49 25 15 11 2 3.3 1.7 2

174–175 49 24 18 9 2 2.7 1.3 2

214–215 50 17 25 8 2.9 2 0.7 1

234–235 51 21 18 10 2.4 2.8 1.2 2

254–255 50 26 13 11 1.9 3.8 2 2

274–275 52 21 18 9 2.5 2.9 1.2 2

294–295 50 20 21 9 2.5 2.4 1 1

314–315 55 21 16 8 2.6 3.4 1.3 2

354–355 52 20 20 8 2.6 2.6 1 1

374–375 50 19 25 6 2.6 2 0.8 1

394–395 50 26 17 7 1.9 2.9 1.5 2

414–415 51 19 23 7 2.7 2.2 0.8 1

434–435 58 20 14 8 2.9 4.1 1.4 2

454–455 53 20 19 8 2.7 2.8 1.1 2

474–475 50 15 29 6 3.3 1.7 0.5 1

494–495 53 19 21 7 2.8 2.5 0.9 1

514–515 54 15 22 9 3.6 2.5 0.7 1

534–535 54 18 19 9 3 2.8 0.9 1

554–555 57 16 20 7 3.6 2.9 0.8 1

574–575 53 17 22 8 3.1 2.4 0.8 1

594–595 53 17 21 9 3.1 2.5 0.8 1

614–615 59 15 21 5 3.9 2.8 0.7 1

634–635 53 18 22 7 2.9 2.4 0.8 1

654–655 53 16 25 6 3.3 2.1 0.6 1

674–675 54 19 21 6 2.8 2.6 0.9 1

694–695 51 21 20 8 2.4 2.6 1.1 2

714–715 53 20 20 7 2.7 2.7 1 2

734–735 52 23 15 10 2.3 3.5 1.5 2

754–755 56 19 18 7 2.9 3.1 1.1 2

774–775 48 21 23 8 2.3 2.1 0.9 1

794–795 49 24 18 9 2 2.7 1.3 2

814–815 48 18 25 9 2.7 1.9 0.7 1

841–842 51 21 19 9 2.4 2.7 1.1 2

854–855 47 23 20 10 2 2.4 1.2 2

874–875 45 22 24 9 2 1.9 0.9 1

894–895 44 23 24 9 1.9 1.8 1 1

921–922 49 29 14 8 1.7 3.5 2.1 2

934–935 48 20 25 7 2.4 1.9 0.8 1

954–955 42 17 33 8 2.5 1.3 0.5 1

974–975 52 19 21 8 2.7 2.5 0.9 1

994–995 45 28 19 8 1.6 2.4 1.5 2
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Table 3. (Contd.)

Sample, cm Illite Chlorite Smectite Kaolinite Illite/Chlorite Illite/Smectite Chlorite/Smectite Assemblage

974–975 52 19 21 8 2.7 2.5 0.9 1

994–995 45 28 19 8 1.6 2.4 1.5 2

1016–1017 46 26 20 8 1.8 2.3 1.3 2

1034–1035 46 17 30 7 2.7 1.5 0.6 1

1054–1055 48 21 23 8 2.3 2.1 0.9 1

1074–1075 44 23 24 9 1.9 1.8 1 1

1094–1095 43 25 23 9 1.7 1.9 1.1 2

1114–1115 49 17 27 7 2.9 1.8 0.6 1

1134–1135 46 18 29 7 2.6 1.6 0.6 1

1154–1155 40 20 32 8 2 1.3 0.6 1

1174–1175 45 17 31 7 2.6 1.5 0.5 1

1194–1195 37 20 36 7 1.9 1 0.6 1

1214–1215 46 18 29 7 2.6 1.6 0.6 1

1234–1235 42 19 31 8 2.2 1.4 0.6 1

1254–1255 51 18 24 7 2.8 2.1 0.8 1

1274–1275 49 21 23 7 2.3 2.1 0.9 1

1294–1295 58 23 11 8 2.5 5.3 2.1 2

1314–1315 45 19 29 7 2.4 1.6 0.7 1

1334–1335 49 19 24 8 2.6 2 0.8 1

1354–1355 50 19 23 8 2.6 2.2 0.8 1

1374–1375 50 23 18 9 2.2 2.8 1.3 2

1394–1395 45 26 20 9 1.7 2.3 1.3 2

1414–1415 53 21 17 9 2.5 3.1 1.2 2

1434–1435 43 24 23 10 1.8 1.9 1 2

1454–1455 43 26 22 9 1.7 2 1.2 2

1474–1475 48 25 20 7 1.9 2.4 1.3 2

1494–1495 47 23 20 10 2 2.4 1.2 2

1514–1515 47 23 23 7 2 2 1 2

1534–1535 48 23 21 8 2.1 2.3 1.1 2

1554–1555 43 30 21 6 1.4 2 1.4 2

1574–1575 47 28 18 7 1.7 2.6 1.6 2

1594–1595 49 25 19 7 2 2.6 1.3 2

1614–1615 43 22 27 8 2 1.6 0.8 1

1634–1635 46 25 21 8 1.8 2.2 1.2 2

1654–1655 46 25 22 7 1.8 2.1 1.1 2

1674–1675 44 21 26 9 2.1 1.7 0.8 1

1694–1695 49 19 24 8 2.6 2 0.8 1

1714–1715 50 22 20 8 2.3 2.5 1.1 2

1734–1735 51 22 20 7 2.3 2.5 1.1 2

1754–1755 44 24 24 8 1.8 1.8 1 1

1774–1775 48 22 23 7 2.2 2.1 1 1

1794–1795 51 19 22 8 2.7 2.3 0.9 1

1814–1815 53 22 17 8 2.4 3.1 1.3 2

Note: Assemblage 1 is kaolinite–chlorite–smectite–illite, and assemblage 2 is kaolinite–smectite–chlorite–illite.



184

GEOCHEMISTRY INTERNATIONAL  Vol. 51  No. 3  2013

LEVITAN et al.

the climatic conditions of cold periods, whereas the
mixed�layer and young smectites formed in soils in
continental setting through the alteration of volcanic
material.

We applied R�mode factor analysis with varimax
rotation to the standardized data to explore the distribu�
tion of clay minerals in the cored section. There are
three factors fully accounting for the variance of four
variables (groups of clay minerals). Factor 1 accounts

for 46.924, factor 2 accounts for 35.346, and factor 3
explains 17.730 of the variance. Factor loadings are
shown in Table 6. As can be seen, factor 1 reflects the
mutual dilution of illite and smectite, i.e., the
illite/smectite ratio. Factor 2 represents the mutual
dilution of chlorite and smectite, with the dominance of
chlorite, and factor 3 reflects the distribution of kaolin�
ite. Based on factor 1 (Fig. 5), the cored section was
divided into two nearly equal parts, the upper part (0–
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850 cm) dominated by positive loadings and the lower
part dominated by negative loadings. These results indi�
cate the importance of illite for the upper part of the
section and smectite for the lower part. The distribution
of factor 2 revealed that, despite the overall dominance
of chlorite (positive factor loadings), negative loadings
clearly dominating within two intervals coincide with
the occurrence of the kaolinite–chlorite–smectite–
illite assemblage identified in this study. The distribu�
tion of factor 3 indicates an increasing supply of kaolin�
ite at 0–285, 750–910, and 1390–1450 cm. The sum of
factors 1 and 2 clearly indicates the dominance of the
sum of illite and chlorite in smectite dilution in the
upper part of the section (0–195 cm). Below this
depth (at 195–450, 700–1050, 1290–1815 cm), the
section shows alternation of positive and negative
loadings, and the importance of smectite is recog�
nized at 450–700 and 1050–1290 cm, especially in
the lowermost interval.

An attempt was made to find out whether the dis�
tinction between these two mineral assemblages influ�
ences the bulk composition of samples. The semiquan�
titative approach of Biscaye applied in this study
assumes that the sum of clay minerals in the quantified
fraction is 100%. However, the fraction is known to
contain X�ray amorphous and non�clay crystalline
materials (quartz, feldspars, etc.). The difference in the
contents of chlorite and smectite in the samples is about
6% rel. Since the <2�µm size fraction accounts for 25–
30 wt % of the samples (Table 2), it can be assumed that
this difference in the bulk sample is about 1–2%, or
even two times lower if the real fraction composition is
taken into account. It should be noted that the two clay
mineral assemblages are not very different in composi�
tion, especially compared with the differences between
quartz and feldspars. This suggests that the above differ�
ences between the assemblages have no significant
influence on the bulk sample composition.

Table 4. Composition of clay mineral assemblages (% rel.) in the <2�µm size fraction from the Pleistocene sediments of the
Shirshov Ridge (our data), Yukon Delta sediments [17], and surficial sediments from the northern continental margin of
Alaska [17]

Location Assemblage, num�
ber of samples Illite (Ill) Chlorite (Chl) Smectite (Sm) Kaolinite (K)

Shirshov Ridge K�Chl�Sm�Ill 
(n = 44)

49 19 25 7

Shirshov Ridge K�Sm�Chl�Ill 
(n = 43)

49 24 18 9

Shirshov Ridge n = 87 49 21 21 8

Yukon Delta n = 6 41 26 21 12

Northern Alaska continental 
margin

n = 10 55 22 14 10

Table 5. Correlation matrix for the clay mineral groups identified in the Shirshov Ridge sediments
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Sediment geochemistry. Table 7 shows XRF data for
the bottom sediments, which are consistent with the
observed monotonous lithology of the sedimentary sec�
tion (except for member 2). Minor variations in the
content of the >0.063�mm fraction (up to 16%) do not
influence the chemical composition of bulk sediments
(Table 8), which is also supported by the average con�
centrations of the elements in sample groups with dif�
ferent sand content when calculated to a silica�free
basis (Table 9).

The analytical results and data in Fig. 6 allow us to
conclude that the sedimentary material in the samples
(except for samples from the sandy interval) was most
likely derived from the shales of Paleozoic fold belts
[25]. The only appropriate source rocks in the islands
and continental blocks around the Bering Sea are those
of Alaska [26]. It is likely that the eroded material from
Alaska was transported by the Yukon River draining the
Brooks and Alaska ranges, as well as the Yukon–Tanana
Upland. The latter seems to be the most likely prove�
nance; its Paleozoic rocks are mostly carbonate�free
phyllites, schists, and gneisses intruded by granites [24].
The upper reaches of several right tributaries of the
Yukon River drain the Brooks Range, whose Paleozoic
section (and that of the Alaska Range) is dominated by
dolomites [27], which are found to be absent in our
samples.

The slightly lower contents of Al2O3, TiO2, Fe2

K2O, and P2O5 in our samples relative to the Paleozoic
shales (Table 8) can be explained by the aforementioned
wash�out of the finest clay fraction from Shirshov Ridge
sediments, and the lower MnO reflects anaerobic
diagenetic conditions and periodic deposition in the
oxygen minimum zone, which will be discussed below.
The younger fine�grained marine sediments have
higher loss on ignition values than the Paleozoic shales,
which underwent diagenetic, catagenetic, and early
metamorphic alteration and partial loss of volatile com�
ponents. As was mentioned above, the high Na2O values
are due to sea salt contamination of the samples. It is
also obvious that the composition of modern sediments
of the Bering Sea shelf is distinctly different from that of
our samples (Table 8), because the shelf area is domi�
nated by marine blanket sands [1].

Figure 6 shows that the average composition of
members 1 and 3 (cluster 1) is characterized by a higher
value of hydrolysate module and a lower value of iron
module relative to the average shale composition of
Paleozoic fold belts (source rocks). Note that the
hydrolysate module (HM) is (Al2O3 + TiO2 + Fe2O3 +
FeO + MnO)/SiO2, and the iron module (IM) is
(Fe2O3 + FeO + MnO)/(TiO2 + Al2O3). The first value
reflects lower Al and K contents in the sediments, and
the second value indicates the deposition of dissolved

O3
*,

Fe in the sediments in the river water–seawater mixing
zone. This is a well�known phenomenon, which was
described, for instance, in our previous study in the
Yenisei Gulf of the Kara Sea [28].

The chemical composition of member 2 sediments
differs markedly from that of the enclosing rocks, sug�
gesting a proximal source area within the Shirshov
Ridge on the basis on sedimentological considerations.
The geology of the ridge is poorly understood, but avail�
able data [2] indicate that it consists of Triassic, Creta�
ceous, and Paleocene radiolarites, Lower–Upper Cre�
taceous amphibolitic gabbros, and Lower Oligocene–
Pleistocene shallow�water terrigenous sediments.

For the better understanding of the geochemical fea�
tures of the sediments, Table 10 presents a Pearson cor�
relation matrix of geochemical and grain�size compo�
nents. The analysis of these data revealed several major
groups of element associations. The first association
comprises SiO2, Sr, Zr, Ni, and sand; i.e., it is controlled
by the mineral components of the sand fraction. The
second association is Al2O3, Ti, Fe, Mn, K, Mg, P, V,
Co, Cu, Zn, Rb, Y, Nb, Ba, Pb, LOI, MnO, and silt.
This is indicative of a mixture of the fine�grained clastic,
silt and, in part, clay material with organic matter, and
Fe and Mn oxyhydroxides (with the trace elements,
both adsorbed onto the surface and incorporated into
their mineral lattices). The third association comprises
CaO, Sr, and sand and corresponds to the components
of the sand fraction such as foraminiferal and mollusk
shells, with isomorphic substitution of Sr for Ca. The

0.32
0.24

0.36 0.40 0.44 0.48

0.28

0.32

0.36

0.40

0.44
HM

IM

1

2

Members I + III;

Members II;

Sediment from 

Fig. 6. Relationship between the values of hydrolysate and
iron modules [47] in the sediments. 1 and 2 are clusters.
See text for explanation.

Pz fold belts [25]
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Table 6. The distribution of factor loadings for clay minerals

Sample no., cm Factor 1 Factor 2 Factor 3 Factor 1 + Factor 2

34 3.83713 1.38016 1.50113 5.21729

54 4.22948 0.113844 0.461861 4.343324

74 4.80074 –0.95765 1.936 3.843086

94 1.9131 1.47626 0.486766 3.38936

114 2.16489 –0.34268 1.76771 1.822209

134 2.23685 1.4891 2.15979 3.72595

154 1.14046 1.99605 2.96135 3.13651

174 0.521494 1.22835 1.09406 1.749844

214 –0.48209 –1.5604 –0.42116 –2.04249

234 0.982453 0.34595 1.78124 1.328403

254 1.67062 2.38602 3.10309 4.05664

274 1.12326 0.165209 0.941035 1.288469

294 0.202471 –0.23483 0.755057 –0.03236

314 2.00492 0.016966 0.191108 2.021886

354 0.703599 –0.39623 –0.03956 0.307374

374 –0.65824 –1.19581 –1.99704 –1.85405

394 0.67536 1.62156 –0.43489 2.29692

414 –0.0784 –0.97638 –1.06566 –1.05479

434 2.89988 –0.29069 0.232451 2.609193

454 1.07402 –0.37998 0.005579 0.694044

474 –1.26079 –2.70183 –2.38505 –3.96262

494 0.696797 –0.9544 –0.97691 –0.2576

514 0.887528 –2.03905 0.452544 –1.15152

534 1.39704 –0.92717 0.740986 0.469871

554 1.67101 –2.00191 –1.08488 –0.3309

574 0.645345 –1.51661 –0.28646 –0.87127

594 0.897191 –1.32642 0.597899 –0.42923

614 1.78076 –2.7334 –2.86135 –0.95264

634 0.488568 –1.31328 –1.07134 –0.82471

654 –0.05243 –2.26018 –2.15025 –2.31261

674 0.845687 –1.13762 –1.81747 –0.29193

694 0.547466 –0.05546 0.009467 0.492011

714 0.85855 –0.5813 –0.8804 0.277253

734 1.70669 1.09913 2.01805 2.80582

754 1.81413 –0.90751 –0.84175 0.906622

774 –0.59816 –0.09369 –0.12443 –0.69185

794 0.497246 1.23577 1.09513 1.733016

814 –0.82955 –1.02343 0.470323 –1.85298

841 0.762939 0.145866 0.895445 0.908805

854 –0.15351 1.02035 1.79271 0.86684

874 –1.29583 0.420854 0.72102 –0.87498

894 –1.5045 0.777707 0.772386 –0.72679

921 1.06427 2.908 0.692861 3.97227

934 –0.98549 –0.66502 –1.10646 –1.65051

954 –3.44751 –1.68978 –0.7822 –5.13729
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Table 6. (Contd.)

Sample no., cm Factor 1 Factor 2 Factor 3 Factor 1 + Factor 2

974 0.58226 –0.7817 –0.13787 –0.19944

994 –0.58322 2.47114 0.415972 1.887916

1016 –0.55853 1.74799 0.269088 1.189457

1034 –2.23787 –1.80878 –1.48509 –4.04665

1054 –0.61028 –0.08998 –0.12389 –0.70026

1074 –1.55704 0.79379 0.774724 –0.76325

1094 –1.60598 1.52437 0.922688 –0.08161

1114 –1.15892 –1.75014 –1.34823 –2.90906

1134 –2.0842 –1.43321 –1.38823 –3.51741

1154 –3.73947 –0.59184 –0.58134 –4.33131

1174 –2.60425 –1.82627 –1.53041 –4.43052

1194 –5.07228 –0.84005 –1.60246 –5.91233

1214 –2.03772 –1.44744 –1.39029 –3.48516

1234 –3.15634 –0.93368 –0.58774 –4.09002

1254 –0.21187 –1.35815 –1.16342 –1.57002

1274 –0.46948 –0.27072 –0.96409 –0.7402

1294 3.44778 0.809446 0.519184 4.257226

1314 –2.25245 –1.08873 –1.33866 –3.34118

1334 –0.53305 –0.82921 –0.27311 –1.36227

1354 –0.20102 –0.80121 –0.22626 –1.00223

1374 0.68571 0.885101 1.04467 1.570811

1394 –0.67105 1.92007 1.10804 1.24902

1414 1.46944 0.188881 0.987255 1.658321

1434 –1.50781 1.33897 1.71018 –0.16884

1454 –1.44827 1.89871 1.01937 0.45044

1474 –0.19895 1.2073 –0.62294 1.008348

1494 –0.13734 1.01541 1.79199 0.878066

1514 –0.90905 0.449794 –0.86037 –0.45925

1534 –0.25849 0.64757 0.06787 0.389083

1554 –1.48607 2.79891 –1.25082 1.31284

1574 –0.09826 2.31469 –0.37793 2.216428

1594 0.157328 1.22788 –0.57717 1.385208

1614 –2.30469 0.203117 –0.2529 –2.10157

1634 –0.72433 1.37612 0.172761 0.651792

1654 –0.97617 1.18594 –0.7116 0.209766

1674 –1.88257 0.048203 0.5818 –1.83437

1694 –0.53912 –0.82736 –0.27284 –1.36647

1714 0.312525 0.30944 0.062003 0.621965

1734 0.421 0.138596 –0.77677 0.559596

1754 –1.60066 0.962479 –0.0152 –0.63818

1774 –0.72058 0.099126 –0.91084 –0.62146

1794 0.213857 –0.79857 –0.1831 –0.58471

1814 1.45209 0.349528 0.196165 1.801618
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Table 7. Chemical composition of bottom sediments from the Shirshov Ridge, wt %

No., cm LOI SiO2 Al2O3 TiO2 Fe2O3 MnO K2O CaO MgO

0 9.74 58.15 14.82 0.63 5.74 0.05 2.29 1.79 2.8
16 9.92 55.72 14.93 0.65 5.95 0.053 2.41 3.56 2.91
34 10.74 56.12 14.86 0.61 6.07 0.051 2.21 1.88 2.72

54 9.87 56.88 16.39 0.7 5.81 0.042 2.73 1.71 2.64
74 9.59 56.47 16.69 0.71 5.86 0.045 2.74 1.79 2.62
94 7.53 58.66 15.79 0.7 5.86 0.053 2.47 2.5 2.71

114 7.1 58.66 15.41 0.69 6.05 0.06 2.31 2.94 2.72
134 7.5 58.13 15.59 0.71 6.48 0.061 2.41 2.32 2.91

154 7.65 57.98 15.67 0.71 6.31 0.059 2.38 2.38 2.91
174 7.52 58.26 15.89 0.71 6.14 0.06 2.39 2.19 2.87
214 7.48 58.88 15.51 0.7 6.21 0.055 2.42 1.91 2.76
234 6.91 59.77 15.43 0.7 5.87 0.054 2.34 2.09 2.66
254 7.22 59.28 15.52 0.72 6.02 0.054 2.34 2.02 2.62

274 7.74 58.71 15.25 0.74 6.1 0.054 2.41 2.06 2.84
294 7.48 59.39 15.26 0.71 6.1 0.052 2.37 1.92 2.56
314 7.38 59.45 14.76 0.7 6.01 0.053 2.40 2.04 2.65
354 8.08 58.33 15.08 0.72 6.5 0.055 2.48 1.85 2.78
374 8.41 58.46 14.83 0.7 6.13 0.056 2.57 1.85 2.73

394 8.11 59.36 14.89 0.74 6.1 0.051 2.51 1.62 2.7
414 8.11 58.85 15.19 0.73 6.38 0.052 2.47 1.62 2.78
434 7.97 59.49 14.84 0.72 5.95 0.052 2.39 2.09 2.63
454 6.48 61.39 14.47 0.71 5.53 0.05 2.33 2.46 2.52

474 8.22 59.01 15.07 0.72 6.22 0.049 2.50 1.73 2.62
494 8.03 59.71 15.18 0.73 5.78 0.05 2.57 1.74 2.59
514 8.15 59.64 14.73 0.69 6.02 0.048 2.45 1.92 2.55
534 8.69 59.63 14.07 0.69 5.97 0.046 2.38 2.26 2.41
554 8.39 60.21 13.86 0.67 5.65 0.048 2.29 2.67 2.39

574 8.6 58.94 14.39 0.69 6.07 0.05 2.39 2.18 2.6
594 7.81 59.62 15.14 0.72 6.04 0.05 2.51 1.6 2.6
614 8.38 59.06 14.99 0.72 6.1 0.051 2.49 1.77 2.65
634 7.67 59.82 15.09 0.73 6.18 0.052 2.54 1.62 2.66
654 8.71 58.73 14.77 0.72 6.4 0.055 2.46 1.85 2.71

674 8.99 58.39 14.62 0.7 6.35 0.058 2.39 2.03 2.82
694 8.15 58.2 15.21 0.71 6.84 0.059 2.45 1.83 3.02
714 7.48 59.02 15.22 0.69 6.34 0.06 2.49 2.22 2.98
734 8.61 59.05 14.96 0.63 5.48 0.052 2.48 1.76 2.73
754 7.62 59.41 15.55 0.69 5.85 0.054 2.56 1.72 2.76

774 8.2 58.65 15.48 0.7 6.55 0.052 2.55 1.63 2.71
794 9.55 56.84 15.53 0.69 6.17 0.059 2.50 2.03 2.72
814 7.16 60.27 14.86 0.72 6.4 0.053 2.47 1.72 2.69
841 7.51 59.13 15.15 0.73 6.41 0.057 2.37 1.91 2.84
854 7.35 59.12 15.14 0.73 6.55 0.06 2.28 1.93 2.81

874 7.5 58.58 15.38 0.74 6.72 0.066 2.36 2.05 2.98
894 7.85 57.86 15.51 0.74 6.71 0.066 2.33 2.02 2.98
921 8.95 57.19 15.09 0.72 6.79 0.063 2.32 1.86 2.97
934 9.11 58.87 14.97 0.71 5.81 0.052 2.37 1.71 2.56

954 8.5 58.9 15.29 0.73 6.02 0.055 2.39 1.67 2.59
974 9.74 57.13 15.11 0.7 6.49 0.057 2.42 1.69 2.77
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Table 7. (Contd.)

No., cm Na2O P2O5 Cr S V Co Ni Cu

0 3.27 0.156 0.012 0.74 0.0195 0.0019 0.005 0.0031

16 2.87 0.161 0.009 0.41 0.0164 0.0022 0.0045 0.0029

34 3.32 0.145 0.010 0.86 0.0189 0.0013 0.0053 0.003

54 2.36 0.177 0.011 0.32 0.0214 0.0013 0.0046 0.0023

74 2.83 0.174 0.011 0.17 0.0266 0.0014 0.0043 0.0026

94 3.07 0.156 0.009 0.16 0.0172 0.0018 0.0038 0.0022

114 3.33 0.151 0.010 0.20 0.0172 0.0018 0.0041 0.0029

134 3.25 0.148 0.009 0.23 0.0178 0.0017 0.0046 0.0031

154 3.40 0.149 0.009 0.23 0.0172 0.0018 0.0042 0.0026

174 3.31 0.15 0.010 0.19 0.0172 0.0014 0.0044 0.0027

214 3.37 0.146 0.009 0.31 0.0186 0.0012 0.0041 0.0024

234 3.55 0.143 0.008 0.20 0.0186 0.0019 0.0035 0.0021

254 3.38 0.143 0.009 0.34 0.0172 0.0014 0.0038 0.0024

274 3.27 0.146 0.008 0.27 0.0171 0.0014 0.0035 0.0022

294 3.37 0.142 0.008 0.34 0.0176 0.0012 0.0037 0.0022

314 3.69 0.145 0.008 0.41 0.0155 0.001 0.0039 0.0023

354 3.47 0.143 0.010 0.28 0.018 0.001 0.0039 0.0029

374 3.41 0.141 0.008 0.34 0.0167 0.0017 0.0037 0.0027

394 3.05 0.151 0.009 0.34 0.0177 0.001 0.0038 0.0023

414 3.04 0.146 0.009 0.34 0.0165 0.0011 0.0039 0.0024

434 3.09 0.147 0.009 0.36 0.0178 0.0013 0.0038 0.0022

454 3.27 0.146 0.009 0.29 0.0151 0.0013 0.0032 0.0018

474 2.98 0.148 0.010 0.38 0.0184 0.0016 0.0045 0.0021

494 3.03 0.146 0.009 0.14 0.0168 0.0016 0.0034 0.0019

514 2.92 0.145 0.009 0.46 0.0137 0.0012 0.0039 0.002

534 2.93 0.137 0.009 0.49 0.0156 0.0015 0.0037 0.0022

554 2.95 0.141 0.009 0.41 0.0149 0.0009 0.0036 0.0018

574 3.06 0.146 0.009 0.49 0.0156 0.0013 0.0039 0.0019

594 3.10 0.145 0.010 0.27 0.0175 0.0014 0.0043 0.0024

614 2.94 0.144 0.009 0.28 0.0168 0.0011 0.0042 0.0028

634 2.89 0.144 0.010 0.21 0.0187 0.0016 0.0042 0.0022

654 2.80 0.144 0.009 0.28 0.0191 0.0017 0.0047 0.0025

674 2.92 0.147 0.009 0.24 0.0172 0.0013 0.0044 0.0028

694 2.84 0.151 0.010 0.26 0.0179 0.0018 0.0053 0.003

714 2.83 0.159 0.012 0.20 0.0186 0.0019 0.0052 0.003

734 3.49 0.152 0.009 0.25 0.0187 0.001 0.0037 0.0022

754 3.15 0.156 0.015 0.13 0.0189 0.0014 0.0048 0.0025

774 2.93 0.15 0.012 0.23 0.0197 0.001 0.0046 0.0033

794 2.92 0.153 0.010 0.30 0.0228 0.0014 0.0043 0.0034

814 2.91 0.155 0.009 0.23 0.0176 0.0016 0.004 0.0026

841 3.01 0.153 0.010 0.25 0.0216 0.0016 0.004 0.0029

854 3.10 0.153 0.011 0.35 0.0185 0.0017 0.0044 0.0028

874 2.97 0.158 0.011 0.15 0.0209 0.0012 0.0048 0.0035

894 3.13 0.155 0.009 0.21 0.0205 0.0028 0.0044 0.0034

921 3.02 0.152 0.010 0.51 0.019 0.0015 0.0042 0.0036

934 3.10 0.138 0.009 0.31 0.0171 0.0012 0.0037 0.0032

954 3.18 0.141 0.010 0.23 0.0181 0.0014 0.0037 0.0031

974 3.13 0.145 0.009 0.38 0.0194 0.001 0.0042 0.004
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Table 7. (Contd.)

No., cm Zn Rb Sr Y Zr Nb Ba As Pb

0 0.0105 0.0086 0.0218 0.0024 0.0124 0.001 0.088 0.0022 0.0012

16 0.0105 0.0084 0.0277 0.0026 0.0125 0.0009 0.097 0.0015 0.0016

34 0.0106 0.0086 0.0196 0.0024 0.0121 0.0011 0.088 0.0023 0.0011

54 0.0106 0.0112 0.0197 0.0027 0.0144 0.0016 0.089 0.0011 0.0022

74 0.0108 0.011 0.0197 0.0025 0.0144 0.0018 0.093 0.0024 0.002

94 0.0106 0.0088 0.0229 0.0028 0.015 0.0008 0.079 0.0009 0.0013

114 0.0099 0.0075 0.0255 0.0025 0.0155 0.001 0.074 0.0016 0.0016

134 0.0102 0.0088 0.0232 0.0027 0.0149 0.0012 0.078 0.0025 0.0016

154 0.0105 0.0079 0.0229 0.0026 0.0142 0.0009 0.080 0.0022 0.0014

174 0.0108 0.0082 0.0223 0.0027 0.0153 0.0012 0.075 0.0018 0.0012
214 0.0102 0.0086 0.0228 0.0027 0.0152 0.0008 0.077 0.0018 0.0011

234 0.0095 0.0087 0.0241 0.0028 0.0161 0.0008 0.071 0.0013 0.0018

254 0.0099 0.0085 0.0232 0.0025 0.0153 0.001 0.073 0.0027 0.0018

274 0.012 0.0089 0.0228 0.0026 0.0162 0.0011 0.071 0.0029 0.0016

294 0.0098 0.0086 0.0224 0.0025 0.0159 0.0013 0.069 0.003 0.0012

314 0.0094 0.0084 0.0247 0.0026 0.0165 0.0014 0.076 0.0029 0.0021

354 0.0105 0.0092 0.0232 0.0027 0.0154 0.0014 0.070 0.0007 0.0012

374 0.0102 0.0102 0.0215 0.0027 0.0158 0.0011 0.078 0.0015 0.0017

394 0.0105 0.0104 0.021 0.0027 0.0167 0.0011 0.085 0.0024 0.0022

414 0.0108 0.0102 0.0222 0.0027 0.016 0.0015 0.071 0.0017 0.0024

434 0.0103 0.0098 0.0241 0.0027 0.0166 0.001 0.072 0.0027 0.0012

454 0.0095 0.0091 0.0268 0.0025 0.0173 0.001 0.073 0.0015 0.0017

474 0.0109 0.0099 0.0219 0.0028 0.0168 0.001 0.076 0.0026 0.0015

494 0.0102 0.0105 0.0229 0.0028 0.0163 0.0015 0.076 0.0023 0.0018
514 0.0104 0.01 0.022 0.0028 0.0156 0.0012 0.077 0.0023 0.002

534 0.0099 0.0094 0.0214 0.0025 0.0156 0.0014 0.073 0.0018 0.0015

554 0.0098 0.0087 0.0241 0.0027 0.0156 0.0008 0.073 0.0039 0.0016

574 0.0101 0.0094 0.0228 0.0027 0.0155 0.0012 0.076 0.0023 0.0013

594 0.0104 0.0098 0.0212 0.0027 0.0163 0.0015 0.077 0.002 0.0022

614 0.0109 0.0094 0.0223 0.0029 0.0163 0.0012 0.080 0.0028 0.0012

634 0.0103 0.0102 0.0213 0.0028 0.0158 0.0014 0.079 0.0026 0.0013

654 0.011 0.0102 0.0205 0.0028 0.0148 0.0013 0.083 0.0017 0.0016

674 0.0113 0.0091 0.0218 0.003 0.0138 0.0012 0.081 0.0018 0.0016

694 0.0115 0.0095 0.0205 0.0028 0.0135 0.0009 0.085 0.0019 0.0024

714 0.0113 0.0095 0.0242 0.0027 0.014 0.0014 0.095 0.0014 0.0015

734 0.0099 0.0092 0.0223 0.0025 0.015 0.0006 0.090 0.002 0.0015

754 0.0108 0.0096 0.022 0.0028 0.0163 0.0012 0.087 0.0019 0.0017

774 0.0105 0.0092 0.0204 0.0027 0.0149 0.0014 0.070 0.0013 0.0017
794 0.0112 0.0094 0.0209 0.0026 0.0138 0.001 0.074 0.0024 0.0018

814 0.01 0.009 0.0222 0.0028 0.0158 0.0013 0.073 0.0017 0.0012

841 0.0101 0.0087 0.0223 0.0029 0.0169 0.001 0.073 0.0008 0.0019

854 0.0099 0.0077 0.022 0.0027 0.0159 0.0014 0.067 0.0018 0.0015

874 0.0107 0.0088 0.0226 0.0028 0.0151 0.0014 0.072 0.0012 0.0014

894 0.0105 0.0083 0.0226 0.003 0.0151 0.0011 0.072 0.0005 0.0013

921 0.0109 0.0084 0.0205 0.0026 0.0141 0.0008 0.073 0.0025 0.0017

934 0.0107 0.0085 0.0221 0.0027 0.0153 0.0012 0.073 0.0019 0.002

954 0.0107 0.0087 0.0207 0.0028 0.0158 0.0013 0.072 0.0019 0.0018

974 0.0112 0.0088 0.0207 0.0027 0.014 0.0012 0.073 0.0019 0.0013
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Table 7. (Contd.)

No., cm LOI SiO2 Al2O3 TiO2 Fe2O3 MnO K2O CaO MgO

994 8.99 57.36 15.21 0.72 6.78 0.058 2.42 1.7 2.77

1016 9.17 56.79 15.04 0.69 6.64 0.062 2.20 1.82 3.15

1034 9.15 58.93 14.38 0.71 6.27 0.053 2.26 1.71 2.56

1054 9.36 59.81 13.96 0.69 5.57 0.052 2.16 1.9 2.4

1074 8.53 60.43 13.99 0.71 5.72 0.053 2.21 1.75 2.44

1094 8.7 60.38 14.05 0.68 5.32 0.052 2.17 2.08 2.34

1114 7.81 59.36 15.15 0.73 6.32 0.054 2.44 1.74 2.73

1134 8.2 58.97 14.78 0.72 6.49 0.053 2.42 1.76 2.64

1154 6.66 59.74 14.81 0.8 6.74 0.07 2.38 1.91 3.06

1174 6.47 60.15 14.59 0.77 6.66 0.069 2.34 1.96 2.95

1194 6.7 60.62 14.57 0.77 6.12 0.063 2.30 1.94 2.8

1214 6.5 61.39 13.95 0.72 6.11 0.065 2.31 1.99 2.34

1234 6.94 59.74 15.35 0.78 6.5 0.051 2.62 1.55 2.72

1254 7.15 59.18 15.32 0.77 6.47 0.052 2.51 1.67 2.74

1274 9.33 57.78 14.66 0.68 6.01 0.057 2.51 2.56 2.53

1294 8.01 59.16 15.62 0.72 5.91 0.054 2.63 1.i47 2.63

1314 6.32 60.67 15.1 0.75 6.37 0.057 2.51 1.89 2.68

1334 6.58 60.25 15.31 0.76 6.4 0.059 2.54 1.77 2.78

1354 6.87 59.44 15.25 0.76 6.96 0.058 2.58 1.61 2.95

1374 6.43 59.82 15.44 0.79 7.01 0.061 2.61 1.7 2.87

1394 6.55 59.86 15.36 0.76 6.79 0.059 2.58 1.69 2.87

1414 8.36 57.56 15.34 0.72 6.71 0.059 2.52 1.66 3.15

1434 6.16 60.06 15.47 0.77 6.85 0.067 2.47 1.95 2.99

1454 9.2 55.72 15.27 0.69 6.58 0.064 2.31 1.86 3.2

1474 7.31 58.97 15.31 0.76 6.76 0.069 2.35 1.83 2.99

1494 6.93 59.26 15.07 0.76 7 0.07 2.33 1.88 2.99

1514 8.55 57.66 15.15 0.72 6.51 0.066 2.24 1.81 3.07

1534 9.46 57.01 14.81 0.68 6.08 0.062 2.17 1.91 3.09

1554 8.75 57.99 14.74 0.7 6.19 0.065 2.12 1.82 3.11

1574 3.92 68.23 12.43 0.56 4.51 0.05 2.02 2.22 1.84

1594 4.92 64.05 14.24 0.69 5.31 0.054 2.27 2.01 2.38

1614 5.27 63.33 14.41 0.77 5.97 0.059 2.36 1.93 2.64

1634 6.64 61.01 13.72 0.73 5.96 0.06 2.38 2.3 2.96

1654 5.31 63.04 13.47 0.72 5.74 0.063 2.31 2.7 2.76

1674 5.76 61.8 13.88 0.73 6.05 0.062 2.29 2.21 2.92

1694 7.53 59.94 14.43 0.7 5.98 0.055 2.56 1.86 2.86

1714 7.61 59.19 14.86 0.78 6.35 0.053 2.64 2.05 2.77

1734 6.78 60.61 14.8 0.79 6.57 0.052 2.68 1.59 2.75

1754 6.9 60.22 14.84 0.79 6.77 0.055 2.62 1.72 2.7

1774 7.6 59.21 15.05 0.74 6.41 0.051 2.65 1.65 2.83

1794 10.74 55.16 15.06 0.67 5.9 0.049 2.56 1.88 2.98

1814 6.94 60.94 14.49 0.71 6.15 0.057 2.41 1.66 2.58
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Table 7. (Contd.)

No., cm Na2O P2O5 Cr S V Co Ni Cu

994 3.08 0.145 0.010 0.49 0.0184 0.0018 0.0045 0.0037

1016 3.26 0.148 0.008 0.71 0.0181 0.0012 0.0038 0.0029

1034 3.10 0.135 0.010 0.43 0.0154 0.0011 0.0045 0.0031

1054 3.20 0.132 0.010 0.52 0.0165 0.0013 0.0037 0.0027

1074 3.12 0.144 0.022 0.51 0.0165 0.0011 0.0057 0.0026

1094 3.37 0.137 0.008 0.42 0.0141 0.0014 0.0035 0.0022

1114 2.93 0.152 0.011 0.33 0.0186 0.0016 0.0045 0.0027

1134 3.07 0.156 0.009 0.44 0.0179 0.0012 0.0045 0.0032

1154 3.14 0.156 0.010 0.26 0.0205 0.0018 0.0046 0.0033

1174 3.16 0.146 0.010 0.49 0.0208 0.0013 0.0049 0.0032

1194 3.41 0.149 0.010 0.28 0.0159 0.0011 0.0039 0.003

1214 3.59 0.143 0.006 0.50 0.0143 0.0011 0.0033 0.0033

1234 2.96 0.149 0.009 0.24 0.0207 0.0016 0.0046 0.0032

1254 3.29 0.152 0.010 0.27 0.0188 0.0014 0.0043 0.0026

1274 2.93 0.151 0.009 0.43 0.0211 0.0012 0.0046 0.0031

1294 2.88 0.158 0.009 0.42 0.0233 0.0015 0.0049 0.0032

1314 2.89 0.159 0.009 0.22 0.0212 0.0011 0.0045 0.0036

1334 2.81 0.161 0.009 0.20 0.0221 0.002 0.0042 0.0034

1354 2.79 0.16 0.009 0.21 0.0209 0.0018 0.0051 0.0032

1374 2.64 0.162 0.011 0.13 0.0228 0.0019 0.0049 0.0037

1394 2.83 0.164 0.009 0.17 0.0182 0.0023 0.005 0.0035

1414 3.10 0.164 0.013 0.38 0.0184 0.0019 0.0059 0.0035

1434 2.66 0.168 0.010 0.12 0.0216 0.0022 0.0051 0.0051

1454 4.08 0.144 0.009 0.64 0.0215 0.002 0.0049 0.0041

1474 2.98 0.147 0.009 0.22 0.0217 0.0026 0.0049 0.0056

1494 3.06 0.15 0.012 0.19 0.0202 0.0019 0.0054 0.0036

1514 3.45 0.145 0.009 0.44 0.0169 0.002 0.0042 0.0031

1534 3.75 0.137 0.009 0.57 0.0178 0.0014 0.0044 0.0032

1554 3.66 0.132 0.009 0.40 0.0176 0.002 0.0042 0.0036

1574 3.51 0.123 0.009 0.27 0.0115 0.0007 0.0055 0.0017

1594 3.32 0.141 0.010 0.25 0.015 0.0028 0.0193 0.0029

1614 2.68 0.144 0.010 0.14 0.0174 0.0019 0.0042 0.0021

1634 3.42 0.15 0.029 0.34 0.0168 0.0018 0.0064 0.0024

1654 3.14 0.15 0.010 0.33 0.0158 0.0017 0.0039 0.0023

1674 3.18 0.153 0.009 0.52 0.0164 0.0014 0.004 0.0023

1694 3.22 0.144 0.010 0.39 0.015 0.0018 0.0039 0.003

1714 2.86 0.153 0.010 0.22 0.0185 0.0013 0.0048 0.0032

1734 2.68 0.142 0.012 0.14 0.021 0.0011 0.0047 0.003

1754 2.53 0.146 0.011 0.21 0.0191 0.0012 0.0042 0.0035

1774 2.94 0.146 0.011 0.37 0.0186 0.0016 0.0043 0.0026

1794 3.74 0.138 0.009 0.84 0.0157 0.0017 0.0041 0.0026

1814 3,03 0,149 0,010 0,65 0,0155 0,0013 0,0042 0.0029
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Table 7. (Contd.)

No., cm Zn Rb Sr Y Zr Nb Ba As Pb

994 0.011 0.009 0.021 0.0027 0.0144 0.0011 0.079 0.0028 0.002

1016 0.0092 0.0077 0.0224 0.0025 0.0148 0.001 0.061 0.0021 0.0015

1034 0.0104 0.0086 0.0212 0.0025 0.0148 0.0013 0.074 0.0027 0.0016

1054 0.0102 0.0076 0.0235 0.0027 0.0152 0.001 0.069 0.0021 0.001

1074 0.01 0.0081 0.0235 0.0027 0.0167 0.0013 0.064 0.0018 0.0009

1094 0.0096 0.008 0.0252 0.0027 0.0167 0.0007 0.071 0.0009 0.0014

1114 0.0108 0.0092 0.0232 0.0028 0.0165 0.0012 0.077 0.0028 0.0015

1134 0.0114 0.0093 0.0233 0.0029 0.0163 0.0012 0.087 0.0021 0.0016

1154 0.011 0.0088 0.025 0.0026 0.0173 0.0013 0.073 0.0003 0.0011

1174 0.011 0.0081 0.0254 0.0031 0.0178 0.0012 0.076 0.0031 0.0013

1194 0.0105 0.0086 0.027 0.003 0.0178 0.0011 0.076 0.0046 0.0017

1214 0.0094 0.0078 0.0252 0.003 0.0187 0.0009 0.079 0.0029 0.0011

1234 0.0124 0.0104 0.0234 0.0031 0.0183 0.001 0.087 0.0034 0.0029

1254 0.0111 0.0101 0.0231 0.0029 0.018 0.0014 0.087 0.0028 0.0019

1274 0.012 0.0104 0.0218 0.003 0.0155 0.0012 0.095 0.0035 0.0012

1294 0.0121 0.0112 0.0192 0.0028 0.016 0.0013 0.098 0.0029 0.0018

1314 0.0114 0.0108 0.0249 0.003 0.0174 0.0016 0.096 0.0009 0.0018

1334 0.0116 0.0108 0.0231 0.003 0.0173 0.0013 0.097 0.0026 0.0022

1354 0.0118 0.0097 0.0209 0.0031 0.0163 0.001 0.094 0.0009 0.0015

1374 0.0128 0.0109 0.0219 0.0031 0.0166 0.0012 0.096 0.0011 0.0019

1394 0.0116 0.0105 0.0213 0.003 0.0176 0.0015 0.098 0.0027 0.0016

1414 0.0114 0.01 0.0206 0.0027 0.0153 0.0011 0.090 0.0024 0.0016

1434 0.0119 0.0089 0.0246 0.0031 0.0163 0.0013 0.089 0.0023 0.0017

1454 0.0111 0.0092 0.0255 0.0027 0.015 0.0011 0.079 0.0032 0.0016

1474 0.0116 0.0084 0.0213 0.0027 0.016 0.0011 0.081 0.0020 0.0019

1494 0.0111 0.0089 0.0236 0.0028 0.0163 0.0013 0.072 0.0012 0.0018

1514 0.0107 0.0082 0.0221 0.0027 0.0144 0.0011 0.069 0.0030 0.0010

1534 0.0099 0.0083 0.0246 0.0027 0.0145 0.0009 0.073 0.0011 0.0015

1554 0.01 0.0078 0.0224 0.0024 0.0145 0.0006 0.064 0.0030 0.0016

1574 0.0073 0.0074 0.0322 0.0024 0.0195 0.0011 0.081 0.0036 0.0014

1594 0.0087 0.0087 0.0291 0.0025 0.0179 0.0014 0.076 0.0021 0.0012

1614 0.0098 0.009 0.0263 0.0031 0.0185 0.0009 0.068 0.0011 0.0023

1634 0.0095 0.0081 0.0263 0.0028 0.0182 0.0011 0.072 0.0016 0.0022

1654 0.0091 0.0083 0.0289 0.0027 0.0184 0.0012 0.071 0.0025 0.0012

1674 0.0089 0.0084 0.0267 0.0029 0.0188 0.0011 0.067 0.0045 0.0013

1694 0.0102 0.0104 0.0265 0.0028 0.017 0.0012 0.067 0.0021 0.0020

1714 0.0117 0.0112 0.0228 0.003 0.0177 0.001 0.080 0.0023 0.0020

1734 0.0115 0.0108 0.0234 0.0029 0.0182 0.0014 0.074 0.0029 0.0013

1754 0.012 0.0104 0.023 0.003 0.0172 0.0009 0.074 0.0025 0.0018

1774 0.0114 0.011 0.0225 0.0031 0.018 0.0014 0.080 0.0052 0.0016

1794 0.0098 0.0101 0.0227 0.0028 0.0158 0.0013 0.073 0.0023 0.0023

1814 0.0097 0.0096 0.0243 0.0028 0.0169 0.0009 0.082 0.0027 0.0012
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fourth association is Cr, Ni, S, As, LOI, and Al with clay
and, in part, silt fractions. These occur in organic mat�
ter, clays, and pyrite.

R�mode factor analysis with varimax rotation was
used for the quantification of the role of different factors
in the development of the geochemical associations
(Table 11). Factors 1 to 4 together explain more than
75% of the variance. The percentage of variance
accounted for by each factor are 35.742% for factor 1
(significant positive loadings for Al, K, P, V, Zn, Rb, and
Ba), 17.236% for factor 2 (Ti, Fe, Mn, Mg, and Cu),
14.725% for factor 3 (Si, Sr, and Zr), and 8.025% for
factor 4 (Ca and Co). The analysis of variations in the
factors with depth showed that factors 1, 2, 3 and 4 are
controlled by the abundance of silt, clay, sand, and bio�

genic calcite, respectively (Fig. 7). Therefore, the com�
positional variations in the cored sediments are a func�
tion of grain�size fractionation.

In our opinion, the geochemical data in combina�
tion with micropaleontological and other indicators are
particularly useful for the identification of sediments
accumulated under conditions of high productivity and
anoxia within the oxygen minimum zone. The Ba/Al
[29] and Ca/Al ratios were used as productivity indica�
tors. It should be noted that each of the methods used
has its own shortcomings. For example, part of Ba in
sand�rich sediments may be related to detrital feldspars.
Sand�size bivalve fragments could be derived by slope
processes and lateral transport. Therefore, data on the
samples with low sand contents and showing compara�

Table 8. Average chemical composition of bottom sediments, wt %

Sediment
>0.063�

mm frac�
tion

SiO2 Al2O3 TiO2 Fe2O3 MnO K2O CaO MgO Na2O P2O5 LOI

Members 1 + 3 0–5 
(n = 45)

58.61 15.13 0.72 6.32 0.06 2.45 1.84 2.76 3.05 0.15 8.27

5–10 
(n = 28)

59.26 14.93 0.72 6.22 0.06 2.41 1.96 2.76 3.15 0.15 7.72

10–16 
(n = 9)

59.55 14.95 0.72 6.18 0.06 2.38 2.01 2.77 3.34 0.15 7.24

Members 1 + 3, 
mean

(n = 82) 58.94 15.04 0.72 6.27 0.06 2.43 1.90 2.76 3.16 0.15 7.97

Shale from Pz 
fold belts [25]

– 59.46 17.53 0.74 6.56 0.14 3.04 1.82 2.38 1.52 0.13 6.04

Modern bottom 
sediments from 
Bering Sea shelf 
[44] (n = 123)

– 72.31 11.06 0.63 3.73 0.06 1.57 2.83 1.72 3.07 n.d. n.d.

Member 2 >16 (n = 6) 63.64 13.82 0.70 5.52 0.06 2.26 2.26 2.51 3.18 0.14 5.28

Note: n.d.—not determined.

Table 9. Average concentrations of elements in the Shirshov Ridge sediments with variable sand content (wt %) recalcu�
lated to a silica�free basis

Sand content Al2O3 TiO2 Fe2O3 MnO K2O CaO MgO Na2O P2O5 LOI

0–5 36.55 1.74 15.27 0.14 5.92 4.45 6.67 7.37 0.36 19.98

5–10 36.64 1.77 15.27 0.15 5.92 4.81 6.77 7.73 0.368 18.95

10–16 36.96 1.78 15.28 0.15 5.88 4.97 6.85 8.26 0.371 17.90

>16 38.01 1.92 15.18 0.17 6.22 6.22 6.90 8.75 0.385 14.52
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ble results from both methods were found to be most
reliable. The calculation revealed correspondence
between high Ba/Al and Ca/Al ratios only at 16, 1274,
and 1574 cm. The most reliable data on anoxic condi�
tions (V/Cr higher than 2.5) [29] were found at 74,
1294, 1334, and 1474 cm.

Age of sediments and sedimentation rates. The anal�
ysis of data in Table 1 showed that Holocene sediments
are missing in the cored section. The identified lithos�

tratigraphic units are attributed to the following marine
isotopic stages (from top to bottom): sub�member 1a to
MIS 2–MIS 3a, sub�member 1b to MIS 3–MIS 4, sub�
member 1c to MIS 5a–d, member 2 to MIS 5e, and
member 3 to MIS 6. It was found that sedimentation
rates in sub�member 1a were highest during deglacia�
tion and lowest during the Last Glacial Maximum and
MIS 3a. In sub�member 1b, the interval 5–7 m with the
highest sedimentation rates generally coincides with the

Table 10. Correlation matrix for geochemical and grain�size components from the Shirshov Ridge sediments using Pearson
correlation coefficients

Component SiO2 Al2O3 TiO2 Fe2O3 MnO K2O CaO MgO

SiO2 1.000 –0.666 0.031 –0.444 –0.037 –0.232 0.183 –0.563

Al2O3 1.000 0.279 0.462 0.005 0.551 –0.294 0.453

TiO2 1.000 0.651 0.356 0.416 –0.302 0.387

Fe2O3 1.000 0.543 0.295 –0.340 0.723

MnO 1.000 –0.345 0.134 0.633

K2O 1.000 –0.384 0.120

CaO 1.000 –0.132

MgO 1.000

Table 10. (Contd.)

Component Na2O P2O5 Cr S V Co Ni Cu Zn Rb

Na2O 1.000 –0.530 –0.064 0.431 –0.411 –0.038 –0.005 –0.122 –0.518 –0.549

P2O5 1.000 0.129 –0.362 0.648 0.244 0.018 0.266 0.487 0.438

Cr 1.000 –0.053 0.049 0.055 0.233 –0.008 –0.014 –0.050

S 1.000 –0.298 –0.223 –0.079 –0.062 –0.282 –0.216

V 1.000 0.238 –0.017 0.526 0.661 0.411

Co 1.000 0.412 0.400 0.166 –0.015

Ni 1.000 0.145 –0.103 –0.023

Cu 1.000 0.543 –0.003

Zn 1.000 0.564

Rb 1.000

Table 10. (Contd.)

Component Sr Y Zr Nb Ba As Pb LOI Sand Silt Clay

Sr 1.000 0.001 0.638 –0.160 –0.262 0.147 –0.160 –0.679 0.740 –0.664 –0.414

Y 1.000 0.431 0.089 0.329 0.060 0.200 –0.294 –0.226 0.234 0.075

Zr 1.000 0.077 –0.018 0.261 0.092 –0.763 0.501 –0.360 –0.427

Nb 1.000 0.234 –0.032 0.115 –0.012 –0.052 0.135 –0.116

Ba 1.000 0.043 0.216 –0.050 –0.193 0.303 –0.106

As 1.000 –0.025 –0.062 0.136 –0.050 –0.196

Pb 1.000 0.018 –0.104 0.101 0.045

LOI 1.000 –0.624 0.498 0.449

Sand 1.000 –0.873 –0.597

Silt 1.000 0.130

Clay 1.000
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Table 11. Factor loadings for major oxides and elements

Component Factor 1 Factor 2 Factor 3 Factor 4

SiO2 –0.06819 –0.31711 0.842454 0.275716

Al2O3 0.513087 0.345267 –0.57856 –0.01034

TiO2 0.455857 0.639282 0.438591 –0.09948

Fe2O3 0.271723 0.846487 –0.10571 –0.14548

MnO –0.34492 0.816329 0.136247 0.257109

K2O 0.906295 0.045018 –0.06975 –0.10311

CaO –0.36449 –0.21372 –0.08326 0.549555

MgO –0.02457 0.785638 –0.31982 0.040134

Na2O –0.72364 –0.06326 –0.06227 –0.13195

P2O5 0.620359 0.281102 –0.28415 0.402451

Cr 0.042226 0.038163 0.102307 0.16357

S –0.47869 –0.13822 –0.26743 –0.36383

V 0.54354 0.485106 –0.30441 0.079586

Co 0.008865 0.432956 –0.099 0.482589

Ni –0.01535 –0.01358 0.123096 0.426854

Cu 0.07149 0.742896 –0.13648 0.113389

Zn 0.643363 0.527713 –0.19109 –0.11951

Rb 0.866747 –0.05949 0.013845 –0.19397

Sr –0.43373 –0.18552 0.578093 0.465109

Y 0.478559 0.404892 0.442376 –0.04819

Zr 0.133207 –0.03418 0.925301 0.013724

Nb 0.46065 –0.02785 0.046697 –0.00727

Ba 0.602194 –0.01684 –0.22391 0.310377

As –0.05183 –0.11861 0.224516 –0.259

Pb 0.406653 0.050037 0.029925 –0.09681
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Fig. 7. Relationship between variations in the main factors controlling the distribution of major elements and components with
depth.

interstadial of MIS 3. The average sedimentation rate
for members 1 and 3 is about 15 cm/kyr. It is noteworthy
that sedimentation rates were lowest (about 3 cm/kyr)
during the last interglacial (MIS 5e), which was caused

by Yukon sediment transport to the Arctic Ocean as well
as a sharp base level rise.

The above results lead to the sound conclusion that
all of these samples (except for those from the sandy
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interval) were derived from the Yukon–Tanana terrane
and transported by the Yukon River across Beringia.
The available literature data [30] suggest that the
major sediment supply to areas near the Aleutians in
the Pacific was from Alaska during Late Pleistocene
cold periods and from Asia and Aleutians during
interglacials.

Geochronological constraints on sedimentological
events. Since our grain�size record begins (from top to
bottom) from the sample at 34–35 cm, it does not
reflect the first peak of magnetic susceptibility at 0–
14 cm. Based on the data from Table 1, its age may
roughly correspond to Heinrich event H0 (ages of
these events were taken from [4, 31]). Note that Hei�
nrich events are periods of extensive iceberg melting
in the North Atlantic and deposition of iceberg�
rafted debris [31]. The subsequent peaks of the
>0.063�mm size fraction at 124 and 233 cm corre�
spond to H1 and H2. Maxima at 320, 454, 754, 854,
and 1500 cm cannot be correlated with the available
geochronological data because of their poor accuracy
(Table 1). Therefore, some of the sand maxima in

member 1 correlate with the deposition of iceberg�
rafted debris in the North Atlantic (Heinrich events),
whereas other maxima may reflect either the local
deposition of ice�rafted debris in bottom sediments
or the lack of precise geochronological control. The
sand maxima of member 2 have no correlation with
sea�ice and iceberg activity, and such maxima are
absent in member 3.

A sharp increase in bottom current intensity is reli�
ably identified only at 74 cm during the deglaciation of
MIS 2. The second reliable increase can be related to
the interstadial of MIS 3a, and the strong increase of
current influence coincides with MIS 5a–d and MIS 6.

Relatively high paleoproductivity near the Shirshov
Ridge was recorded during the last deglacial period of
MIS 2 (especially for the Bölling�Alleröd warm event)
and two episodes during the Last Interglacial, i.e.
MIS 5e. Even higher primary production is inferred for
the Holocene [8, 10]. In general, higher productivity
during interglacials is characteristic of the Arctic and
Subarctic regions [32]. Deposition in the oxygen mini�
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mum zone took place synchronously with the increase
in paleoproductivity.

Figure 8 shows relationships between the June inso�
lation at 65°N, Northern Hemisphere ice volume
(Fig. 8a), and inferred sea�level variations in the Bering
Sea (Fig. 8b) for the past 140 kyr. The analysis of these
data suggests that the major climate changes were driven
by insolation changes, and the history of Northern
Hemisphere glaciation was a major control on gla�
cioeustatic sea�level fluctuations.

Intervals with the highest smectite abundance (with
chlorite/smectite ratio less than 1.0) may reflect the
maximum supply of altered volcanic products, which
roughly corresponds to MIS 5d–MIS 3. In this case,
the oldest interval corresponds to an episode of MIS 5d,
and the youngest interval corresponds to an episode of
MIS 3 [33]. The highest illite abundance and
illite/chlorite ratio in the three upper samples (Fig. 4)
correspond to Termination 1a (deglacial of MIS 2) [11].

CONCLUSIONS

Our results suggest that the sedimentation history of
the Shirshov Ridge (Fig. 9) was dominated by low sea
levels over the last 156 kyr. During this time, the lowest
sea level, roughly corresponding to Substage IIIc,
exposed much of the continental shelf, and the Bering
Strait did not exist. This dry land is called Beringia [34].
During MIS 2 and 4, in some places of Kamchatka,
Koryakia [35], Chukchi Peninsula, and Alaska [36],
glaciers may have advanced to the present coastline of
the Bering Sea. This has been a much disputed issue,
and most authors suggest that there is no evidence that
glaciers have ever extended far across Kamchatka,
Koryakia, and Chukchi Peninsula and that a Beringia
ice sheet has ever existed during glaciations [37–40].
Rivers currently draining into the Bering Sea, first of all
Yukon, spread out over the exposed shelf area far
beyond their modern deltas and estuaries. For example,
16–11 ka paleo�Yukon sediments were described on a
shoal located southward from St. Lawrence Island on
the Bering Sea shelf [41]. The Yukon River, which car�
ried the suspended sediment load formed mainly by the
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erosion of Paleozoic rocks within the Yukon–Tanana
terrane, previously entered the Bering Sea near the
Shirshov Ridge. The terrigenous material was supplied
by the Yukon River to its mouth and further transported
by a strong surface current (which also exists at present)
over the continental slope and further in the WNW
direction. This material was transported to the northern
part of the Shirshov Ridge, where it partly accumulated
in sediments.

During much of that period, the sea level was well
below the present level but slightly above the bottom of
the Bering Strait (Fig. 9); therefore, large shelf areas
were under the sea. This corresponds to substages IIIb
(mean sea�level) and IIIa and Stage I (sea�level high�
stand). As was previously shown, that time was domi�
nated by the deposition of Yukon terrigenous materials
on the Shirshov Ridge. Therefore, this material was
transported along the shelf under water by the paleo�
Yukon River. A similar situation exists at present, for
instance, in the Ob–Yenisey shoal of the Kara Sea
within the Ob and Yenisey paleo�valleys [3], on the
Laptev Sea shelf within the paleo�valleys of the Kha�
tanga, Lena, and Yana rivers [42], as well as in many
other shelf areas worldwide. Moreover, the proposed
scenario clearly suggests that no active connection
existed between the Bering Sea and the Arctic Ocean.
Otherwise, much of the Yukon sedimentary load, like at
present (Fig. 1), would have been transported through
the Bering Strait by northward� and northwestward�
flowing longshore currents. This scenario was recorded
in the sediments of Stage II, when much of the Yukon
sediments were transported into the Arctic Ocean dur�
ing the Last Interglacial, which was reflected in much
lower sedimentation rates and changes in the chemical
and mineralogical compositions of sediments.

On the ridge slope, the clay fraction was washed
out from the sediments by permanent bottom cur�
rents. The major portion of the material was supplied
to the bottom from catchment areas, which was pri�
marily controlled by glacial history and sea�level
fluctuations. In both cases, cyclic climate variations
were the main reason.

During the maximum lowstand, the land area was a
tundra�covered alluvial plain [34], and drifting ice,
probably of the pack type, existed in the northern part of
the sea, which is indicated by the data of [20] for MIS 4
and MIS 2. Icebergs were most likely absent here,
although for Koryakia located close to the Shirshov
Ridge, although the possibility of iceberg drift to the
Bering Sea during the MIS 4�3 last glacial and MIS 2
was advocated by some authors [35]. The input of ice�
rafted debris to the sediment was probably related to sea
ice melting. Similar observations were previously
reported in the Sea of Okhotsk [3, 43]. The coarse size
(sand and gravel) indicates that the ice�rafted debris was

mostly transported by one�year ice, in particular fast
ice. The synchrony of North Atlantic Heinrich events
and ice�rafted debris maxima was observed in the Sea of
Okhotsk [4], but they are only partly synchronous in the
cored section from the Shirshov Ridge. In addition to
the atmospheric teleconnections transmitting climate
signals over very long distances in the Northern Hemi�
sphere, of particular importance are specific regional
features of ice regime, which are still poorly known.

Increases in primary productivity typical of intergla�
cials and interstadials in the Arctic and Subarctic [3, 20]
led to an extension of the oxygen minimum zone, which
was reflected in the geochemistry of sediments. It is
likely that an offshore seasonal sea ice either existed in
the northern deep water part of the sea (as in Recent
times) or did not exist at all. This issue requires further
examination.

Sediments deposited during Substage IIIa are typi�
cally of dark grey color, clearly seen in the Arctic and
Subarctic marine sediments, and have proximal sources
located in areas with extensive continental ice sheets [3,
14, 15]. This observation is in agreement with our sug�
gestion about the Yukon–Tanana terrane as the major
source area, where the extensive MIS4�3 glacial in the
Central Alaska took place [38]. Variations of the terrig�
enous fluxes were partially driven by bottom current
intensity (Fig. 9). Episodes of slower currents typical of
glacial periods are recorded during Substage IIIb. Dur�
ing Substage IIIc, fluctuations in the terrigenous fluxes
appear to be largely controlled by mountain glacia�
tion. The extent of glaciation in Alaska at the Last
Glacial Maximum was 727800 km2 compared with
the 74700 km2 of modern mountain glaciers [38].

Our results suggest that the Late Pleistocene sedi�
mentary history of the Shirshov Ridge was essentially
controlled by climate oscillations, which were crucial
for the evolution of the Alaskan glaciation and gla�
cioeustatic sea level change. The latter, in turn, affected
relations of sea and land over the vast area of the north�
ern Bering Sea shelf.
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