A bi-polar perspective on sea ice

H. Flores, C. David, B. Lange, M. Fernandez-Méndez, M. Bayer,E. Kilias, C. Wolf, C. Lalande, I. Peeken, B. Meyer, G. Dieckmann, a.m.o.

1. Differences and similarities between the Polar Regions

2. Productivity

3. Biodiversity

0

4. Climate change

5. Conclusions

PACES II

Topic 1: Changes and regional feedbacks in Arctic and Antarctic

WP 4

 To provide evidence and understanding of the causes and consequences of variation in sea ice cover for the hydro-, bio- and geosphere of the Arctic Ocean and beyond

WP 5

 Assess the changes that occur in the Southern Ocean, identify the processes that link physics, chemistry and biology, and determine the feedback mechanisms to the global climate system

Biogeochemical cycling in Polar ecosystems

Identify the processes that link physics, chemistry and biology

Biogeochemical cycling in Polar ecosystems

Identify the processes that link physics, chemistry and biology

Global sea surface temperature

Sea Surface Temperature (°C)

2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Global sea SST and sea ice zones

Sea Surface Temperature (°C)

2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Differences in hydrography

Arctic Ocean
Mediterrenean ocean
16 mio skm SIZ
Broad, shallow shelves
Trans-polar currents
Low nutrient concentrations

Antarctic Ocean Open ring ocean • 20 mio skm SIZ Narrow, deep shelves **Circum-Polar currents High nutrient** concentrations Iron-limited

Differences in sea ice

Arctic Ocean

- MYI dominant (?)
- Little snow
- Melt ponds
- Aggregates / Melosira

Antarctic Ocean
FYI dominant
Snow cover
Ice shelves
Platelet ice habitats

What to compare?

South Georgia

In the Participant of Control of State

Young et al. (2011)

What to compare?

A. LANA		
	Arctic	Antarctic
Neritic	Shallow + Nuts + iron MYI	Deep + nuts, (+ iron) MYI Ice shelves
Oceanic	Deep - nuts + iron MYI -> FYI	Deep + nuts – iron FYI

Productivity

Productivity

Productivity

Proportional contribution of ice algal primary production

McMinn et al. (2010) Mar Biol

Primary production in the Arctic SIZ

Percentage contribution to PP August-September 2012

Mar Fernandez-Méndez

Antarctic sea ice algal biomass

Klaus Meiners Gerhard Dieckmann

Meiners et al. (2012) Geoph. Res. Let.

Diversity

Under-ice fauna

Hauke Flores Carmen David Henrieke Tonkes

*Flores et al. (2011) Deep-Sea Res. II

Under-ice fauna

Under-ice fauna

Carmen David, Benjamin Lange

Arctic phytoplankton communities

Taxonomical groups identified by 18S rDNA variability(454 pyrosequencing)

Antarctic phytoplankton communities

Taxonomical groups identified by 18S rDNA variability(454 pyrosequencing)

Wolf et al. (in press) Ant. Sci.

Community analysis

National Snow and Ice data Center (2011) http://nsidc.org

Arctic Ocean climate change

Leu et al. (2011); Wassman et al. (2011)

- Decline of sea ice extent
- Loss of MYI
- **Ocean warming**
- **Acidification**
- 'Atlantification'

Themisto compressa

An 'Atlantic' species in the Arctic

Angelina Kraft

Kraft et al. (in review), Mar. Ecol. Prog. Ser.

Antarctic Ocean Climate Change

Flores et al. (2012) Mar. Ecol. Prog. Ser.

- Regionally different sea ice change
- Ocean warming
- Acidification
- Species range shift

Temperature After Loeb et al. (1997), Atkinson et al. (2004)

Overwintering of krill larvae

Bettina Meyer

Better growth in sea ice

Winter diet: heterotrophic sea ice biota

Meyer et al. (2009), *L&O*

Molecular research on sea ice algae

Bayer-Giraldi et al., 2011

Neg. control

Maddalena Bayer-Giraldi

AFPs

Function of anti-freeze proteins (AFP)

Transcriptome analysis

Anique Stecher

Differences

- Bathymetry
- Topographic isolation
 Stratification & currents
 Nutrient regime
- Sea ice properties
- Diversity

Similarities

- Presence of sea ice Cold temperatures
- Pronounced seasonality
- Chemically limited PP
- Organism adaptations
- Rapid environmental change

Conclusions

- Sea ice system still poorly understood
- Complementary approaches allow to identify and compare drivers of change and ecosystem response in both Polar Oceans
- Both empirical and mechanistic studies are needed to understand the processes of change in Polar systems

Multi-disciplinary surveys

Conclusions

AWI's biological sea ice research combines long-term experience, scientific skills and modern approaches to address the complexity of future change at both Poles Internal and external collaboration and interdisciplinarity are key to enhance scientific impact

