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AbstratLattie Boltzmann (LB) methods have reently emerged as a new lass of viablesimulation tehniques for �uid �ow problems. In the present work, we investigatedthe potential of this method for oean dynamis simulation. First, we onstruteda Lattie Boltzmann simulator using standard tehniques and tested its behaviouron a well-known �uid mehanis problem (3D Poiseuille �ow). This was essen-tially a Diret Numerial Simulation (DNS) solver, as no turbulene model wasinluded. The program was then extended using a Smagorinsky-type turbulenemodel (also doumented in the literature), allowing the simulation of more realistioean dynamis. This re�nement allowed us to study more omplex ases, suh asthe lid-driven avity. Nonetheless, oeani �ows require more involved turbuleneparameterizations than the one introdued by Smagorinsky, due to the omplia-tions aused by the stronger strati�ation. Thus, the aim of the last part of theprojet was to introdue a new methodology for inluding these higher-order oeaniturbulene models into the standard LB algorithm. This part and the results thereinalso onstitute the main ontribution of this thesis. The new methodology allowsLB to easily inorporate various turbulene models in ommon use in oeanography.
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1 IntrodutionThe Earth limate is manifested through the dynamis and interations of many subsys-tems1. Due to its high latent heat, water regulates most of the energy transfers betweenthese omponents. As most of the water on the Earth is aumulated in the global oean,this is also the largest heat reservoir on the Earth, bearing an important in�uene onlimate variability. The harateristi timesale for hanges in the oeani irulation isin the range (10−1 yr,102 yr), muh larger than for the atmospheri irulation (10−5yr, 10−1 yr). In priniple, this an be also an advantage for numerial simulations, as theReynolds number is smaller ompared to the atmospheri; however, longer integrationtimes are also implied for oeani dynamis simulations, whih makes the two systemsomparable in terms of omputational demands.As in the ase of most �uids, the dynamis of the oeani water is governed by theNavier-Stokes equations, whose nonlinear terms renders them very di�ult to solve ana-lytially in any non-trivial situation. Adding to this the high osts neessary for setting-up and quantifying relevant experimental systems2, we onlude that the most aessiblemethod of enhaning the knowledge in this �eld is through numerial simulations. Al-though the power of the omputer systems is steadily inreasing, the omplexity of theoean imposes high demand for e�ient numerial methods.Lattie Boltzmann Methods (heneforth LBM) represent relatively new tehniquesfor �uid dynamis simulations, whih have been extensively used for smaller-sale sim-ulations. They emerged out of statistial mehanis rather than out of the marosopionservation laws3. The basi idea is to disretize both time and phase spae, and also toseparate the dynamis of the �uid partiles into multiple sales, expressed through a ol-lision and a streaming step. The streaming step involves only nearest neighbours, whilethe ollision step is loal and onsists of a relaxation towards the loal Boltzmann dis-1These are usually lassi�ed as: atmosphere, hydrosphere, ryosphere, lithosphere and biosphere2Controlled experiments are, indeed, out of the reah of geophysial �uid dynamiists in general andof oeanographers in partiular. They are onstrained to work with data that may be in�uened byproesses not ompletely understood. However, this is also one of the fators that make this �eld sofasinating.3Whih is the ase for the Navier-Stokes equations [Landau and Lifshitz, 1987℄.6



tribution, as required by Boltzmann's H-theorem [Ferziger and Kaper, 1972℄. This leadsto a oneptually simple but very powerful paradigm, whih an be proved to e�etivelyapproximate the Navier-Stokes equations under the assumption of a low Mah number4.From a omputational point of view, the loality of the algorithm leads to greater ben-e�ts from parallel omputing ompared to traditional Computational Fluid Dynamis(heneforth CFD), where an expensive global pressure orretion step is usually required.Another bene�t of the method relevant for the present projet is the relative simpliity ofimplementing proper boundary onditions, whih is of ruial importane in real-worldoeanographi simulations, where the e�ets due to the oastline have to be resolved.The aim of the present work was to extend the range of appliability of LBM to inludeproblems in numerial oeanography. The �rst appliations of the method to oeano-graphi problems were proposed by [Salmon, 1999a℄, [Salmon, 1999b℄ and [Wolf-Gladrow, 2000℄.While the results reported by these authors are very promising, they are restrited eitherto the two-dimensional ase or prototype 3D models with limiting assumptions and/orinsu�ient symmetry. To our knowledge, there has to date not been a onentrated e�orton onstruting a three-dimensional implementation targeting geophysial �uid dynam-is. Adding this third dimension is a hallenging yet highly neessary topi of researh. Ofourse, the traditional oeanographi models have evolved simultaneously with omputerhardware, and three-dimensional simulations are nowadays part of the standard require-ments, as they provide additional information on the mehanisms driving the large-saleoean irulation. Also, 3D simulations enable realisti modelling of the various �uxesbetween the oean and the other omponents of limate. A suessful LB-based modelan also enable higher-resolution studies, due to the potentially greater per-gridpointe�ieny of the method.The di�ulty of the task onsists of the fat that LBM assumes isotropy of both �uidvisosity and spatial resolution. Both of these assumptions are hallenged by our urrentunderstanding of the oeani system and our experiene gained through modelling it withother numerial shemes; hene the need for fundamental hanges to the LBM paradigm.The present thesis is organized as follows: in Setion 2 we present a review ofthe theoretial onepts related to LBM, the most important aspets of the algorithm4This assumption holds for the appliations in geophysial �uid dynamis.7



and some validation studies performed with our ode; in Setion 3 we develop a newmethodology for inluding turbulene losures in LBM, along with the proof that thenew model does indeed solve the Reynolds-averaged Navier-Stokes equations; Setion 4onludes the thesis and presents some outlook on the most probable pathways for futurework.
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2 Classial Lattie Boltzmann Methods2.1 The Boltzmann EquationOne of the most signi�ant theoretial breakthroughs in statistial physis was due toLudwig Boltzmann (1864) (see [Boltzmann, 1995℄ for a reent reprint of his famous le-tures on kineti theory), who pioneered non-equilibrium statistial mehanis. AlthoughBoltzmann's theory was oneived for diluted gases, the reader should be informed thatduring the last 50 years this treatment was extended to other lasses of �uids as well. In-deed, the Lattie Boltzmann method, whih is the fous of the urrent work, works in theassumption of a low Knudsen number5, that is it fails exatly for diluted gases. However,for the sake of oniseness, only the original reasoning is presented in this subsetion.Boltzmann postulated that a gas was omposed of a set of interating partiles, whosedynamis ould be (at least in priniple) modelled by lassial dynamis. Due to thevery large number of partiles in suh a system, a statistial approah was adopted,based on simpli�ed physis omposed of partile streaming in spae and billiard-likeinter-partile ollisions (whih are assumed elasti). Instrumental to the theory is thesingle-partile distribution funtion (hereafter SPDF), f(~x, ~p, t) whih represents theprobability density of having a partile at the point (~x, ~p) in the phase spae. Hene,the quantity
f(~x, ~p, t)d~xd~p (1)represents the probability of �nding a partile inside an in�nitesimal spae ubelet en-tered around ~x, and inside an in�nitesimal momentum-spae ubelet around ~p at anygiven time t. In the presene of a body-fore ~F , the SPDF will evolve aording to

f(~x+ d~x, ~p+ d~p, t+ dt)d~xd~p = f(~x, ~p, t)d~xd~p (2)where
d~x =

~p

m
dt5The Knudsen number (Kn) is a dimensionless quantity de�ned as the ratio of the mean free pathlength λ and a harateristi marosopi lengthsale L of the proess of interest.9



and
d~p = ~Fdt.If we also inlude the e�et of the ollisions, and denote by Γ+d~xd~pdt the probabilityfor a partile to start from outside the d~x × d~p domain and to enter this phase-spaeregion during the in�nitesimal time dt and by Γ−d~xd~pdt the probability for a partile tostart from the d~x×d~p domain and leave this phase-spae region during the in�nitesimaltime dt, the evolution of the SPDF beomes

f(~x+ d~x, ~p+ d~p, t+ dt)d~xd~p = f(~x, ~p, t)d~xd~p+ (Γ+ − Γ−) d~xd~pdt (3)Expanding the LHS into a Taylor series around the phase-spae point (~x, ~p, t), we obtain:
f(~x+d~x, ~p+d~p, t+dt)d~xd~p = f(~x, ~p, t)d~xd~p+

(
∂f

∂t

)

dt+(∇~xf)·d~x+(∇~pf)·d~p+. . .(4)Inserting Eq. (4) into Eq. (3) and anelling terms, we easily obtain Boltzmann's Equa-tion:
∂f

∂t
+ ~u∇~xf + ~F∇~pf = Γ+ − Γ− (5)where ∇~x is the gradient operator in physial spae and ∇~p the same in momentumspae.For the sake of larity, we have not written the ollision operator expliitly yet. Theimportant point is that the separation of the dynamis into ollisions and streaming isalready apparent from Eq. (5). The ollision operator, whih is in itself a omplexintegro-di�erential expression, reads

Γ+ − Γ− ≡
∫

d3~u1

∫

dΩ σ(Ω) |~u− ~u1|
[
f(~u′)f(~u′

1) − f(~u)f(~u1)
] (6)where σ is the di�erential ross-setion in the ase of the 2-partile ollisions (whih isa funtion of the solid angle Ω), unprimed veloities are inoming (before ollision) andprimed veloities are outgoing (after ollision).A fundamental property of the ollision operator [Cerignani, 1987℄ is that it onservesmass, momentum and kineti energy (hene also a linear ombination thereof). Also, itan be shown that the loal Maxwell-Boltzmann distribution pertains to a ertain lass10



of positive SPDFs for whih the ollision integral vanishes. This implies that, if thisdistribution is attained, we also have a state where inoming SPDFs exatly balane theoutgoing ones, maintaining a loal dynami equilibrium. This observation is of paramountimportane for our method, whih uses the (disretized) Maxwell-Boltzmann distributionas the equilibrium distribution funtions (hereafter EDFs).Due to the omplex expression for the ollision operator, it beame lear that approx-imations were desirable. It was also proven (see [Cerignani, 1990℄) that suh approxima-tions were also reasonable, sine the details of the two-body interation are not likely toin�uene signi�antly experimentally-measured quantities. Hene, approximate ollisionoperators were proposed, all of whih had to 1 onserve loal mass, momentum andenergy and 2 develop a ollisional ontribution in Boltzmann's equation (5) whih tendsto a loal Maxwellian distribution (whih is required by Boltzmann's H-theorem - see[Wolf-Gladrow, 2000℄ for a full disussion). It was soon realized that a model developedat the middle of last entury [Bhatnagar et al., 1954℄ (also known as Bhatnagar-Gross-Krook; hereafter BGK) satis�ed both of these onditions. The basi idea was that eahollision hanges the SPDF by an amount whih is proportional to the departure fromthe loal Maxwellian distribution.
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2.2 Theory of LBMLBM evolved out of Lattie-Gas Cellular Automata (hereafter LGCA), statistial toy-models inspired by the Boltzmann theory whih simulated a gas through partiles at dis-rete points in spae represented through Boolean variables. Following some physially-justi�ed ollision rules, these systems exhibited �uid-like behaviour. The prospet ofuseful �uid simulations beame apparent after averaging over many simulation resultsusing the same boundary onditions and foring but di�erent initializations of the gas.LBM replaes the Boolean variables of LGCA [Wolf-Gladrow, 2000℄ with real-valueddistribution funtions fi(~r), representing the probability density of �nding a partile ina ertain region of the disretized phase-spae. Another di�erene with respet to LGCAis the simpli�ed ollision operator [Bhatnagar et al., 1954℄.Also, in ontrast to LGCA, there are more hoies of the underlying lattie. Theseare usually lassi�ed in the literature using the DαQβ-notation, where α is an inte-ger number denoting the spae dimensionality and β is another integer indiating thenumber of disrete veloities (inluding the partile at rest) within the momentum dis-retization. Some restritions still have to be ful�lled (espeially Galilean and rotationalinvariane)6 to ensure that a partiular disretization an simulate the Navier-Stokesequations. Among the latties in ommon use7 there are the D2Q9, D3Q15, D3Q19and D3Q27-models (see for example disussion in [He and Luo, 1997℄). Sine our pri-mary interest was the 3D ase, we have hosen the D3Q19 momentum disretization,whih has better stability8 than D3Q15, while remaining less CPU-demanding than
D3Q27 at the prie of negligible losses in auray. The disrete veloity diretions forthe D2Q9 and D3Q19 latties are shown in Figs (1) and (2).The marosopi variables are de�ned as funtions of the partile distribution fun-6A lattie with redued symmetry an be (and has been) used, see [d'Humieres et al., 2001℄, where a
D3Q13-lattie is used. However, this approah also departs from the lassial BGK-LBM dynamis.7These are the latties whih satisfy these symmetry requirements; as an interesting side-note, theearlier LGCAs failed to reover the Navier-Stokes equations beause an improper lattie was used (see[Sui, 2001℄, pp. 20-21). These models produed square vorties, whih were learly unphysial � oneof the reasons why they were regarded as toy-models.8The stability is determined using the von Neumann linear stability analysis (see for example[Wolf-Gladrow, 2000℄ for details of this proedure).12
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tions (hereafter DFs) aording to:
ρ =

β−1
∑

i=0

fi (marosopi �uid density) (7)and
~u =

1

ρ

β−1
∑

i=0

fi~ei (marosopi veloity). (8)The DFs at eah lattie point are updated using the equation:
fi(~x+ ~ei∆t, t+ ∆t) = fi(~x, t)
︸ ︷︷ ︸Streaming − [fi(~x, t) − feq

i (~x, t)]

τ
︸ ︷︷ ︸Collision , (9)where a ∈ [0, β− 1] is an index spanning the (disretized) momentum spae and τ is arelaxation parameter, whih is related to the �uid visosity (more details about this willfollow in this subsetion).This equation holds for lattie points within the �uid domain, but not for the domainboundaries, where boundary onditions ompensate for the insu�ient number of DFs (itdoes not make sense to stream DFs from walls towards the �uid). For this reason, the twosteps (streaming & ollision) are treated separately in atual numerial implementations.The streaming step, where the DFs are translated to the neighbouring sites aordingto the respetive disrete veloity diretion, is illustrated in Fig. (3), in theD2Q9 modelfor simpliity. The ollision step (illustrated in Fig. [4℄) onsists of a re-distribution ofthe DFs towards the loal disretized Maxwellian equilibrium DFs, but in suh a waythat loal mass, momentum and energy are invariant, for reasons whih were alreadyexplained in the previous subsetion.The EDFs an be obtained from the loal Maxwell-Boltzmann SPDF (see for example[He and Luo, 1997℄); they are

feq
i (~x) = wiρ(~x)

[

1 + 3
~ei · ~u
c2

+
9

2

(~ei · ~u)2

c4
− 3

2

~u2

c2

]

, (10)where for the D2Q9 model the weights are
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streaming

Figure 3: Illustration of the streaming proess on a D2Q9 lattie. Note that the magni-tude of the DFs remain unhanged, but they move to a neighbouring node aording totheir diretion.
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Figure 4: Illustration of the ollision proess on a D2Q9 lattie. Note that the loaldensity ρ and veloity ~v are onserved, but the DFs hange aording to the relaxation-to-loal-Maxwellian rule.and c is the propagation speed on the lattie (1lattie spaing/time step), taken as c = 1in most ases. For the D3Q19 model, the weights are hanged as follows:
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Under the afore-mentioned assumption of a low Mah number, and further taking
Kn9, δt

10, δx
11 → 0, this model reovers the inompressible Navier-Stokes equations:

∇ · ~u = 0 , (13)
ρ∂t~u+ ρ~u∇ · ~u = −∇P + ρν∇2~u (14)with an isothermal equation of state:

P = c2sρ , (15)where P is the pressure.The visosity of the �uid is related to the relaxation parameter τ by the equation
ν = c2s (τ − 1/2) ⇒ τ =

ν

c2s
+

1

2
−−−−−−−−−−→
c2

s |D3Q19=1/3
τD3Q19 = 3ν +

1

2
(16)The proof of these results follows from the Chapman-Enskog analysis, and is inludedin 3.4. The speed of sound cs is a lattie-dependent quantity, whih takes the value

cs =
1

√
3for the popular D2Q9 and D3Q19 latties.Eq. (16) provides a straightforward method for adjusting the �uid visosity in themodel. It is obvious that τ ≥ 0.5 is required in order to ensure a positive visosity. Thelimit τ → 0.5 orresponds to the invisid �ow, while the τ → ∞ limit represents theStokes (reeping) �ow. While the later ase poses no di�ulty to the model12, the formerlimit is problemati beause stability issues appear if an insu�ient lattie resolution ishosen. This is due to the fat that veloity gradients an beome very large (espeiallyin omplex geometries, with high topography variations) and the model annot dissipatethe energy due to the very low visosity13. Unfortunately, many of the �ows of pratialinterest are turbulent, often with a low visosity.9The assumption of Kn ≡ λ

L
→ 0 is a requirement for ontinuum models to apply, hene it is notspei� to LBM.10Physial time unit, not the omputational time unit ∆t, whih is usually taken as 1.11Physial spae unit 6= ∆x, whih is usually taken as 1.12Stritly speaking, the Stokes limit presents its own issues, namely the slow onvergene rate; however,in the present ontext, we onentrate on stability.13The �brute-fore� remedy of inreasing the grid size improves the situation by e�etively resalingthe veloity �eld, whih automatially diminishes veloity gradients. However, this approah quiklybeomes unfeasible. 16



To overome this limitation, a turbulene model is neessary. The role of this pro-edure is to parameterize the turbulent energy dissipation in turbulent �ows, where thelarger eddies extrat energy from the mean �ow and ultimately transfer some of it to thesmaller eddies whih, in turn, pass the energy to even smaller eddies, and so on up to thesmallest sales, where the eddies onvert the kineti energy into internal energy of the�uid. At this sales (also known as Kolmogorov sale), the visous frition dominates the�ow [Frish, 1996℄.In lassial LB appliations, a onvenient method of modelling turbulent dissipationis through a loally-enhaned ollision, whih e�etively stabilizes the simulation. A om-mon (see [Thuerey, 2007℄) proedure is the Smagorinsky sub-grid model [Smagorinsky, 1963℄,whih, when adapted to LBM, onsists of:1. evaluation of the loal stress tensor:
Πα,β =

β−1
∑

i=0

~ei,α~ei,β(fi − feq
i ) , (17)where (α, β) ∈ {x, y, z} × {x, y, z};2. omputation of the enhaned relaxation time:

τS = 3(ν + C2S) +
1

2
, (18)where: S ≡ 1

6C2

(√

ν2 + 18C2
√

Πα,βΠα,β − ν

)

. (19)Proper values for the Smagorinsky onstant C that are suitable for LBM have beenpublished in the literature [Yu et al., 2005℄ and found to be lose to 0.03. It anbe observed that, as S > 0, ∀fi, the e�et of the model will always be a higherloal e�etive visosity, whih inreases as the loal stresses inrease.To onlude this disussion, it is worth mentioning that this proedure does indeedompliate the ollision operator, losing some of the elegane of the LBM algorithm.However, the e�ieny is inreased beause it allows one to work on muh oarser gridsompared to the original LBM, at the same value for visosity [Thuerey, 2007℄.Multi-Relaxation-Times (MRT) LBM. It is also worth mentioning that there existsanother formulation of LBM, whih uses instead of the simple BGK relaxation a set of re-laxation times for the di�erent hydrodynami moments of the DFs [d'Humieres et al., 2002℄.17



There is some freedom in hoosing these multiple relaxation times, whih an be used tostabilize the simulation. While this is a promising approah, this is out of the sope ofthe present thesis paper. This topi would be the one of the natural paths to investigatefurther.2.3 Boundary onditionsBoundary Conditions (BC) form an important part of any numerial solution, as theyan often a�et the auray of the algorithm signi�antly. Thus, an introdution toLBM would not be omplete without an exposition of the urrently known methods andbest praties for imposing the appropriate onstraints on the �uid domain.Periodi Boundary Conditions (hereafter BCs). The simplest type of boundaryondition is the periodi one. In this ase, the domain beomes folded along the diretionof the periodi BC pair. From the perspetive of oean modelling, this kind of BC is, ofourse, only useful in preliminary tests, as it implies a high symmetry of the �ow domain.Due to the way our streaming operator is implemented (that is, through irular shiftsof the DF-arrays), this kind of BC does not require any speial treatment (beause fromthe point of view of the model there is no domain disontinuity) and is therefore alsoomputationally the heapest.No-slip BCs. The most often used type of BC in LBM �ows is the no-slip BC, espe-ially the simple boune-bak rule, whih is quite elegant and surprisingly aurate inmost ommon appliations. The basi idea is that the inoming DFs at a wall node arere�eted bak to the original �uid nodes, but with the diretion rotated by π radians.The boune-bak BC is one of the most advertised bene�ts of the Lattie Boltzmannmethod, as it is trivial to implement and it allows one to e�ortlessly introdue obsta-les into the �uid domain (for example, by using a global Boolean �eld; boune-bakis performed for all of the wall lattie points, whose �ag was ��ipped� to solid duringthe initialization stage). However, the BC has been proven to be only �rst-order au-rate in time and spae [Pan et al., 2006℄. A straightforward improvement is to onsiderthe wall-�uid interfae to be situated halfway between the wall and �uid lattie nodes18



[Ziegler, 1993℄. This simple translation (whih is atually nothing more than a slightlydi�erent post-proessing proedure), ommonly referred to as half-way boune-bak inthe literature, is illustrated in Fig. (5). However, even for this sheme the auraybeomes �rst-order when the �uid boundaries are tilted with respet to the lattie dire-tions [Cornubert et al., 1991℄ and more advaned interpolation shemes are neessary. Itis important to note that, in atual numerial implementation, the streaming step is alsoperformed at the solid nodes marked as no-slip, but at these points the ollision step isreplaed by the boune-bak proedure. Nonetheless, it does not make sense to evaluatethe marosopi �elds at these points, as they are in reality situated outside the �uiddomain.Slip BCs. The slip BC is similar to the no-slip one, exept that the DFs are re�etedin a mirror-like fashion instead of boune-bak. A lear treatment of this an be foundin [Sui, 2001℄.Veloity and Pressure BC. Sometimes, we need to be able to model �ows with pre-sribed veloity or pressure pro�les; sine LBM operates from the point of view of thepartile distribution funtion, these are often referred to as von Neumann and Dirih-let BCs respetively. Suh onstraints are neessary, for example, when the simulationdomain ommuniates with other, not simulated but parameterized �ow domains. Thepresribed veloity or pressure add 2 (in D2Q9 � 3 in D3Q19) and, respetively 1equation for determining the unknown DFs (whih would hypothetially have to omefrom �outside� the �uid domain). In the ase of the veloity BC, the additional equa-tions are atually enough to solve for the unknown DFs (in D2Q9 only, but not in
D3Q19); for the pressure BC, the system of equations is not losed for all latties, andadditional onstitutive equations are neessary. A entral idea in this diretion is thatof the boune-bak of the non-equilibrium part of the DFs in the normal diretion (alsoknown as the Zou-He assumption after its proponents [Zou and He, 1997℄). Hene, for anorthern boundary (on a D2Q9-lattie), one would write:

f2 − feq
2 = f4 − feq

4 (20)19
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Figure 5: Illustration of the half-way boune-bak algorithm for the D2Q9 model(adapted after [Sukop and Thorne, 2006℄). Note that the ollision step is replaed bythe boune-bak step at the solid nodes in the immediate viinity of the �uid domain.Information from these nodes is also disarded during post-proessing, as the wall positionis taken as half-way between them and the adjaent �uid nodes.20



While these onsiderations are su�ient in 2D, problems arise in 3D, where there are 5unknown DFs and the system of equations is again not losed, even inluding the Zou-Heassumption. Additional onstraints have been proposed [Chen and Martinez, 1996℄, butthese are rather �symptomati� �xes. A very aurate, reent approah to this problem isdue to [Latt and Chopard, 2008℄ (also known as regularized BC). The authors �rst applythe boune-bak of o�-equilibrium parts for all of the unknown DFs, then evaluate theloal stress tensor (see Eq. (17)), and ultimately use this to ompute new values for allof the DFs, aording to the rule:
freg

i = feq
i (ρ, ~u) +

wi

2c4s
Qi : Π(1), i ∈ [0, β − 1] , (21)where �:� stands for the ontration of two tensors14 and the tensor Qi is de�ned as:

Qi ≡ ~ei~ei − c2sI (22)The expression for the orretions are derived by the authors through a rigorous multisaleexpansion and also found to be quite aurate in atual numerial simulations.14Whih produes a salar from any two tensors of same dimensions (say T and U), aording to therule T : U ≡
3∑

i=1

3∑

j=1

TijUji.

21



2.4 Numeri implementation2.4.1 Outline of the algorithmThe basi algorithm is listed below:Initialize Marosopi Quantities (ρ, ~u)Compute EquilibriumDFs (feq
i ) based on initial Marosopi FieldsInitialize DFs with Equilibrium DFsfor tStep = 1 to tMax doBoundariesCompute Marosopi Quantities (ρ, ~u)Compute Equilibrium DFs (feq

i )Loal Collision StepStreaming Stepend for2.4.2 General priniples of the implementationWhen it omes to the atual implementation, there are many ways of translating thetheoretial algorithm into omputer instrutions. We present here some of the generalideas partiular to our own implementation.First of all, the omputational domain onsists of a regular, 3D Cartesian grid. Thisimplies that any system to be simulated should be insribed within suh a domain. De-pending on the number of divisions along eah side of the 3D retangle, the spatialresolution an be adjusted. At the urrent stage of the implementation, isotropi spaespaing is used, that means
∆x ≡ ∆y ≡ ∆z . (23)In priniple, at eah point of the retangular omputational domain, we hold an integervalue representing the type of the ell (whih an be �uid, �uid boundary �hereafter�uidB � or solid/air) and several (19 in theD3Q19-model) �oating-point values for the22



disrete DFs. However, sine the DFs are only useful for the �uid and the �uidB nodes15,it would be a waste of omputer memory to store them all at eah lattie point. Weirumvent this problem by implementing a dynami memory alloation sheme for theDFs at eah lattie node, whih allows us to not alloate memory where it is unneessary(spei�ally for solid/air ells whih play no role in the simulation). The �uidB ells playa similar role to the �ghost layer� desribed in other implementations [Sui, 2001℄.
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Figure 6: Sample irregular domain (2D for larity). Fluid is hashed, boundary layer isblak and solid regions (for whih no memory is alloated to store the disretized DFs)are gray.One this datastruture has been set for the partiular geometry to be simulated (inthe init subroutine), the atual LBM algorithm is applied to the lattie.2.5 Re�nements of the modelAs desribed up to now, the model an already simulate some simple �ows. However,for more omplex simulations, additional improvements are required. Those whih havebeen already implemented are desribed below. Others, whih await to be added, aredisussed in the onluding hapter of the present thesis.2.5.1 Inreasing the auray of our numerial implementationExperimentation with the model showed slight non-onservation of the total mass of thesystem over large integration times. Further investigations revealed that the problem15The air is not diretly simulated, but its e�et of foring the oean surfae are inluded through atangential veloity-type boundary ondition. 23



onsisted of an inorret alulation of the equilibrium DFs. While this is more of anumerial e�et than a theoretial observation, we will develop this further as we onsiderit to be important nonetheless, due to the major improvement observed in the subsequentmodel runs.Essentially, the problem was a roundo� error enountered due to the addition of 2numbers of very di�erent orders of magnitude. In Eq. (10), the seond and third termsinside the brakets are muh smaller than 1 (by de�nition, the model requires them tobe ∼ Ma ≪ 1). This implies that they have a very di�erent mantissa in the �oating-point representation. Hene, upon addition, the omputer trunates the result, e�etivelydiminishing the in�uene of the smaller term.The remedy [Skordos, 1993℄ onsists of reformulating the model suh that only the�utuations are manipulated. Therefore, one an de�ne:
hi ≡ fi − wiρ0 , (24)where ρ0 is a referene density; the equivalent LBM equation reads

hi(~x+ ~ei∆t) = hi(~x+ ~ei∆t) −
[hi(~x, t) − heq

i (~x, t)]

τ
, (25)where the marosopi variables are reovered from the modi�ed DFs through

ρ = ρ0 +
∑

hi ; ~u =

∑
hi~ei

ρ0 +
∑
hi

(26)and with the modi�ed equilibrium DFs
heq

i = wi(ρ− ρ0) +wiρ0

[

3
~ei · ~u
c2

+
9

2

(~ei · ~u)2

c4
− 3

2

~u2

c2

]

. (27)Sine this is mainly an algorithmi modi�ation, we did not formulate the theory in termsof the new variables. However, the interested reader should be aware of the fat that thissmall arti�e an have far-reahing impliations in the atual numerial implementation,where many of the steps (spei�ally: marosopi variable omputation, ollision andalso the boundary onditions) have to be devised by taking this issue into onsideration.Swithing from a 32-bit to a 64-bit omputer system did not eliminate the problem. Formore details on this topi, see for example [Dahlquist and Björk, 2008℄.24



2.5.2 Proper treatment of the foresAn important aspet when long-term integrations are desired is a proper introdution ofbody fores into the model. The simplest approah [Sukop and Thorne, 2006℄ is to addanother term in the expression of the marosopi veloity ~u whih is then used duringthe evaluation of the equilibrium DFs, as follows
~u∗ = ~u+

τ ~F

ρ
, (28)where ~F is the applied body fore.While simple, this approah is known to be unstable from the work of Wolf-Gladrow[Wolf-Gladrow, 2000℄. Moreover, Guo et. al. [Guo and Zhao, 2002℄ proved this approahto be orret only in the limiting ase, when the fore has very low spatial and temporalvariations (pratially - when the body-fore is onstant): if this is not true, the Navier-Stokes equation with a body fore is not reovered, but another (unphysial) equation issolved instead.Aording to [Guo and Zhao, 2002℄, the orret fore treatment involves:1. Modifying the LBM evolution equation (9) into:

fi(~x+ ~ei∆t, t+ ∆t) = fi(~x, t)
︸ ︷︷ ︸Streaming −

[fi(~x, t) − feq
i (~x, t)]

τ
︸ ︷︷ ︸Collision + ∆tξi

︸ ︷︷ ︸Foring , (29)where ξi are diretion-spei� foring terms, omputed from the atual fore 16 ~F ,de�ned as
ξi =

(

1 − 1

2τ

)

wi

[
~ei − ~u

c2
+

(~ei · ~u)

c4
· ~ei

]

· ~F . (30)2. Modifying the formula for alulating the loal �uid momentum as:
~u =

1

ρ

(
β−1
∑

i=0

fi~ei +
∆t

2
~F

)

, (31)and leaving the density evaluation formula unhanged.A deliate topi in this ontext is related to the proper introdution of the Coriolisfore: due to the fat that this fore is veloity dependent, the values of the veloity at16This fore should be saled aordingly to the lattie dimensions.25



the next timestep are needed to evaluate the fores at the urrent timestep, essentiallyrendering the method impliit in theory. [Wolf-Gladrow, 2000℄ proposed a method tobypass this limitation using a preditor-orretor step, obtaining promising results.2.6 Validation ases and preliminary resultsNovel CFD methods are only taken seriously if they are able to reprodue some standardbenhmark �ow problems. These are ases when the solutions have been extensivelyinvestigated, either analytially or numerially, using more traditional methods. Thesetest problems are, of ourse, not �xed, as they are hosen to stress the kind of simulationsthat the new model is supposed to address. We have hosen a problem from lassial CFD(Poiseuille �ow) to quantify the auray of the plain LB algorithm and we also illustratesome turbulent �ow simulations whih an only be performed one the Smagorinskyturbulene model is enabled.2.6.1 3D Poiseuille �ow
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Figure 7: Geometry for 3D Poiseuille problem. For the retangular omputational do-main, the periodi BCs are highlighted in red; no-slip BCs were imposed for the rest ofthe faes.
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Desription of the ase. The geometry of the problem is shown shematially inFig. (7). Along the X-diretion, periodi boundary onditions were applied, while forall the remaining faes of the omputational domain no-slip boundary onditions wereused. This geometry is ommonly referred to as the 3D Poiseuille �ow, in analogy to thelassial 2D, steady-state �ow between two in�nite planes. The number of grid pointsalong the X diretion was �xed to xMax=10. Due to the periodi boundaries, thisnumber should not in�uene the �ow.Initially, the entire �uid volume is at rest. A onstant and homogeneous body forealong the X-diretion is then applied, and the Lattie Boltzmann algorithm is appliedrepeatedly until a steady-state is reahed. The non-dimensional kinemati visosity of the�ow was �xed at ν = 0.14, the non-dimensional magnitude of the body fore was Fx =

|~F | = 0.1, and the non-dimensional ross-setion was 1 × 1. Based on these numbers,the analytial solution for the veloity at the enter of the hannel was evaluated.For eah numerial experiment, we have taken δt = δ2
x for reasons of numerialauray (this hoie guarantees both the stability of the simulation and the reovery ofthe inompressible Navier-Stokes equations � see [Latt, 2008℄). Based on a given gridresolution in the Y and Z diretions (these were the same), we omputed the saled foreterm using

fLBM =
Fx

yMax3
. (32)As the timestep sales with δ2

x, for any two experiments we also adjusted the number ofiterations to simulate the same non-dimensional time using
Nit,2 = Nit,1

(
yMax2

yMax1

)2

. (33)From the steady-state solution, the maximum value on the line with y=yMax/2,z=zMax/2 is taken and re-saled to non-dimensional units using
unumeri, non-dimensional = yMax× unumeri,lattie units . (34)The result was ompared with the analyti solution.Then, the number of grid points along the Y and Z-diretion were hanged (keeping

yMax = zMax), and the proedure was repeated.27



Analyti solutions. [Krueger et al., 2009℄ presented the following series solution forthe problem:
ux(y, z) =

ûx

Σ

[

z(H − z) − 8H2

π3

odd∑

n

1

n3

cosh(nπ(y −W/2)/H)

cosh(nπW/2H)
sin

(
nπz

H

)](35)where H=zMax-2, W=yMax-2, ûx = ΣFx

2ν
is the veloity at the enter of the hannelwith ~F = (Fx, 0, 0)=body fore ating on the �uid. The expression for this termstems from the fat that, at steady-state, the pressure gradient is aneled by the visousshearing at the enter of the hannel:

∂p

∂x
= Fx = −2ν

û

Σ
.

Σ =
H2

4
− 8H2

π3

odd∑

n

1

n3

sin(nπ/2)

cosh(nπW/2H)is a geometry-dependent normalization fator.In pratie, the series has to be trunated. We have hosen to stop the summationwhen terms of the sum beome smaller than 10−8.Comparison of semi-analyti and numeri resultsxMax yMax zMax ûtheoretial [×10−2] ûnumeri [×10−2] relative error in û [%]

10 20 20 5.2622 5.2493 0.245

10 30 30 5.2622 5.2562 0.114

10 40 40 5.2622 5.2586 0.068

10 50 50 5.2622 5.2598 0.046

10 60 60 5.2622 5.2603 0.036The relative error ǫ sales approximately ∼ δ2
x, as it an be observed in Fig. [8℄.We also present the simulated steady-state mid-x-setion veloity pro�le in Fig. [11℄.
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Figure 8: Plot of the relative error for midpoint veloity ǫ vs. square of resolution δ2
x.The linear trend was determined using standard least-squares regression.

Figure 9: Surfae plot of the Ux pro�le for the 3D Poiseuille �ow problem at steady-state.The olor map is also presenting the magnitude of the Ux veloity, for better observation.
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2.6.2 Turbulent 3D lid-driven avity �owIn the seond example, the turbulent �ow in a losed avity was simulated. This wasnot possible without the introdution of the Smagorinsky turbulene model that waspreviously desribed. The geometry of the ase is desribed in Fig. [10℄; all of the wallsof the ubi �uid domain were set to no-slip (half-way boune-bak), exept the top wall,on whih a onstant tangential veloity along the X-diretion was given (sliding lid),aording to the BC desribed in [Latt and Chopard, 2008℄. For visualisation purposes,a number of traers were passively adveted by the �ow, using a simple, 1st-order Euleriansheme. Sine the advetion sheme for the traers needs information on the �uid veloityat o�-lattie sites also, we used the trilinear interpolation algorithm to obtain a piee-wiseontinuous approximation for eah veloity omponent from the LB solver.
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Figure 10: Geometry for 3D lid-driven avity. No-slip BCs used for all walls, exept thetop one, whih is a veloity BC. In blue, the setion along whih the passive traers wereadveted is shown.In Fig. [11℄, we present 4 snapshots17 of the passive traer �eld for the problem. The17ordered from left to right and from up to down, based on the time30



Figure 11: Snapshots at t = 0 (upper-left), t = 750 (upper-right), t = 1500 (lower-left)and t = 2250 (lower-right) of the passive traers on a setioning plane parallel to the
X-axis. The Reynolds number of the simulation is Re ≈ 1.7 × 106; the red pointsrepresent the sliding wall, while the blue ones represent the no-slip walls of the avity.simulation beomes stable due to the loally-enhaned visosity oe�ient. However, the�uid dynamis remains turbulent even for long simulation times, whih re�ets the fatthat LBM with the Smagorinsky parameterization forms essentially an LES solver (seedisussion at the beginning of 3).
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3 Reynolds-averaged Lattie Boltzmann Method3.1 Turbulene modelling for the Navier-Stokes equationsThe dynamis of most �uids enountered in nature is desribed by the Navier-Stokesequations. As already disussed, due to the nonlinear nature of these equations, theonly viable method of obtaining their solution for non-trivial geometries is to reurse tonumerial methods. The ontinuous PDEs are then solved on a disretized spatial mesh(for example �nite di�erenes, �nite volumes or �nite elements) and at disrete timepoints. Even this approah is not devoid of di�ulties, as very often the dynamis ishighly turbulent. It has been shown [Canuto, 1994℄ that the omputational e�ort salesas a polynomial in the Reynolds number, beause the turbulent sales beome smalleras the degree of turbulene inreases. This result omes from Kolmogorov's theory ofturbulene (see for example [Frish, 1995℄). It is important in the present ontext toremind the reader the main piture emerging from this theory. Kolmogorov taught usthat the energy is �rst introdued through a series of large eddies. These, in turn, transferenergy with almost negligible dissipation to smaller eddies. The proess is repeated forsmaller-and-smaller eddies, but as the harateristi length-sale dereases the Reynoldsnumber Re = UL/ν inreases and the visous e�ets gain importane and eventuallydominate the �ow at very small sales18.One an lassify the wide variety of numerial methods for solving the NSE by theapproah they use to deal with the desription of turbulene. These lasses of methodsare (roughly) listed in Table [1℄, and brie�y desribed below:
• Diret Numerial Simulation (DNS): is oneptually the simplest approah in thatit tries to resolve all of the turbulent motions in the �uid. While this methodis a useful tool in the exploration of turbulene and an also be used to studysmall-sale �ows, it is unfortunately very ostly, and even on today's most powerfulsuperomputers it an only reah a very low Reynolds number.
• Large Eddy Simulation (LES): only attempts to resolve the large (energy-ontaining)eddies, and inludes the e�ets of smaller eddies only indiretly, through a set of18These are also alled Kolmogorov or dissipative length-sales32



parameterizations whih desribe the rate of energy dissipation in the �uid. Themethodology is derived by applying a spatial �lter on the governing �uid equations[Hou et al., 1994℄. This is a useful approah when some of the e�ets of the eddiesare of interest, but when the entire energy asade is not the fous of the study oris too ostly. Hene, LES an be viewed as an intermediate approah - a trade-o�between �ow details and omputational resoures. However, this approah is stillnot popular in environmental �uid dynamis beause LES lose their omputationale�ieny in the ase of stably strati�ed �uids, as is often the ase in the oean:due to the stability of the �uid, the largest, energy-ontaining eddies are still rathersmall. LES nonetheless will resolve them, leading to a spatial resolution that, evenon today's fastest superomputers, is not viable for global irulation models.
• Reynolds-averaged Navier-Stokes (RANS): represents in a sense the opposite ofDNS, in that turbulent motion is not resolved at all, but only the evolution of theaveraged �elds is studied. One has to be very areful in hoosing the de�nition of theaveraging proedure. The exat formulation is in terms of ensemble averages, wherethe marosopi �elds (veloity, density or pressure) obtained through a RANSsimulation represent the average at a ertain time of many realizations of the �owon�guration, all subjet to the same initial and boundary onditions, and subjetto the same body fores. The link with real �uid �ows is provided by the ergoditheorem, whih states that the ensemble averages an be interpreted as time averagesif the timesales to be resolved are muh larger than the timesales over whih oneperforms the averaging [Huang, 1987℄. The entire turbulent behavior is not resolvedwith this approah, as turbulene appears only through parameterizations. Thus,RANS annot teah us anything about the turbulene itself, as inevitably relies onexperiments, analyti studies or �ner (and, onsequently, smaller sale) numerialstudies whih presribe the atual parameterization that are used.
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Traditional CFD Lattie Boltzmann MethodsDNS Yes YesLES Yes YesRANS Yes Not previously attempted(our main ontribution)Table 1: Rough lassi�ation of the majority of omputational �uid dynamis numerialmethodsWe onentrated in the present study on applying the RANS method to oeano-graphi �ows. Despite it's limitations, this approah is a reasonable one in our presentase beause we are often interested in the evolution of the �ows on timesales of weeksto deades. Furthermore, there have been many studies quantifying aspets of the turbu-lene, and several parameterizations are espeially popular and used in foreast modelswith reasonable predition power [Palmer and Hagedorn, 2006℄. The method was, to ourknowledge, not been previously oupled with the LBM method, whih is usually inves-tigated in the ontext of smaller Reynolds-numbers ourring in engineering problems.The rest of the hapter is strutured as follows: in 3.2, we desribe the basi oneptsof RANS. In 3.3, we apply this method to the LB equations, whih will lead to a formu-lation whih an be oupled to the urrent turbulene models. In 3.4, we desribe theChapman-Enskog expansion, whih is ommonly used in determining the marosopiequations reprodued by LB methods [Chen and Doolen, 1998℄. Ideas from this proe-dure will then be used in 3.5 to prove that the Reynolds-averaged LB atually reoversthe orresponding Reynolds-averaged Navier-Stokes equations.3.2 Reynolds-averaging proedure19The Reynolds-averaging proedure was developed at the beginning of the 20th-entury.The main idea is to onsider statistial properties of the �ow at eah point in the physialspae, inluding orrelations and autoorrelations of various physial properties. In fat,we only disuss a ertain lass of these models, usually denoted as one-point losures,where orrelations between the �ow harateristis between di�erent points are negleted.19This subsetion is inspired mostly by [Burhard, 2002℄.34



Two-point losures have also been proposed [Orszag, 1977℄, but they are not so widespreaddue to the inreased omputational demands.As previously mentioned, the RA proedure deomposes any prognosti variable
ψ(~x, t) into a mean-�eld Ψ ≡ 〈ψ〉 and a �utuating �eld ψ′, that is:

ψ = Ψ + ψ′ (36)Usually, suh a deomposition is only well-de�ned if there exists a spetral gap betweenthe slow- and fast-timesales, whih is often not the ase for turbulent �ows. The probleman be solved, however, if a suitable averaging tehnique is hosen, suh as the ensembleaveraging approah. In that ase, assuming a large number n of realizations of the same�ow on�guration with idential onstraints, we an de�ne the ensemble average at aertain spae-time oordinates (t0, x0, y0, z0) as:
Ψ(t0, x0, y0, z0) ≡ 〈ψ(t0, x0, y0, z0)〉 = lim

n→∞

1

n

n∑

i=1

ψi(t0, x0, y0, z0) (37)This de�nition has been shown [Mohammadi and Pironneau, 1994℄ to have the fol-lowing 4 important properties:1. Linearity:
〈ψ + λφ〉 = 〈ψ〉 + λ 〈φ〉 (38)2. Averages and derivatives ommute:

〈∂xi
ψ〉 = ∂xi

〈ψ〉 (39)3. Double averages:
〈〈ψ〉〉 = 〈ψ〉 (40)4. Produt averages:

〈ψ 〈φ〉〉 = 〈ψ〉 〈φ〉 (41)By de�nition, we also have the properties:
〈ψ〉 = Ψ (42)35



and:
〈ψ′〉 = 0 (43)While this averaging proedure is stritly valid, it is not diretly useful in real li-matology due to the obvious lak of parallel realizations of the �ow dynamis. However,if within the temporal and spatial intervals onsidered the turbulene of the �ow anbe taken as approximately stationary and homogeneous, the ensemble averages an belinked to time averages by virtue of the ergodi hypothesis, whih predits that over longenough timesales a stationary haoti proess will visit all of its miro-states.3.3 Reynolds-averaged Lattie Boltzmann Model (RALB)The Reynolds-averaging proedure is now applied to the Lattie Boltzmann model. Ef-fetively, we separate the dynamis of the distribution funtions into a long-timesaleomponent and a short-timesale, highly-�utuating omponent. The result of this anal-ysis will be a new set of equations for the evolution of the long-timesale omponent,whih an be immediately related to the evolution of the mean �elds we are interestedin. The Lattie Boltzmann Equation (LBE) reads (on a D-dimensional lattie with Ndisretized veloity vetors):

fi(~x+ ~ei, t+ 1) = fi(~x, t) + Ωi(f0..N−1(~x, t)) (44)where the marosopi variables are de�ned as:






ρ =
∑

i fi

ρ~u =
∑

i ~eifi

(45)and Ωi is the ollision operator.We introdue a deomposition of eah fi into a mean �eld Fi and a �utuating part
hi with:

fi = Fi + hi (46)
〈fi〉 ≡ Fi (47)
〈hi〉 ≡ 0 (48)36



and all the additional properties of the ensemble averages [Eq. (38)-(41)℄. As justi�edabove, in the subsequent disussion 〈·〉 represent time averages.Additionally, we de�ne mean marosopi variables:
R ≡ 〈ρ〉 =

〈
∑

i

fi

〉

=
∑

i

〈fi〉 =
∑

i

Fi (49)
R~U ≡ 〈ρ~u〉 =

〈
∑

i

~eifi

〉

=
∑

i

~ei 〈fi〉 =
∑

i

~eiFi (50)Inserting the deomposition into the LBE:
Fi(~x+~ei, t+1)+hi(~x+~ei, t+1) = Fi(~x, t)+hi(~x, t)+Ωi(F0..18(~x, t)+h0..18(~x, t))(51)Plugging-in the simpli�ed BGK ollision operator:

Ωi = −1

λ
[fi − feq

i (f0..18(~x, t))] (52)we obtain:
Fi(~x+ ~ei, t+ 1) + hi(~x+ ~ei, t+ 1) = Fi(~x, t) + hi(~x, t) −

−1

λ
{Fi(~x, t) + hi(~x, t) − feq

i (f0..18(~x, t))} (53)Seeking an equation for the long-timesale evolution of the mean-�elds20, we will takethe ensemble average of Eq. [53℄:
Fi(~x+ ~ei, t+ 1) +

(((((((((((
〈hi(~x+ ~ei, t+ 1)〉 =

Fi(~x, t) + ������〈hi(~x, t)〉 − 1

λ

{
Fi + ������〈hi(~x, t)〉 − 〈feq

i 〉
}

⇒ Fi(~x+ ~ei, t+ 1) = Fi(~x, t) −
1

λ
{Fi − 〈feq

i 〉} (54)Notie that the orresponding RALB-equation for the mean �elds is very similar to theoriginal LBE. The only missing link in the new formulation is 〈feq
i 〉, whih we alulatein the next subsubsetion.20As a lari�ation, the mean �elds an be thought of as running mens of the marosopi variableswith averaging intervals over short timesales, but measured at disrete, long-timesale intervals.
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3.3.1 Calulation of 〈feq
i 〉The usual expression of the equilibrium distribution funtion used in most LB models isthe 2nd-order trunated Maxwellian distribution:

feq
i = ρti

{

1 + 3(~ei · ~u) +
9

2
(~ei · ~u)2 −

3

2
~u2

} (55)where ti are some properly-hosen weights, whih are in fat the stationary �uid equilib-rium distribution funtions21.Taking the ensemble average of Eq. [55℄:
〈feq

i 〉 = 〈ρti〉
︸ ︷︷ ︸

E1

+ 3 〈ρti(~ei · ~u)〉
︸ ︷︷ ︸

E2

+
9

2

〈
ρti(~ei · ~u)2

〉

︸ ︷︷ ︸

E3

− 3

2

〈
ρti~u

2
〉

︸ ︷︷ ︸

E4

(56)Let us now evaluate the sub-expressions:
E1 ≡ 〈ρti〉 = ti 〈ρ〉 = Rti (57)

E2 ≡ 3 〈ρti(~ei · ~u)〉 = 3ti 〈ρ(eixu+ eiyv + eizw)〉

= 3ti(eix 〈ρu〉 + eiy 〈ρv〉 + eiz 〈ρw〉)

= 3ti [eix 〈(R+ ρ′)(U + u′)〉 + eiy 〈(R+ ρ′)(V + v′)〉 + eiz 〈(R+ ρ′)(W + w′)〉]

= 3ti[eix(〈RU〉 + 〈Ru′〉 + 〈ρ′U〉 + 〈ρ′u′〉) +

eiy(〈RV 〉 + 〈Rv′〉 + 〈ρ′V 〉 + 〈ρ′v′〉) +

eiz(〈RW 〉 + 〈Rw′〉 + 〈ρ′W 〉 + 〈ρ′w′〉)]

= 3ti[eix(RU +R���〈u′〉 + U���〈ρ′〉 + 〈ρ′u′〉 +

eiy(RV +R���〈v′〉 + V���〈ρ′〉 + 〈ρ′v′〉 +

eiz(RW +R���〈w′〉 +W���〈ρ′〉 + 〈ρ′w′〉]

= 3tiR(~ei · ~U) + 3ti(eix 〈ρ′u′〉 + eiy 〈ρ′v′〉 + eiz 〈ρ′w′〉)Sine the method is only appliable in the inompressible limit, we neglet the 〈ρ′u′
α

〉-terms, �nally obtaining:
E2 ≈ 3tiR(~ei · ~U) (58)21From this point of view, the remaining terms in Eq. [55℄ an be viewed as perturbations aroundthe stationary limit. The low order of the trunation also justi�es why the simple LB method is onlyappliable to low Mah number-�ows. 38



E3 ≡
9

2

〈
ρti(~ei · ~u)2

〉
=

9ti

2

〈
ρ(~ei · ~u)2

〉
≈

9ti

2
R
〈
(eixu+ eiyv + eizw)2

〉

=
9

2
Rti

[〈

e2
ixu

2 + e2
iyv

2 + e2
izw

2 + 2eixeiyuv + 2eixeizuw + 2eiyeizvw
〉]

=
9

2
Rti

[

e2
ix

〈
u2
〉
+ e2

iy

〈
v2
〉
+ e2

iz

〈
w2
〉
+ 2eixeiy 〈uv〉 + 2eixeiz 〈uw〉 + 2eiyeiz 〈vw〉

]Plugging-in the deompositions for the veloity omponents, we further obtain:
E3 =

9

2
Rti

[

e2
ix

〈
U2 + 2Uu′ + u′2

〉
+ e2

iy

〈
V 2 + 2V v′ + v′2

〉
+

e2
iz

〈
W 2 + 2Ww′ +w′2

〉
+

2eixeiy 〈UV + Uv′ + V u′ + u′v′〉 +

2eixeiz 〈UW + Uw′ +Wu′ + u′w′〉 +

2eiyeiz 〈VW + V w′ +Wv′ + v′w′〉
]

=
9

2
Rti




e

2
ix






〈
U2
〉

︸ ︷︷ ︸

U2

+2U���〈u′〉 +
〈
u′2
〉




+ e2

iy






〈
V 2
〉
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V 2

+2V���〈v′〉 +
〈
v′2
〉




+

e2
iz






〈
W 2

〉
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W2

+2W���〈w′〉 +
〈
w′2
〉




+

2eixeiy



〈UV 〉
︸ ︷︷ ︸

UV

+U���〈v′〉 + V���〈u′〉 + 〈u′v′〉



+

2eixeiz



〈UW 〉
︸ ︷︷ ︸

UW

+U���〈w′〉 +W���〈u′〉 + 〈u′w′〉



+

2eiyeiz



〈VW 〉
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V W

+V���〈w′〉 +W���〈v′〉 + 〈v′w′〉







thus:
E3 =

9

2
Rti

{
(

~ei · ~U
)2

+

[

e2
ix

〈
u′2
〉
+ e2

iy

〈
v′2
〉
+ e2

iz

〈
w′2
〉
+

2eixeiy 〈u′v′〉 + 2eiyeiz 〈u′w′〉 + 2eiyeiz 〈v′w′〉
]} (59)
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E4 ≡ −
3

2

〈
ρti~u

2
〉

≈ −
3

2
tiR

〈
~u2
〉

= −3

2
tiR

{〈
(U + u′)2

〉
+
〈
(V + v′)2

〉
+
〈
(W + w′)2

〉}

= −
3

2
tiR







〈
U2
〉
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U2

+2U���〈u′〉 +
〈
u′2
〉
+
〈
V 2
〉
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V 2

+2V���〈v′〉 +
〈
v′2
〉
+

〈
W 2

〉
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W2

+2W���〈w′〉 +
〈
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〉







E4 = −
3

2
tiR

{

~U2 +
〈
u′2
〉
+
〈
v′2
〉
+
〈
w′2
〉} (60)Summing Eq. [57℄,[58℄,[59℄ and [60℄, we obtain the �nal expression for the Reynolds-averaged equilibrium distribution funtion:

〈feq
i 〉 = Rti

{

1 + 3(~ei · ~U) +
9

2
(~ei · ~U)2 − 3

2
~U2

}

+ Γi (61)where:
Γi ≡ 3

2
Rti

[

(3e2
ix − 1)

〈
u′2
〉
+ (3e2

iy − 1)
〈
v′2
〉
+ (3e2

iz − 1)
〈
w′2
〉
+

6eixeiy 〈u′v′〉 + 6eixeiz 〈u′w′〉 + 6eiyeiz 〈v′w′〉
] (62)is an additional term ontaining the 2nd-order orrelations due to turbulene. We notiethat, in analogy to the Reynolds-averaging of the Navier-Stokes equation, the resultingequation for the time evolution of the mean �eld is very similar to the original equations,exept that a few additional terms whih are produts of veloity ross-orrelations areemerging. In order to obtain a solvable system of equations, additional losure relationsare needed for the 〈u′

αu
′
β

〉-terms. Although these losures remain an ative �eld ofresearh, several formulations are in widespread use in the �eld of numerial oeanographyand yield reasonable results (to be disussed in ??).Another interesting observation is that the e�et of turbulene on the mean �eldsbehaves like a speial type of foring. Sine the seond-moments are proportional to40



the stresses within the �uid, whih is dependent on the loal veloity gradients at eahlattie point, these fore-like terms are also time-dependent. This fore-like behavior ofthe Reynolds stresses also suggests a reasonable interpretation of our result: as will bedisussed later, most of the turbulene losures onsider the omponents of the Reynoldsstress tensor to be proportional to veloity gradients; it is only natural to onsider thee�ets of the unresolved dissipative sales as quasi-fores whih tend to smoothen thesegradients.3.4 Chapman-Enskog proedureIn the next subsetion, we will derive the marosopi equations orresponding to ourReynolds-averaged Lattie Boltzmann equation. On that ourse, it is useful to outline �rstthe basi steps of the Chapman-Enskog (CE) expansion, whih provides the fundamentallink between kineti theory and hydrodynamis. We will illustrate the proedure for thelassial, single relaxation time LB sheme with BGK ollision operator.The main idea of the CE expansion is to separate the �uid motion into severaltimesales, to mimik the real �uids, where some proesses (for example onvetion)are muh faster than others (suh as di�usion). Thus, a formal series is introdued fortime:
∂

∂t
= ǫ

∂

∂t1
+ ǫ2

∂

∂t2
+ h.o.t. (63)Note: we will neglet in our subsequent analysis higher order terms (h.o.t.), with

ǫn, n > 2.For the spatial gradients, a single sale is used beause all proesses our on roughlythe same spatial extent:
∇ = ǫ∇1 + h.o.t. (64)Also, the probability distribution funtion is written as a formal series:

fi = f
(0)
i + ǫf

(1)
i + ǫ2f

(2)
i + h.o.t. (65)The equations should be thought of as formal expansions, in the sense that the powerof ǫ are just labels representing the magnitude of the terms they are multiplied with41



(higher power of ǫ denotes smaller terms). This allows us to disard the formal expansionparameter at a future step by simply setting it to 1 in one of the equations.Plugging Eq. [63℄-[65℄ into the LB equation [44℄ with the BGK ollision term (Eq.[52℄), we obtain:
fi(~x+ ~ei, t+ 1) = fi(~x, t) −

1

τ

(

ǫf
(1)
i + ǫ2f

(2)
i + h.o.t.

) (66)We also apply a Taylor expansion in spae and time to the LHS:
fi(~x+~ei, t+1) = fi(~x, t)+

∂

∂t
fi(~x, t)+~ei·∇fi(~x, t)+

1

2

(
∂

∂t
+ ~ei · ∇

)2

fi(~x, t)+h.o.t.(67)Plugging Eq. [67℄ into Eq. [66℄, we obtain:
[
∂

∂t
+ ~ei · ∇ +

1

2
(
∂

∂t
+ ~ei · ∇)2

]

︸ ︷︷ ︸

≡L

fi = −1

τ

(

ǫf
(1)
i + ǫ2f

(2)
i + h.o.t.

) (68)The operator L an be expanded as:
L =

∂

∂t
+ ~ei · ∇ +

1

2

[
∂2

∂t2
+ 2

∂

∂t
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]
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∂
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1

2
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1
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∂t2
(69)where ~A~B

∣
∣
∣
αβ

≡ AαBβ represents the dyadi produt and T̃ : S̃ ≡
∑

α,βAαβBαβrepresents the tensor ontration operator.Plugging the expanded operator and also the series for fi:
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C

+ ǫ~ei∇
(

ǫ
∂

∂t1
+ ǫ2

∂

∂t2

)(

f
(0)
i + ǫf

(1)
i + ǫ2f

(2)
i

)

︸ ︷︷ ︸

D

+

1

2

(

ǫ
∂

∂t1
+ ǫ2

∂

∂t2

)2 (

f
(0)
i + ǫf

(1)
i + ǫ2f

(2)
i

)

︸ ︷︷ ︸

E

= −1

τ

(

ǫf
(1)
i + ǫ2f

(2)
i

)
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Expanding the sub-expressions and negleting the terms beyond 2nd-order:
A = ǫ

∂f
(0)
i

∂t1
+ ǫ2

∂f
(1)
i

∂t1
+ ǫ2

∂f
(0)
i

∂t2

B = ǫ~ei · ∇1f
(0)
i + ǫ2~ei · ∇1f

(1)
i

C =
1

2
ǫ2~ei~ei : ∇∇f (0)

i

D = ǫ2~ei · ∇1

∂f
(0)
i

∂t1

E =
1

2







ǫ2
∂2

∂t21
+ ǫ4

∂2

∂t22
︸ ︷︷ ︸

≈0

+ 2ǫ3
∂2

∂t1∂t2
︸ ︷︷ ︸

≈0








(

f
(0)
i + ǫf

(1)
i + ǫ2f

(2)
i

)

≈ 1

2
ǫ2
∂2f

(0)
i

∂t21Re-inserting the sub-expressions, we obtain:
ǫ
∂f

(0)
i

∂t1
+ ǫ2

∂f
(1)
i

∂t1
+ ǫ2

∂f
(0)
i

∂t2
+ ǫ~ei · ∇1f

(0)
i + ǫ2~ei · ∇1f

(1)
i +

1

2
ǫ2~ei~ei : ∇∇f (0)

i + ǫ2~ei · ∇1

∂f
(0)
i

∂t1
+

1

2
ǫ2
∂2f

(0)
i

∂t21
= −1

τ
ǫf

(1)
i − 1

τ
ǫ2f

(2)
iTo a onsistent order, we an transform this relation into two equalities, one for eahorder of ǫ. The 1st-order terms (underlined in the equation above) yield:

∂f
(0)
i

∂t1
+ ~ei · ∇1f

(0)
i = −1

τ
f

(1)
i (70)and the orresponding 2nd-order equation:

∂f
(1)
i

∂t1
+
∂f

(0)
i

∂t2
+ ~ei · ∇1f

(1)
i +

1

2
~ei~ei : ∇∇f (0)

i +

~ei · ∇1

∂f
(0)
i

∂t1
+

1

2

∂2f
(0)
i

∂t21
= −1

τ
f

(2)
i (71)Also, from Eq. [70℄:

(

1

2
~ei~ei : ∇∇f (0)

i + ~ei · ∇1

∂f
(0)
i

∂t1
+

1

2

∂2f
(0)
i

∂t21

)

≡

1

2

(
∂

∂t1
+ ~ei · ∇1

)2

f
(0)
i =

−
1

2τ

(
∂

∂t1
+ ~ei · ∇1

)

f
(1)
i (72)43



Inserting Eq. [72℄ into Eq. [71℄, we obtain:
∂f

(0)
i

∂t2
+

(

1 − 1

2τ

)(
∂

∂t1
+ ~e1 · ∇1

)

f
(1)
i = −1

τ
f

(2)
i (73)Finally, the equations governing the evolution of marosopi �elds an be derived bytaking the 1st and seond moments of the distribution funtions w.r.t. the disretizedveloity spae.3.4.1 Derivation of the ontinuity equationFor the ontinuity equation, we �rst take the �rst moment of Eq. [70℄:

∑

i

(70) ⇒
∑

i

∂

∂t1
f

(0)
i +

∑

i

~ei · ∇1f
(0)
i = −

1

τ

∑

i

f
(1)
i

︸ ︷︷ ︸

=0

⇒ ∂

∂t1

∑

i

f
(0)
i

︸ ︷︷ ︸

=ρ

+
∑

i

~ei · ∇1f
(0)
i = 0Sine the disretized veloity vetors ~ei are not depending on the spatial oordinates,the seond term in the LHS is equivalent to:

∇1 ·
(
∑

i

~eif
(0)
i

)

︸ ︷︷ ︸

=ρ~u

=
∑

i

∇1 ·
(

~eif
(0)
i

)

=
∑

i

(
∂

∂x1

,
∂

∂y1

,
∂

∂z1

)








eixf
(0)
i

eiyf
(0)
i

eizf
(0)
i








=
∑

i

(

eix

∂f
(0)
i

∂x1

+ eiy

∂f
(0)
i

∂y1

+ eiz

∂f
(0)
i

∂z1

)

=
∑

i

~ei · ∇1f
(0)
iWith the last result, we obtain:

∂ρ

∂t1
+ ∇1 · (ρ~u) = 0 (74)
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Taking the 1st moment of Eq. [73℄:
∑

i

(73) ⇒
∑

i

∂f
(0)
i

∂t2
+

(

1 −
1

2τ

)
∑

i

(
∂

∂t1
+ ~ei · ∇1

)

f
(1)
i = −

1

τ

∑

i

f
(2)
i

︸ ︷︷ ︸

=0

⇒ ∂ρ

∂t2
+

(

1 − 1

2τ

)
∂

∂t1

∑

i

f
(1)
i

︸ ︷︷ ︸

=0

+

(

1 − 1

2τ

)
∑

i

~ei · ∇1f
(1)
i

︸ ︷︷ ︸

= ∇1 ·
∑

i

~eif
(1)
i

︸ ︷︷ ︸
=0

= 0

whih leads to:
∂ρ

∂t2
= 0 (75)Adding Eq. [74℄ and [75℄ and setting the formal expansion parameter ǫ ≡ 1, weobtain:

∂ρ

∂t
+ ∇ · (ρ~u) = 0 (76)whih is nothing else than the ontinuity equation.3.4.2 Derivation of the momentum equationFor the momentum equation, we now take the seond moments of Eq. [70℄:

∑

i

~ei(70) ⇒
∑

i

~ei

∂f
(0)
i

∂t1
+
∑

i

~ei(~ei · ∇1f
(0)
i ) = −

1

τ

∑

i

~eif
(1)
i

︸ ︷︷ ︸

=0

⇒ ∂

∂t1

∑

i

~eif
(0)
i

︸ ︷︷ ︸

=ρ~u

+∇1 · Π̃(0) = 0

⇒ ∂ρ~u

∂t1
+ ∇1 · Π̃(0) = 0, (77)with
Π

(0)
αβ =

∑

i

eiαeiβf
(0)
i (78)
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Also, taking the seond moment of Eq. [73℄:
∑

i

~ei(73) ⇒
∑

i

~ei

∂f
(0)
i

∂t2
︸ ︷︷ ︸

=∂ρ~u
∂t2

+

(

1 −
1

2τ

)
∑

i

~ei

∂f
(1)
i

∂t1
︸ ︷︷ ︸

=0

+

(

1 − 1

2τ

)
∑

i

~ei

(

~ei · ∇1f
(1)
i

)

︸ ︷︷ ︸

=∇1·Π̃(1)

= −1

τ

∑

i

~eif
(2)
i

︸ ︷︷ ︸

=0

⇒ ∂ρ~u

∂t2
+

(

1 − 1

2τ

)

∇1 · Π̃(1) = 0 , (79)where
Π

(1)
αβ =

∑

i

eiαeiβf
(1)
i . (80)As for the ontinuity equation, adding Eq. [77℄ and [79℄ and setting the expansionparameter to ǫ = 1, we obtain:

∂ρ~u

∂t
+ ∇ ·

[

Π̃(0) +

(

1 − 1

2τ

)

Π̃(1)

]

= 0 (81)It is interesting to observe that up to this point it was not neessary to know thespei� funtional form of the equilibrium distribution. Based only on the fat that its�rst two moments equal the ones of the instantaneous distribution funtions set (whihis the same as saying that LB ollisions onserve mass and momentum), we obtainedthe orret form of the ontinuity equation. The situation is a little more ompliatedfor the momentum equation. As it an be observed, Eq. [81℄ is still not idential tothe Navier-Stokes formulation. In order to establish this missing agreement, we willneed indeed to use the spei� expression of feq
i to alulate the equilibrium (Π̃(0))and 1st-order perturbation (Π̃(1)) of the momentum �ux tensor. These alulations arerather lengthy and are thus relegated to the Appendix. However, it will be useful inthe later parts of our disussion to note that a key part in the alulations is played byseveral important symmetries of the usual22 LB lattie vetors ~ei and weights ti in the22The D3Q19-lattie, whih is the one we used throughout the present study, also possesses theseproperties.
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equilibrium distribution funtions [Latt, 2007℄:
∑

i

ti = 1 (82)
∑

i

tieiα = 0 (83)
∑

i

tieiαeiβ = c2sδαβ (84)
∑

i

tieiαeiβeiγ = 0 (85)
∑

i

tieiαeiβeiγeiδ = c4s(δαβδγδ + δαγδβδ + δαδδβγ) (86)
∑

i

tieiαeiβeiγeiδeiǫ = 0 (87)Using these properties and the expression for f (eq)
i , it is a matter of algebra to evaluatethe stress tensor (see Appendix for a omplete derivation) as:

Π
(0)
αβ =

ρ

3
δαβ + ρuαuβ (88)

Π
(1)
αβ = −ρτ

3

(
∂uβ

∂xα1

+
∂uα

∂xβ1

) (89)Inserting Eq. (89) and (89) into Eq. (81), we obtain23 for the α-omponent of �uidveloity:
∂(ρuα)

∂t
+

∑

β

∂

∂xβ

(
ρ

3
δαβ + ρuαuβ

)

−

τ

3

(

1 − 1

2τ

)
∑

γ

∂

∂xγ

[

ρ

(
∂uγ

∂xα

+
∂uα

∂xγ

)]

= 0 (90)In the inompressible limit, the equation beomes:
∂uα

∂t
+ (~u · ∇)uα = −

1

ρ0

∂(ρ0/3)

∂xα

+
1

3

(

1 −
1

2τ

)

∇2uα ,23The divergene operator redues by one the dimensionality of the quantity it is applied to, hene inour ase it will transform the tensors to vetors
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whih is preisely the Navier-Stokes24 equation for inompressible �ows
∂uα

∂t
+ (~u · ∇)uα = −

1

ρ0

∂p

∂xα

+ ν∇2uα , (91)where we identi�ed: p ≡
ρ

3
; ν ≡

1

3

(

1 −
1

2τ

)

. (92)3.5 Linking RALB and RANSIn this subsetion, we will use the Chapman-Enskog (CE) analysis to derive the maro-sopi equations for our RALB model. In fat, a full repetition of the CE analysis is notneessary, as it will beome lear shortly.First of all, let us remark that the properties [82℄ to [87℄ are also valid for our newmodel, sine the struture of the lattie and the weights remain the same as in traditionalLB theory.We need to hek whether the additional terms Γi (introdued by the Reynolds-averaging proedure) have any ontribution to the mass and momentum of the �uid. Forthis, we will alulate the 1st and 2nd moments of Γi:
∑

i

Γi =
3R

2

{
∑

i

ti(3e
2
ix − 1)

〈
u′2
〉
+
∑

i

ti(3e
2
iy − 1)

〈
v′2
〉
+
∑

i

ti(3e
2
iz − 1)

〈
w′2
〉
+

6
∑

i

tieixeiy 〈u′v′〉 + 6
∑

i

tieixeiz 〈u′w′〉 + 6
∑

i

tieiyeiz 〈v′w′〉
}

=
3R

2

{

3
〈
u′2
〉∑

i

tieixeix

︸ ︷︷ ︸

=c2
s

−
〈
u′2
〉∑

i

ti

︸ ︷︷ ︸

=1

+3
〈
v′2
〉∑

i

tieiyeiy

︸ ︷︷ ︸

=c2
s

−
〈
v′2
〉∑

i

ti

︸ ︷︷ ︸

=1

+

3
〈
w′2
〉∑

i

tieizeiz

︸ ︷︷ ︸

=c2
s

−
〈
w′2
〉∑

i

ti

︸ ︷︷ ︸

=1

+

6 〈u′v′〉
�������∑

i

tieixeiy + 6 〈u′w′〉
�������∑

i

tieixeiz + 6 〈v′w′〉
�������∑

i

tieiyeiz

}

=
3R

2

{〈
u′2
〉
(3c2s − 1) +

〈
v′2
〉
(3c2s − 1) +

〈
w′2
〉
(3c2s − 1)

}24The equation of state p = p(ρ) and the expression for the kinemati visosity ν are given above inthe spei� ase of the D3Q19-lattie. However, the expressions an be generalized to other latties,leading to Eqs (15) and (16). 48



But, for the D3Q19-lattie, c2s = 1/3 ⇒ 3c2s − 1 = 0, hene:
∑

i

Γi = 0 (93)The x-omponent of the seond moment reads:
(
∑

i

~eiΓi

)

x

≡
∑

i

eixΓi

=
3R

2

{
∑

i

tieix(3e
2
ix − 1)

〈
u′2
〉
+
∑

i

tieix(3e
2
iy − 1)

〈
v′2
〉
+

∑

i

tieix(3e
2
iz − 1)

〈
w′2
〉
+ 6

∑

i

tieixeixeiy 〈u′v′〉 +

6
∑

i

tieixeixeiz 〈u′w′〉 + 6
∑

i

tieixeiyeiz 〈v′w′〉
}

=
3R

2







3
〈
u′2
〉∑

i

tieixeixeix

︸ ︷︷ ︸

=0

−
〈
u′2
〉∑

i

tieix

︸ ︷︷ ︸

=0

+

3
〈
v′2
〉∑

i

tieixeiyeiy

︸ ︷︷ ︸

=0

−
〈
v′2
〉∑

i

tieix

︸ ︷︷ ︸

=0

+

3
〈
w′2
〉∑

i

tieixeizeiz

︸ ︷︷ ︸

=0

−
〈
w′2
〉∑

i

tieix

︸ ︷︷ ︸

=0

+

6 〈u′v′〉
∑

i

tieixeixeiy

︸ ︷︷ ︸

=0

+ + 6 〈u′w′〉
∑

i

tieixeixeiz

︸ ︷︷ ︸

=0

+

6 〈v′w′〉
∑

i

tieixeiyeiz

︸ ︷︷ ︸

=0







= 0Due to symmetry onditions, similar relations hold for the other omponents of theseond moment of Γi, hene:
∑

i

~eiΓi = 0 (94)To onlude, we have shown that the additional terms due to the turbulent stresses inthe RALB-model have no ontribution to the mass and momentum during the ollision.It will be shown that they do in�uene the evolution equations, in the sense that theyintrodue an additional mehanism for momentum dissipation.49



Sine the emergene of the ontinuity equation from the Chapman-Enskog analysisis independent on the atual funtional form of the equilibrium distribution funtion, itis obvious that the RALB will exhibit the same marosopi ontinuity equation. Theonly hange where deviations from the standard model our are in the momentum �uxtensor or, in other words, in its sub-omponents Π
(0)
αβ and Π

(1)
αβ.3.5.1 Corretion for Π

(0)
αβThe orretion for the equilibrium momentum �ux tensor is:

∆Π
(0)
αβ =

∑

i

eiαeiβΓi

Not≡ 3R

2
E (95)where:

E ≡
∑

i

tieiαeiβ(3e2
ix − 1)

〈
u′2
〉
+
∑

i

tieiαeiβ(3e
2
iy − 1)

〈
v′2
〉
+

∑
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iz − 1)

〈
w′2
〉
+ 6

∑
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tieiαeiβeixeiy 〈u′v′〉 +

6
∑
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tieiαeiβeixeiz 〈u′w′〉 + 6
∑
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tieiαeiβeiyeiz 〈v′w′〉

= 3
〈
u′2
〉∑

i

tieiαeiβeixeix

︸ ︷︷ ︸

Exx

−
〈
u′2
〉∑

i

tieiαeiβ

︸ ︷︷ ︸

=c2
sδαβ

+

3
〈
v′2
〉∑

i

tieiαeiβeiyeiy

︸ ︷︷ ︸

Eyy

−
〈
v′2
〉∑

i

tieiαeiβ

︸ ︷︷ ︸

=c2
s δαβ

+

3
〈
w′2
〉∑

i

tieiαeiβeizeiz

︸ ︷︷ ︸

Ezz

−
〈
w′2
〉∑

i

tieiαeiβ

︸ ︷︷ ︸

=c2
s δαβ

+

6 〈u′v′〉
∑

i

tieiαeiβeixeiy

︸ ︷︷ ︸

Exy

+6 〈u′w′〉
∑

i

tieiαeiβeixeiz

︸ ︷︷ ︸

Exz

+6 〈v′w′〉
∑

i

tieiαeiβeiyeiz

︸ ︷︷ ︸

EyzWe an then proeed in evaluating the sub-expressions (making heavy use of Eq. [86℄):
Exx ≡

∑

i

tieiαeiβeixeix = c4s



δαβ δxx
︸︷︷︸

=1

+2δαxδβx



hene:
Exx = c4s(δαβ + 2δαxδβx)50



and similarly:
Eyy = c4s(δαβ + 2δαyδβy)

Ezz = c4s(δαβ + 2δαzδβz)For the o�-diagonal terms:
Exy ≡

∑

i

tieiαeiβeixeiy = c4s



δαβ δxy
︸︷︷︸

=0

+δαxδβy + δαyδβx



thus:
Exy = c4s(δαxδβy + δαyδβx)and similarily:
Exz = c4s(δαxδβz + δαzδβx)

Eyz = c4s(δαyδβz + δαzδβy)Plugging-in all of the sub-expressions, we obtain:
∆Π

(0)
αβ =
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〈
u′2
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3c4s
︸︷︷︸

1/3

(δαβ + 2δαxδβx) − c2sδαβ
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〈
v′2
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〈
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+
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⇒ ∆Π
(0)
αβ =

�3R

�2
· �2

�3
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u′2
〉
δαxδβx +

〈
v′2
〉
δαyδβy +

〈
w′2
〉
δαzδβz

}
+

�3R

�2
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}Therefore:
∆Π

(0)
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〉
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〈
v′2
〉
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〈
w′2
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〈v′w′〉 (δαxδβz + δαzδβy)

}The omponents of this tensor an be easily evaluated, leading to:
∆Π(0) ≡

(
∑

i

eiαeiβΓi

)

= R








〈u′2〉 〈u′v′〉 〈u′w′〉
〈u′v′〉 〈v′2〉 〈v′w′〉
〈u′w′〉 〈v′w′〉 〈w′2〉








(96)3.5.2 Corretion for Π
(1)
αβThe orretion in the 1st-order momentum �ux tensor reads:

∆Π
(1)
αβ = Π

(1)
αβ

∣
∣
∣
RALB

− Π
(1)
αβ

∣
∣
∣
LB

≡
∑

i

eiαeiβ F
(1)
i

∣
∣
∣
RALB

−
∑

i

eiαeiβ F
(1)
i

∣
∣
∣
LB

(97)It is not straightforward how to ompute this term exatly. This is due to the fatthat, while it is easy to separate the non-equilibrium ontribution from the equilibriumone, it is not easy to distinguish between the orretions forming the non-equilibriumpart. As in the ase of the standard CE analysis (see 6), we use the approximation25:
F

(1)
i ≈ Fneq

i ≡ Fi − F
(0)
i (98)Sine the only hange in Π̃(1) with our model is the additional term in the equilibriumdistribution funtion, we have:

∆Π
(1)
αβ ≈ −

∑

i

eiαeiβΓi = −∆Π
(0)
αβ (99)25This approximation is often enountered in the literature, see for example [Krueger et al., 2009℄52



Plugging Eq. [96℄ and [99℄ into [81℄, we notie that the momentum equation at themarosale gains an additional term:
∆

{

∇ ·
[

Π̃(0) +

(

1 − 1

2τ

)

Π̃(1)

]}

= ∇·
[
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(

1 − 1

2τ

)

∆Π̃(1)

]

=
1

2τ
∇·∆Π̃(0)(100)Hene, the new marosopi momentum equation for our RALB model is:
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〈u′2〉 〈u′v′〉 〈u′w′〉
〈u′v′〉 〈v′2〉 〈v′w′〉
〈u′w′〉 〈v′w′〉 〈w′2〉








(101)whih is the same expression as the RANS formulation if we absorb the denominator
2τ in the last term into rede�ned turbulent seond-order moments.
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4 Conlusions and OutlookThe urrent work an be divided roughly into two setions. In the �rst part, a three-dimensional implementation of the Lattie Boltzmann algorithmwas developed, inludingmany of the improvements proposed in the literature in the reent years with respet toboundary onditions, inlusion of foring terms, subgrid-sale modelling and algorithmoptimizations. The algorithm was tested and found to be in good quantitative agreementwith analyti solutions for the three-dimensional variant of the Poiseuille �ow problem.Also, the ability of the Smagorinsky turbulene model to stabilize the �ow was illustratedqualitatively through turbulent simulations of the lassial lid-driven 3D avity problem.However, the implementation is still not easily appliable to oeani �ows, mostlydue to the fat that LBM was studied mostly for the ase of �uids with no preferentialstrati�ation, whih is hardly the ase in oeanography. This revealed the need for asystemati method for inorporating ommon oeanography-spei� turbulene losuremodels into the framework of LBM. This problem was therefore the seond major topiof the work. A suessful proedure was developed, based on the Reynolds-averagingof the disretized Boltzmann equation. In this new model, the seond-order turbulentmoments appear through an additional term in the expression of the equilibrium distribu-tion funtions. Also inluded was the proof (using the Chapman-Enskog proedure) thatthe new model (RALBM) reovers the Navier-Stokes equations with arbitrary turbuleneparametrizations in the appropriate limits. The derivation of the marosopi equationsfor RALBM also illustrated the need to sale the seond-order turbulent �uxes beforeinorporating them in LBM.A natural extension of our work would be to use the new RALBM model in onjun-tion with various turbulene parametrizations. From the many options available in theliterature, one an hoose the simple downgradient parametrizations or the ones due to[Mellor and Yamada, 1982℄. These would allow the simulation of the three-dimensionalwestern boundary urrent intensi�ation, whih was only possible in the two-dimensionalase using standard LBM due to the lak of the anisotropi eddy di�usivities.Another aspet that remains to be investigated would be the enhanement of themodel to inlude salar �elds in the Boussinesq approximation. LBM models for the54



advetion-di�usion equation exist [Wolf-Gladrow, 2000℄, and the same Reynolds-averagingproedure should be in priniple appliable to inorporate parametrizations for the heatand salinity �uxes also.As it was already mentioned, the lassial boune-bak sheme has limited auray,espeially when applied to urved boundaries. One of the auses for this is the fat thatthe physial (in general - urved) bounding domain is essentially approximated by a setof ubes during the initial phase of geometry de�nition. This unphysial �ruggedness�of the boundary inreases the drag at the boundary and, aording to Newton's law ofreiproal ation, also a�ets the �ow of the �uid. Therefore, a proper treatment of theatual domain geometry is reommended. The problem with this is that most often theloation of the solid boundary does not oinide with a lattie grid point. This di�ultyis usually addressed with interpolation shemes (see for example [Guo and Zheng, 2002℄).In its original form, the LBM works on uniform artesian grids, with equal spaingin eah of the spatial diretions. However, an e�ient solver should inlude the abilityto hoose a di�erent spatial resolution in some diretions, and also to speify wholeregions with re�ned grids. The �rst requirement is quite relevant in oean simulations,where the �uid domain has a vertial sale muh smaller than the horizontal sale: if thevertial transport is to be modeled with any degree of auray, the grid resolution is tobe hosen in the order of ∼ 100m, whih requires a prohibitive omputational ost ifisotropi artesian grids are used. A promising approah to address this kind of problemwas published in [Shu et al., 2001℄, who used Taylor expansions to onstrut interpolationshemes for non-uniform grids. The authors only disussed 2D ases, therefore our taskwould be to extend the treatment to three dimensions. Although the interpolationsthemselves inrease the omputational ost per lattie point, the e�ieny of the solverwould be signi�antly inreased due to the possibility of employing larger spatial salesin the vertial diretions.
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6 Appendix: Evaluation of stress tensor in CE expan-sionIn the present setion, we o�er a detailed derivation of the equilibrium and 1st-orderperturbation of the momentum �ux tensor. Certainly, these alulations an bear no laimfor originality. However, we believe that suh an exposition is useful (espeially for thenewomers to the �eld), as it is often only ursorily disussed in the literature. In addition,the derivation is also relevant to our Reynolds-averaged LB model, as it indiates howthe hanges to the LB evolution equation in�uene the resulting marosopi equations.6.1 Calulation of equilibrium stress tensor Π
(0)
αβ
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Next, evaluate the sub-expressions:
Aαβ =

∑

i

eiαeiβti = c2sδαβ =
δαβ

3

Bαβ = 0 (3rd-order moments anel by de�nition on the lattie)
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2
(u2 + v2 + w2)δαβPlugging these into Eq. (102), we obtain:
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δαβ + ρuαuβ (103)6.2 Calulation of 1st-order perturbation of the stress tensor Π
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i . Using Eq. (70) into Eq. (80):
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The 3rd-order moments of an be easily omputed using the expression for f (0)

i . Weonly show in detail the alulation of F1, and only state the end results for the other twomoments.
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Further expansions yield:
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(106)and after more (similar) algebra
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(108)Plugging these expressions bak into Eq. (104), we obtain:
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where by M̃ we have denoted
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In the inompressible limit, ∇1 · ~u ≈ 0, hene
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) (111)We then have
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