The importance of large scale sea ice drift and ice type distribution on ice extent in the Weddell Sea

Sandra Schwegmann¹, Christian Haas³, Ralph Timmermann¹, Rüdiger Gerdes^{1,4}, Peter Lemke^{1,2} ¹ Alfred Wegener Institute for Polar and Marine Research, ² University of Bremen, ³ University of Alberta, ⁴ Jacobs University

2. Drift and Wind speed

3. Divergence and Convergence

1. Introduction

The regular analysis of sea ice extent has become possible since the beginning of satellite observations lice extent changes are an indicator for changes in the atmosphere and the ocean. On the other hand sea ice extent variability modifies the exchange of heat moisture and momentum between ocean and atmosphere. Therefore, an understanding of causes of its variability is required for an adequate simulation of those fluxes and thus for climate modeling

During the last three decades mean annual ice extent in the Arctic has decreased by about 4.57% per decade while the ice cover in the Southern Hemisphere is increasing by about 2.09%. For understanding this contrary behavior it is necessary to determine the causes for the increase of sea ice extent in the Southern Ocean.

particular interest. Data: 2 day means of ice extent from NSIDC

Fig. 3: Weddell Sea temperature trends from November 1978 to December 2006. Trends are mainly positive. Color bar shows corresponding trend in deg C per decade. Data: NCEP/NCAR **Reanalysis Project**

Fig. 4: a) Ice drift and b) wind speed trends for February (top) and August (bottom). Colored background indicates trend while arrows in a) show mean drift. Drift trends are low in spring and high in winter. c) Trend of ratio between Drift speed and wind speed for February (top) and August (bottom).

5. Conclusion

Along the Antarctic Peninsula drift speeds are decreasing in winter 🗾 higher consolidation of ice = could result in higher ice thicknesses and therefore for an increased summer ice extent

Wind speeds also show mainly positive trends but not as strong as ice drift velocity does

- Which other parameters could be responsible for those ice drift changes?
- Ice drift is generally convergent in summer and also shows a trend to higher convergence. Consolidation of ice in summer + less leads results in thicker ice and less summer heat flux from would explain a higher ice extent in summer
- In winter ice drift in the central Weddell Sea is divergent with a trend towards higher divergence. Ice is pushed to the edges. Would explain a higher ice extent in winter

Modeled ice thickness distribution using the Finite Element Sea ice – Ocean Model

Further investigations on seasonal and interannual behavior of sea ice properties are required!

Long term ice type distribution, backward calculations from FESOM

Comparison of drift regimes from NSIDC Data and FESOM and evaluation with IPAB buoy data

6. Future plans

- Seasonal changes in ice extent for the Weddell Sea
- Seasonal analyzing of trends for Temperature

(FESOM)

Interannual variability

Ice concentration

- Fig. 5: Differences between wind and drift direction. Negative values mean that the drift is to the

Feb Wind Direction - Drift Direction in de

left of the wind

Fig. 6: Mean divergence (left) and trend of divergence (right) for February (top) and August (bottom). Ice drift is mainly convergent in summer with a trend to higher convergence. Divergent drift occurs in the central Weddell Sea in winter with a trend towards higher divergence.

4. Ice type distribution

Not only ice drift changes can modify ice extent but also ice type distribution (first and second year ice, FYI, SYI). Therefore the contribution of FYI and SYI in the Weddell Sea has been analyzed lice type distribution is estimated by using scatterometer data from the QuikSCAT satellite and SeaWinds sensor from January 2000 to December 2007 provided by the Department of Oceanography from Space Institut Francais pour l'Exploitation de la Me (IFREMER)

Fig. 7: Ice extent, ice type distribution and trend in the Weddell Sea from January 2000 to December 2007. There is nearly no trend in ice type distribution for these years. Data from QuikSCAT/ SeaWinds-Sensor

7. Literature

- Fowler, C. 2003, updated 2007. Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, January 1979 - December 2006. Boulder, Colorado USA: National Snow and Ice Data Center, Digital media. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD. Boulder. Colorado, USA. http://www.esrl.noaa.gov/psd/
- Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally. 1996, updated 2008. Sea ice concentral Nimbus-7 SMMR and DMSP SSM/I passive micro wave data. November 1978 - December 2006, Boulder Colorado USA: National Snow and Ice Data Center. Digital media.

Contact: Sandra Schwegmann (Sandra.Schwegmann@awi.de), Alfred Wegener Institute for Polar and Marine Research, Bussestraße 24, 27570 Bremerhaven, Germany

AGU Fall Meeting 2009 C41C-0476