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ABSTRACT 

Phytoplankton, the hidden trees of the ocean, are responsible for nearly half of 

global oxygen production. Phytoplankton growth and productivity in high-nitrate low-

chlorophyll (HNLC) regions have been demonstrated to be limited by iron availability. 

One of the most important HNLC regions is the Southern Ocean, as it regulates Earth 

system climate due to its unique hydrography and consequently its phytoplankton 

assemblage drives the global carbon cycle. Iron fertilization experiments were conducted 

to understand the response of its photosynthetic assemblage to iron addition, and the 

nanoflagellate Phaeocystis antarctica has been reported the first to bloom. P. antarctica 

is ecologically important due to its contribution in global sulfur gases emissions. Thus, P. 

antarctica fits as an ideal model organism in understanding phytoplankton adaptation to 

iron limitation and functional changes following iron addition. 

Here the results of a transcriptomic study assessing the effect of iron repletion on 

P. antarctica in a time-series manner are firstly reported. A Ross Sea-endemic P. 

antarctica clone was acclimated under iron limitation and iron was supplemented to the 

cultures. RNA was extracted at 5 time-points before and after iron addition. The 

generated 389,846,414 paired-end Illumina reads were de novo assembled into ~88,000 

putative genes, providing the first reported transcriptome of P. antarctica. Differential 

expression at each time-point was inferred at an adjusted p-value ≤ 0.001 and a log fold-

change ≥ 5, revealing a total of 2,367 differentially expressed genes. 

Iron-limited P. antarctica recovered its photosynthetic fitness, colony-forming 

ability, and chlorophyll a, particulate organic carbon and nitrogen contents shortly after 

iron addition comparable to the replete control and the reported values of healthy cells. A 

shift in expression from iron-economic reactive oxygen species defense and photosystem 

II to iron-dependent alternatives has been observed. In addition, a metabolic shift from 

structural carbon and nitrogen reallocation to anabolism has been observed. 

Transcriptomic data supports the previous studies that P. antarctica is successful in 

utilizing bound iron in a reductive non-ligand-dependent mechanism. Iron levels limits P. 

antarctica growth yet its iron requirements are the lowest among all phytoplankton 

species and its adaptation to iron limitation is well-established.   
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CHAPTER 1: INTRODUCTION AND STUDY OBJECTIVES 

1.1 Trees of the Ocean: Marine Phytoplankton Growth and Productivity 

Phytoplankton, or the prokaryotic and unicellular eukaryotic photosynthetic 

drifting community, is long known as the trees of the ocean. It is responsible for half of 

the global net primary production [(Field et al. 1998) cited in the authors summary of 

(Marchetti et al. 2012)] (Figure 1). Marine diatoms solely contribute 40% of oceanic 

carbon production annually (Allen et al. 2008).  

The assemblage of phytoplankton can be classified according to: (1) size [e.g., 

pico-(0.2-2 m), nano-(2-20 m) and microphytoplankton (20-200 m based on 

Sieburth-scale (Lalli & Parsons 2004; Sieburth et al. 1978)], (2) structure [having a shell 

or scales mineralized by silica (e.g., diatoms and golden-brown algae) or calcium 

carbonate (e.g., coccolithophores) or organic cell wall], (3) taxonomy [e.g., Cyanobateria 

and unicellular eukaryotes including: green and red algae, stramenopiles such as diatoms 

and haptophytes (e.g., coccolithophores and Phaeocystis), alveolates (e.g., dinoflagellates 

and ciliates), and Rhizaria (e.g., Foraminifera and Acantharia)], (4) evolutionary origin 

and fate of their plastids [e.g., through primary (e.g., red and green algae), secondary 

(e.g., chromalveolates supergroup and Rhizaria) or tertiary endosymbiosis (e.g., 

dinoflagellates) (Delwiche & Palmer 1997; Reyes-Prieto et al. 2008; Moustafa et al. 

2009)], and (5) ecological impact [e.g., toxin-producing dinoflagellate species ‘red tides’ 

and dimethylsulfoniopropionate (DMSP)-producing Haptophyta]. Given their diversity, 

different phytoplankton classes neither contribute equally in global oxygen production 

nor are distributed equally in the world ocean. 

In the early 20
th

 Century, Alfred Redfield has studied the elemental composition 

across the oceans correlating water carbon (C), nitrate (N) and phosphate (P) contents to 

that of the marine communities and elucidating the optimal nutrients ratio for plankton 

growth –in general— and photosynthetic plankton growth –in particular— to be: C:N:P = 

106:16:1 (Redfield 1934). Sodium, calcium, potassium and other abundant minerals are 

required for phytoplankton growth, however, growth also depends on group-specific 

macronutrients (e.g., silica for diatoms). In addition to water macronutrients contents, 
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phytoplankton growth rate, and primary productivity and photosynthesis rate, are 

governed by various factors. Abiotic factors such as: water column depth and 

consequently light intensity variability, micronutrients concentrations [e.g., iron (de Baar 

et al. 2005) and vitamin B12 (Bertrand et al. 2011)], CO2 levels (Hoppe et al. 2013), 

water temperature [according to Monod equation (de Baar et al. 2005)], and water layer 

mixing and subsequently nutrients availability, as well as biotic factors such as: pathogen 

and viral attacks (Suttle 2007), species competition [addressed through Tilman’s resource 

competition model (Tilman 1994)], and grazing pressure together affect phytoplankton 

growth and productivity (Bakker et al. 2005).  

As part of their everlasting arms race (Smetacek 2001), different phytoplankton 

groups have evolved developing different strategies and adaptive mechanisms to 

overcome such growth- and productivity-limiting factors. Anti-grazing strategies are the 

most sound. Flagellated phytoplankton, for instance, use their flagella to escape grazing 

and move towards light and nutrients, diatoms were found to utilize ferritin to store iron 

(Marchetti et al. 2009) or domoic acid to bind beneficial iron or harmful copper (Wells et 

al. 2005). While cyanobacteria use gas vacuoles to regulate its buoyancy and 

consequently its access to light (Reynolds et al. 1987), Phaeocystis colonies mucilage 

regulates its buoyancy. Moreover, morphological changes such as increase in cell size, 

chain- and colony-formation, and increase in silicification in diatoms are among defense 

strategies against grazers (Smetacek et al. 2004; Marchetti & Cassar 2009). 

Phytoplankton productivity –or limited productivity— does not only affect the regional 

food chain the algal class is part of, but it also affects the global biogeochemical 

recycling of nutrients by bacterioplankton (Azam & Malfatti 2007) [modeled by (Boyd & 

Doney 2002)].  

1.2 The Iron Hypothesis 

Three (Smetacek et al. 2004; Dugdale & Wilkerson 1991; Assmy et al. 2013; de 

Baar et al. 2005) of the largest oceanic ecosystems, and collectively form up to one-third 

of the world ocean area (Boyd et al. 2007), have been stamped as High-Nutrient Low-

Chlorophyll (HNLC) regions, which, as the name implies, are characterized by high 
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concentration of nutrients, N in particular, yet show low phytoplankton nitrate uptake 

rates (Dugdale & Wilkerson 1991) and consequently decreased growth rates and 

productivity. Grazing pressure has long been suggested as the most productivity-limiting 

factor until the work of Martin et al. demonstrated that iron is the key limiting 

micronutrient that drives N uptake by endemic phytoplankton community members of the 

three HNLC regions, the subarctic (Martin & Fitzwater 1988) (in vitro) and equatorial 

Pacific Ocean (Martin et al. 1994) and the Antarctic/Southern Ocean (Martin et al. 1990) 

(in situ), structuring the foundation of the “Iron Hypothesis (Martin 1990)” (Marchetti & 

Cassar 2009; de Baar et al. 2005). Iron fertilization  experiments demonstrated the 

increase of carbon fixation and export (Smetacek et al. 2012), and nitrate and silica 

utilization (Assmy et al. 2013; Hutchins & Bruland 1998; Whitney et al. 2005) following 

iron supplementation of HNLC regions phytoplankton assemblage linking the global 

climate with oceanic biogeochemistry (Boyd 2002a; Boyd & Ellwood 2010; de Baar et 

al. 2005; Charles et al. 1991; Mortlock et al. 1991). Dissolved iron concentration in 

HNLC regions can be as low as < 1 nM in the Southern Ocean (Smetacek et al. 1997). 

Iron biogeochemical cycle has been extensively studied and modeled [reviewed in 

(Boyd & Ellwood 2010)]. Iron supply to the ocean includes: atmospheric dust deposition, 

shallow sediments mixing and hydrothermal fluids, while coastal iron supply includes 

continental and ice depositions (Boyd & Ellwood 2010). The major source of iron in the 

offshore environments is dust deposition, which is particularly low in the Southern Ocean 

(Strzepek et al. 2011), for instance, leading to dependence on upwelling of iron through 

deep mixing. Iron forms are: the bioavailable bound to bacterially secreted siderophores 

iron, and the unavailable trivalent or divalent inorganic iron species. The complexation of 

iron to organic ligands keeps iron concentration at near constancy along depth (Boyd & 

Ellwood 2010). The fate of ocean trivalent iron is either to be captured by bacterial 

ligands and kept in solution or reduced by algal membrane reductases, or to be exported 

to the sea bottom in an aggregated form that can be also recycled by viruses, 

heterotrophs, mixotrophs and microzooplankton grazers depending on the depth (Boyd & 

Ellwood 2010; Strzepek et al. 2011). 
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1.2.1. The Southern Ocean the Largest HNLC Region: Its Oceanography and 

Phytoplankton 

The Southern Ocean (SO) evolved throughout the past 35 million years into a 

highly productive region through the development of deep circulations upwelling 

nutrients to the surface (Kennett 1977; Sigman & Hain 2012). The SO is the largest 

(Smetacek et al. 2004) typical iron-availability-driven HNLC region [supported by 

(Charles et al. 1991; Mortlock et al. 1991)].The SO phytoplankton assemblage 

productivity regulate the sinking and production of the Earth’s greenhouse gases carbon 

dioxide (CO2) and dimethyl sulfide (DMS), respectively (Boyd 2002a). Although it is the 

4
th

 largest ocean, comprising 20% of the world ocean area, the SO directly regulates both 

the global climate and geochemistry (Boyd 2002a). Understanding the physical 

oceanography of the SO helped resolving its global impact. 

The SO extends from 60° South circulating Antarctica with an area of 20,327,000 

km
2
. It comprises water masses from the Atlantic, Indian and Pacific Oceans and includes 

Amundsen Sea, Bellingshausen Sea, Ross Sea, Scotia Sea, and the Weddell Sea (Stewart 

2009; Gaebler-Schwarz 2009) (Figure 2). The main and most prominent circulation 

feature of the SO is the wind-driven and seafloor topology-affected Antarctic 

Circumpolar Current (ACC) (Figure 2A), which transfers 95-158 million m
3
 per second 

of the SO water masses running clockwise from west to east reaching its maximum 

around July (i.e., the late Antarctic winter and early spring) (Stewart 2009). The distinctly 

physically and chemically different water masses of the SO are separated by fronts 

(Figure 2B). The temperature of Antarctic Surface Water (ASW) ranges from, from the 

north to the south, 5 °C to -1.86 °C (Gaebler-Schwarz 2009) and its salinity ranges with 

depth from 33.5 to 34.0 psu (i.e., Practical Salinity Units) decreasing in the summer 

following ice melting (Tomczak & Godfrey 2004; Riffenburgh 2007). 

Two circulation systems affect ASW characteristics; the strongest deepest 

circulation system, ACC, that mixes and redistributes the deep water from all oceans, and 

the Antarctic Convergence that directs the flow of the ASW towards the warmer less 

dense SASW. The circulation systems mix the cold oxygen-poor ASW  with the high-

salinity Atlantic deep water as well as the near freezing point highest-salinity Ross and 
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Weddell gyres waters and ABW leading to the upwelling of CO2 and nutrient-rich as the 

ASW at the Antarctic Divergence and downwelling of the dense salty water (Tomczak & 

Godfrey 2004; Stewart 2009). The nutrient-rich ASW next mixes with the Subantarctic 

Surface Water (SASW) and sinks to become the Antarctic Intermediate Water (AAIW). 

Both the Antarctic Bottom Water (ABW) and AAIW are distributed by ACC to all the 

oceans distributing both water mass and heat to the northern hemisphere.  

The high sensitivity of the SO suggests that changes in climate and atmospheric 

CO2 affect its water masses characteristics as well as the ACC velocity. Consequently, 

these changed waters will be distributed to the global ocean [reviewed in (IPCC Working 

Group II 2001)]. 

The climatological influence of the SO which was prominent in the past 

(Sarmiento et al. 1998), the present (Broecker & Henderson 1998; Moore et al. 2000) 

cited in (Boyd 2002a; Gaebler-Schwarz 2009)], and would extend for centuries to the 

future time (Takahashi et al. 2009; IPCC Working Group II 2001; Hoppe et al. 2013) is a 

direct result of its oceanographic characteristics. Because it drives the world ocean’s 

circulation and water mass and heat exchange, the SO is one of the most important 

regulators of the Earth system (Boyd et al. 2007). Back to and in support of the iron 

hypothesis, iron supply either by the atmospheric dust in the past at the mid-Pleistocene 

(1.25 million years ago) (Martínez-Garcia et al. 2011) and the Last Glacial Maximum 

(LGM) (21,500 years ago) (Moore et al. 2000; Martinez-Garcia et al. 2014) or at the 

present days by winter ACC-mixed subsurface dissolved iron (Tagliabue et al. 2014) has 

been observed to drive the SO productivity, the increase in CO2 export and the decrease 

in atmospheric CO2 [(Anderson et al. 2009; Sigman et al. 2010) cited in (Smetacek et al. 

2012)]. 

Directed by importance of its ecological niche, the SO phytoplankton community 

is a major player in the global biogeochemical cycle of nutrients. In order to resolve such 

impact, the SO phytoplankton assemblage, its key species, and the factors affect its 

formation, distribution and processes needs to be studied. Boyd reviewed the history of 

studying the SO assemblage (Boyd 2002a) demonstrating that the assemblage can only be 

studied in the light of the SO biogeochemistry, physics, and hydrology. The SO 
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phytoplankton growth is affected by the light intensity (Antarctic water tongue), grazing 

(in coastal waters), micronutrients (iron in the SO and silica in the northern part of the 

Antarctic Zone) availability, and optimum growth temperature (Boyd 2002a), therefore 

phytoplankton flourish during the Antarctic spring and bloom afterwards providing food 

for the grazers to grow during the summer. This review focuses on the assemblages of the 

Atlantic and Pacific sectors in comparison to that of the Ross Sea as it is the ecological 

niche of the subject species of the study. 

In regard to the Atlantic sector of the SO, Smetacek et al. have assessed the 

biodiversity of the ACC phytoplankton assemblage in the Antarctic spring (October and 

November) in 1992 (Smetacek et al. 1997) and reported that it was diatoms-dominated 

(~130 species) at the highest SO  iron concentration (1.14-1.87 nM) in the Polar Frontal 

Zone in addition to other algal groups such as (with focus on eukaryotes): pico- and 

nanophtoplankton, prymnesiophytes, autotrophic dinoflagellates, cryptophytes, 

prasinophytes and chlorophytes (Smetacek et al. 1997). Diatom blooms of Fragilariopsis 

kerguelensis and Corethron spp. were reported in the Polar Frontal Zone  in addition to 

the weakly-silicified closer to the shore Pseudo-nitzschia spp., Chaetoceros spp.,  and 

Thalassiosira and the heavily-silicified Thalassiothrix antarctica (Assmy et al. 2013; 

Smetacek et al. 1997). N:P water ratios were found to be low in the iron limitation-

adapted diatom blooming (F. kerguelensis) sites. Limitation in iron impaired N utilization 

(Smetacek et al. 1997). Supporting the iron hypothesis, CO2 export levels were observed 

to be the highest in the Polar Frontal Zone (Smetacek et al. 1997) by the ubiquitous 

diatom Chaetoceros (Assmy et al. 2013), while the major contributors of silica export 

were the heavily-silicified F. kerguelensis and T. antarctica (Assmy et al. 2013).  

Further to the north of the slightly iron-rich Polar Frontal Zone, pico- and 

nanophyoplankton dominated as iron becomes very limited for diatoms to grow. Moving 

upwards along the oceanic food chain, mesozooplankton (e.g., copepods in the Polar 

Frontal Zone and salps in the northern direction) were reported to be the grazers of the 

microphytoplankton species (Smetacek et al. 1997) adding another layer of limitation to 

the SO primary productivity and growth. DMSP production levels were reported and 

served as a proxy for the other bloom-forming algal group, Phaeocystis antarctica, 
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ecology in the ACC. The highest abundance of P. antarctica was reported to be in the 

Polar Frontal Zone in the sites dominated by the small algal classes of sizes ranging 5-20 

m (Smetacek et al. 1997). Similar findings were reported by Bracher et al. of the SO 

summer assemblages indicating that diatoms dominated the Polar Frontal Zone, however, 

P. antarctica dominated the Marginal Ice Zone (Bracher et al. 1999). 

In contrast to the Polar Frontal Zone, in a comparable region, the Ross Sea, P. 

antarctica dominated the phytoplankton assemblage of the deeply mixed water column, 

marginal ice zones and polynyas (Arrigo et al. 2010) due to their ability to maintain their 

photosynthetic capacity at lower light intensities than diatoms. In addition,  P. antarctica 

less adaptability to higher intensities (Arrigo 1999; Smith et al. 2003; Boyd 2002a; 

Arrigo et al. 2010) drove its quick blooming before diatoms in the late spring (December) 

(Arrigo 1999). P. antarctica exports C utilizing the available NO3 reserves at faster rates 

than that of diatoms (Arrigo 1999) suggesting that, unlike diatoms, iron might not be 

required for N utilization in Phaeocystis specially that the effect of iron supply on 

Phaeocystis is yet to be investigated (Olson et al. 2000; Boyd 2002a). Other factors 

controlling the blooming of P. antarctica in the Ross Sea and the blooming of diatoms in 

the Polar Frontal Zone in addition to iron, nutrients and light intensity are also yet to be 

investigated (Boyd 2002a).  

In regard to the phytoplankton assemblage of the Pacific sector of the SO, during 

the late summer of 2010, automated ribosomal intergenic spacer analysis (ARISA) and 

18S rRNA gene 454-pyroequencing showed that Pacific sector of the SO [i.e., the iron-

rich Amundsen Sea (Alderkamp et al. 2012)] was dominated by diatoms (Eucampia spp., 

Pseudo-nitzschia spp. and Chaetoceros spp.), P. antarctica dominating the deeply mixed 

regions (or perhaps after the diatom bloom took place), while ciliates dominated 

underneath the iced regions (Wolf et al. 2013). 

1.2.2. Iron Fertilization Experiments in the SO: Phytoplankton Behavior In Situ and In 

Vitro under Iron Enrichment 

Since the establishment of the iron hypothesis, the effect of iron availability on 

phytoplankton growth–in general— and diatoms growth –in particular— in the HNLC 
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regions has been extensively investigated. The role of iron in photosynthesis, respiration, 

elemental composition (Marchetti & Cassar 2009), grazing (Assmy et al. 2013), N 

utilization (Dugdale & Wilkerson 1991; Geider & La Roche 1994) and other crucial 

metabolic processes in diatoms and Haptophyta have been investigated in situ (de Baar et 

al. 2005) and in vitro either at a single species level (Allen et al. 2008; Lommer et al. 

2012; Hoffmann et al. 2007; Strzepek et al. 2011) or at a mesocosm level (Marchetti et al. 

2012; Bertrand et al. 2011). 

The primary aims of iron fertilization experiments are: (1) testing the iron 

hypothesis and whether iron is the main limiting factor for oceanic primary productivity, 

(2) elucidating the mode through which iron enhances nutrient utilization and C export 

(Boyd et al. 2007; Smetacek et al. 2012), (3) understanding the ocean biota dynamics 

upon iron addition and its underlying physics, (4) constructing the ocean biogeochemical 

cycles under iron enrichment, and (5) understanding phytoplankton the evolution of iron 

scavengers in pre- and post-iron addition (Boyd et al. 2007). Nevertheless, the history of 

iron fertilization as a potential geoengineering approach has been discussed (AL Strong et 

al. 2009) as an attempt to demolish its rationale (Aaron Strong et al. 2009; AL Strong et 

al. 2009). 

Following in situ ocean fertilization attempts of Martin et al., to date, thirteen iron 

fertilization experiments have been conducted in all three HNLC regions (de Baar et al. 

2005; Smetacek et al. 2012; Boyd et al. 2007). Phytoplankton dynamics of the eastern 

equatorial Pacific Ocean experiments are reported (Landry, Ondrusek, et al. 2000; 

Landry, Constantinou, et al. 2000) reviewed compared to the SO in (Boyd 2002b). In 

addition, dynamics of the western (Tsuda et al. 2003; Tsuda et al. 2007) and eastern 

subarctic Pacific Ocean experiments are reported (Marchetti et al. 2006) and compared to 

the SO experiments (de Baar et al. 2005). Collaborative efforts of the Scientific 

Committee on Oceanic Research resulted into an open-access database of the findings of 

iron enrichment experiments available at the Biological and Chemical Oceanography 

Data Management Office (Program Iron synthesis http://www.bco-

dmo.org/program/2017) (Boyd et al. 2012). Here iron fertilization experiments in the SO 

and P. antarctica dynamics is reviewed in detail. 

http://www.bco-dmo.org/program/2017
http://www.bco-dmo.org/program/2017
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Five iron fertilization experiments took place in the SO to date (Table 1) in 

addition to eight experiments carried out in the Ross Sea (Olson et al. 2000). The first 

four experiments were extensively reviewed and compared to the experiments in other 

niche (Boyd et al. 2007; de Baar et al. 2005; Marchetti et al. 2006; Trick et al. 2010; 

Boyd 2002b). As a general protocol, iron has been supplied mimicking the natural iron 

supply (Boyd et al. 2007) as an acidified sulfurhexafluoride (SF6) tracer-labeled FeSO4 

solution (de Baar et al. 2005; Boyd et al. 2007; Law et al. 1998) and tracked using gas 

chromatography (Watson et al. 1991). Experiments duration ranged from 13 days to two 

months and added iron ranged from 490 to 2820 kg (Martin et al. 2013; Boyd et al. 2007; 

de Baar et al. 2005).  

In all iron enrichment experiments, including those in the SO, a 3-step floristic 

shift (Gall et al. 2001) in the originally picophytoplankton-dominated community took 

place. First, nanophytoplankton Haptophyta [e.g., Dicrateria spp., Imantonia spp., and 

Chrysochromulina spp. in addition to the initially present and later blooming P. 

antarctica before declining (Assmy et al. 2007)] blooms were instantly observed until 

grazed [by ciliates in SOIREE (Gall et al. 2001; Hall & Safi 2001) and in EisenEx 

(Assmy et al. 2007)]. Following, blooms of weakly-silicified large diatoms took place 

(e.g., Pseudo-nitzschia spp., Rhizosolenia and Thalassiothrix spp. morphotypes, and 

Chaetoceros debilis). Finally, the originally dominating adapted to iron limitation species 

(e.g., F. kerguelensis) showed a long-term response to iron addition (Marchetti et al. 

2006; Trick et al. 2010; Gall et al. 2001; Assmy et al. 2007). Haptophyta contribution 

was observed to be kept constant by grazing pressure after initial peaking in its DMSP 

productivity (de Baar et al. 2005; Gall et al. 2001; Boyd et al. 2005; Boyd et al. 2007), 

while diatoms blooms were suggested to be terminated due to silica depletion along with 

diatom species succession rather than grazing pressure (Boyd et al. 2007; Boyd et al. 

2005). 

To date, the effect of iron enrichment on Haptophyta might seem to be under-

investigated during iron fertilization experiments (Olson et al. 2000; Boyd 2002a; Gall et 

al. 2001) in spite of the reported interesting findings. For instance, Assmy et al. 

(EisenEx), Hoffmann et al. (EIFEX), and Mazzocchi et al. (LOHAFEX),  reported a 
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marked increase in colonial P. antarctica accompanied by a decline of solitary cells 

suggested to be an anti-grazing mechanism (Assmy et al. 2007; Hoffmann et al. 2006; 

Mazzocchi et al. 2009). Furthermore, in iron enrichment experiments, the silica-poor 

water was dominated by Phaeocystis spp. unlike the silica-rich water (Coale et al. 2004). 

Table 1 summarizes the reported abundances of Haptophyta (P. antarctica in particular) 

before and after iron repletion throughout the SO iron enrichment experiments. 

Two ecological drawbacks have been postulated and investigated of 

anthropogenic iron supply: the increase of the production of the amnestic shellfish 

poisoning biotoxin, domoic acid, and the precursor of the greenhouse gas DMS, DMSP. 

The neurotoxin domoic acid is produced by the coastal species of the cosmopolitan genus 

Pseudo-nitzschia accumulated in shellfish that is consumed by humans. The toxicity of 

the water-soluble neurotoxin is due to its analogy to the neurotransmitter glutamic acid 

(Jeffery et al. 2004; Mos 2001). It has been suggested as an iron- and copper-scavenger in 

cases of limitation and toxicity, respectively (Wells et al. 2005; Mos 2001; Maldonado et 

al. 2002; Rue & Bruland 2001) improving its competitiveness (Prince et al. 2013). During 

iron fertilization experiments, Pseudo-nitzschia showed exponential high increase 

(Assmy et al. 2007), however, domoic acid levels were undetectable in the SO-endemic 

[on EisenEx preserved samples (Assmy et al. 2007)] and in the subarctic Pacific Ocean-

endemic [in vitro on SERIES-related isolates (Marchetti et al. 2008)], while it reached 

lethal concentrations in the SO-endemic Pseudo-nitzschia spp. [on SOFeX preserved 

samples (Silver et al. 2010)]. In their in situ, and continuous and batch in vitro 

experiments, Trick et al. reported variable elevations in cellular domoic acid levels in 

iron-enriched subarctic Pacific-endemic Pseudo-nitzschia spp. giving them a competitive 

advantage over neighbor diatoms. Such elevation raised an alarm regarding potential 

copper contamination of the enrichment iron that might be used in potential large-scale 

geoengineering attempts (Trick et al. 2010), however, no mortalities were recorded from 

iron-enriched oceanic Pseudo-nitzschia spp. (Trick et al. 2010; Silver et al. 2010). 

Regarding the longer-term hazard, DMSP production by Phaeocystis spp. (Turner 

et al. 2004; Turner et al. 1996) endemic to the subarctic Pacific has been modeled 

following SERIES (Le Clainche et al. 2006; Levasseur et al. 2006; Merzouk et al. 2006). 
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Surprisingly, in spite of its general assessment throughout SOIREE (Gall et al. 2001; Hall 

& Safi 2001) and EisenEx [reviewed in (Boyd et al. 2007)], and specific assessment 

throughout LOHAFEX (Smetacek 2009), similar modeling is yet to be developed for the 

other polar HNLC region, the SO (Smetacek & Naqvi 2008) to assess a hazardous 

consequence of iron fertilization and a potential replacement of one greenhouse gas (i.e., 

CO2) with another (i.e., DMS) (Boyd et al. 2007) that might decrease global temperature 

by 1-2 °C (Smetacek & Naqvi 2008). Furthermore, DMS release from DMSP due to 

DMPSlyase activity has been suggested as a result of grazing pressure (Hall & Safi 2001; 

Wolfe et al. 1997; Smetacek 2009). Thus, studying P. antarctica at a molecular level is 

crucial to gain insights into the intrinsic factors influencing its dynamics, response to iron 

depletion and repletion, as well as to grazing and DMSP production. 

1.2.3. Phytoplankton Iron Utilization and Adaptation to Iron Limitation 

Iron has been proved to be essential for redox-based reactions, which applies to 

photosynthesis, respiration, and nitrate and sulfur utilization through reduction  in 

phytoplankton [reviewed in (Raven 2013)]. Consequently, iron is limiting for 

phytoplankton growth. As a result of the Great Oxygenation Event, the soluble 

biologically active ferrous ion [Fe(II)] became less abundant in the ocean, thus 

phytoplankton needed to: (1) develop strong iron-binding organic ligands (i.e., 

siderophores) of high affinity to the more abundant ferric ions [Fe(III)], (2) develop 

transmembrane Fe(III) and Fe(II) import systems comprising ferrireductases, ferroxidases 

and permeases, (3) reduce the overall iron demand, and (4) develop non-reactive-oxygen-

species-generating iron storage systems in the already iron-limited environments 

[reviewed in (Raven 2013; Morrissey & Bowler 2012)]. 

Iron uptake and utilization have been studied, modeled and compared in various 

algal groups using various methods in single organisms and on mesoscale (Raven 2013; 

Sutak et al. 2012; Naito et al. 2008; Miller et al. 2014; Strzepek et al. 2011; Sunda & 

Huntsman 1995; Morrissey & Bowler 2012; Marchetti et al. 2009; Hartnett et al. 2012; 

Maldonado et al. 2001). Two strategies of iron acquisition are adopted by in land plants: 

strategy I for unbound iron uptake, which is Fe(III)-reductase-dependent involving 
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Fe(II)/H
+
 symport uptake system, and strategy II, which is sidrophores-dependent 

involving a nonreductive uptake system of Fe(III). Strategy I is more prominent in all 

algal groups (Hartnett et al. 2012; Raven 2013; Sutak et al. 2012). Iron utilization in 

diatoms based on genomic and experimental data of the two diatom model organisms 

(Thalassiosira pseudonana and Phaeodactylum tricornutum) and others has been 

modeled (Morrissey & Bowler 2012) to be a reductive utilization of sidrophores-bound 

Fe(III) or an oxidative utilization of Fe(II), which are later transported into the cell to be 

either used or stored as Fe(III) in ferritin (as in Phaeodactylum tricornutum) or as Fe(II) 

vacuoles (as in Thalassiosira pseudonana) (Morrissey & Bowler 2012).  

In iron-limited environments, diatoms have developed various mechanisms to 

efficiently use the available iron. Here a few are listed. Diatoms have been observed to 

down-regulate the iron-dependent photosystem I cytochromes and rely on the iron-

economic photosystem II copper-containing plastocyanins, or the least efficient 

photorhodopsins (Raven 2013). All diatoms, except the coastal Thalassiosira 

pseudonana, have copper-zine superoxide dismutases as an alternative to the iron-based 

reactive oxygen species defense. They also possess flavodoxin instead of the iron-

containing ferredoxin in their electron transport system. In addition, diatoms increase 

their iron uptake through acquiring genes to utilize the bacterial siderophores-bound iron 

and to store it (Strzepek et al. 2011). Finally, diatoms decrease their overall iron 

requirements by reducing their cell size, increasing their pigment content rather than 

photosynthetic units [reviewed in (Raven 2013) and explained in (Morrissey & Bowler 

2012)]. In order to infer similar iron limitation adaptive mechanisms in haptophytes, light 

will be shed on their biology and evolution. 

1.3 Haptophyta 

 “Haptophyta” refers to the nonoflagellates mostly haptonema-containing partially 

calcium carbonate-mineralized (i.e., “coccolithophores”) monophyletic group belongs to 

the supergroup, Chromalveolata. Secondary endosymbiosis gave rise to chromalveolates 

through the engulfment of a red alga by their common ancestor that has been illustrated 

to be predated by an ancient green algal endosymbiotic event (Moustafa et al. 2009). 
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Supporting the hypothesis on their origin, P. antarctica and P. globosa plastid and 

mitochondrial genomes analysis showed that the red-algal-derived plastid-bearing 

Phaeocystis has mutation rates consistent with the red alga Porphyra that, unlike land 

plants, has been reported to have high mitochondrial mutation rates (Smith et al. 2014). 

Stramenopiles, cryptophytes and haptophytes are the chromists of Chromalveolata 

[reviewed in (Hackett et al. 2007; Moustafa 2009)] diverged 1,300 million years ago 

(Yoon et al. 2004), cryptophytes and haptophytes were thought to be split early 

(Moustafa et al. 2009; Hackett et al. 2007), however, plastid multi-gene phylogenomic 

analyses suggested a stramenopiles-haptophytes split 1,047 million years ago, which took 

place after cryptophytes split 1,255 million years ago (Yoon et al. 2004). Phylogenomic 

analyses have been conducted to infer whether the closest relative to the chromists 

lineage, cryptophytes, is haptophytes (Hackett et al. 2007) or the plastid-lacking lineage 

katablepharids (Burki et al. 2012). Haptophytes have been suggested to be involved in 

tertiary endosymbiotic events early throughout dinoflagellates plastid evolution (i.e.,  

plastids containing 19’-hexanoyloxyfucoxanthin/fucoxanthin and chlorophyll c1 + c2) 

(Yoon et al. 2002) consistent with haptophytes-specific pigment composition. 

Haptophyta phylogenetics has been revised based on the 18S rDNA analysis by 

Edvardsen et al. (Edvardsen et al. 2000) and later by Sáez et al. (Sáez et al. 2004) leading 

to the division of Haptophyta into two classes: Prymnesiophyceae and Pavlovophyceae. 

The 18S rDNA analysis also subdivided Prymnesiophyceae into four orders: the non-

calcified Phaeocystales and Prymnesiales, and the calcified Coccolithales and 

Isochrysidales (e.g., Emiliania huxleyi). Prymnesiales were subdivided into two families: 

the harmful algal blooms Chrysochromulinaceae and Prymnesiaceae, and later 

Chrysocampanula (Edvardsen et al. 2000; National Center for Biotechnology Information 

n.d.; Beszteri 2011). Fossil coccolith (i.e., a calcified scale of coccolithophores) records 

are paleo-temperature (Ternois et al. 1997) and -acidification (Stoll et al. 2009) proxies 

[see also (Henderiks 2008)]. 

Haptophyta include plastid-containing and plastid-lacking mostly unicellular 

mostly marine members (Billard & Inouye 2004; Andersen 2004; Medlin 2009). 

Haptophytes morphology is characterized by the presence of a flexible microtubular 
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structure named haptonema that is suggested to be involved in feeding and attachment 

and lies between two flagella and is lost in few haptophytes.  In addition, haptophytes are 

characterized by the presence of 1-2 four-membrane surrounded golden brown plastids 

containing chlorophyll a+c and lack girdle lamella (Andersen 2004; Medlin 2009; Sáez et 

al. 2004; Billard & Inouye 2004) (Figure 3A). Most haptophytes have an unmineralized 

flagellated haploid-mineralized nonmotile diploid alternative generation life cycle 

(Billard & Inouye 2004; Sáez et al. 2004). 

1.3.1. Phaeocystis Systematics, Life Stages, and Genomics 

Molecular timing of haptophytes using 18S rDNA and rDNA internal transcribed 

spacer 1 (ITS1) revealed, respectively, that Phaeocystales diverged ~480 million years 

ago from Prymnesiophyceae and later (~30 million years ago) the cold water Phaeocystis 

spp. (the Antarctic P. antarctica and the Arctic P. pouchetti) diverged from the warm 

water P. globosa (Medlin, 2009; Medlin and Zingone, 2007). The latter split followed the 

evolution of ACC that insulated Antarctica from the warm water input and the formation 

of Drake Passage in the SO, both led to the bipolar distribution of Phaeocystis across the 

equatorial water facilitated by the cold climate period at the time (Darling et al. 2000; 

Medlin & Zingone 2007). 

The cell structure of the genus Phaeocystis is similar to those of sister Haptophyta 

members. Flagellates [haploid motile scaled cells escape the colony under growth 

limitation conditions; variable sizes (Figure 3B)], macroflagellates and/or attached 

aggregates (diploid nonmotile attached to diatoms spines at low turbulence; ~4.2-9.8 µm 

in diameter), and colonial cells (diploid nonmotile; 4-6 µm colonial cell diameter in 

colonies up to 2000 µm in diameter) are the identified life cycle stages of P. antarctica 

(Gaebler-Schwarz et al. 2010; Peperzak & Gäbler-Schwarz 2012; Zingone et al. 2011). 

Pigment composition of Phaeocystis has been also determined to include diatoxanthin, 

diadinoxanthin, 19’-hexanoyloxyfucoxanthin and fucoxanthin in addition to chlorophyll 

a+c consistently among different Phaeocystis species (Vaulot et al. 1994; Andersen 

2004). 
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The molecular information on Phaeocystis is particularly limited, however, 

ongoing collaborative efforts are being conducted to sequence P. antarctica nuclear 

genome. P. antarctica genome was estimated by flow cytometry to be of size of 160 

million bases (Mb) (Vaulot et al. 1994; Phaeocystis.org n.d.), larger than the recently 

released genome of the sister species, E. huxleyi, which has been reported to be of size of 

141.7 Mb in the haploid cells as well (Read et al. 2013). Interestingly, flow cytometric 

analysis of Phaeocystis species has revealed a GC content of 54% of its genome (Vaulot 

et al. 1994; Phaeocystis.org n.d.), lower than that of E. huxleyi (65%) (Read et al. 2013). 

At the time of conducting this study, the plastid (~105 kilo bases; Kb) and mitochondrial 

(~30 Kb) genomes sequences of P. antarctica and P. globosa have been released (Smith 

et al. 2014). 

Phaeocystis is a cosmopolitan genus and dominates the nanophytoplankton 

fraction (Schoemann et al. 2005), however, six species have been fully characterized to 

date, three of which form colonies (P. antarctica, P. pouchetti and P. globosa) (Peperzak 

& Gäbler-Schwarz 2012) and consequently blooms (Schoemann et al. 2005) (Figure 3C), 

along with the Mediterranean P. jahnii and P. cordata (Zingone et al. 1999) and 

Phaeocystis spp. in the coastal toxic assemblage (Zingone et al. 2006) and the Australian 

P. scrobiculata (Medlin & Zingone 2007). P. pouchetti and P. globosa have been 

reported to be toxin-producing and ecologically harmful [reviewed in (Edvardsen & Imai 

2006; Andersen 2004; Medlin & Zingone 2007; Schoemann et al. 2005)]. 

1.3.2. Phaeocystis antarctica Blooms and DMS Production 

Blooms of Phaeocystis are exceptionally unique, as they give colonial 

Phaeocystis a competitive growth advantage [storing macro- and micro-nutrients (Liss et 

al. 1994)]. They are also of a global biogeochemical beneficial (due to the high 

productivity and high contents of C associated with the blooms polysaccharide matrix to 

be recycled), harmful [due to the contribution of the globally distributed blooms to 

atmospheric sulfur (S)], and ecological impacts (due to its well-document hindrance of 

fisheries industries) (Schoemann et al. 2005). Typically, P. antarctica blooms in the SO, 

P. pouchetti blooms in the Arctic Ocean and the southern coasts of China, while P. 
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globosa blooms in the North Sea (van Duyl et al. 1998) (Figure 3C) (Schoemann et al. 

2005). Here P. antarctica blooms formation factors and fate are reviewed in details. 

Blooms, by definition, indicate for a cell density exceeding 10
6
/L (Schoemann et 

al. 2005) which is consistent with the largest P. antarctica reported bloom in the Ross 

Sea in December time. Light (due to adaptation to low light intensity in deep mixed 

layers), temperature (optimally from -2 to +2 and not exceeding 10 °C), and macro- (by 

converting non-bioavailable HCO3
- 
to CO2 using extracellular carbonic anhydrase, and 

due to the abundance of N and P in the SO) and micro- (by colonies mucus complexation 

of iron and manganese) nutrients scavenging are among the success factors of P. 

antarctica bloom-formation (Schoemann et al. 2005; van Hilst & Smith 2002). On the 

other hand, grazing [in a size-dependent fashion or by release of acrylic acid from its 

precursor DMSP (Liss et al. 1994) in E. huxleyi (Verity et al. 2007)], viral infections, and 

sinking (that is minimal at colonial stage) are considered among Phaeocystis bloom-

termination factors. The skin of P. globosa protects it against viral attacks (Schoemann et 

al. 2005) probably of the bloom-terminating effect of the megavirus PgV-16T, P. 

globosa, which genome has been revealed. The virus has been classified as a sister to two 

Antarctic megaviruses which their hosts are yet to be revealed (Santini et al. 2013) and it 

has not been reported to be P. antarctica. Ungrazed blooms undergo bacterial 

degradation and thus do not contribute in deep C export (Schoemann et al. 2005; Verity 

et al. 2007).  

DMS production has been linked to Phaeocystis bloom occurrence (Stefels et al. 

2007; Verity et al. 2007), nevertheless, dinoflagellate species produce DMSP as well 

(Caruana et al. 2012). The SO P. antarctica production of DMSP, for instance, has been 

calculated to contribute 70% of atmospheric DMS contents in the Southern Hemisphere 

and 5-10% globally (Schoemann et al. 2005; Kettle & Andreae 2000). DMSP production 

has been postulated as a defense mechanism against low temperature, reactive oxygen 

species damage, osmotic pressure changes, and grazing reviewed in (Gaebler-Schwarz 

2009; Schoemann et al. 2005; Verity et al. 2007)]. Oceanic DMS contribution has been 

modeled (Kettle & Andreae 2000) and a database of DMS metadata has been assembled 
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(Kettle et al. 1999). Transcriptomic assay of the genes involved in DMSP biosynthesis 

(Summers et al. 1998) in bloom time is yet to be achieved. 

1.3.3. Iron Utilization in Haptophytes 

Iron uptake (Sutak et al., 2012), transport and storage (Hartnett et al., 2012) have 

been studied in E. huxleyi, a close relative to Phaeocystis. Emiliana, the most abundant 

haptophyte has been assumed an important role in the global carbon cycle but it has never 

been reported to be influenced by iron enrichment experiments. The iron-binding 

capacity of this species was observed to be directly proportional to iron concentration in 

contrary to typical siderophore-dependent mechanisms [(Boye & van den Berg 2000) 

reviewed in (Sutak et al. 2012; Hartnett et al. 2012)]. In their comprehensive comparative 

study, Sutak et al. reported that E. huxleyi neither stores iron nor its growth is dependent 

on iron concentration. The study also showed that E. huxleyi has no 

spectrofluorimetrically detectable reductase activity, transmembrane electron transport 

activity, or preference for Fe(III) over Fe(II) suggesting a nonreductive, non-siderophore-

dependent uptake mechanism, however (Sutak et al. 2012). Contrastingly, cell surface 

reductase assay confirmed that E. huxleyi takes up Fe(III) in a concentration- and 

temperature-dependent yet form-independent manner (Hartnett et al. 2012). Upon uptake, 

E. huxleyi was not observed to reduce Fe(III), but to store it in a plant-ferric-phosphate-

like/animal-ferrihydrite-like ferritin, though neither reductase- nor to ferritin homologs 

were found in the E. huxleyi genome (Hartnett et al. 2012). Another coccolithophore, 

Cricosphaera roscoffensis, showed preference to bound iron utilizing it in a reductive 

uptake manner (Naito et al. 2008). 

On the contrary to diatoms and E. huxleyi, iron acquisition, transport, storage and 

adaptive mechanisms in the low-iron-adapted haptophyte, P. antarctica, are yet to be 

fully revealed specially in the lack of genomic data (Morrissey & Bowler 2012; Hartnett 

et al. 2012). P. antarctica behavior in iron enrichment experiments strongly suggests its 

adaptation to the SO iron-limited environment (reviewed in  1.2.3). In vitro studies 

supported the iron enrichment observation and reported that P. antarctica half-saturation 
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constant of iron required for growth can be as low as 0.005 nM and as high as 0.258 nM 

dissolved iron depending on cell size [reviewed in (Strzepek et al. 2011)].  

Strzepek et al. have successfully characterized P. antarctica iron uptake 

mechanism by studying short-term and steady-state growth and iron uptake and 

utilization in P. antarctica applying varying iron concentrations, bound iron organic 

ligands, light conditions, and P. antarctica morphotypes (Strzepek et al. 2011). They 

reported a ferrireducase-based non-ligand-specific iron uptake system overexpressed in 

P. antarctica under iron limitation of high resemblance to the oceanic SO diatoms in the 

study (Strzepek et al. 2011). P. antarctica showed the ability to utilize iron bound to 

EDTA, aerobactin, enterobactin, ferrichrome and desferrioxamine B (DFB) in a 

decreasing extent (Strzepek et al. 2011), which provided the basis of the choice of the 

chelator used in this current study. Furthermore, iron uptake and extracellular reduction 

rates were reported to be significantly higher under iron limitation than enrichment 

conditions, uptake:flux ratios were the highest under iron limitation, and iron uptake and 

growth rates were positively correlated throughout the experiment. Relative to the diatom 

subjects of the study, P. antarctica showed the highest growth rates, Fe:C contents and 

iron uptake rates. It also showed iron-use efficiencies inversely proportional to its 

intracellular iron contents which were greatly affected by temperature [table 2 in 

(Strzepek et al. 2011)]. Overall, P. antarctica iron requirements were the lowest in the 

studied SO species (Strzepek et al. 2011). 

As reported during in situ experiments, iron directly affected P. antarctica 

colonization (reviewed in  1.2.2). In batch culture experiments, P. antarctica showed no 

colonization under iron limitation, while colonies have been observed upon iron repletion 

suggesting cell size reduction as a prominent adaptive mechanism of P. antarctica 

towards iron limitation (Strzepek et al. 2011). Furthermore, the colony-forming 

morphotype showed lower intracellular iron contents under both enriched and limited 

conditions than those of the solitary morphotype (Strzepek et al. 2011). These findings 

suggest that colonization upon iron enrichment could be an adaptive strategy for 

scavenging and complexion more of the now-available iron for time of limitation. 



19 

 

P. antarctica has also been observed to dominate the deeply mixed layers (Wolf 

et al. 2013) during iron enrichment experiments, and in vitro iron uptake rates from the 

photostable DFB were reported to be 2.2-fold higher under light vs. dark conditions 

which the authors explained as a physiological rather than an photoreduction-related iron 

uptake response (Strzepek et al. 2011). This might suggest that the non-ligand-specific 

iron uptake mechanism observed in P. antarctica might also be irradiance-independent, a 

theory that requires measuring intracellular iron content as a function of irradiance 

change compared to irradiance-dependent iron uptake in the subarctic Pacific Ocean 

community (Maldonado et al. 2005). 

One further indication of P. antarctica adaptation to iron limitation (summarized 

in Table 2) has been studied through studying its pigment composition and photodamage 

repair under changing irradiances (DiTullio et al. 2007; Arrigo et al. 2010). P. antarctica 

grows at a wide range of light intensities because of its ability to harvest light through the 

interconversion of its two photopigments, 19’-hexanoyloxyfucoxanthin and fucoxanthin 

(DiTullio et al. 2007). Upon iron enrichment, prior to spring, a photopigment shift 

towards the more efficient light-harvesting fucoxanthin has been observed to take place 

in Phaeocystis cells. In contrast, 19’-hexanoyloxyfucoxanthin has been observed to be of 

higher concentrations in iron-starved P. antarctica and was proposed as a photoprotective 

pigment for fragile iron-limited P. antarctica during the Antarctic summer (DiTullio et 

al. 2007; van Leeuwe & Stefels 1998; Schoemann et al. 2005). Cellular iron demand has 

been reported to increase under low light intensities due to the increase in the 

photosynthetic apparatus size [reviewed in (Verity et al. 2007)]. 

1.4 Molecular Profiling of Nutrient Limitation in Phytoplankton 

The advances in spatial and temporal phytoplankton studies’ methodology [e.g., 

pigments concentration qualitative and quantitative determination by coastal zone color 

scanner (CZCS) in 1978, sea-viewing wide-field of view sensor (SeaWiFS) in 1999 and 

high-performance liquid-chromatography (HPLC) (Wolf et al. 2013)], the introduction of 

the “Antarctic Paradox” of the HNLC regions concept (de Baar 1994), and the global 

initiative Joint Global Ocean Flux Study (JGOFS) in 1989 for studying polar waters 
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biogeochemistry were the historical landmarks that preceded the synthesis of iron 

fertilization experiments (Boyd 2002a; de Baar et al. 2005). Iron fertilization experiments 

indeed benefited from advances in physiological and cytochemical analyses [e.g., pump-

during-probe microflowcytometry for single-cell photosynthetic fitness analysis (Olson et 

al. 2000)], however, with the advance in DNA and RNA sequencing technologies, it is 

crucial to sharpen the resolution of iron enrichment experiments through (meta-)genomic 

and (meta-)transcriptomic profiling of (collective) phytoplankton community response to 

iron addition (Allcock & Strugnell 2012). Unfortunately, older iron enrichment 

experiments did not benefit from such advance in methodology and relied on 

physiological and chemical profiling. The latest in situ SO iron fertilization experiment, 

LOHAFEX, fortunately used 454-pyrosequencing to characterize the community 

composition before and after iron supplementation [(Wolf et al. 2012) and  Wolf et al. (in 

preparation)], but the community response towards iron addition was not assessed 

through functional genomics. 

Transcriptomics relied for a long time on the low-throughput technique, expressed 

sequence tag (EST), and the short tags sequencing, serial analysis of gene expression 

(SAGE) coupled with quantification methods such as microarray designed based on the 

sequenced ESTs (Wang et al. 2009). 

Species-specific in vitro nutrient limitation studies were even more fortunate than 

in situ experiments in terms of sequencing-based functional genomics. In spite of the lack 

of genomic information, nutrient limitation in model phytoplankton member organisms 

have been also profiled [e.g., transcriptomic profiling of P and N limitation in E. huxleyi 

using long-SAGE (Dyhrman et al. 2006), and transcriptomic and proteomic profiling of P 

limitation in Thalassiosira pseudonana using transcript tag sequencing (tag-seq) coupled 

with quantitative shotgun liquid-chromatography mass spectrometry (LC-MS) (Dyhrman 

et al. 2012)]. Nevertheless, using quantitative transcriptomic techniques, the response of a 

number of harmful algal bloom-forming species to macronutrient limitation have been 

profiled. EST sequencing has been widely used in profiling N and P limitation in the 

dinoflagellate Alexandrium tamarense coupled with massively parallel signature 

sequencing (MPSS) (Moustafa et al. 2010) as well as in the haptophyte Prymnesium 
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parvum (Beszteri et al. 2012) and the dinoflagellates Alexandrium minutum (Yang et al. 

2011) and Karenia brevis (Morey et al. 2011) coupled with microarray hybridization in a 

time-series fashion.  

Transcriptomic studies have recently benefited from the progressive development 

in sequencing technologies. RNA sequencing (RNA-Seq) has quickly gained advantage 

over microarray and tiling array, for instance (Wang et al. 2009), especially in studying 

gene expression of species whose genomes are yet to be sequenced (Haas et al. 2013). 

The advance in de novo assembly approaches [e.g., Trinity (Grabherr et al. 2011; Haas et 

al. 2013)] made RNA-Seq even more appealing to researchers to use for characterizing 

novel genes and their isoforms and alternative splicing events. RNA-Seq using Illumina, 

the highest throughput genome analyzer (160 million reads per run), employs massive 

parallel sequencing of the clustered amplified fragments of cDNA utilizing a modified 

method of Sanger’s sequencing-by-synthesis of reversing the chain termination by the 

fluorescently-labelled nucleotides (Bentley et al. 2008) [reviewed in (Moorthie et al. 

2011)]. 

The response of different phytoplankton species towards iron starvation and 

repletion have been profiled using functional genomic approaches as well. The responses 

of the well-adapted to iron limitation Phaeodactylum tricornutum (combining EST with 

microarray analysis) (Allen et al. 2008) and Thalassiosira oceanica (using 454-

pyrosequencing) (Lommer et al. 2012) have been profiled transcriptomically and 

proteomically. The aforementioned studies set the current knowledge of the molecular 

bases of iron limitation behind the previously reported phenotypic data and provided 

models of the cellular response of the most important phytoplankton members towards 

iron addition and its adaptive mechanisms towards iron limitation.  

The HNLC subarctic Pacific community response towards iron addition has been 

recently profiled at a mesocosm scale using comparative metatranscriptomics (Marchetti 

et al. 2012) to shed light on both the change in species composition and the species 

functional response. Being the most abundant and the fastest to respond to iron 

enrichment, diatoms continued –on the short course of the experiment– to express iron-

economic proteins (Marchetti et al. 2012). Interestingly, the only study that assessed the 
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molecular responses of haptophytes towards iron repletion showed that they exhibited a 

typical behavior shifting to the use of iron-dependent enzymes (Marchetti et al. 2012). An 

experiment of longer duration might reveal more regarding the time point at which both 

diatoms and haptophytes change their expression patterns after “their confidence” of the 

existence of ample iron contents. 

1.5 Study Objectives and Design 

Despite of the well-proved iron starvation conditions of the largest HNLC region, 

the SO, P. antarctica recurrent blooms have been documented [reviewed in (Schoemann 

et al. 2005)] indicating its adaptation to iron limitation. Nevertheless, P. antarctica has 

been reported to be the first to bloom utilizing supplied iron during iron enrichment 

experiments (Assmy et al. 2007). The mechanism of iron utilization of P. antarctica has 

been elucidated (Strzepek et al. 2011), and the effect of iron limitation and enrichment on 

its colonization behavior (Assmy et al. 2007; Mazzocchi et al. 2009; Hoffmann et al. 

2006), blooming and consequently the global C and S cycles has been reported, yet 

deeper understanding of the functional changes in P. antarctica following iron 

enrichment over time is crippled by the lack of genomic and transcriptomic data. Time-

series transcriptomic and proteomic profiling investigating iron uptake and utilization 

mechanisms as well as the evolution of the species is required for a better understanding 

of the impact of iron repletion on cellular processes as well as of the course of adaptation 

of the species.  

Taken all together, Phaeocystis has been proposed as an ideal model organism for 

understanding the role of phytoplankton in global C, N, and S biogeochemical cycles and 

consequently its pivotal role in Earth system and climate regulation (Schoemann et al. 

2005) and even further P. antarctica, as the endemic species to the SO, one of the most 

important Earth system regulators, would fit as such an ideal model organism. 

The overall aims of the project, of which this thesis is part, are to: (1) assess the 

effect of iron repletion on the most abundant haptophyte species Phaeocystis antarctica 

at a transcriptomic level in real-time supported by its physiological response, (2) model 
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iron utilization and adaptation to iron limitation in this species, and (3) infer the evolution 

of iron utilization mechanisms in Chromalveolata.  

The phase of the project described here specifically aims at: (1) assessing the 

physiological, morphological and elemental changes of P. antarctica under iron-limited 

and iron-enriched condition, (2) reporting the results of the preliminary assembly and 

functional characterization of the first sequenced transcriptome of P. antarctica, and (3) 

inferring the statistically and biologically differentially expressed genes and their 

expression patterns in P. antarctica in a time-dependent manner before and after iron 

supplementation. 

The study design is illustrated by Figure 4. Iron-limited stock culture was used to 

inoculate iron-limited and iron-enriched (control for physiology) replicates. After 

reaching a suitable cell concentration in the iron-limited replicates, iron was 

supplemented. Physiological measurements and RNA were obtained in parallel day by 

day before and after iron supplementation. RNA was extracted from the stock culture 

(Day 0) and daily from the iron-limited cultures at 4 time-points: Day 2 and Day 3-1 

(before enrichment) and Day 3-2 and Day 5 (after enrichment). Total sequenced RNA 

was assembled, annotated and differential expression was inferred via pair-wise 

comparisons between days implementing a variety of clustering approaches (Figure 4).  



24 

 

Figure 1 NASA’s satellite sensor, SeaWiFS, image of global annual 

chlorophyll a concentration.  

Chlorophyll a is an indicator comparing phytoplankton biomass to that of 

land plants in 2010. (http://oceancolor.gsfc.nasa.gov/cgi/l3). 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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       A                                                                B 

Figure 2 The Southern Ocean geography and hydrology maps.  

(A) A map of the SO based on Etopo2 bathymetry data from The National 

Oceanic and Atmospheric Administration (NOAA) National Geophysical Data 

Center (NGDC) (2008) (Talley et al. 2011); the Antarctic Circumpolar Current 

(ACC) is represented by the dashed line and its direction is represented by the 

black arrow.  

(B) A diagram of the Southern Ocean’s circulations, fronts, and water masses 

(Talley et al. 2011). The fronts are from the north to the south: the Subantarctic 

Front, the Polar Front (the Antarctic Convergence), the Southern ACC Front (the 

Antarctic Divergence), and the Continental Water Boundary. The SO zones and 

water masses are from the north to the south: the Subantarctic Zone (the 

Subantarctic Surface Water; SASW), the Antarctic Intermediate Water, AAIW; 

the Polar Frontal Zone, the Antarctic Zone (the very cold, high-salinity, dense 

Circumpolar Deep Water; CDW), the cold fresh Antarctic Surface Water; ASW, 

and the Continental Zone (the near freezing point highest-salinity dense Antarctic 

Bottom Water; ABW). Subtropical Front (STF); Subantarctic Mode Water 

(SAMW); Subantarctic Front (SAF); Polar Front (PF); Southern ACC Front 

(SACCF); Southern Boundary (SB); and Antarctic Slope Front (ASF). 
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Figure 3 Haptophyta cell structure and Phaeocystis microscopy and ecology.  

(A) Haptophyta (Coccolithophorids) cell structure [after (Billard & Inouye 2004)]. (B) 

Scanning electron microscopy micrograph of P. antarctica flagellated stage in a dorsal 

view; arrow points at the haptonema (Zingone et al. 2011). (C) Geographical distribution 

of Phaeocystis [after (Schoemann et al. 2005)]. Figure structure courtesy: Phytoplankton 

ecology lecture notes, Universität Bremen, 2013. 
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Figure 4 Flowchart of the study design. 
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Table 1 Haptophyta (P. antarctica) response during Southern Ocean iron fertilization experiments. 

“Eisen” is German for iron, while “Loha” is Hindi for iron and “Ex” is the abbreviation for experiment (Smetacek and Naqvi, 

2008; Thiele et al., 2012). 

Experiment Location Seasonality Pigment % 

before/at 

peak 

Carbon % 

before/at 

peak 

Morphological and DMSP 

production remarks 

References 

Southern Ocean 

Iron RElease 

Experiment 

(SOIREE)  

The 

Australian 

Antarctic 

Zone 

Late summer, 

1999 

30-40/35 

(day 10) 

10/60 (day 

6) 

Cell size tripled, and DMSP 

production (day 3-8) and 

DMS release (day 8-13) 

reported. 

(Gall et al. 2001; 

Hall & Safi 2001; 

Boyd 2002b) 

EisenEx The 

Atlantic 

Polar 

Frontal 

Zone 

Late spring, 

2000 

N/A 0.6/1.1 (day 

11) 

A sixteen-fold increase in 

solitary and colonial P. 

antarctica, decrease in 

solitary but increase in 

colonial cells, no effect on 

Emiliania huxleyi, and 

DMSP reported. 

(Assmy et al. 

2007) 

Southern Ocean 

Iron Experiment 

(SOFeX) 

Northern 

and 

southern 

the Polar 

Summer, 

2002 

N/A 84/56 North, 

while 33/31 

South 

(day 20) 

 (Coale et al. 2004; 

Buesseler et al. 

2004) 
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Front 

European Iron 

Fertilization 

Experiment 

(EIFEX) 

The 

Atlantic 

eddy of 

the ACC 

Summer/fall, 

2004 

37.5/20 

(150/250 

ng/L) 

N/A/< 30 Maximum solitary cells 

count reported (day 15), 

while E. huxleyi abundance 

decreased. 

(Hoffmann et al. 

2006; Smetacek et 

al. 2012; Assmy 

et al. 2013; 

Hoffmann et al. 

2007) 

Indo-German 

Iron 

Fertilization 

Experiment 

(LOHAFEX) 

The 

Atlantic 

sector of 

the ACC 

Summer/fall, 

2009 

N/A N/A Two morphotypes having 

maximum cell counts 

associated with highest 

DMSP levels (day 23) and 

increase in colonial form 

abundance reported, 

however detailed 454-

pyrosequencing results (day 

10 and day 18) are to be 

published. 

(Martin et al. 

2013; Wolf et al. 

2012; Thiele et al. 

2012; Smetacek 

2009) 
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Table 2 P. antarctica colony-forming clone under iron –limited and –replete conditions 

(Strzepek et al. 2011; DiTullio et al. 2007; Schoemann et al. 2005). 

Parameter Under iron limitation Under iron repletion 

Growth rate (day
-1

) 0.28  0.52  

Cell size 16.9 fL/cell 2-fold increase 

Morphology Only solitary form Equal mixture of solitary 

and colonial forms 

Photopigments 0.5-fold decrease in 19’-hexanoyloxyfucoxanthin:Chl a 

and 8-fold increase in fucoxanthin:Chl a. 

C content (mol/L cell 

volume) 

~15.3 (1.4-fold increase) 11.1 

C:N  5-8 6 

Fe content (µmol/L cell 

volume) 

31  63.9 

Fe uptake Uptake significantly increases with increasing limited 

conditions, and increases with increasing Fe. 

Irradiance Uptake rates increases in light conditions. 

Non-ligand specificity Extracellular reduction of DFB-bound Fe(III) significantly 

greater under iron limitation with no effect of dissolved 

iron concentration. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Cultures and Culturing Conditions 

In order for us to decide on our subject clone, we observed the difference in 

photosynthetic fitness of a number of Phaeocystis antarctica clones in different 

morphotypes isolated from different regions from the SO under iron –limited and –replete 

conditions as a proxy assessment for their adaptability to iron limitation and the recovery 

of photosynthetic fitness after iron repletion. A colony-forming clone (Col.) showed a 

recovery in photosynthetic fitness of the iron-replete culture compared to its iron-limited 

one and thus we chose it as the subject of the study. 

Phaeocystis antarctica clone referred to as P. antarctica (Col.) in the colonial 

stage, isolated from the Ross Sea in 1992, was the test organism of this study. P. 

antarctica (Col.) stock culture was acclimated for five batch dilutions (8, 10, 7, 10, 14 

days, respectively) under iron limitation in modified f/2 growth medium (pH 8.0-8.3) for 

phytoplankton prepared with SO seawater (Guillard & Ryther 1962) (Table 3). Prepared 

media were stored in the dark at 2 ± 2 °C after filter sterilization. Cultures were 

maintained at a photoperiod of 16:8 light:dark in the 2 ± 2 °C growth chamber using 

daylight fluorescent lamps at photon flux density (PFD) as indicated (Gaebler-Schwarz 

2009). For acclimation of iron-limited cultures, syringe-filtered (0.22 µm Cole-Parmer® 

Cellulose Acetate Sterile Filters, Cole-Parmer, Montreal, Canada) iron-free trace metal 

mixture was used in media preparation and syringe-filtered desferrioxamine B (DFB) 

chelator (10 nmol/L final concentration) was added to ensure total iron chelation. 

Cultures were incubated in 2L Nalgene® polycarbonate bottles (Nalgene, New York, 

USA) detergent- and acid-cleaned (3-day 0.1% citranox-bath followed by 7-day 0.1N 

HCl-bath). Cleaned bottles were rinsed with ultrapure Milli-Q® water (Millipore, 

Darmstadt, Germany) 7 times and bagged in plastic bags. Inoculation and culture dilution 

were conducted in the cleanroom under a laminar airflow hood at 11 ± 1 °C. 

Once a suitable quantum photosynthetic fitness (0.27) and cell density (2.2x10
5
 

cell/ml) were obtained, the iron-limited P. antarctica (Col.) stock culture was used for 



32 

 

inoculation of 4 treatment and 3 control replicate with a starting cell concentration of 

2x10
4
 cell/ml each. 

2.2 Trace Nutrient Supplementation 

On Day 3  (after zero) of the experiment, upon obtaining satisfactory quantum 

photosynthetic fitness (0.36 ± 0.02) and cell concentration (1.75x10
4
 ± 3.2x10

3
  cell/ml), 

iron was added (as FeCl3.6H2O dissolved in ultrapure Milli-Q® water, syringe-filtered 

to reach a final concentration of 5x10
-4 

g/L) to the four treatment replicates dissolved in 

ultrapure Milli-Q® water, syringe-filtered to reach a final concentration of 5x10
-4 

g/L. 

2.3 Physiological, Growth and Biomass Assessments 

Throughout the study, a set of assessments was conducted daily to support our 

transcriptomic data. Physiological (e.g., photosynthetic fitness and growth), 

morphological (e.g., single cells and colonies size and count), whereas chemical (e.g., 

particulate organic carbon (POC) and nitrogen (PON), and chlorophyll a contents) 

analyses were carried out on the control and treatment replicates before and after iron 

supplementation. Here the protocols’ principles, procedures and calculation formulas are 

stated. 

2.3.1 Pulse Amplitude Modulation (PAM) Fluorometry 

Chlorophyll fluorometry is the measurement of the efficiency of the photosystem 

in emitting the absorbed light mirroring the efficiency of the photosystem in using the 

light absorbed in photosynthesis. Modulated fluorometers are modified to specifically 

measure the fluorescence excited by the device light reducing background noise 

(Maxwell & Johnson 2000). Minimum (Fo) and maximum (Fm) chlorophyll a 

fluorescence readings (in mV) were obtained and quantum efficiency of photosystem II 

(PSII) assuming that all reaction centers are open (Fν/Fm) was calculated according to 

(Maxwell & Johnson 2000) as follows:                 . 

Photosynthetic fitness was obtained through fluorometic measurement of 

chlorophyll a using Xenon Pulse Amplitude Modulation photosynthetic yield analyzer 
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XE-PAM® (Walz, Effeltrich, Germany). XE-PAM® is coupled with a FL-100 control 

unit operated by Fluorwin Software (version 3.5) (Photon System Instruments, Drasov, 

Czech Republic). In case of very high cell density, emission filters were used to avoid 

jeopardizing the sensitivity of the detector.  

Cultures were gently mixed by rotation and subsampled (10 ml) into dark glass 

vials and allowed to stand in the dark at 2 ± 2 °C for 20 minutes for dark adaptation 

before measurements were undertaken in the dark. Measurement time of the day was kept 

constant throughout the study.  

2.3.2 Epifluorescence Microscopy 

Cultures were subsampled (5 ml) for viable cell count in glass scintillation vials, 

immediately fixed with formaldehyde neutralized with hexamethylenetetramine (2% final 

concentration) and preserved in the dark at 4 °C. The cells were to be stained with 1 M 

4',6-diamidino-2-phenylindole (DAPI), gently mixed by rotation and stored in the dark at 

4 °C prior to microscopic examination. DAPI is a fluorescing stain that binds double 

stranded-DNA (i.e., nuclear, mitochondrial and chloroplast DNA). The excited (at 360 

nm wavelength) DNA-DAPI complex emits a characteristic blue fluorescence at > 390 

nm wavelength allowing its visualization using epifluorescence microscopy  (Porter & 

Feig 1980). 

Fixed, stained, cold subsamples were gently mixed by rotation to obtain a 

homogenous distribution of the cells, poured into Utermöhl cell-sedimentation chambers 

(approx. 2.7-3.14 ml volume and 2.6 cm diameter) and allowed to settle for 24 hours in 

the dark at 4 °C. Sampling time of day as well as sedimentation chambers used were kept 

constant throughout the experiment to minimize variability. Viable single cells and 

colony-forming aggregates in the settled samples were counted using Zeiss Axiovert® 

135 inverted microscope (Carl Zeiss AG, Göttingen, Germany) coupled with incident-

light fluorescence illuminator at a total magnification of 400x. Images were captured 

using Zeiss AxioCam® HRc 14-bit color CCD camera coupled to Zeiss Axiovert® 200 

inverted fluorescence microscope and processed by Zeiss AxioVision® software (v3.1) at 

a total magnification of 200x. 
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Settled viable single (2 m in diameter) and aggregated (5-10 m in diameter) 

cells were counted in 4 stripes; longitudinally, transversely and diagonally across the 

chambers (Utermöhl 1958). A general formula to obtain the number of phytoplankton 

cells per ml is:                 
 

             
, where C is the total cell (single or colony) 

count, L is stripe length, D is the stripe depth, W is the stripe width and S is the number of 

counted stripes. A conversion factor for the area of the counted stripe at 400x 

magnification corresponding to the total area and divided by the total volume of the 

chamber was calculated. First, the area of Utermöhl chamber (A) was calculated to be 

5.31 cm
2
 as follows:      , where r is the radius of the chamber. The area of 100 

units/stripe at 400x magnification (As) was calculated as follows:         , where the 

length of the stripe (L) is the chamber diameter and the stripe width at 400x 

magnification (W) corresponds to 0.026 cm. Finally, the conversion factor for the volume 

in total was calculated to be equal to 
 

      
, where V is the chamber volume, and single 

and aggregated cell counts were multiplied by the conversion factor and divided by the 

number of counted stripes to obtain the cell concentrations per ml. To obtain total cell 

concentrations, the number of single cells in a colony-forming aggregates were estimated 

to be equal to 3. Specific growth rates (µ) were calculated using the following formula: 

                    –                 , where C2 is the solitary cell concentration 

(cell/ml) at t2, and C1 is solitary cell concentration at t1 (John et al. 2010; Assmy et al. 

2007). 

2.3.3 Fluorometry 

Pigment analysis has been used as a proxy for biomass build-up as well as 

primary production in vitro and in vivo either spectrophotometrically or fluorometrically 

[compared in (Lorenzen & Jeffrey 1980)]. Cultures were examined fluorometrically for 

the determination of chlorophyll a and its corresponding phaeophytin contents according 

to [(Evans et al. 1987) cited in (Riegger & Robinson 1998)]. Chlorophyll a (Chl a) is 

excited at a wavelength of 430 nm emitting light at a wavelength of 665-670 nm (for 

PSII), while phaeophytin a (Phaeo a) emits light at a wavelength of 663 nm. 



35 

 

Cultures were subsampled (40-60 ml) to be concentrated on Whatman® GF/C 

glass-fiber filters (1.2 µm; Omnilab, Bremen, Germany) using vacuum filtration.  Filters 

were preserved in cryovials, immediately frozen in liquid N2 and stored at -20 °C to 

avoid degradation. Chlorophyll was extracted by adding 90% acetone to the filters that 

were afterwards sonicated for 20 seconds in an unltrasonic ice bath with Sonoplus® 

HD70 (Bandelin Electronic, Berlin, Germany) to disrupt cell and chloroplast membranes 

to ensure total pigment elution. Homogenized samples were incubated in dark at 4 °C for 

2 hours. Samples were centrifuged for 10 minutes at 4500 revolutions per minute (rpm) at 

5 °C. Chlorophyll a fluorescence was measured in the supernatant using TD-700™ 

fluorometer (Turner Designs Inc., California, USA) to obtain fluorescence readings in 

florescence units (fsu) corresponding to total chlorophyll a and phaeopigment (F0). 

Acidification of the supernatant using 0.1N HCl was done to convert all the chlorophyll a 

to phaeophytin a, and their fluorescence readings (Fa) were obtained. 

Chlorophyll a and phaeophytin a concentrations were calculated according to 

(Lorenzen 1967) [equations adjusted by E. M. Nöthig and C. Lorenzen, unpublished 

chlorophyll a measurement protocol, AWI  and explained in (Newton 2002)] as follows: 

       
 

 
  

          

           
              

  
 and 

         
 

 
   

          

           
                          

  
 , where Ve is the volume extracted 

(ml), Vf is the volume filtered (ml), F0/Fa max is the ratio of F0 to Fa of the standard 

chlorophyll (2.14 fsu) and Kx is the calibration factor of the fluorometer (calculated as 

0.7556). Fluorescence reading of blank 90% acetone was subtracted from F0 and Fa. 

2.3.4 Combustion-Gas Chromatography 

Correlating with chlorophyll a contents, particulate organic carbon (POC) and 

nitrogen (PON) content determination is another proxy for the biomass of the primary 

producers. Comparing observed POC:PON ratio to expected POC:PON ratio by Redfield 

is an indicator for phytoplankton growth under nutrient limitation (Vaillancourt et al. 

2003). 
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In order to determine POC and PON contents in the cultures before and after iron 

supplementation, elemental analysis was conducted. The elemental analysis is based on 

combustion-gas chromatography converting all C and N contents into CO2 and N2, thus 

pre-combusted filters are used to avoid added C content. PON is transformed into its 

equivalent ammonium salts by acidification prior to oxidation by combustion (1000 °C) 

to their corresponding gaseous products to be measured chromatographically. POC is 

oxidized to CO2 while all nitrogen oxides produced through the oxidation step are 

reduced (600 °C) to N2. 

Cultures were subsampled (50-80 ml) and concentrated on pre-combusted [at 490 

°C for 2 hours (Hickel 1984)] Whatman® GF/C glass-fiber filters (1.2 µm; Omnilab, 

Bremen, Germany) using vacuum filtration to be stored at -20 °C. Filters were oven-dried 

at 60 °C overnight following addition of 0.1N HCl. Filters were encapsulated into 

chloroform-washed tin containers and compressed to be analyzed for POC:PON using 

EA3000 ElementalAnalyzer® (EuroVector, Milan, Italy) (Beszteri et al. 2012). POC and 

PON contents (g) in the samples, standard (acetanilide) and blanks were calculated from 

area readings from the elemental analyzer upon the protocol’s equations (C. Lorenzen, 

elemental analyzer protocol, AWI).  POC and PON contents per cell were obtained as 

follows:                           
                                  

                    
. 

2.3.5 Student's t-Test and Principal Component Analysis (PCA)  

All experimental assessment were subjected individually to statistical testing 

using two-sided unpaired t-test at a confidence level of 0.95 and repeated measure 

analysis of variance (ANOVA) when indicated. Furthermore, principal component 

analysis (PCA) was conducted to reveal the hidden patterns and elucidate the correlation 

between the different components of the study. Statistical analyses were conducted using 

R statistical programming language with default parameters (R Core Team 2013). 

2.4 Molecular Assessments 

2.4.1 Cell Harvesting and RNA Extraction  
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In addition to stock culture (T0), treatment cultures were subsampled (100 ± 10 

ml per filter) daily and on Day 3 of the experiment before and after iron supplementation. 

Following concentration on MF-Millipore™ membrane filters (1.2 µm; Merck KGaA, 

Darmstadt, Germany) using vacuum filtration, the cells were resuspended  in 500 l β-

mercaptoethanol/RLT buffer and  (Qiagen, Hilden, Germany) preserved in liquid N2 and 

stored at -80 °C prior to RNA extraction. 

Total RNA was extracted using RNeasy® Plant Mini Kit (cat. nos. 74903 and 

74904; Qiagen, Hilden, Germany) according to manufacturer’s instructions (Beszteri et 

al. 2012), modifications and specifications are included in this section. After addition of 

glass beads, the cells were broken open using a vortex mixer (30 seconds at 50,000 rpm). 

The homogenized lysates were purified using the following purification steps: (1) lysate 

transfer to QIAshredder spin column and centrifugation (5 seconds at 13,000 rpm) to 

remove cell debris, (2) 0.5x volume ethanol addition to the flow through, and (3) transfer 

to RNAeasy spin columns and DNA digestion by incubation with RW1 buffer (5 

minutes), DNase mixture (15 minutes), RW1 buffer (5 minutes), and RPE buffer (5 

minutes) for two times. Each step was followed by centrifugation (1 minute at 13,000 

rpm). Purified RNA was eluted with 30 l RNA-free water and preserved at -80 °C. 

2.4.2 RNA Quantitative and Qualitative Assays 

The concentration of RNA (ng/l) was estimated using NanoDrop® ND-1000 

Spectrophotometer (Peqlab, Erlangen, Germany) according to manufacturer’s 

instructions. RNA purity was estimated by 260/280 and 260/230 absorbance ratios. The 

qualitative assay of RNA was verified using 2100 Bioanalyzer coupled with 2100 Expert 

Software (Agilent Technologies Inc., Böblingen, Germany) which is based on 

microfluidics instead of the traditional sample-intensive gel electrophoresis technique 

according to manufacturer’s instructions. RNA integrity was estimated by RNA integrity 

numbers (RIN). 

2.4.3 RNA Sequencing 
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Extracted RNA of acceptable quality (260/280 > 1.6 and RIN > 5) from the stock 

culture and all treatment replicates (Days 2, 3-1, 3-2 and 5 except Day 3-1 replicate 2) 

was processed by The European Molecular Biology Laboratory (EMBL) Genomic Core 

Facilities (GeneCore, EMBL Heidelberg, Germany) for complementary DNA (cDNA) 

library construction and strand-specific paired-end total RNA sequencing using 5x 

Illumina HiSeq™ sequencer (Illumina Inc., California, USA). 

2.5 Computational Analysis 

Trinity de novo transcriptome assembler (Grabherr et al. 2011; Haas et al. 2013) 

running on the Data Intensive Academic Grid (DIAG) (http://diagcomputing.org/) was 

used for RNA-Seq data assembly and partially for downstream analysis. Trinity’s 

workflow using the programs default parameters was followed for reads assembly, 

transcripts extraction, abundance estimation as well as automated curation of transcripts 

(i.e., isoforms) functional annotations. Differential gene expression analysis of the genes 

(i.e., components) was performed using the R/Bioconductor package DESeq (v1.14.0) 

(Anders & Huber 2010). 

2.5.1 De novo Transcriptome Assembly, Abundance Estimation and Protein-Coding 

Transcripts Extraction 

In order to increase the depth of the transcripts assembly and decrease the number 

of isoforms generated by Trinity to a realistic number, assembly of paired-end reads from 

all replicates before and after iron supplementation altogether was performed using 

Trinity.pl (release 2013-02-25) and assembly statistics were obtained using 

TrinityStats.pl (r2013-11-10).  

Abundance of the generated transcripts has been estimated by the Trinity’s utility 

utilizing RNA-Seq by Expectation Maximization (RSEM) (Li & Dewey 2011) 

run_RSEM_align_n_estimate.pl (r2013-02-25) aligning paired-end reads of 

each replicate of each sample individually with the generated transcripts, while extraction 

of potential coding transcripts from the entire assembled transcriptome was performed 

http://diagcomputing.org/
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using TransDecoder’s transcripts_to_best_scoring_ORFs.pl (r2012-08-

15).  

2.5.2 Transcripts Functional Analysis and Automated and Manual Curation 

Transcripts were analyzed using the tools and databases (summarized in Table 4) 

using their default parameters unless stated. Similarity search [using BLAST+ suite 

(Altschul et al. 1990; Camacho et al. 2009)], protein domain search [using HMMER 

package (Eddy 1998; Eddy 2011)], cellular localization prediction [using SignalP 

(Petersen et al. 2011), TMHMM (Krogh et al. 2001), WoLF PSORT (Horton et al. 

2006)], and ribosomal RNA genes detection [using RNAmmer (Lagesen et al. 2007)] 

were among the analyses conducted. For the automated curation and cross-association of 

the different annotations, as well as association with evolutionary genealogy of genes: 

Non-supervised Orthologous Groups (eggNOG) (v3.0) (Powell et al. 2012) and Gene 

Ontology (GO) (Ashburner et al. 2000) orthologous gene groups, Trinotate (r2013-

11-10) was used. The filtration criterion of the reported curated associated annotations 

was set to be e-value  1e-3. 

2.5.3 Differential Gene Expression Analysis and Clustering 

Raw fragment counts (number of mapped reads per feature) and trimmed mean of 

M-values (TMM)-normalized gene expression values [fragments per feature Kb per 

million reads mapped (FPKM)] of the genes generated by 

merge_RSEM_frag_counts_single_table.pl (r 2013-11-10) and 

abundance_estimates_to_matrix.pl (r beta s2014-03-16), respectively, were 

used for the differential expression analysis at gene-level. Log values of the raw counts 

were clustered based on correlation using pvclust R library (bootstrap of 100). Raw 

counts were fed to DESeq for normalization to effective library size, dispersion 

estimation (specifying method of dispersion as “blind”, and sharing mode as "fit-only"), 

and binomial statistical testing between every two conditions biological replicates.  

Sequential filtration steps of the genes were undertaken; firstly genes with 

difference between maximum and minimum rounded counts 10 were used for 
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downstream analysis. Secondly, genes with negative binomial Exact test Benjamini-

Hochberg adjusted p-value (padj) for false discovery rate  0.001 and absolute log fold-

change  5 were considered as biologically and statistically significant differentially 

expressed across all days of experiments. Lastly, the expression values normalized to 

effective library size of the genes fulfilled the previous criteria were extracted and 

subjected to variance stabilizing transformation. 

Clustering of differentially expressed genes using variance stabilization 

transformed counts was done through hierarchical clustering and k-means clustering. 

Heatmap generation of the genes with the 50 highest mean counts using the transformed 

values was done to visualize the hierarchical clustering. Sample-to-sample Euclidean 

distances and PCA were done using total transformed expression values specifying the 

number of genes to be used as the number of those significantly differentially expressed.      
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Table 3 Constituents of f/2 phytoplankton growth medium modified from (Guillard & 

Ryther 1962) and their final concentrations 

Constituent Final concentration 

(g/L seawater) 

NaNO3 0.075 g/L 

Na2HPO4.2H2O 0.00625 g/L 

Metal mix: 

ZnSO4.H2O 

CuSO4.5H2O 

CoSO4.7H2O 

MnSO4.H2O 

FeCl3.6H2O 

Na2MoO4.2H2O 

Na2EDTA.2H2O 

 

1.5x10
-5

 g/L 

1x10
-5

 g/L 

1.2x10
-5

 g/L 

2x10
-4 

g/L 

5x10
-4 

g/L 

6.5x10
-6 

g/L 

5x10
-3 

g/L 

Vitamin mix: 

Cyanocobalamin 

Biotin 

Thiamin 

 

1x10
-6

 g/L 

1x10
-6

 g/L 

2x10
-4 

g/L 
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Table 4 Functional annotation tools and databases used for P. antarctica assembled 

transcriptome analysis. 

Analysis tool Sequences analyzed Database and/or parameter 

blastx (v2.2.25+) Transcripts UniProtKB/Swiss-Prot (r2014-01-22)  

(The UniProt Consortium 2014) 

blastp (v2.2.25+)  Extracted ORFs UniProtKB/Swiss-Prot (r2014-01-22)  

hmmscan (v3.0) Extracted ORFs Pfam-A (r27.0) (Punta et al. 2012) 

signalp (v4.1) Extracted ORFs N/A 

tmhmm (v2.0c) Extracted ORFs N/A 

WoLF PSORT (v0.2) Extracted ORFs Organism type: “plant” 

rnammer (v1.2) Transcripts Using Trinotate’s 

RnammerTranscriptome.pl to 

create a transcriptome superscaffold 

specifying organism type as 

“eukaryote” 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Physiological, Growth and Biomass Assessments 

Throughout the present study, quantum efficiency of PSII, growth rates and cell 

concentrations, as well as cellular Chl a, POC and PON contents have been measured 

either daily or at defined time-points in control (PA_plusFe) and treatment (PA_minusFe) 

replicates before and after iron supplementation of the treatment cultures, which took 

place on Day 3. 

3.1.1 P. antarctica Recovers Photosynthetic Fitness Following Iron Supplementation 

As an assessment of the efficiency of the photosystem in utilizing the light 

absorbed in photosynthesis, chlorophyll fluorometry was employed to determine the 

maximum yield of PSII in the replete control and treatment cultures on daily basis (Table 

5 and Figure 5B). Quantum photosynthetic fitness of the stock cultures were used as a 

proxy for negative control (Figure 5A). A significant difference in photosynthetic fitness 

of PSII (Fν/Fm) between control and treatment cultures (p-value < 0.05) has been 

observed at Days 1 (p = 4.9e-5), 2 (p = 9.6e-4) and 3 (p = 4.0e-4). Fν/Fm values ranging 

between 0.2 and 0.36 at the three time-points prior to iron addition indicate that the 

cultures were under iron limitation stress. Day 3 Fν/Fm values are yet at the border of 

reported healthy values of the replete cultures (ranging between 0.35 and 0.49) (de Baar 

et al. 2005; Gaebler-Schwarz 2009; Marchetti et al. 2009; Marchetti et al. 2012; Boyd & 

Denman 2008). Interestingly, one day upon iron supplementation, no significant 

difference has been observed in quantum photosynthetic yield between the control and 

the treatment cultures at Days 4 (p = 0.05) and 5 (p = 0.04) both reaching ~0.5, the fitness 

ratio that has been previously reported for healthy P. antarctica (Gaebler-Schwarz 2009). 

The relatively low initial Fν/Fm of the treatment cultures indicates the cultures recovery 

from the iron-limited growth condition of the stock culture. 

3.1.2 Iron-Replete P. antarctica Shift Towards Colony-Formation 
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Microscopic examination of treatment cultures at the time-points prior to iron 

addition revealed that the cultures constituted mostly of solitary cells, an observation that 

was also supported by the examination of the stock culture (T0) where a small number of 

small colonies were observed (Figure 7A). On the other hand, after iron addition, from 

Day 4 and on, minusFe showed a peak in number of colony-forming aggregates (Figure 

6B) side by side with the increase in solitary cells (Figure 6A). Furthermore, the colonies 

in the enriched control exhibited a pattern of increase in size (Figure 7D-F), however, no 

skin has been observed to surround the colonies (Assmy et al. 2007) perhaps due to long 

preservation time.  

Throughout the experiments, control and treatment cultures exhibited a pattern of 

exponential increase in total cell concentrations. The increase in cell concentration was 

more prominent in the enriched control. Test statistics have not revealed significant 

difference between the two conditions across the days of the experiment. The total 

abundance of P. antarctica increased from 1.75x10
4 

± 3.2x10
3 

cell/ml in the minusFe to 

2.43x10
4 

± 1.26x10
4 

cell/ml at Day 4 and 1.44x10
5 

± 2.08x10
4 

cell/ml by the end of the 

experiment following iron addition comparable to total abundances of the plusFe 

3.35x10
4
 ± 1.36 x10

4
 cell/ml and 2.73x10

5
 ± 2.89 x10

4 
cell/ml, respectively. The solitary 

cells concentrations in Days 4, 5 and 8 (Table 5) reached comparable values in both the 

control and the treatment cultures following iron addition. Likewise, colony-forming 

aggregates numbers in the treatment cultures followed an exponentially increasing trend 

after the near constancy trend before iron addition.  

Assmy et al. calculated the percentage of contribution of the colonial cells prior to 

iron addition to be 2% (Assmy et al. 2007). Likewise, in the present study, average 

abundance of colony-forming aggregates increased from 4% in T0 (Day 0) and 5% in 

Day 1 to 12% from Day 4 until the end of the experiment. The colonial abundance in the 

minusFe after iron addition was comparable to its abundance in plusFe (11% on Day 2), 

consistent with the alternative hypothesis that P. antarctica tends to shift towards 

colonization upon iron enrichment, however, the decrease in solitary cells abundance 

observed during EisenEx was explained by grazing by ciliates (Assmy et al. 2007). 
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Due to the reported and modeled difference in the growth rate (µ) between the 

solitary and colonial morphotypes (Peperzak et al. 2000), in the present study growth rate 

of P. antarctica was calculated for the single cells. Overall mean growth rate of P. 

antarctica was calculated as 0.2 day
-1

 in the minusFe cultures and 0.22 day
 -1

 in the 

plusFe cultures. The mean growth rate of the three time-points before iron addition were 

calculated to be 0.1 day
-1

 in both plusFe and minusFe, while the mean growth rates 

increased to reach 0.44 and 0.46 day
-1

 in plusFe and minusFe, respectively, in the 

following three time-points upon iron enrichment. Although previously reported growth 

rates of P. antarctica under variable light intensities ranged from 0.04 to 0.34 day
-1

 

(Moisan & Mitchell 1999), iron enrichment effect on growth rate of non-colony-forming 

and colony-forming cells determined from Chl a fluorescence has been reported to 

increase the growth rate from 0.25 to 0.55 and 0.52 day
-1

, respectively  (Strzepek et al. 

2011) complying with the data from the present study. 

The disagreeing statistics of pairwise t-test and repeated measures ANOVA, 

insignificant vs. significant difference between treatment and control in all time-points 

and along all counts, respectively, and the large standard deviation (SD) (Table 5) both 

can be explained with microscopic counting errors as well as the use of constant 

estimates of the number of cells per colony-forming aggregate for all experiment days 

and cultures. 

3.1.3 Chlorophyll a Production Increase upon Iron Enrichment 

Chlorophyll a is a proxy for photosynthetic fitness as well as biomass and its 

measurement is usually coupled with and compared to its grazing-driven degradation 

product, phaeophytin a. The lower the Phaeo a:Chl a ratio, the healthier the 

phytoplankton community is predicted to be (Bracher et al. 1999). In DMS flux 

assessments, corrected Chl a/Phaeo a ratio have been calculated to estimate the daily flux 

of DMSP (Stefels et al. 2007). 

In the present study, Chl a contents have been measured at two middle time-

points before and after iron addition to the treatment cultures (Day 2 and Day 5) showing 

a significant (p < 0.05) difference in Phaeo a:Chl a between the control and treatment at 
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Day 2 indicating limited photosynthetic efficiency, and due to iron addition, insignificant 

difference was observed at Day 5 between plusFe and minusFe (p = 0.38). Chl a contents 

of Day 2 were 3.5 ± 0.7 and 3.6 ± 1 µg/L in minusFe and plusFe, respectively, while a 

sharp increase at Day 5 that constituted for 6.9 ± 0.2 and 13.3 ± 2.6 µg/L in minusFe and 

plusFe, respectively, has been observed (Table 5 and Figure 8). The increase is suggested 

to be due to the increase in Chl a production in response to iron addition (Bertrand et al. 

2011) and the increase in cell density due to the increase in colonial form abundance 

(Smith et al. 1998). The close figures of Chl a concentrations at Day 2 between plusFe 

and minusFe can be investigated further using HPLC to measure the 19’-

hexanoyloxyfucoxanthin and fucoxanthin for resolving the complete pigments profile 

under iron-limited and –replete conditions (DiTullio et al. 2007). 

3.1.4 Cellular Nitrogen Contents Increase Following Iron Enrichment 

Reported C:N ratios of Phaeocystis under non-growth-limiting conditions exceed 

that of Redfield’s (160:16). Even more specific for P. antarctica, it has been reported that 

healthy colonies have a characteristic C:N ratio of 6, slightly deviating from Redfield 

ratio due to the high C content accounting for the colonies’ polysaccharide matrix. Iron-

limited P. antarctica, however, has been observed to have different C:N ratios ranging 

from 5 to 8 (Schoemann et al. 2005). 

Interestingly, minusFe P. antarctica C:N observed to decline from 7.6 ± 2.8 (6.23 

excluding an outlying value) at Day 2 to 5.57 ± 0.2 at Day 5, comparable to those ratios 

reported for P. antarctica cells under iron limitation and to colonies at the exponential 

phase, respectively (Schoemann et al. 2005). On the other hand, plusFe C:N ratios were 

calculated to be 3.3 ± 0.1 at Day 2 and 4.7 ± 0.2 at Day 5. Such low C:N at Day 2 in the 

replete control was observed to be due to a surprisingly high N content (6.30x10
-6

 ± 

1.58x10
-6

) (Table 5) which fact might be explained by a rapid N assimilation upon iron 

enrichment that is not compensated for with a matching increase in C contents due to late 

colony formation. Pairwise t-test revealed a significant difference between C:N in control 

and treatment at Day 5 (p = 0.0015) and the difference at Day 2 can be considered 

significant as well (p = 0.055). Furthermore, the difference in PON content between 
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plusFe and minusFe at Day 2 is significant (p = 0.04) (Figure 9A). In summary, C:N, 

prior to iron addition, exceeded Redfield ratio in the treatment cultures indicating iron 

stress conditions limiting growth, while at Day 5 both the control and the treatment 

reached a ratio typical for exponentially growing P. antarctica colonies (Schoemann et 

al. 2005) (Figure 9B). 

Chl a:C ratio (light saturation index or photoacclimation indicator) has been 

considered as a more realistic estimate of algal biomass than Chl a solely due to the many 

sources of variability in Chl a such as photoadaptation and species composition (Dugdale 

& Wilkerson 1991). Iron also increases the pigment content and normalization by C 

content is required for modeling phytoplankton biomass and growth rates (Wang et al. 

2009). Chl a:C (mg:g) of healthy Phaeocystis has been reported to be 30 in solitary cells 

and 18 in colonial cells, a decrease that also can be explained by the carbon contribution 

of the mucus matrix. However, Chl a:C (mg:g) of iron-limited P. antarctica was reported 

to be as low as 10 [table 6 in (Schoemann et al. 2005)]. In the present study, Chl a 

contents per cell:C per cell (mg:g) has been observed to reach 9.6 ± 3 in minusFe at Day 

2, a value typical for iron deficient cultures (Schoemann et al. 2005). Chl a:C ratio 

declined at Day 5 to 7.4 ± 0.4, a value comparable to that of plusFe 6.7 ± 0.9 at both Day 

2 and Day 5, however, such lower values are reported to be associated with N deficiency 

(Schoemann et al. 2005; Wang et al. 2009) and can be explained by measurement errors. 

Likewise, elevation in C:Chl a (g:g) indicates for photoadaptation (Smith et al. 1998), 

and in the present study, C:Chl a (g:g) increased in minusFe at Day 5 from 111.5 (± 34) 

to 135.06 (± 7.5), while it was constant (~150) in the replete control throughout the 

experiment. 

3.1.5 Iron State is Possibly the Principal Component that Affects Photosynthetic Fitness 

Principal component analysis identified nine principal components, an equivalent 

number to that of the study’s observations. Three of these components constituted for the 

largest proportion of variance (of cumulative proportion of variance = 90%), PC1 

(66.7%), PC2 (15.4%), and PC3 (8.8%), and were used to visualize the variable 

coefficients. Being sensitive to relative data scaling, normalization of the data (per liter 
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cell volume, for instance) and removal of iron state (0 or 1) might help resolving the 

pattern. 

Plotting the variables coefficients against PC1 vs. PC2 clustered cell counts with 

pigments concentrations and time, while iron state correlated with quantum 

photosynthetic fitness (PAM) and POC (Figure 10A). This suggests iron as the governing 

component of Fν/Fm and C content, however, it affects colonial counts and PON to lower 

extents. Concordant with Figure 10A, PC1 vs. PC3 separated cell counts, however, it 

correlated iron state with solitary cell counts, time and quantum photosynthetic fitness, 

and confirmed the correlation between colony-forming aggregates counts with pigments 

and nutrients contents (Figure 10C). Finally, scatterplot of PC2 vs. PC3 separated cell 

counts correlating solitary cell counts with time, and iron state with photosynthetic 

fitness, while clustering colony-forming aggregates counts with pigments, while nutrients 

contents had no correlation with the other observations (Figure 10B). 

3.2 P. antarctica Transcriptome 

Sixteen cDNA libraries have been sequenced using Illumina RNA-Seq 

technology (Table 6) to both characterize the genome of P. antarctica and to capture the 

changes in gene expression patterns of the iron-limited P. antarctica towards iron 

enrichment in a time-series fashion. The transcriptomes of the stock culture (T0) as well 

as minusFe replicates of Days 2, 3 prior to and following iron enrichment and Day 5 were 

sequenced. Due to the unavailability of Phaeocystis genome sequence, de novo assembly 

and functional annotation of the first reported transcriptome of Ross Sea P. antarctica 

have been conducted using Trinity pipeline (Grabherr et al. 2011; Haas et al. 2013). 

3.2.1 Transcriptome Statistics 

A total of 389,846,414 paired-end reads (19,882,167,114 b) have been sequenced 

of which 136,501,307 b have been assembled into 162,436 transcripts (i.e., isoforms) of 

88,630 genes (i.e., components) with a contig N50 of 1190 b (Table 7) and estimated GC 

content of 63.36%. The transcriptome GC content might indicate for a genome GC 

content comparable to that of E. huxleyi (Read et al. 2013) and higher than flow 
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cytometry estimates (Vaulot et al. 1994), however, accurate identification of the genome 

AT-rich regions is required to test this hypothesis. 

The frequency distribution of isoforms mapping (Figure 11) showed that the 

largest fraction of genes (77.6%) had only one isoform mapped to each, indicating 

assembly accuracy (Haas et al. 2013). The maximum number of isoforms mapped to a 

single gene was 241 isoforms mapped to comp95704_c11. comp95704_c11 has showed a 

constitutive non-differential expression pattern throughout the experiment regardless of 

the growth conditions and its functional annotation suggests that it codes for an 

ubiquitous zinc-dependent quinone oxidoreductase (blastp hit sp|A7RK30; 2e-46) and/or 

a zinc-dependent RNA-directed DNA polymerase (blastp hit sp|P08548; 3e-05). Given 

that all isoforms have similar expression patter, paralogs might be a more accurate term 

to describe comp95704_c11 isoforms. 

The high estimate of isoforms and genes in P. antarctica, compared to 30,569 

predicted number of genes in E. huxleyi (Smith et al. 2014), can be explained. The high 

overlapping threshold used in Trinity in both identifying genes (Chrysalis group 

overlapped Inchworm contigs based on k-1-mer) and resolving recent gene duplication 

events and alternative splicing events (Butterfly) (Anon n.d.; Grabherr et al. 2011; Haas 

et al. 2013) are possible reasons. The “highly similar” identified genes can further be 

grouped as recent duplication events (i.e., paralogs), while many of the isoforms 

associated with these genes can be considered as polymorphic sites between the 

population individuals, especially in diploid cells (Grabherr et al. 2011), given the long 

time between the isolation of the test clone and the time of conducting the study. Being a 

paired-end library of an organism of a compact genome, the assembly would largely 

benefit from the use of --jaccard_clip parameter to better resolve fused transcripts 

(Haas et al. 2013). Furthermore, the use of PasaFly and CuffFly algorithms that have 

been implemented in the latest versions of Trinity would certainly reduce the reported 

estimate (Haas n.d.). 

3.2.2 Transcripts Functional Annotation 
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Open reading frames (113,563 ORFs) were extracted and translated from the 

identified transcripts by Trinity’s TransDecoder based one predicted exons scoring of 

GeneID’s coding DNA Markov Model (Parra et al. 2000). Annotations of transcripts 

associated with blastp and blastx hits of e-value < 1e-3 were used, a cutoff that allows for 

gene discovery from relatively distant homologs. Because a novel transcriptome is 

investigated, the use of non-redundant protein database for similarity search was omitted 

and replaced with the use of UniProt and Pfam databases for functional annotation 

through sequence similarity and domain search, respectively. 

At gene-level, out of the total 88,630 genes/components identified, 2,923 (33%) 

were similar to UniProt entries, while 64,822 (73.1%) were not found similar to UniProt 

proteins below the specified cutoff. In regard to functional characterization and category 

assignment, 25,836 (29.2%) genes were assigned to GO categories, 17,729 (20%; 2,932 

unique groups) were assigned to eggNOG orthologous groups, while 23,809 (26.9%) 

were assigned to Pfam families.  

Being the most comprehensive (Powell et al. 2012) and of the most specific 

annotations, P. antarctica functional genomics based on eggNOG gene clusters is 

reported in detail at transcript-level. P. antarctica transcriptome has been assigned to 

2,575 unique eggNOG orthologous groups, 44 of which are of transcript size ≥ 100 

(Table 8). The largest gene family (COG0515) constituted of 1864 transcripts, of which 

42 transcripts (31 genes) were significantly differentially expressed throughout the 

experiment. The genes encode for ubiquitous Calcium-dependent protein kinases 

involved in stress response, nitrogen utilization and myosin filament assembly. 

As a proxy for gene duplication events in the favor for increasing protein 

synthesis capacity mechanisms in chromalveolates, the abundance of transcripts encoding 

for ribosomal proteins in P. antarctica transcriptome have been assessed. A large cluster 

of families of size of 634 transcripts (538 components) has been annotated by UniProt 

(and GO (GO:0006412); 473 isoforms) as a potential ribosomal proteins gene cluster, the 

largest member of which was comp93790_c4 family (30 isoforms) encoding for the large 

subunit ribosomal protein RL32 (blastx hit Q962T1; 1e-46). However, in dinoflagellates, 

RL27A family consisted of 5-isoform as well as –component members compared to 
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Alexandrium tamarense (74 members) (Moustafa et al. 2010; Moustafa 2009) which 

might indicate a lineage-specific duplication pattern of ribosomal proteins in 

chromalveolates. The lack of dinoflagellate genomic and RNA-Seq information on total 

ribosomal protein genes abundance limited the use of the proposed proxy.   

Interestingly, 43 transcripts (33 components) have been identified as expressed 

potential plastid-specific ribosomal protein genes of the recently reported genes in P. 

antarctica (70) and P. globosa (66 plastid-specific and 4 mitochondrion-specific) 

organelles genomes (Smith et al. 2014). Variations in numbers of plastid-specific 

ribosomal protein genes that have been reported in diatoms (44) (Oudot-Le Secq et al. 

2007) and E. huxleyi (33) (Sánchez Puerta et al. 2005) can be attributed to plastid genome 

size. For a higher resolution examination, phylogenetic analysis of the compartment-

specific (typically plastid) ribosomal proteins would be undertaken across 

chromalveolates (Li et al. 2006; Oudot-Le Secq et al. 2007) and to other plastid-

containing yet plastid-genome-lacking green algal groups (Smith & Lee 2014). 

 Metabolic potential of P. antarctica under iron –limited and –replete conditions 

was mapped based on eggNOG orthologous groups to which the transcriptome isoforms 

were assigned and visualized by iPath (v2.0) (Yamada et al. 2011). Out of 2,575 unique 

eggNOG orthologous groups, 1,289 groups were mapped to metabolic pathways (Figure 

12), while 572 and 378 groups were mapped to regulatory and secondary metabolites 

biosynthesis pathways, respectively.  

Furthermore, out of 114,420 P. antarctica GO terms (6,720 of which are unique), 

14,230 were summarized and mapped to ancestral terms using CateGOrizer (Zhi-Liang et 

al. 2008). Figure 13 shows the percentage of GO terms (>1%) mapped to parent 

categories. The vast majority of the category to which the transcripts were assigned was 

metabolism (1,462; 10.27%) followed by catalytic activity (1,186; 8.33%). Metabolic 

process included carbohydrate (121; 0.85%), nucleic acid (459; 3.23%), lipid (161; 

1.13%), protein (330; 2.32%) amino acid (1) and tricarboxylic acid cycle (2). 23 (0.16%; 

32 putative genes) terms were mapped to plastid compartment and 12 terms to thylakoid 

(0.08%; 95 putative genes). Within the transcriptome, 126 genes were predicted to be 
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involved in catalytic activity. The aforementioned estimates are not accurate because of 

the GO terms lost in the mapping. 

Of special interest was DMSP pathway (Summers et al. 1998). Two GO terms 

involved in methyltransfer were mapped, furthermore, within the transcriptome, 21 genes 

were predicted to comprise methyltransferase activity and 13 of which putatively encode 

for S-adenosyl-L-methionine-dependent methyltransferase. Three putative 2-oxoglutarate 

5-aminotransferase genes (5e-138 to 2e-05) were present as well. 

3.2.3 Nuclear-Encoded Plastid-Targeted Protein-Encoding Genes 

Out of total 113,563 translated ORFs, WoLF PSORT (concordant with SignalP 

and TMHMM results) predicted nuclear-encoded genes encoding for 2,456 plastid-

targeted and 8 mitochondrial-targeted proteins [based on maximum weight (= 14)]. The 

number of the identified plastid-targeted proteins is lower than that reported in the two 

sequenced diatoms (3,696 and 3,468 in Thalassiosira pseudonana and Phaeodactylum 

tricornutum, respectively) (Moustafa et al. 2009). 971 ORFs (967 transcript isoforms; 

731 components) were predicted to be of known function based on similarity to UniProt 

proteins. The taxonomic distribution of the predicted nuclear-encoded plastid-targeted 

ORFs revealed that the majority of the UniProt hits were of green algal origin 

(Streptophyta 8%) followed by Metazoa (Phaeocystis grazers 4%) (Figure 14). Bacterial 

[cyanobacterial (36) and chlamydial (3) (Moustafa et al. 2008)], algal (3), excavate (1) 

and chromalveolate (10) contributions were smaller in the P. antarctica potential nuclear-

encoded plastid-targeted ORFs. The biased taxonomic representation in UniProt is the 

most likely cause of the observed high mammalian yet low algal and chromalveolate 

distribution. In addition, in order to elucidate the potential horizontal gene transfer events 

from Phaeocystis to its metazoan predators (e.g., salps), a further phylogenetic analysis of 

a more comprehensive similarity search excluding chromalveolates is needed. It is worth 

mentioning that unassigned ORFs (156; 6%) and those assigned to proteins of unknown 

taxonomic classification (19; 1%) or assigned to proteins of mammalian origin (201; 8%) 

were excluded (Figure 14).  

3.2.4 Non-Coding RNA: rRNA and tRNA 
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RNAmmer identified 4 genes (0.0045%; 6 transcripts) coding for five 28S rRNA, 

three 18S rRNA and one 8S RNA genes (Table 9A). The observed fusion of 28S rRNA 

and 18S rRNA genes would indicate for fusion incidences in transcripts/isoforms 

generation due to the genome compactness ( 3.2.1). Functional annotation, on the other 

hand, revealed 210 transcripts potentially encoding for 210 genes involved in tRNA 

aminoacylation and 125 genes belong to tRNA aminotransferases. Because they gave a 

higher resolution, the occurrence of the genes predicted to be involved in tRNA 

aminoacylation has been assessed as a proxy for P. antarctica codon preference (Table 

9B). The tRNA gene frequencies might be, in particular, concordant with what is known 

about Phaeocystis physiology.  

The highest occurrences were for the sulfur-containing amino acid cysteine (54; 

25.6%) followed by the essential amino acid threonine (18; 8.5%). The reported 

occurrence of cysteine (25.6%) vs. the occurrence of DMSP precursor methionine (6%) 

(Gage et al. 1997; Summers et al. 1998) raises amino acid synthesis questions regarding 

the potential of Phaeocystis to convert cysteine into methionine. In addition, the reported 

occurrences questions the ability of Phaeocystis to synthesize threonine through the 

glycine-serine-threonine pathway supported by functional annotation that assigned 20 

transcripts to COG0111 and/or KOG0068 the D-3-phosphoglycerate dehydrogenases 

group involved in threonine biosynthesis. 

3.3 Iron Enrichment is Coupled with Significant Metabolic and Floristic Shifts in P. 

antarctica  

3.3.1 Hierarchical and K-means Clustering 

Hierarchical clustering of raw counts per component across replicates in all 

conditions (i.e., time-points before and after iron enrichment) revealed that expression 

pattern of the replicates is correlated with significance in a time-dependent manner 

(Figure 15). Furthermore, pair-wise statistical comparisons of each days replicates blind 

dispersion estimates were conducted and the statistically (adjusted p-value ≤ 0.001) and 

biologically (absolute log fold-change ≥ 5) significantly differentially expressed genes 

were obtained (Figure 16).  
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Each comparison yielded a number of differentially expressed (DE) genes (Figure 

16), and overall 2,367 genes (2.67% of total assembled components) were considered DE 

genes across all conditions. The identified DE genes are potentially transcribed into 4,209 

unique isomers comprising 4,489 possible annotations of 3,659 identified ORFs. Only 

1,323 isoforms (31.4% of DE genes) were assigned to GO orthologous groups (902 

groups).  

Cluster correlation of the expression of the most highly expressed 50 DE genes 

expressed across all experiment days (Figure 17) revealed a distinct pattern at Day 3-1 

expression. A sharp decline in expression in general at Day 3-1 can be explained as a 

response towards severe iron limitation. Acclimation of cultures in fresh sea water 

containing traces of iron would explain the long-term stress response at Day 3-1 rather 

than Day 2 and would also explain the low RNA content and quality that led to the 

exclusion of one replicate from sequencing suggesting severe iron stress. To further 

investigate the expression pattern across all days, k-means clustering was done and 4 

clusters were obtained (Figure 18). Cluster 1 contained 432 genes/components and cluster 

2 contained 1087, while clusters 3 and 4 comprised 664 and 188 genes, respectively. The 

clustered genes biological contribution is reported (Figure 19) for future cluster-specific 

analysis. Here the top 50 differentially expressed genes and pair-wise comparison 

between Days 2 and 5 are discussed in details. 

The overall expression pattern suggests that P. antarctica is indeed adapted to 

iron limitation and can maintain its cellular processes with minimal amounts of iron, 

however, long-term or severe state of iron limitation might have impaired P. antarctica’s 

cellular functions. P. antarctica –similar to the previously reported behavior of subarctic 

Pacific haptophytes (Marchetti et al. 2012)—regained full functionality shortly (Assmy et 

al. 2007) after iron addition. 

Hierarchical clustering, similar to the k-means clustering, was based on 

correlation and subdivided the expression pattern of the top DE genes divided them into 4 

clusters (Figure 17). Cluster 1 shows high expression levels at Days 2, 3-2 and 5 (e.g., 

tricarboxylic acid (TCA) cycle enzymes). Cluster 2 shows high expression levels only at 

Days 0 and 2 and continued decrease after iron enrichment (e.g., mucins). Cluster 3 is 
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overexpressed at Day 3-1 and its expression started to decline after iron enrichment (e.g., 

Calvin cycle), while cluster 4 shows a near constancy expression during all experiment 

days (e.g., cold shock protein and cytochrome c peroxidase). 

DNA replication which was overexpressed at Days 0 and 2 (Ribonucleoside-

diphosphate reductase and Histone H1), significantly dropped at Day 3-1 (prior to iron 

addition) yet showed a ~5-fold increase (Ribonucleoside-diphosphate reductase) after 

iron enrichment at Day 3-2. DNA replication was significantly restored at Day 5 to levels 

comparable to Days 0 and 2. Starvation response genes (e.g., the initial fatty acid 

metabolism enzyme medium-chain acyl-CoA dehydrogenase) showed a 4.5- and 5-fold 

increase at Days 3-2 and 5 (significantly) after iron addition after a 4-fold decline from 

Day 2 to Day 3-1. Acyl-CoA dehydrogenase has been reported to be overexpressed in 

diatoms following the onset of nitrogen starvation to catalyze amino acid catabolism 

(Hockin et al. 2012). Likewise, TCA enzymes (a probable 2-oxoglutarate dehydrogenase, 

e-value = 0) showed significant increases at Day 3-2 and Day 5 relative to the significant 

decline from Day 2 to Day 3-1. However, an overall insignificant slight decrease in TCA 

enzymes from Day 2 to Day 5 (0.2-fold) was observed and might indicate that iron 

addition effect on TCA in P. antarctica is minimal. 

The iron-sulfur cluster containing aconitate hydratase 2 showed a constantly 

declining pattern until its abrupt significant 6.5-fold increase instantly after iron addition. 

Likewise, a similar expression pattern was observed by carotenoid biosynthesis [probably 

the all-trans fucoxanthin carotenoid (Dambek et al. 2012)] and regulation of DNA 

replication enzymes yet it maintained its significant 5-fold and ~6-fold increases, 

respectively, at Day 5 or increased at Day 5 as DNA polymerase after a significant 5-fold 

down-regulation at Day 3-1. 

An excellent candidate marker for iron limitation and enrichment response 

assessment in P. antarctica is the transcription regulator, light-repressed protein A, which 

was significantly differentially expressed day by day. Light-repressed protein A is known 

to be underrepresented under iron limitation (Nodop et al. 2008). Here it showed a 5-fold 

and 6-fold drop in expression at Day 0 and Day 3-1, respectively, only to show an instant 
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7-fold increase after iron addition at Day 3-2 and the increase was maintained at Day 5 

(1.5-fold insignificantly).  

Moving to the gene clade overexpressed at Day 3-1, a stress response protein 

(plastid pyrophosphatase) has showed a 6.3-fold increase at Day 3-1 and continually 

decreased after iron enrichment to reach ~1-fold. Pyrophosphates (PPi) have been proved 

to enhance the release of Fe(III) bound to transferrin, increase iron availability, however, 

in vertebrates [reviewed in (Heinonen 2001)] and, if present, transferring it to 

desferrioxamine (Pollack et al. 1977). It can be suggested that the up-regulation of 

pyrophosphatases was to drive the release of iron from an iron storage protein in P. 

antarctica to increase its availability in plastid similar to its role in endosomes (Heinonen 

2001). 

3.3.2 Signaling, Oxidative Stress and Electron Transport Gene Expression Reflects Cell 

Iron State  

Here, for consistency with the pigments and POC and PON contents analysis, the 

comparison between the two middle points, Day 2 and Day 5, is selected to be presented. 

As mentioned, Day 2 represents a state of low iron rather than severe iron starvation (Day 

3-1). Between Day 2 and Day 5, 160 components (1.8% of the transcriptome) have been 

differentially expressed, 52 (32.5% of the DE genes) of which are annotated by similarity 

to UniProt entries. 112 components were found to be up-regulated at Day 2, while 48 

were up-regulated at Day 5, given the minimization of metabolic and DNA replication 

processes in phytoplankton under iron starvation.  

Generally, genes encoding for helicases, histone H4, and proteins involved in 

nucleic acid phosphodiester bond hydrolysis, nucleophagy and protein 

autophosphorylation, and cell signaling (calcium-dependent proteins, possibly response 

to nitrogen compounds, and acetylcholine receptor subunits) were 6-8.4-fold up-regulated 

at Day 2. Up-regulation of calcium-driven signaling- (Allen et al. 2008) and apoptosis-

related genes (including autophagy of nuclei) (Thamatrakoln et al. 2012) were observed 

under iron limitation in diatoms. 
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In addition, genes involved in oxidative stress were 5-fold overexpressed at Day 2 

(e.g., glutathione peroxidase and a possible 2-oxoglutarate Fe(II)-dependent oxygenase). 

Glutathione peroxidase can be suggested as a defense against the increase reactive 

oxygen species activity under iron limitation replacing iron-dependent peroxidases (Allen 

et al. 2008). In diatoms, iron limitation was coupled with an increase in cellular glutamate 

which formation 2-oxoglutarate Fe(II)-dependent oxygenase catalyzes (Allen et al. 2008). 

An iron-stress response protein was found to be highly overexpressed under iron 

limitation (PF07692.6; 3.2e-06; 8.4-fold) resembling that reported in green algae 

(Rubinelli et al. 2002). 

Upon iron enrichment, a potential red algal vanadium-dependent 

bromoperoxidase has been found to be highly up-regulated (1e-38; 7.2). Bromoform has 

been detected in the Atlantic and Arctic Oceans yet not in the SO (Wever et al. 1993) 

produced by the red algal genus  Corallina (Itoh & Shinya 1994). Interestingly, it has 

been reported that vanadium-dependent bromoperoxidase functions, coupled with 

superoxide dismutase, as cellular defense reactive oxygen species. Furthermore, an 

unexplained iron content in the red algal bromoperoxidase has been reported (Ohsawa et 

al. 2001). Here it is argued that P. antarctica might possess an iron-dependent 

bromoperoxidase-like peroxidase inherited from an ancient red algal ancestor. The 

evolved peroxidase would function as an iron storage/scavenging metabolite and/or 

(Marchetti et al. 2012; Ohsawa et al. 2001) a peroxidase expressed to defend against the 

increase in reactive oxygen species in the iron limitation period (Allen et al. 2008). 

Aerobic respiration genes [e.g., pyruvate carrier 3 (1e-08; 5.5) and cytochrome c 

oxidase subunits 1 (0; 6.9), 2 (2e-82; 5) and 3 (2e-110; 6.7)] were found to be up-

regulated, at Day 5, typical for a shift towards pyruvate metabolism and iron-rich aerobic 

respiration enzymes following iron addition (Marchetti et al. 2012; Allen et al. 2008).  

3.3.3 Structural C Reallocation under Iron Limitation and Increased N Biosynthesis 

Following Enrichment 

Genes involved in polysaccharide biosynthesis, mucin-5B (blastx e-value = 

0.0005 and 0.0004; 9.3- and 6.5-fold) and mucin-2 (5e-07; 7.6) have been observed to be 
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highly overexpressed by three genes at Day 2. These results were surprisingly non-

concordant with the microscopic observations and the reported evidence of colony-

formation following iron enrichment. However, mucin indeed was found to be up-

regulated in iron-limited diatoms as part of iron-limitation-driven structural C 

reallocation (Allen et al. 2008). In addition, a chitinase-like protein was overexpressed 

under iron limitation (0.001; 5). P. antarctica haploid cells star-forming filaments are 

long-known to be formed of chitin (Chretiennot-Dinet et al. 1997; Rousseau et al. 2007), 

and the transcriptomic data is concordant with the reports from iron-limited diatoms 

(Durkin et al. 2012). 

In regard to N metabolism, a potential marker of iron and silica starvation in 

diatoms has been hypothesized which is polyamine biosynthesis (Hamana & Matsuzaki 

1982; Marchetti et al. 2012; Durkin et al. 2012). Under iron limitation, a significant up-

regulation of potential genes involved in biogenic amine biosynthesis (sperimidine 

synthase; 2e-06; 8) was observed. The up-regulation of polyamine biosynthesis suggests 

iron-limitation-driven structural remodeling in P. antarctica that indicates for N 

starvation. In the present study, N contents increased at Day 5, however, transcriptomics 

of N metabolism and utilization in P. antarctica under changing iron availability requires 

further investigation. 

Fructose-1,6-bisphosphatase (9e-22 and 7e-60; 6 and 5.7) were overrepresented at 

Day 2. Furthermore, the key carbon fixation enzymes in Calvin cycle, fructose-

bisphosphate aldolase (4e-116; 8.6) coupled with glyceraldehyde-3-phosphate 

dehydrogenase (8e-116; 6.6) and the metalloenzyme ribulose-phosphate 3-epimerase (2e-

87; 6.9), were overexpressed at Day 5. An opposite behavior has been observed (Allen et 

al. 2008; Allen et al. 2012) in diatoms which overexpress Calvin cycle genes under iron 

limitation. Various bisphosphatases have been members of cluster 1 and 2, while 

aldolases were members of also cluster 1 and 4 (Figure 18and Figure 19). However, 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene was not among the 

differentially expressed genes. The transcriptomic data suggests that P. antarctica 

depends on Calvin cycle in carbon fixation under both iron –limited and –replete 

conditions. Another difference with diatoms, P. antarctica has been reported to export C 
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utilizing the available NO3 reserves at faster rates than that of diatoms (Arrigo 1999), and 

the transcriptomic data might be concordant with the latter observations.  

More interestingly, two putative carbonic anhydrase isoforms (9e-1 and 6e-22) 

were found to be severely down-regulated from Day 2 to Day 3-1 (9.8-fold) and sharply 

up-regulated instantly after iron supplementation (Day 3-2; 9.5-fold and Day 5; 8.6-fold). 

The latter finding supports the suggested shift from complete-dependence on Calvin 

cycle under iron limitation to beta-carboxylation under enrichment (Smetacek et al. 

1997). This is valid due to the reported activity of extracellular carbonic anhydrases in 

Phaeocystis (Schoemann et al. 2005). 

Furthermore in mitochondria, a putative gene encoding for a mitochondrial iron 

ion transport, mitoferrin-1, was overrepresented under iron limitation (1e-20; 5.6) 

perhaps to ensure iron supply to mitochondria. Under iron enrichment, a putative gene 

encoding for an iron-binding prolyl 4-hydroxylase subunit alpha (0.0002; 5.5) involved in 

collagen synthesis was up-regulated. Its low expression under iron limitation can be 

explained by low proline supply due to the impaired amino acid synthesis (Allen et al. 

2008). 

3.3.4 Photosynthesis and Photopigments 

In consistency with the previously observed floristic shift and down-regulation of 

the iron-economic PSII expression (Allen et al. 2008) following iron addition (Gall et al. 

2001), transcriptomic data revealed that putative gene encoding for the more 

photosynthetically efficient pigment Isochrysis-like fucoxanthin (2e-30; 7.3) was 

severely up-regulated in the iron-limited samples. However, another component that has 

been overrepresented under iron enrichment has predicted to be a Phaeodactylum-like 

fucoxanthin (0.001; 5) with a lower e-value. These results might indicate for an 

alternative splicing event in the transcription of the genes encoding for fucoxanthin to 

express two isoforms (currently components), a 313-amino-acid-long form expressed 

under iron limitation and a shorter 123-amino acid-long isoform expressed under 

enrichment. However, pair-wise alignment using blastp has not shown significant 

similarity. Nevertheless, the results significantly show that fucoxanthin is overexpressed 
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following iron addition (van Leeuwe & Stefels 1998) and a fucoxanthin-like pigment has 

been overexpressed under iron limitation. Furthermore, the photoreceptor phototropin-2 

(4e-09; 7.3) was highly up-regulated in the iron-limited samples, while a under iron 

enrichment, a PSI proton gradient regulation 5 protein (2e-10; 7.8) was found up-

regulated. 

Typically, upon iron enrichment, the iron-rich photosystem I reaction center 

subunit XI, was found to be overexpressed (7e-44; 5) coupled with a putative ferredoxin-

2 (1e-35; 5) and/or ferredoxin (4e-36; 5), and a potential flavanone 4-reductase (3e-30; 

5.7) were overexpressed. Nevertheless, flavodoxin was found to be differentially 

expressed showing ~6-7-fold increase at Day 0 and Day 2 vs. a sharp decrease at Day 3-1 

and a slight elevation at Day 3-2. It was not differentially expressed at Day 5. These 

results suggest that P. antarctica expresses the iron-economic flavodoxin under iron 

limitation while upon enrichment it shifts to ferredoxin that is expressed in parallel with 

flavodoxin. Elevation in ferredoxin levels at Day 3-1 can be explained by the ability of P. 

antarctica to scavenge iron from DFB. 

3.3.5 Ferric Reductase Expression under Iron Limitation and Enrichment 

A putative ferric reduction oxidase (5e-18) gene showed significant decrease in 

expression between Day 2 vs. Day 3-2 (8.8) and Day 5 (5.3)  supporting that P. 

antarctica employs a Fe(III) reductive uptake mechanism that is up-regulated under iron 

limitation (Strzepek et al. 2011). It is worth mentioning that none of DMSP biosynthesis 

enzymes (Summers et al. 1998) has been considered differentially expressed in P. 

antarctica at Day2 and Day5 nor across other Days of the experiment. 
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  A                                                                B 

Figure 5 Quantum photosynthetic fitness of PSII (Fν/Fm) over time in control and treatment 

cultures (mean ± SE). 

(A) Negative control (stock culture) photosynthetic ratios. (B) Replete control (n = 3) and 

treatment (n = 4) cultures photosynthetic ratios (mean ± SE). At Day 3, measurements were 

taken before iron supplementation. **significant difference; *no significant difference 

following iron supplementation tested by unpaired t-test (p-value < 0.05). 

* * 

** 

** 
** 
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  A                                                                B 

Figure 6 P. antarctica cell concentrations in control (n = 3) and treatment (n = 

4) cultures (mean ± SE). 

(A) Single cells concentrations. (B) Colony-forming aggregates concentrations. 

Note: At Day 3, counts were taken before iron supplementation. 
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D 

Figure 7 P. antarctica (Col.) replete control changes over time; stained with DAPI using epifluorescence microscopy 

(200x). 

(A) Single cells (2 µm) and colony-forming aggregates (5 µm) in diameter forming a small thin colony (50 µm) of the 

iron-limited T0 (Day 0). (B) Single cells (2 µm) and colony-forming aggregates (10 µm) at Day 1. (C) Single cells 

and colony-forming aggregates (5 µm) at Day 3. (D) Colony (20 µm) at Day 5. (E) Colony (50 µm) at day 8. (F) 

Colony (50 µm) at Day 8. B-F are the replete control samples. 
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Figure 8 Pigments concentrations in control (n = 3) and treatment (n = 4) culture 

groups (g/L). 

**significant difference; *no significant difference between Phaeo a:Chl a ratios 

(t-test p-value < 0.05). 

** * 
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Figure 9 P. antarctica POC and PON contents in control (n = 3) and treatment 

cultures (n = 4) before and after iron supplementation at Day 3.  

(A) POC and PON (g/cell). (B) C:N ratio in control and treatment cultures (mean ± 

SE), the dotted line represents Redfield ratio. **significant difference (t-test p-value 

< 0.05). 
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  C 

Figure 10 Principal component analysis of P. antarctica parameters.  

Out of the nine identified principal components, the three of the largest proportion 

of variance (cumulative proportion of variance = 90%), PC1 (66.7%), PC2 

(15.4%), and PC3 (8.8%) were used to visualize the variable coefficients (Martins 

n.d.) (Code: https://gist.github.com/thigm85/7689508). (A) PC1 vs. PC2. (B) PC1 

vs. PC3. (C) PC2 vs. PC3. 

https://gist.github.com/thigm85/7689508
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Figure 11 Frequency distribution of P. antarctica isoforms (i.e., 

transcripts) counts per component. 
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Figure 12 Metabolic potential map of P. antarctica under iron –limited and –replete conditions. 
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Figure 13 Putative functional categories of P. antarctica transcriptome based on GO 

terms grouping by CateGOrizer (Zhi-Liang et al. 2008) showing fractions > 1%. 
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Figure 14 The taxonomic distribution of P. antarctica nuclear-encoded plastid-targeted 

predicted ORFs.  

The numbers refer to the counts of ORFs predicted for transcripts (isoforms) based on blastp 

UniProt hits excluding ORFs of unknown function or assigned to proteins of unknown taxa or 

to proteins of mammalian origin. 
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Figure 15 Hierarchical clustering of raw read counts per component across replicates and 

days (conditions) (bootstrap = 100).  

AU = Approximately Unbiased; BP = Bootstrap Probability. 
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Figure 16 Volcano plot of the binomial test statistics, log fold-change (logFC) vs. -log10 adjusted p-value [-log10(padj)], between 

each two days of the experiment estimated dispersions of each expressed component. 

The significantly differentially expressed genes are colored in red. 
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Figure 17 Heatmap of the variance stabilization transformed count data of the 50 most highly 

differentially expressed genes clustered by correlation. 
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Figure 18 K-means clustering of total differentially expressed genes across all samples 

using variance stabilization transformed counts. 

Centers = 4 and algorithm = “Hartigan-Wong”; code adopted from Philip Parker 

(http://adventuresinr.wordpress.com/2010/10/22/displaying-k-means-results/) (Parker 

n.d.) 

http://adventuresinr.wordpress.com/2010/10/22/displaying-k-means-results/
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Figure 19 Functional analysis of k-means clusters.  

E F 

G H 
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Percentages of child GO term occurrences mapped to ancestor terms using CateGOrizer (Zhi-Liang et al. 2008) based on 

GO_slim2 mapping showing fractions > 1% (left), and pathway visualization using iPath2.0 (Yamada et al. 2011) (right) of the 

gene members of the five defined clusters by k-means clustering. (A-B) cluster 1, (C-D) cluster 2, (E-F) cluster 3, and (G-H) 

cluster 4.  
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Figure 20 Visualization of samples variance stabilization transformed expression values.  

(A) Heatmap of Euclidean sample-to-sample distances. (B) PCA of the samples using 

2367 genes based on the two principal components, condition and library type. 

  A                                                                B 



80 

 

Table 5 P. antarctica parameters under iron limitation and enrichment (mean ± SD). 

Parameter Day 1 Day 2 Day 3 Day 4  Day 5 Day 8 

Fν/Fm       

PA_plusFe 

PA_minusFe 

0.35 ± 0.01 

0.22 ± 0.01 

0.43 ± 0.03 

0.26 ± 0.02 

0.49 ± 0.01 

0.36 ± 0.02 

0.52 ± 0.01 

0.51 ± 0.01 

0.52 ± 0.01 

0.50 ± 0.01 

N/A 

N/A 

Single cell/ml       

PA_plusFe 

 

PA_minusFe 

1.83E+04 ± 

3.47E+03 

1.85E+04 ± 

3.73E+03 

1.71E+04 ± 

3.86E+03 

1.90E+04 ± 

2.30E+03 

1.32E+04 ± 

4.67E+03 

1.25E+04 ± 

1.41E+03 

1.80E+04 ± 

4.27E+03 

1.54E+04 ± 

7.03E+03 

3.57E+04 ± 

9.78E+03 

2.79E+04 ± 

8.33E+03 

1.02E+05 ± 

1.48E+04 

9.08E+04 ± 

1.98E+04 

Colony-forming 

aggregate/ml 

      

PA_plusFe 

 

PA_minusFe 

2.26E+03 ± 

9.13E+02 

1.11E+03 ± 

3.21E+02 

2.95E+03 ± 

1.40E+03 

8.54E+02 ± 

1.64E+02 

4.08E+03 ± 

1.31E+03 

1.68E+03 ± 

7.99E+02 

5.19E+03 ± 

3.13E+03 

2.97E+03 ± 

1.87E+03 

1.21E+04 ± 

5.34E+03 

5.01E+03 ± 

6.95E+02 

5.71E+04 ± 

4.68E+03 

1.77E+04 ± 

3.26E+03 

Chl a (µg/L)       

PA_plusFe 

PA_minusFe 

N/A 

N/A 

3.5 ± 0.7 

3.6 ± 1 

N/A 

N/A 

N/A 

N/A 

13.3 ± 2.6 

6.9 ± 0.2 

N/A 

N/A 

POC (µg/cell)       

PA_plusFe N/A 2.09E-05 ± N/A N/A 2.80E-05 ± N/A 
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PA_minusFe 

 

N/A 

4.68E-06 

1.75E-05 ± 

3.11E-06 

 

N/A 

 

N/A 

6.37E-06 

2.28E-05 ± 

5.51E-06 

 

N/A 

PON (µg/cell)       

PA_plusFe 

 

PA_minusFe 

N/A 

 

N/A 

6.30E-06 ± 

1.58E-06 

2.41E-06 ± 

5.05E-07 

N/A 

 

N/A 

N/A 

 

N/A 

5.97E-06 ± 

1.20E-06 

4.09E-06 ± 

9.36E-07 

N/A 

 

N/A 
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Table 6 P. antarctica replicates RNA extraction and cDNA library sequence data. 

 T0 Day2_r

ep1 

Day2_r

ep2 

Day2_r

ep3 

Day2_r

ep4 

Day3-

1_rep1 

Day3-

1_rep3 

Day3-

1_rep4 

Day3-

2_rep1 

Day3-

2_rep2 

Day3-

2_rep3 

Day3-

2_rep4 

Day5_

rep1 

Day5_

rep2 

Day5_r

ep3 

Day5_r

ep4 

RNA 

concent

ration 

(ng/µL) 

36.67 23.97 28.22 26.29 

 

27.53 26.22 30.45 

 

27.86 13.39 19.9 33.4 15.01 60.68 130.49 37.53 54.95 

260/280 N/A 2.06 1.92 2.05 1.99 1.66 1.57 1.84 1.61 1.64 1.75 1.63 N/A N/A N/A N/A 

RIN 5.10 5.50 6 5.50 4.60 3.70 4 N/A N/A N/A N/A N/A 5.20 5 5.30 2.80 

No. of 

paired-

end 

reads 

27,181,

526 

21,254,

194 

23,097,

368 

23,956,

268 

23,061,

370 

21,945,

028 

24,219,

258 

22,380,

348 

23,484,

084 

19,627,

806 

 

18,475,

506 

22,404,

362 

38,996,

488 

32,508,

688 

26,337,

532 

 

20,916,

588 

Total 

no. of 

bases 

1,386,2

57,826 

1,083,9

63,894 

1,177,9

65,768 

1,221,7

69,668 

1,176,1

29,870 

1,119,1

96,428 

1,235,1

82,158 

1,141,3

97,748 

1,197,6

88,284 

1,001,0

18,106 

942,25

0,806 

1,142,6

22,462 

1,988,8

20,888 

1,657,9

43,088 

1,343,2

14,132 

1,066,7

45,988 
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Table 7 P. antarctica transcriptome assembly statistics. 

 Number Mean (b) Median (b) N50 (b) Total 

assembled 

bases 

All transcript 

contigs 

162,436 

(transcripts) 

840.34 604 1190 136,501,307 

Longest isoform 

per component 

88,630 

(components) 

725.96 495 1041 64,341,503 
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Table 8 Transcript families identified using eggNOG (≥100 members). 

eggNOG ID Category description Transcript 

family size 

COG0515 Serine/threonine protein kinase 1864 

COG0666 FOG: Ankyrin repeat 1476 

COG2319 FOG: WD40 repeat 691 

COG5126 Ca2+-binding protein (EF-Hand superfamily) 447 

NOG12793 Calcium ion binding protein 417 

COG0457 FOG: TPR repeat 379 

COG5245 Dynein, heavy chain 352 

COG4886 Leucine-rich repeat (LRR) protein 349 

COG0513 Superfamily II DNA and RNA helicases 298 

COG0553 Superfamily II DNA/RNA helicases, SNF2 family 286 

COG5059 Kinesin-like protein 265 

COG0477 Permeases of the major facilitator superfamily 251 

COG1226 Kef-type K+ transport systems, predicted NAD-binding 

component 

233 

COG0697 Permeases of the drug/metabolite transporter (DMT) 

superfamily 

215 

COG1028 Dehydrogenases with different specificities (related to 

short-chain alcohol dehydrogenases) 

214 

COG0484 DnaJ-class molecular chaperone with C-terminal Zn finger 

domain 

212 

COG5021 Ubiquitin-protein ligase 202 

COG2940 Proteins containing SET domain 197 

COG1132 ABC-type multidrug transport system, ATPase and 

permease components 

193 

COG3119 Arylsulfatase A and related enzymes 185 

COG0500 SAM-dependent methyltransferases 182 

COG4642 Uncharacterized protein conserved in bacteria 179 
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COG1100 GTPase SAR1 and related small G proteins 179 

COG0664 cAMP-binding proteins - catabolite gene activator and 

regulatory subunit of cAMP-dependent protein kinases 

173 

COG0526 Thiol-disulfide isomerase and thioredoxins 169 

COG0545 FKBP-type peptidyl-prolyl cis-trans isomerases 1 167 

COG0642 Signal transduction histidine kinase 164 

COG5022 Myosin heavy chain 163 

COG0631 Serine/threonine protein phosphatase 154 

COG5147 Myb superfamily proteins, including transcription factors 

and mRNA splicing factors 

148 

COG0724 RNA-binding proteins (RRM domain) 140 

COG0488 ATPase components of ABC transporters with duplicated 

ATPase domains 

136 

COG1131 ABC-type multidrug transport system, ATPase component 134 

NOG69209 Protein involved in I-kappaB kinase/NF-kappaB cascade 133 

NOG241162 Junctional adhesion molecule 3 133 

COG1112 Superfamily I DNA and RNA helicases and helicase 

subunits 

123 

COG1643 HrpA-like helicases 120 

COG0790 FOG: TPR repeat, SEL1 subfamily 119 

COG3781 Predicted membrane protein 117 

COG0465 ATP-dependent Zn proteases 115 

COG5032 Phosphatidylinositol kinase and protein kinases of the PI-3 

kinase family 

111 

COG5038 Ca2+-dependent lipid-binding protein, contains C2 domain 110 

COG0652 Peptidyl-prolyl cis-trans isomerase (rotamase) - cyclophilin 

family 

110 

COG0464 ATPases of the AAA+ class 100 
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Table 9 Potential non-coding RNA in P. antarctica by transcriptome functional 

annotation.  

(A) rRNA genes identified by RNAmmer. (B) tRNA genes distribution assigned to GO 

groups. *COG isoleucyl-tRNA synthetase. 

A 

Transcript id rRNA gene From-to Length (bp) 

comp82182_c0_seq1 28S rRNA 57-3839 3783 

comp82182_c0_seq1 18S rRNA 4095-5897 1803 

comp90860_c5_seq1 8S rRNA 371-486 170 

comp92609_c0_seq2 28S rRNA 1106-1619 513 

comp92610_c7_seq1 28S rRNA 1-2909 2909 

comp92610_c7_seq1 18S rRNA 3044-4518 1475 

comp92610_c7_seq4 28S rRNA 15-2909 2895 

comp92610_c7_seq6 28S rRNA 15-2909 2895 

comp92610_c7_seq6 18S rRNA 3190-4664 1475 
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B 

GO id  GO term Occurrence 

GO:0006423 cysteinyl-tRNA aminoacylation 54 

GO:0006435 threonyl-tRNA aminoacylation 18 

GO:0006431 methionyl-tRNA aminoacylation 13 

GO:0006432 phenylalanyl-tRNA aminoacylation 13 

GO:0006419 alanyl-tRNA aminoacylation 12 

GO:0006428 isoleucyl-tRNA aminoacylation 11* 

GO:0006433 prolyl-tRNA aminoacylation 10 

GO:0006434 seryl-tRNA aminoacylation 9 

GO:0006422 aspartyl-tRNA aminoacylation 9 

GO:0006438 valyl-tRNA aminoacylation 8 

GO:0006430 lysyl-tRNA aminoacylation 7 

GO:0006425 glutaminyl-tRNA aminoacylation 7 

GO:0006421 asparaginyl-tRNA aminoacylation 7 

GO:0006427 histidyl-tRNA aminoacylation 6 

GO:0006426 glycyl-tRNA aminoacylation 6 

GO:0006436 tryptophanyl-tRNA aminoacylation 6 

GO:0006424 glutamyl-tRNA aminoacylation 5 

GO:0006420 arginyl-tRNA aminoacylation 4 

GO:0006437 tyrosyl-tRNA aminoacylation 3 

GO:0006429 leucyl-tRNA aminoacylation 3 
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 Conclusions 

Phaeocystis antarctica is one of the most ecologically important species endemic 

to the Southern Ocean due to its contribution to global sulfur gases contents. The growth 

and productivity of P. antarctica in a high-nitrate low-chlorophyll (HNLC) region such 

as the SO have been demonstrated to be limited by iron availability. The global influence 

of the SO as a major Earth system climate regulator due to its unique hydrography 

consequently places its phytoplankton assemblage as drivers of the global carbon cycle. 

Iron fertilization experiments were conducted in the SO to understand the response of its 

photosynthetic assemblage to iron addition, and the nanoflagellate P. antarctica has been 

reported the first to bloom and alters sulfur gases contents. Being an ideal ecologically 

important model organism, P. antarctica is studied at a transcriptomic level in a time-

series manner to understand phytoplankton adaptation to iron limitation and functional 

changes following iron addition. 

Here the first reported transcriptome of P. antarctica revealed that it constitutes of 

88,630 putative genes (162,436 transcripts). The unexpectedly high number of potential 

genes is due to low cutoffs used to capture all genes and isoforms, on one hand. On the 

other hand, a suggested high number of polymorphic sites among the population led to 

the high reported number of putative transcripts. The estimates will be corrected in a 

further assembly. The vast majority of the genes are of unknown function (64,822; 

73.1%), while 17,729 (20%; 2,932 unique groups) were assigned to eggNOG orthologous 

groups upon which the functional annotation of P. antarctica was based. Analysis of P. 

antarctica also revealed 2,456 nuclear-encoded plastid-targeted ORFs, the majority of 

which are of green algal origin. Differential expression at each time-point before and 

after iron addition was inferred at an adjusted p-value ≤ 0.001 and a log fold-change ≥ 5, 

revealing a total of 2,367 differentially expressed genes.  

At the physiological examination level, iron-limited P. antarctica recovered its 

photosynthetic fitness, colony-forming ability, and chlorophyll a, particulate organic 

carbon and nitrogen contents shortly after iron addition comparable to the replete control 
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and the reported values of healthy cells. Transcriptomic data supported the observed 

photosynthetic fitness recovery. It revealed a floristic shift to the more efficient 

photopigment fucoxanthin production, and also the utilization of the more efficient iron-

dependent ferredoxin after iron enrichment.  In addition, a shift in gene expression from 

iron-economic reactive oxygen species defense and photosystem II to iron-dependent 

alternatives has been observed following iron enrichment. Transcriptomic data supports 

the previous studies that P. antarctica is successful in utilizing bound iron in a reductive 

non-ligand-dependent mechanism (Strzepek et al. 2011). At the metabolic level, the 

physiology data was supported by the transcriptomic data suggesting N and C 

reallocations under iron limitation. In addition, Calvin cycle enzymes were overexpressed 

under iron enrichment unlike the reports from diatoms (Allen et al. 2008).  

In summary, iron levels limits P. antarctica growth. It arrests its growth and 

bloom-forming ability. P. antarctica shortly recovers its growth and productivity 

following iron supplementation (Marchetti et al. 2012). However, iron requirements of P. 

antarctica are the lowest among all phytoplankton species and its adaptation to iron 

limitation is well-established. Further investigation is required in order to infer the 

complete metabolic pathways expression at iron limitation and repletion. 

4.2 Future Directions 

4.2.1 Transcriptomics 

4.2.1.1 Corrected Protein-Encoding Genes Estimation and Data Availability  

The transcriptome assembly will be revisited to carefully distinguish between 

alleles, isoforms, and duplicates (i.e., paralogs). Trinity also will be used implementing -

-jaccard_clip parameter to better resolve fused transcripts (Haas et al. 2013) and 

PasaFly and CuffFly algorithms with stringency to reduce the reported transcriptome 

estimate (Haas n.d.). In addition, the now available organelles genomes (Smith et al. 

2014) will be used in functional annotation. In regard to differential gene expression 

analysis, TMM-normalized expression values will be used to infer differential expression 

at both gene-level and transcript-level. Enrichment analysis of GO terms of the 
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predefined significantly differentially expressed genes will be conducted using topGO 

(v2.16.0) (Alexa, Rahnenführer and Lengauer, 2006). Genes-to-GO mapping will be 

based on the multi-hierarchical GO mapping output of Trinotate.  

The raw sequencing reads will be made available at the Sequence Read Archive 

(SRA), while the corrected annotated transcriptome sequence data will be made 

publically available at the Transcriptome Shotgun Assembly (TSA) archive. In addition, 

the time-series gene expression data will be submitted to the Gene Expression Omnibus 

(GEO) database. 

4.2.1.2 Permanently Overexpressed and Missing Genes Analysis and Small RNAs 

(sRNA) Possible Targets in P. antarctica 

Fucoxanthin-chlorophyll a-c binding protein B and the mitochondrial gene 

expression regulation protein TAR1 (~23,250 and ~10,649 mean TMM-normalized 

expression, respectively), for instance, have showed a constitutive high non-differenrial 

expression pattern. A high resolution analysis of such genes unaffected by the iron state 

of P. antarctica is needed to understand their role in P. antarctica cellular processes. 

Functional domain search, phylogenetic analysis and pathway enrichment analysis of the 

constitutively expressed genes will provide us with insight into the core metabolism of P. 

antarctica. On the other hand, central metabolic pathways will be mined for predicting 

missing key genes using comparative genomics (Osterman & Overbeek 2003) against E. 

huxleyi genome. 

The role of small RNAs (sRNA) in post-transcriptional gene regulation in land 

plants and fungi is well-established (Finnegan & Matzke 2003). In addition, recent 

evidence of sRNA expression in the adapted to iron limitation diatom Thalassiosira 

pseudonana has been reported (Norden-Krichmar et al. 2011). sRNA are known to be 

involved in regulating bacterial response towards iron stress (Murphy & Payne 2007; 

Jacques et al. 2006; Massé & Gottesman 2002). Having in hand the genome of P. 

antarctica sister E. huxleyi (Read et al. 2013) and sRNA analysis tools such as SoMART 

(Li et al. 2012) and microRNA plant target prediction tool (Moxon et al. 2008), perhaps 
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sRNA target prediction using sRNA libraries constructed from E. huxleyi can find targets 

in the transcriptome of P. antarctica. 

4.2.1.3 Validation of Transcriptomic Data 

 Real-time quantitative reverse transcription-PCR (qRT-PCR) will be used for 

validation of the transcriptomic data. The expression of a subset of the highest 

differentially expressed genes across all days of the experiment (e.g., light-repressed 

protein A) will be assessed using a high-throughput sequencing-independent expression 

profiling approach. Having the corrected sequences in hand, gene-specific primers will be 

designed to track the expression of these genes quantitatively in real-time as well as the 

expression of the identified housekeeping genes as control. 

4.2.2 Comparison to Other Algal Classes from Other HNLC Regions  

The long-term success of diatoms in the open ocean over haptophytes (Assmy et 

al. 2007; Marchetti et al. 2012) raises a question of the fitness characteristics to which 

such a success is attributed. In spite of having the machinery needed for N utilization, 

haptophytes were outnumbered by diatoms in in situ (Assmy et al. 2007) and in vitro 

mesocosm (Marchetti et al. 2012) iron fertilization experiments after their initial peak, 

typical to spring P. antarctica fate (Smith et al. 1998). In the present study, P. antarctica 

clearly showed significant increase in N utilization. In the absence of grazing pressure, a 

comparative transcriptomic study between the two algal classes endemic to the SO is 

pivotal to elucidate whether the success of diatoms attributed to their N utilization ability 

(Smith et al. 1998) or to secondary metabolic signals produced by the able-to-recover  

haptophytes (Tang et al. 2009). 

4.2.3 Proteomics of Iron Limitation in P. antarctica and Haptophyta Iron Utilization 

Model 

  The ultimate aim of the study is to model iron utilization in Haptophyta. To fulfill 

this aim, firstly, P. antarctica would extremely benefit from a proteomic study of cellular 

iron-bound proteins similar to that of E. huxleyi (Sutak et al. 2012) to complement the 
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current study. Nevertheless, metabolomics will enrich the current knowledge of P. 

antarctica iron limitation adaptive mechanisms assessing DMSP- and iron scavenging-

related proteins. Combining both transcriptomic and proteomic data, as previously in 

diatoms (Allen et al. 2008; Dyhrman et al. 2012), will better elucidate the cellular 

pathways and processes in the iron-limitation-adapted haptophyte, P. antarctica.   
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