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ABSTRACT. The decrease in summer sea-ice extent in the Arctic Ocean opens shipping routes and
creates potential for many marine operations. For these activities accurate predictions of sea-ice
conditions are required to maintain marine safety. In an attempt at Arctic sea-ice prediction, the
summer of 2010 is selected to implement an Arctic sea-ice data assimilation (DA) study. The DA system
is based on a regional Arctic configuration of the Massachusetts Institute of Technology general
circulation model (MITgcm) and a local singular evolutive interpolated Kalman (LSEIK) filter to
assimilate Special Sensor Microwave Imager/Sounder (SSMIS) sea-ice concentration operational
products from the US National Snow and Ice Data Center (NSIDC). Based on comparisons with both
the assimilated NSIDC SSMIS concentration and concentration data from the Ocean and Sea Ice
Satellite Application Facility, the forecasted sea-ice edge and concentration improve upon simulations
without data assimilation. By the nature of the assimilation algorithm with multivariate covariance
between ice concentration and thickness, sea-ice thickness fields are also updated, and the evaluation
with in situ observation shows some improvement compared to the forecast without data assimilation.
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1. INTRODUCTION
In the past 30 years Arctic sea-ice extent and volume have
consistently decreased in all seasons, but the maximum
decline is observed in summer. In the past 10 years this
summer decline has accelerated, with record lows in
September. The rate of decrease in September ice extent
recorded from 1979 to 1998 was (0.032� 0.017)�
106 km2 a–1, and from 1999 to 2010 it increased further to
(0.154�0.038)� 106 km2 a–1 (Cavalieri and Parkinson,
2012; Stroeve and others, 2012). From 2003 to 2008, the
observed basin-wide decline of Arctic sea-ice thickness
reached 0.17ma–1 (Kwok and others, 2009). The melt season
extended by almost 20 days from 1979 to 2007 (Markus and
others, 2009). According to the latest climate model
predictions, the September ice extent will drop to
1.7�106 km2 in the mid-2040s and an ice-free state will
be reached in 2054–58 in high-emission scenarios (Liu and
others, 2013). In such a rapidly changing Arctic, the Arctic
shipping routes are expected to be open in the near future
and Arctic maritime activities will become more and more
frequent. These activities urgently require accurate sea-ice
real-time forecasts (Eicken, 2013).

In support of the CHInese National Arctic Research
Expeditions (CHINARE), a simple Arctic sea-ice–ocean
forecasting system based on the Massachusetts Institute of
Technology general circulation model (MITgcm) (Marshall
and others, 1997; see Section 2) was designed at the
National Marine Environmental Forecasting Center of China
(NMEFC; Yang and others, 2012). Sea-ice concentration data
were incorporated with a simple reinitialization scheme. In
this scheme, initial sea-ice concentration was replaced by

satellite observations, and sea-ice thickness and sea surface
temperature were adjusted accordingly. Although the
scheme makes full use of the concentration data, it is
dynamically crude and introduces physical inconsistencies.
For example, Yang and others (2011), after applying the
scheme, observed reinitialization shocks that lead to unreal-
istic sea-ice extents. While this system behavior may also be
related to systematic deficiencies in the model configuration
or atmospheric forcing, it is plausible to assume that
forecasts and system behavior can be improved by replacing
the simple reinitialization by more sophisticated data
assimilation techniques that allow the combination of
different types of observations and the model in a smooth,
systematic way.

Several studies have demonstrated the feasibility and the
benefit of assimilating observed sea-ice concentration into
coupled ice–ocean models. Lisæter and others (2003) used
an ensemble Kalman filter (EnKF) to assimilate Special
Sensor Microwave/Imager (SSMI) concentration. Lindsay
and Zhang (2006) employed a nudging scheme to assimilate
monthly averaged concentration. Stark and others (2008)
used an optimal interpolation method to assimilate the SSMI
concentration. Wang and others (2013) developed a
combined optimal interpolation and nudging scheme to
assimilate concentration. In all of these studies, the assimi-
lation of observed ice concentration in ice–ocean models
was shown to improve the simulated concentration, but the
improvement in ice thickness was always small. In a recent
study, Tietsche and others (2013) assimilated ice concen-
tration observations with a simple Newtonian relaxation into
a coupled climate model and updated the sea-ice thickness
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using a proportional dependence between concentration
and mean thickness. This simple scheme with the implicit
assumption of a correlation between ice thickness and
concentration was found to be successful in correcting sea-
ice concentration and thickness. However, the model
physics were crudely parameterized by a homogeneous
local correlation in their analysis.

In this study, a local ensemble-based singular evolutive
interpolated Kalman (SEIK) filter (Pham and others, 1998;
Pham, 2001) was used to assimilate the sea-ice concen-
tration into MITgcm over 3 months in summer. This fully
dynamic SEIK filter includes the full correlations between ice
thickness and concentration based on ensemble model
simulations. The effectiveness of the assimilation is analyzed
by comparing to the assimilated ice concentration data and
a different satellite observation product. In addition, the
influence of the assimilation on the ice thickness is assessed
with in situ measurements.

2. MODEL AND ATMOSPHERIC FORCING
The sea-ice module within the MITgcm (Marshall and
others, 1997) includes state-of-the-art dynamics and simple
zero-layer thermodynamics (Losch and others, 2010). It has
been used in regional Arctic studies at varying resolution
(Losch and others, 2010; Nguyen and others, 2011, 2012).
We use a regional MITgcm configuration similar to those in
our Arctic modeling and forecasting experiments. The
modeling domain covers a limited Arctic area with open
boundaries near 558N in the Atlantic and Pacific sectors. A
global configuration (Menemenlis and others, 2008) is used
to provide monthly boundary conditions for potential
temperature, salinity, and current velocities. The grid cover-
ing the Arctic domain is locally orthogonal and has a
variable horizontal resolution with an average spacing of
18 km. The sea-ice and ocean equations are solved on the
same horizontal mesh. The vertical resolution is greatest in
the upper ocean, with 28 vertical levels in the top 1000m.
Bathymetry is derived from the US National Geophysical
Data Center (NGDC) 2min global relief dataset (ETOPO2)
(Smith and Sandwell, 1997). The monthly mean river runoff
is based on the Arctic Runoff Data Base (ARDB; Nguyen and
others, 2011). The dynamics of the MITgcm sea-ice model is
based on a variant of the viscous–plastic (VP) dynamic–
thermodynamic sea-ice model (Zhang and Hibler, 1997)
with momentum equations solved implicitly on a C-grid
(Losch and others, 2010). The coupled sea-ice–ocean model
is stepped forward synchronously with a time step of 1200 s.

We illustrate the development of the assimilation scheme
for our Arctic model system with the help of historical
forecasts (i.e. ‘hindcasts’) with analysis data (Japan Meteoro-
logical Agency Climate Data Assimilation System (JCDAS)).
These analysis data start in January 2005. They are consistent
with the data assimilation used in the Japanese 25 year
reanalysis (JRA-25) (Onogi and others, 2007).

3. DATA ASSIMILATION APPROACH AND
OBSERVATION DATA
The simulated sea-ice concentration and satellite-derived
sea-ice concentration are combined using a sequential SEIK
filter with second-order exact sampling (Pham, 2001) as
coded within the Parallel Data Assimilation Framework
(PDAF; Nerger and Hiller, 2013; http://pdaf.awi.de). The

SEIK filter algorithm has been demonstrated to have some
advantages over the other filters: for example, it is better
suited for nonlinear models, computationally more efficient,
and more accurate than the EnKF (Nerger and others, 2005).
The SEIK filter has already been successfully used to
assimilate sea-ice motion in a stand-alone sea-ice model
(Rollenhagen and others, 2009). The filter algorithm can be
divided into four phases: initialization, forecast, analysis and
reinitialization.

The data assimilation process is initialized by an
optimized ocean–sea-ice spin-up run (Nguyen and others,
2011). The initial uncertainties in the model ice concen-
tration and thickness are approximated by an ensemble
generated from a multivariate empirical orthogonal function
(EOF) analysis of the model dynamics under variable
atmospheric forcing (see Losa and others, 2012, 2014). For
simplicity, the initial state error covariance matrix of the sea-
ice concentration and sea-ice thickness is estimated based
on a model integration over the period 1 June to 31 August
2010. In a real application, one would use a similar
sampling period from the previous model year, or maybe
even averaged over many previous model years. One time
slice per day is collected into a set of 92 state vectors. Each
state vector includes maps of sea-ice thickness and concen-
tration. Together these 92 state vectors form a matrix that is
decomposed into EOFs. The leading EOFs are used to
generate an ensemble of initial ice concentration and
thickness and, therefore, to approximate the background
forecast error covariance. After this initialization phase, the
ensemble evolves dynamically in time, driven by atmos-
pheric forcing, to produce a forecast at the time when new
data are available (here 24 hours). In the analysis and
reinitialization step, the ensemble forecast is combined with
the observations to create updates of the background error
covariance and the ensemble states based on model–data
misfit and the error statistics. After the analysis step, the
reinitialized ensemble members are again propagated by the
model to produce the next ensemble forecast. For more
details the reader is referred to Nerger and others (2006).

Following Nerger and others (2006) and Janjić and others
(2011) the SEIK analysis is applied locally at each model
gridpoint given the model forecast and observational
information only within a certain radius. In our study, a
radius of 7 gridpoints (�126 km) was introduced to localize
the analysis. To account for missing data around the North
Pole (the ‘polar gap’ due to the inclination of the remote-
sensing satellite), the localization radius was gradually
increased from 8 gridpoints (�144 km) at 868N to 29
gridpoints (�232 km) at the North Pole. This approach allows
us to extrapolate the observed information from the
surrounding regions. Within the localization radius, the
observations are weighted according to their distance from
the center gridpoint (Hunt and others, 2007) by a fifth-order
polynomial function that mimics a Gaussian distribution
(Gaspari and Cohn, 1999). Due to the statistical nature of the
analysis update and the incomplete sampling of the error
covariance, the analysis step may generate overshoots of too
small (negative) and too high values of ice concentration and
thickness. Negative ice concentrations and thicknesses are
locally replaced by zero, and ice concentrations are bounded
from above by 1 (100% ice cover). An ice-concentration-
dependent adjustment of the ice thickness is also applied at
the same time. Zero ice thickness in the presence of nonzero
ice concentration is set to a new ice thickness of 2m times ice
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concentration (Tietsche and others, 2013). Any ice thickness
with zero concentration is removed. The sea surface
temperature is not part of the state vector and hence is not
modified directly by the SEIK filter; in the presence of sea ice,
sea surface temperatures are updated implicitly by the model
assumption of thermodynamic equilibrium between sea ice
and the ocean surface water layer.

Two types of daily sea-ice concentration data are used in
this study. The ice concentration observations used in the
assimilation are derived from US Defense Meteorological
Satellite (DMSP) F-17 Special Sensor Microwave Imager/
Sounder (SSMIS) passive microwave data, processed by the
NSIDC with the NASA Team algorithm (Cavalieri and others,
2012; http://nsidc.org/data/docs/daac/nsidc0051_gsfc_
seaice.gd.html). These data are interpolated to the model
grid. On average, an estimate of uncertainty in the observed
sea-ice concentration is �10% (Tonboe and Nielsen, 2010),
but since the errors of satellite-derived sea-ice concentration
are far larger in summer than in winter (Comiso and others,
1997), and to account for a representative error, a constant
value of 0.30 is used for the uncertainties in NSIDC SSMIS
sea-ice concentration for summer 2010. The ice concen-
tration data used for evaluation are from the European
Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) Ocean and Sea Ice Satellite Application
Facility (OSISAF) (Eastwood and others, 2011). The final
product consists of daily fields provided on a 10 km polar
stereographic grid. Note that OSISAF concentration for
summer 2010 is derived from another passive microwave
sensor, SSM/I on board DMSP F-15, so it is independent of
the NSIDC data used in the assimilation.

Satellite-based observations of ice thickness are a
challenge (Kwok and Sulsky, 2010), and at present there
are very few reliable summer sea-ice thickness products
available. Instead of remote-sensing data we compare our
simulation and assimilation results to measurements of sea-
ice draft from the Beaufort Gyre Experiment Program (BGEP)
upward-looking sonar (ULS) moorings located in the
Beaufort Sea (BGEP_2009A, BGEP_2009D; Fig. 1) and sea-
ice thickness data obtained from autonomous ice mass-
balance buoys (IMBs; Perovich and others, 2009) as inde-
pendent observation data for ice thickness. The error in ULS
measurements of ice draft is estimated as 0.1m (Melling and

others, 1995). Drafts are converted to thickness by multi-
plying by a factor of 1.1, which is approximately the ratio of
mean sea-water density of 1024 kgm–3 to sea-ice density of
910 kgm–3 (Nguyen and others, 2011). Two acoustic
rangefinders on the IMBs monitor the position of the ice
bottom and the snow/ice surface. The sea-ice thickness is
estimated from these positions. The accuracy of both
sounders is 5mm (Richter-Menge and others, 2006). In this
study, the IMB_2010A and IMB_2010B were used; their
trajectories during summer 2010 are shown in Figure 1.

The performance of any data assimilation system depends
on the prior model and data error statistics and how these
statistics evolve in time (Losa and others, 2012, 2014). In the
application here, the most crucial parameters of the data
assimilation and forecasting system are the prior obser-
vational data errors, the localization length scale and
inflation of the time-evolved forecast error statistics. A series
of sensitivity tests has been carried out to calibrate our DA
system. Here the results of the calibrated system implemen-
tation as described above are presented.

In this study, the system’s forecasting skills are evaluated
with a series of 24 hour forecasts in which the local SEIK
(LSEIK) filter is applied every day at 00:00 UTC over the
period 1 June to 31 August 2010. The summer (June to
August) of 2010 was chosen as our experimental period to
check the performance of the assimilation system. The
atmospheric circulation between June and August 2010 was
characterized by the Arctic dipole anomaly, an atmospheric
pressure pattern that contributed to the record sea-ice loss in
2007 (Wang and others, 2009). The summer of 2010 was the
first time open water was found in the interior pack ice near
the North Pole as early as 12 July (NSIDC, http://nsidc.org/
arcticseaicenews/2010/07/).

4. RESULTS
At each analysis step, sea-ice thickness and concentration
are updated based on the available data and the forecast
error covariance. The accumulation, i.e. the sum, of these
update increments from 2 June to 31 August 2010 is shown
in Figure 2. The spatial distribution of the accumulated
increments shows that there is a systematic tendency to
overestimate the ice concentration and thickness in the
coastal seas that the filter algorithm tries to correct.

Figure 3 shows the effect of assimilating NSIDC SSMIS
concentration data on the simulated sea-ice concentration
for 7 June (Fig. 3a and b) and 31 August 2010 (Fig. 3c and
d). The strong overestimation of sea-ice concentrations in
the model without data assimilation (Fig. 3a and c) is
corrected towards observed values, especially in the
marginal ice zone.

Figure 4 compares the temporal evolution of the root-
mean-square error (RMSE) of the ice concentration forecast
with and without data assimilation with respect to the
assimilated NSIDC SSMIS data (Fig. 4a) and the independent
OSISAF concentration (Fig. 4b) for 1 June to 31 August 2010.
Following Lisæter and others (2003), all RMSEs are evalu-
ated only at gridpoints where either the model or the
observations have ice concentrations larger than 0.05. The
green curve represents the RMSEs without assimilation,
while the blue curve and the dots are those obtained with
the LSEIK filter applied every 24 hours. As expected, the
effect of the data assimilation reduces the deviations of the
forecasted ice concentration from the assimilated SSMIS

Fig. 1. Locations of sea-ice thickness observation and buoy
trajectories from 1 June to 31 August 2010: BGEP_2009A (magenta
square), BGEP_2009D (red square), IMB_2010A (blue line) and
IMB_2010B (green line).
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concentration but also from the independent OSISAF
concentration. For reference, the rms difference between
the OSISAF and SSMIS concentration product is shown as
the black curve in Figure 4b. Although both products are
derived from the similar passive microwave sensors, the
deviations almost reach the RMSE of the assimilated model
simulation. The 91 day forecast based on LSEIK analysis on 1
June (magenta line in Fig. 4) illustrates that updated sea-ice

concentration and thickness allow for an improved forecast
over a long period (much more than 5 days). For 2 months
the RMSE of this forecast is smaller than the model
simulation without data assimilation.

The comparison of ice thickness predictions with in situ
ULS observations (BGEP_2009A, Fig. 5a; BGEP_2009D,
Fig. 5b) suggests an improvement in the sea-ice thickness
with assimilation of ice concentration. Note that the

Fig. 2. Accumulated analysis increments of (a) sea-ice concentration and (b) sea-ice thickness (m) over the period 2 June to 31 August 2010.
The increments refer to the update during the analysis.

Fig. 3. The forecast skill improvement of sea-ice concentration on 7 June (a, b) and 31 August 2010 (c, d). MITgcm only (a, c) and LSEIK
24 hour forecast (b, d) minus NSIDC SSMIS ice concentration.
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numerical model carries mean thickness (volume over area)
as a variable. The mean thickness is divided by the local ice
concentration to arrive at the thickness shown in Figure 5.
Both forecasts with and without data assimilation reproduce
the gradual decrease of ice thickness. Without DA, the
thickness flattens out, and the further decrease after late July

is not properly simulated. In general, the agreement between
predicted and observed sea-ice thicknesses has been
improved by assimilating ice concentrations: the rms differ-
ence between the forecast and observations has been
reduced from 0.90m to 0.57m at BGEP_2009A and from
0.95m to 0.53m at BGEP_2009D.

Fig. 4. Temporal evolution of RMSE differences between NSIDC SSMIS (a) and OSIAF ice concentration data (b) and MITgcm forecast
(green), 91 day forecast based on LSEIK analysis on 1 June (magenta), mean of 24 hour ensemble forecast based on LSEIK analysis (blue), and
LSEIK analysis (red) over the period 1 June to 31 August 2010. The deviation between NSIDC SSMIS and OSIAF concentration data is also
shown as black line in (b). Date format is dd/mm.

Fig. 5. Sea-ice thickness evolution at (a) BGEP_2009A, (b) BGEP_2009D Beaufort Sea, (c) IMB_2010A and (d) IMB_2010B from 1 June to
31 August, 2010: observation (black), MITgcm forecast without DA (green curve), and mean of ensemble forecast based on 24 hourly
analysis (blue). Date format is dd/mm.
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The drifting ice-mass balance buoys IMB_2010A and
IMB_2010B are also used for comparison. The modeled sea-
ice thickness is interpolated to each of the time-evolving
IBM locations. For IMB_2010A (Fig. 5c), the model starts
with a large positive bias of �0.9m on 1 June, but both
forecasts capture the observed downward trend. In August,
however, the assimilated model thickness increases errone-
ously, so the RMSE of the 3month thickness increases from
0.83m to 1.09m with data assimilation. The increase is
caused by the analysis updates of the LSEIK filter (not shown)
and can be understood as follows: In August IMB_2010A
passes through the polar gap around the North Pole where
no ice concentration observations are available. Instead of
local data, the filter extrapolates information of low ice
concentration from the fringe of the polar gap into the region
and the update of thickness is purely based on prior
correlations between concentration and thickness obtained
from model simulations (see Section 3). The model mean
thickness divided by (low) concentration as shown in
Figure 5 then overestimates the observed in situ thickness.
Clearly, the large data gap around the North Pole poses a
limitation to our DA system, and forecasts in this region are
not reliable.

Since its snow sounder failed on 7 May, the ice thickness
at IMB_2010B (Fig. 5d) had to be computed from ice profile
data that were available only once a week, so there are only
ten data points in the period 6 June to 8 August. Similar to
IMB_2010A, both model forecasts have a positive bias of
�1.3m on 6 June, but both forecasts capture the decreasing
trend since 11 July. The LSEIK forecast is closer to the
observations over most of the period, so thickness RMSE
improved from 1.01m without DA to 0.79m with DA.

5. CONCLUSIONS
A LSEIK filter has been applied to assimilate observed sea-
ice concentration data into a regional Arctic ice–ocean
model. For the three summer months June to August 2010,
the agreement of the ice concentration forecast with satellite
observations improved in comparison with the regular
model run without DA. The corrections in the mean state
of the sea-ice concentration and thickness lead to an
improved concentration forecast over a long period. The
summer sea-ice thickness was also improved, most likely
due to the multivariate covariance between ice concen-
tration and thickness that was used in the LSEIK filter. There
are, however, limits to the quality of the forecasts. The polar
gap in the concentration data renders the forecasts near the
North Pole unreliable and leads to obvious problems in the
thickness forecasts. Still, given the fact that observed ice
thickness fields are not available over the entire Arctic area
in summer, our study is a step towards improving future
operational sea-ice thickness forecasts.

In this study, we have improved Arctic summer sea-ice
forecasts by implementing a LSEIK filter with dynamic error
evolution. However, there are many other factors that can
affect the forecasting behavior. Here only the sea-ice
concentration observation data were assimilated, and only
the ice concentration and thickness belonged to the control
vector in the assimilation. The ultimate goal of a compre-
hensive data assimilation system would involve a full
multivariate assimilation, in which variables such as ice
thickness, ice-drift velocity and sea surface temperature are
also updated during the analysis step of the filter algorithm.

Furthermore, the model tends to overestimate the multi-year
sea-ice thickness in the central Arctic (Fig. 5c and d), while
the agreement with ULS data in the western Beaufort Sea is
much better (Fig. 5a and b). Thickness biases were also
observed by Nguyen and others (2011) who were able to
reduce these biases by adjusting model parameters.
Although our simulations start from their configuration, the
remaining thickness biases make it clear that there is still
room for improvement. Our assimilation experiments
already provide some of this improvement, but it is
foreseeable that including internal model parameters into
the state vector and adding more data, in particular
thickness data as they become available, will lead to even
better agreement with observations. It remains to be seen to
what extent such an experiment can contribute to better
understanding of the internal model physics, their deficits,
and to the improvement of model parameterizations.

ACKNOWLEDGEMENTS
We thank An T. Nguyen of the Massachusetts Institute of
Technology, USA, for providing data of the modeling
configuration. We thank the US National Snow and Ice
Data Center (NSIDC) and the OSISAF High Latitude
Processing Centre for providing the ice concentration data,
the Japan Meteorological Agency (JMA) for the JRA analysis
data, the Woods Hole Oceanographic Institution, USA, for
the sea-ice draft data (http://www.whoi.edu/beaufortgyre),
and the Cold Regions Research and Engineering Laboratory,
USA, for the IMB data (http://IMB.crrel.usace.army.mil). This
study is supported by the BMBF (Federal Ministry of
Education and Research, Germany)–SOA (State Oceanic
Administration, China) Joint Project, the Ocean Public
Welfare Project of China (2012418007), the National
Natural Science Foundation of China (41376005,
41376188 and 41106165), the Chinese Arctic and Antarctic
Administration Project (IC201014 and IC201102) and the
China Scholarship Council. Two anonymous reviewers are
thanked for comments that helped improve the manuscript.

REFERENCES
Cavalieri DJ and Parkinson CL (2012) Arctic sea ice variability and

trends, 1979–2010. Cryosphere, 6(4), 881–889 (doi: 10.5194/tc-
6-881-2012)

Cavalieri DJ, Parkinson CL, DiGirolamo N and Ivanoff A (2012)
Intersensor calibration between F13 SSMI and F17 SSMIS for
global sea ice data records. IEEE Geosci. Remote Sens. Lett.,
9(2), 233–236 (doi: 10.1109/LGRS.2011.2166754)

Comiso JC, Cavalieri DJ, Parkinson CL and Gloersen P (1997)
Passive microwave algorithms for sea ice concentration: a
comparison of two techniques. Remote Sens. Environ., 60(3),
357–384 (doi: 10.1016/S0034-4257(96)00220-9)

Eastwood S, Larsen KR, Lavergne T, Neilsen E and Tonboe R (2011)
OSI SAF global sea ice concentration reprocessing: product user
manual, version 1.3. (Product OSI-409, SAF/OSI/CDOP/met.no/
TEC.MA/138) European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT) Ocean and Sea Ice
Satellite Application Facility, Darmstadt/Boulder, CO

Eicken H (2013) Ocean science: Arctic sea ice needs better
forecasts. Nature, 497(7450), 431–433 (doi: 10.1038/497431a)

Gaspari G and Cohn SE (1999) Construction of correlation
functions in two and three dimensions. Q. J. R. Meteorol.
Soc., 125(554), 72–757 (doi: 10.1002/qj.49712555417)

Hunt BR, Kostelich EJ and Szunyogh I (2007) Efficient data
assimilation for spatiotemporal chaos: a local ensemble

Yang and others: Assimilating sea-ice concentration into an ice–ocean model 43



transform Kalman filter. Physica D, 230(1–2), 112–126 (doi:
10.1016/j.physd.2006.11.008)
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