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Abstract

This study investigates the stability of the water column of the Arctic Ocean

under large wind stress such as caused by a strong cyclone. It aims at deter-

mining whether su�cient turbulence is generated to disturb the halocline and

mix warm thermocline waters to the surface. The study uses the MITgcm

model to conduct both Large-Eddy Simulations (LES) on a 5 ⇥ 5 km grid

with 10m resolution and Pan-Arctic simulations with ⇡ 28 km resolution. Cy-

clonic wind forcing of varying magnitude is applied. It is found that a mixed

layer is established which deepens with increasing wind stress and with time.

However, the simulations show that the turbulence is not su�cient to create

a mixed layer deep enough to mix warm thermocline waters to the surface. It

is also found that the cooling e↵ect via latent heat fluxes dominates over the

warming via upwelling. It is therefore concluded that the Arctic Ocean is very

stable with respect to strong wind forcing.
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1 Introduction

An important feature of the water column in the Artic Ocean is the strong halocline.

Close to the surface there is a layer with low salinity and very low temperature (at or

slightly above the freezing point) which is cooled by the low air temperatures and sea ice

formation. During the summer the ice cover insulates the water from too much warming.

The low salinity is caused by the inflow of fresher water from the Pacific Ocean through

the Bering Strait and by fresh water influx (for example from the large Siberian rivers

(Peterson et al., 2002)). The water that enters the Arctic Basin from the Atlantic Ocean

has higher salinity and temperature and is denser. It is therefore overlaid by the cold and

fresh water and a strong salinity (and hence density) gradient forms at the interface. This

halocline is situated at significantly shallower depth than the thermocline caused by the

warm Atlantic water. This configuration is usually very stable. The mixed layer is largely

confined above the halocline and the heat from the Atlantic water is essentially trapped

below (Rudels, Anderson, and Jones, 1996).

Figure 1.1: Great Arctic Cyclone:
Pressure at peak intensity
(Simmonds and Rudeva,
2012)

The ongoing global warming has particularly pro-

nounced e↵ects in the Arctic and has already resulted

in a decrease of summer sea ice extent (Wang and Over-

land, 2009), a trend that is likely to continue. Therefore

the possibility of little or no ice cover during the Arctic

summer is very real in the coming decades. At the same

time, stronger storms in the Arctic are both predicted

and observed. For example, Vavrus et al. (2012) predict

stronger cyclones with high confidence and at a rate

even exceeding the declining trend in sea level pressure

(SLP). In August 2012 the so-called ”Great Cyclone of

August 2012” (Simmonds and Rudeva, 2012) occured.

It aroused much attention in the scientific community

and has by some been associated with the record low

in sea ice extent in the same year. Using a very sim-

ple geostrophic approach to calculate wind speeds from

the radius of 4.2� latitude and depth of 14 hPa yields

speeds of v
w

= 20m s�1, while Zhang et al. (2013) find

wind speeds in excess of 14m s�1.

Confronted with the trends in both decreasing sea ice and increasing storms it is worth

asking what could happen in a largely ice-free Arctic if a very strong storm (such as

the ”Great Arctic Cyclone” would pass the Arctic. Would it then be possible to generate

enough turbulence and upwelling to disturb the halocline and mix the warm Atlantic water

to the surface? If so, this could lead to a further increase in the sea surface temperature

and, among other e↵ects, enhance the decrease in sea ice or delay its formation in the
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fall. This thesis attempt to answer this question. For this purpose several two- and

three-dimensional simulations are conducted using the MITgcm model (Adcroft et al.,

2013). The model has been selected due to its applicability to very di↵erent scales and its

flexibility with regard to the problem at hand. Moreover, it contains a fully non-hydrostatic

code which is an essential feature for this study.

2 Model and Physical Background

The MITgcm model is a finite-volume general circulation model (GCM) that can model

both atmosphere and ocean (Adcroft et al., 2013). It supports various scales which is used

in this study to investigate both large- and small-scale systems, and can be parallelized in

the horizontal direction, of which frequent use has been made. Of particular importance

for this study is the fully non-hydrostatic formulation (Marshall et al., 1997a) which keeps

and solves all aspects of the incompressible Navier-Stokes equations since turbulent mixing

is an inherently non-hydrostatic phenomenon.

2.1 Governing Equations

The momentum equations of the model for the ocean are as follows:

@ ~v
h

@t
+ (~v ·r)

h

~v
h

+ (2~⌦⇥ ~v)
h

+
1

⇢
c

r
h

p = ~F
h

(2.1)

@w

@t
+ (~v ·r)

z

w + k̂ · (2~⌦⇥ ~v) +
1

⇢
c

@p

@z
+ b = F

v

(2.2)

r
h

· ~v
h

+
@w

@z
= 0 (continuity) (2.3)

where subscript h denotes horizontal components, z denotes vertical components, ⌦ is the

Earth’s rate of rotation, ⇢
c

is a reference density, b = g/⇢
c

(⇢ � ⇢
c

) is the buoyancy and
~F
h

and F
v

contain forcing and dissipation terms in the horizontal and vertical directions,

respectively.

The pressure is separated into surface, hydrostatic, and non-hydrostatic parts:

p(x, y, z) = p
s

(x, y) + p
hyd

(x, y, z) + p
nh

(x, y, z) (2.4)

The Boussinesq approximation is applied which neglects density fluctuations in inertial

terms, and the density is split up into a reference density ⇢
c

and a deviation ⇢0:

⇢ = ⇢
c

+ ⇢0 (2.5)

⇢0 = ⇢(✓, S, p0(z))� ⇢
c

(2.6)

such that ⇢
c

is independent of depth, while ⇢0 depends on depth. ✓ denotes potential

temperature, S denotes salinity.
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What follows from this are the Boussinesq equations where the density only varies in

terms multiplied with the gravitational acceleration g, hence simplifying the calculations:

@ ~v
h

@t
+ (~v ·r) ~v

h

+ fk̂ ⇥ ~v
h

+
1

⇢
c

r
h

p = ~F
h

(2.7)

@w

@t
+ (~v ·r)w +

g⇢0

⇢
c

+
1

⇢
c

@p

@z
= F

v

(2.8)

r
h

· ~v
h

+
@w

@z
= 0 (continuity) (2.9)

⇢0 = ⇢(✓, S, p0(z))� ⇢
c

(2.10)

@✓

@t
+ (~v ·r)✓ = Q

✓

(2.11)

@S

@t
+ (~v ·r)S = Q

S

(2.12)

where Q
✓

and Q
S

are forcing and dissipation terms for potential temperature and salinity,

g is the gravitational acceleration, k̂ the unit vector in the vertical, and f = 2⌦ sin� with

latitude � is the Coriolis parameter.

2.2 Boundary Conditions

At solid boundaries the condition is

~v · ~n = 0 (2.13)

where ~n is a vector normal to the boundary. This applies to the bottom and the sides of

the ocean, while the ocean surface is a free surface, so

ż = w =
@z

@t
=

@⌘

@t
(2.14)

at z = z0+ ⌘ = ⌘, where z0 is the position at rest (set to zero) and ⌘ the deviation caused

by motion (sea surface elevation).

This study uses the no-slip condition on solid boundaries, while at the sides periodic

boundary conditions are applied.

2.3 Wind Stress

The most important boundary condition at the sea surface in this model is the wind

forcing. The action of the wind on the ocean is described by the wind stress ~⌧
w

exerted on

the surface. The relationship between the wind velocity and the resulting wind stress is

not straightforward and depends on a large number of factors (wind speed, wind direction,

Page 6 of 42



Wind-driven stirring in the Arctic Ocean Matthias Aengenheyster

surface roughness, air pressure, waves etc.). Here always the following empirical formula

will be used (Pedlosky, 1987, p. 263):

~⌧
w

= ⇢
a

C
D

~v
w

|~v
w

| (2.15)

where ⇢
a

is the density of air and ~v
w

the wind velocity. All other influences have been

moved into the drag coe�cient C
D

. C
D

can can take quite di↵erent forms. It may be

assumed to be a constant or can itself depend on the wind. For instance, (Proshutinsky

and Johnson, 1997) use the expression:

C
D

= (1.1 + 0.04|~v|)⇥ 10�3 (2.16)

2.4 Transfer of Wind Stress into the Ocean

The wind transfers momentum to the sea surface via the wind stress. The shear stress
~F
shear

(one of the terms contained in the ~F in equations (2.7) to (2.12)) is then respon-

sible for the downward momentum transport. It corresponds to the vertical part of the

divergence of the stress tensor and can be expressed (Stewart, 2008, chap. 11.1) as

~F
shear

=
1

⇢
c

@

@z

✓
A

z

@~v

@z

◆
=

@

@z
~⌧ (2.17)

where A
z

is the vertical eddy viscosity.

Integrating this over the uppermost cell in the ocean (z 2 [��z, 0]) yields

1

�z

0Z

��z

~F
shear

dz =
1

⇢
c

�z

0Z

��z

@

@z

✓
A

z

@~v

@z

◆
dz (2.18)

=
1

⇢
c

�z


A

z

@~v

@z

�

z=��z

(2.19)

=
1

⇢
c

�z

✓
~⌧
w

�A
z

@~v

@z
|
z=��z

◆
(2.20)

So it follows that
✓
A

z

@~v

@z

◆

z=0

= ~⌧(z = 0) = ~⌧
w

(2.21)

So one can see the wind stress as a boundary condition of the viscosity operator at z = 0.

Via the wind stress momentum enters the uppermost cell and then spreads vertically.

In a laminar flow the eddy viscosity A simply represents the molecular viscosity ⌫

(⇡ 10�6m2 s�1 for seawater). However, the ocean is often turbulent, leading to much

more e↵ective momentum transport.
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2.5 Mixing

Turbulence e↵ectively creates motion at various di↵erent length scales. Usually the energy

is put into the system at rather large scales (the wind forcing, for instance) and then trans-

ferred to smaller scales (”Energy cascade”) until it is finally dissipated at a viscous scale

(Adcroft et al., 2013, p. 89). This dissipation scale is called the Kolmogorov dissipation

scale

l
k

= ⌫3/4✏�1/4 = (⌫3l0/ṽ0
3)1/4 (2.22)

where

✏ ⇠ v30
l0

= ⌫D2 (2.23)

is the fraction of the kinetic energy per unit mass that is transferred to smaller scales

and finally dissipated at the viscous scale. Here l0 and ṽ0 are the length and velocity

fluctuation scale of the energy production scale, ⌫ is the kinematic viscosity and D is the

deformation rate at the viscous scale. At steady state ✏ is assumed to be equal for all

scales between the production scale and the dissipation scale (Manneville, 2004, p. 273).

One possibility to deal with turbulence computationally is to scale the simulation such

that all relevant scales down to the dissipation scale are resolved (Direct Numerical Simu-

lation (DNS)) (Adcroft et al., 2013, p. 89). However, this scale is often very small (order

of cm) so that DNS of larger systems are not feasible. Hence often, also in this work, an

eddy viscosity A � ⌫ is introduced which parametrizes the sub-grid-scale (sgs) momentum

transport. Consequently it can be much larger than the molecular viscosity, depending on

the resolved scales (Pond and Pickard, 1983).

2.6 Smagorinsky Viscosity

The code supports several parametrizations of turbulent viscosity, the standard ones being

Laplacian and biharmonic viscosities. In those cases the turbulent eddy viscosity depends

on the Laplacian and twice applied Laplacian of velocity, respectively.

However, these parametrizations tend to overestimate the dissipation of energy at larger

scales while preferentially energy should be dissipated predominantly at very small scales

(section 2.5). So Smagorinsky (1963; 1993) presented an eddy viscosity scheme in which

the viscosity would be proportional to the square of the grid spacing L2 times the horizontal

deformation rate D̄. Following the presentation of the energy cascade before, Smagorinsky

assumed the energy dissipation rate to be proportional to the Smagorinsky viscosity and

the square of the deformation rate D̄ at the scale set by the viscosity:

✏ = ⌫D2 = A
Smag

D̄2 (2.24)
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Compare equation 2.23. D is the deformation rate at the viscous scale. Using the expres-

sion for the Kolmogorov length (equation 2.22) one arrives at

A
h,Smag

/ L2|D̄| (2.25)

where L is the grid spacing, so

A
h,Smag

=

✓
C2

⇡

◆2

L2|D̄|

=

✓
C2

⇡

◆2

L2

s✓
@u

@x
� @v

@y

◆2

+

✓
@u

@y
+

@v

@x

◆2

(2.26)

Here
�
C2
⇡

�2
is the proportionality constant. In the model C2 is a variable set by the user

to scale the magnitude of the Smagorinsky viscosity. In the present study it was set equal

to 3.

A similar expression for the vertical Smagorinsky viscosity can be obtained via the

vertical deformation rate D̄
v

:

A
z,Smag

=

✓
C2

⇡

◆2

H2|D̄
v

|

=

✓
C2

⇡

◆2

H2

s✓
@u

@z

◆2

+

✓
@v

@z

◆2

(2.27)

with the vertical grid spacing H.

Even though being a rather simple eddy viscosity scheme, the Smagorinksy viscosity is

often used in LES simulations as a model for the eddy viscosity. Note however that this

implementation of the Smagorinsky viscosity is still Laplacian (it depends on the square of

the grid spacing). It has been proposed to introduce a biharmonic Smagorinsky viscosity

which would combine the physical validity of the Smagorinsky approach with the high

scale selectivity of the biharmonic operator (Gri�es and Hallberg, 2000). As of now this

has only been implemented in the MITgcm model for the horizontal viscosity.

2.7 Convective and Kelvin-Helmholtz Instability, Mixed Layer

There are di↵erent kinds of instabilities that can lead to turbulence and mixing. The most

important ones this study are the convective and Kelvin-Helmholtz (KH) instabilities.

Convective instabilities can be generated by heat flux out of the ocean. The heat loss

cools the water, leading to density increase and buoyancy loss (decrease of stability).

The KH-instability, on the other hand, is caused by a velocity shear between two layers of

fluid. Most clearly this occurs at the sea surface where the wind is significantly faster than

the surface currents. The resulting velocity shear leads to instability and causes waves.

This process occurs as well in the interior of the ocean, where it leads to internal waves

and vertical mixing. An initial disturbance is exponentially amplified by concentration
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of vorticity and induced vertical motion (Smyth and Moum, 2012). However, the KH-

instability can only grow if the stability is below a critical value since the stratification of

the water column acts against the instability. This is usually given by Ri < Ricrit = 0.25

(Miles, 1961) where Ri is the gradient Richardson number.

The Richardson number shows the strength of the stratification compared to the kinetic

energy and is given by

Ri =
N2

⇣
@|~v|
@z

⌘2 = �g

⇢

@⇢

@z�
@u

@z

�2
+
�
@v

@z

�2 (2.28)

where N is the Brunt-Väisälä frequency.

The mixed layer is then the layer in which there is su�cient mixing (by turbulence)

to homogenize potential temperature, salinity and potential density. It depends on the

surface fluxes (heat, wind stress, fresh water) and on the stability of the water column.

It is usually characterized by a rather sharp edge at the lower end, where there is steep

increase in density with depth associated with a thermocline and/or halocline and a fast

drop in velocity (Pond and Pickard, 1983, chap. 10.5).

2.8 Ekman Layer

For a layer close to the ocean surface the geostrophic approximation breaks down and a

balance forms between Coriolis, pressures gradient and turbulent drag forces. The Navier-

Stokes equations reduce to

(f · k̂)⇥ ~v = � 1

⇢
c

rp+
1

⇢
c

@~⌧

@z
(2.29)

with f and k̂ as defined before. One can now split the velocity into a geostrophic part u
G

balanced by the pressure gradient and an Ekman velocity u
E

balanced by the turbulent

stresses:

(f · k̂)⇥ ~v
E

=
1

⇢
c

@~⌧

@z
(2.30)

Solving this equation yields the so-called ”Ekman Spiral”: the current is at an angle of

45� to the right of the wind at the surface and rotates clockwise with increasing depth (on

the northern hemisphere).

Then, the wind stress induces a vertical velocity

w
E

= �r⇥ ~⌧
w

⇢
c

f
(2.31)

At the surface w = 0, so w
E

= �w
G

, where w
G

is the geostrophic vertical velocity. w
G

is constant with depth, while w
E

goes to zero at the bottom of the Ekman layer. Hence

from the bottom of the Ekman layer downward w is constant (until compensated by other

e↵ects). This shows that a cyclonic wind forcing leads to a positive vertical velocity (i.e.
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upwelling) in the center of the system. For the assessment of the importance of Ekman

layer and upwelling the Ekman number (giving the ratio of viscous to rotational e↵ects)

and the Rossby number (giving the ratio of inertial forces to Coriolis force) are useful:

Ek =
A

h

fL2
(2.32)

Ro =
U

fL
(2.33)

where A
h

, U , and L are typical scales of eddy viscosity, horizontal velocity and length,

respectively. An Ekman number close to unity and a small Rossby number correspond to

equation (2.30).

3 Methods

3.1 Model Setup

3.1.1 LES

For the present study several two- and three-dimensional runs are conducted. They take

place on a regular grid with dx = dy = dz = 10m with 512 cells in the x- and y-directions

and 100 cells in the vertical. For the two-dimensional runs the y-extension (north) is set to

1. The setup does not include a seafloor or coastlines in order to simulate an area of open

ocean far away from continental boundaries. The general setup follows the code found in

the verification experiment ”deep convection” and is modified as mentioned, including the

three-dimensional Smagorinsky viscosity. For the advection of temperature and salt the

MITgcm scheme 7 (OS7MP) is used, a seventh-order one-step method with monotonicity-

preserving limiter (Daru and Tenaud, 2004). The runs in series B are run for 24 h, with

the exception of run B5 which is also run for twice that time for comparison. The two

runs of series A each last 4 days.

3.1.2 Pan-Arctic Simulations

For the pan-arctic simulations an existing long term reanalysis simulation is used. It

simulates (hydrostatically) the ocean-sea ice dynamics in the whole Arctic ocean and the

North Atlantic down to around 50� N with a resolution of 0.25�. It uses a spherical

grid rotated such that the equator passes through the North Pole and the grid cells have

about equal x- and y-extension. In the vertical direction 33 levels of varying thickness

are used. Vertical mixing is parametrized through the KPP mixed layer model (Large,

McWilliams, and Doney, 1994). The forcing data is provided by reanalysis data from the

National Center for Atmospheric Research/National Centers for Environmental Prediction

(NCEP/CFSR) (Large and Yeager, 2009) while the initial data and the data at the open

boundaries is taken from the ”Polar science center Hydrographic Climatology” (PHC)
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(Steele, Morley, and Ermold, 2001). For more details of the setup refer to Castro-Morales

et al. (2014). For the purposes of the present study the setup is adapted slightly: to

investigate the e↵ects of a strong cyclone on a largely ice-free Arctic, the sea ice module

is disabled (equivalent to removing all the sea ice) and the wind forcing is changed to

include the artificial cyclone (while keeping the background wind forcing). The simulation

is started in August 2010 and run for one month.

3.2 Initial Data

89.5 N 354.5E 80.5N 120.5E
85.5N 120.5E 82.5N 240.5E
85.5N 240.5E 88.5N 300.5E
85.5N 60.5E 85.5N 0.5E

Table 3.1: Points used for averaging

The potential temperature and salinity data used in this study is taken as well from

the PHC, version 3.0 (Steele, Morley, and Ermold, 2001). For series A and the initial

two-dimensional simulations ten points in the central Arctic are selected, the two most

extreme ones discarded and the average profile obtained from the remaining ones (table

3.1). Small random fluctuations are introduced into the data (0.5 %). For the simulations

of series B, an averaged profile over the Arctic Ocean is used. Here potential temperature

and salinity are averaged over the region north of 70� N and between 100� to 270� E. This

includes the area covered by the ”Great Arctic Cyclone” at its peak intensity on August

6th, 2012 (compare figure 1.1).

(a) Salinity S in g kg�1 (b) ✓ in �C

Figure 3.1: Initial data for series A (Points) and series B (Area)
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3.3 Forcing Data

For the wind forcing several di↵erent magnitudes and patterns are used. For the two-

dimensional simulations various di↵erent patterns are tested to see which ones generate

larger amounts of turbulence and mixing (table 3.2).

1st half 2nd half
1 ⌧

x

= ⌧0 ⌧
x

= �⌧0
⌧
y

= 0 ⌧
y

= 0
2 ⌧

x

= ⌧0 ⌧
y

= ⌧0
3 ⌧

x

= ⌧0 ⌧
y

= �⌧0
4 ⌧

y

= ⌧0 ⌧
y

= �⌧0
5 ⌧

x

= ⌧0 sinx ⌧
x

= ⌧0 sinx
6 ⌧

y

= ⌧0 sinx ⌧
y

= ⌧0 sinx
7 ⌧

x

= ⌧0 sinx ⌧
y

= �u0 sin
8 ⌧

x

= ⌧0 sinx ⌧
y

= ⌧0 sin
9 ⌧

x

= ⌧0 sinx sin
4⇡t
t

tot

⌧
y

= �⌧0 sin sin
4⇡t
t

tot

Table 3.2: Wind stress configurations for 2-dimensional runs

In the table sinx denotes a sin wave overlaid with smaller modulation with

sinx = sin

✓
2⇡x

L/2

◆
·
✓
1 + 0.3 sin

✓
2⇡x

L/12

◆◆
(3.1)

The three-dimensional simulations of series A use a vortex-like wind stress forcing to

simulate a small low-pressure system over the area (run A1, figure 3.2a) as well as a

converging wind stress forcing (run A2, figure 3.2b). The wind forcing in run A1 has an

average magnitude of h|~⌧ |i = 1.33 and in run A2 of h|~⌧ |i = 1.25. The vortex itself is

generated by letting both ⌧
x

and ⌧
y

follow a sine function with appropriate scaling (figure

3.2a). The average magnitude of the wind speed in these cases is to be of the order of

Beaufort 11 (|~v| u 30m s�1) to estimate the e↵ect of a quite strong storm. From this the

wind stress is calculated using equation (2.15). In this case the drag coe�cient C
D

is set

to the constant value of 1.2⇥ 10�3 for simplicity. Like in the initial data, some random

noise is included to account for variations in wind and to introduce some fluctuations to

start turbulence.

The wind forcing used in the later runs (series B and C) is calculated di↵erently. Here

a pressure field similar to the one shown in figure 1.1 is prescribed (essentially a gaussian

function) and the geostrophic wind is calculated:

⇢fv =
@p

@x
(3.2)

⇢fu = �@p

@y
(3.3)
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Number forcing factor |~v|
max

(m s�1) |~⌧ |
max

(Nm�2)
1 0.5 21.14 1.07
2 0.75 24.94 1.60
3 1 28.00 2.13
4 1.25 30.59 2.66
5 1.5 32.89 3.20
6 2.8 41.89 6.00

Table 3.3: Wind stress configurations for Series B

Number forcing factor |~v|
max

(m s�1) |~⌧ |
max

(Nm�2)
1 0.5 17.79 0.66
2 0.75 21.14 1.10
3 1 28.12 2.46
4 1.25 35.32 4.73
5 1.5 42.46 8.08

Table 3.4: Wind stress configurations for Series C

Therefore the wind forcing for series B and C have the same form. The forcing strength

is varied by introducing a forcing factor (see tables 3.3 and 3.4) that is applied to the

calculated wind velocities. In series C this wind is superimposed on the wind forcing of

the undisturbed simulation (using a gaussian weight function at the boundaries of the

forcing region) and then directly used as forcing data. This also implies that in series

C (while the location of the cyclone is fixed) the wind is only approximately constant in

the region of the cyclone and not constant at all elsewhere. In series B the wind stress is

calculated from the velocities using equations (2.15) and (2.16) and the model is forced

with the wind stress. In these runs there is only one vortex in the domain (unlike series

A) which has su�cient distance to the boundaries to mostly prevent interaction with the

’next’ vortex due to the periodic boundary conditions.

For some of the two-dimensional runs and all runs of series A and B a heat forcing

out of the ocean of Q
net

= 150Wm�2 is applied to account for latent heat flux due to

wind (Bentamy et al., 2003) and sensible heat flux due to temperature di↵erences. For

simplicity the flux is set to a constant value over the whole domain. In series C heat

forcing is provided by the NCAR/NCEP data like all other external forcings.
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(a) Cyclonic wind forcing for run A1 (b) Converging wind forcing for run A2

(c) Cyclonic wind forcing of the form of series
B and C

Figure 3.2: Wind forcings for the di↵erent series

4 Results and Discussion

Figure 4.1: Run 4: Potential Density over
Depth, horizontally averaged, after
24 hours

In the following section I will present and discuss

the results obtained from the simulations. The

important figures are included in the text, while

further figures can be found in the appendix.

4.1 LES

4.1.1 2D Runs

In the runs conducted as outlined in section 3.1 it

becomes clear that two-dimensional simulations,

with the provided setup, are not able to generate

enough turbulence for a su�ciently deep mixed

layer to form. Constant wind over the whole do-

main generates almost no relevant dynamics while

it is observed that strong spatial changes in the
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windfield (table 3.2) lead to more turbulence and mixing. After three days of simulation,

mixing reaches a maximum depth of 100m. The density profile is homogenized up to

⇡ 100m (figure 4.1), horizontal velocities decayed quickly at depths greater than 100m

(figure A.1). Note here that mixing is not equal over the domain, but turbulence, as

indicated by the Smagorinsky viscosity, is strongly concentrated at the discontinuities in

the surface currents (figure A.2) and continues to be confined to a small area over the

whole simulation time. Downwelling (i.e. negative w) and adjacent upwelling is equally

concentrated around the discontinuity. The surface current pattern which gives rise to

the discontinuity is not time-independent. While mostly following the wind forcing, there

are occasions of instabilities. No significant di↵erences are observed for time-dependent

forcing, and no di↵erence is found between small random fluctuations (run 3) and spatial

variation (run 7). Including heat forcing leads to lower surface temperatures and more

instable surface currents, but no significant di↵erences in the mixed layer depth.

4.1.2 Run A1

Figure 4.2: Run A: Surface currents in ms�1, t = 52 h

The wind forcing as shown in figure 3.2b leads to a cyclone in the center of the domain

and an anticyclone in the corner. The currents generally follow the wind forcing.

The highest current speeds appear at the closest distance between the centers of the

two systems (where the water masses influenced by both vortices move in the same di-

rection), while they are lowest close to the midpoints of the sides, where counterrotat-

ing vortices move in opposite directions (figure 4.2). In these regions convergence zones

form, showing very low horizontal velocities, but strongly negative vertical velocities up to

w = �0.21m s�1. These regions also feature the highest Smagorinsky viscosity (indicator

of turbulence) of A
smag

 2.0m2 s�1 (figure A.3).

This rhombus-structure is clearly unphysical. I believe that mainly the convergence

zones are the result of the wind forcing. Firstly, the two vortices are very close to each

other, in particular considering the already small domain. Hence clearly some strong
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(a) A
h,Smag

in m2 s�1, y = 500m (b) w in ms�1

Figure 4.3: Run A1, t = 62 h

interaction between them is expected. Secondly, the wind forcing is not really isotropic,

i.e. the forcing does not have equal strength at equal distance to the center of the vortex:

at the midpoint of the line connecting the vortex centers it is strongest, while at the

midpoints of the sides it is weakest. The convergence zones form around the latter points

due to the low wind forcing there and the strong currents (strong wind forcing along

the line connecting two midpoints) flowing towards these points from two sides. The

consequence is a strong discontinuity in the surface currents, and consequently (compare

section 4.1.1) strong turbulence and downwelling. In the other parts of the domain the

wind forcing and hence the surface currents are much more continuous and hence form

less turbulence.

A mixed layer with almost constant salinity S, potential temperature ✓ and potential

density �
✓

is established. It is deepening with time and reaches a depth of D
mix

u 100m

after four days. The deepening slows down over time, which makes sense given that the

mixing needs to work against a progressively stronger halo- and pycnocline. This is also

supported by a higher-than background Smagorinsky viscosity in this depth region (and

even slightly deeper) (figure 4.3a) and the fast decrease of the horizontal standard deviation

of several variables below 100m (figures A.4, A.5, A.6), indicating that the (new) halocline

does not reach a depth greater than ⇡ 125m even after four days of strong wind. Note

that the temporal change in the salinity profile is much stronger than in the temperature

profile because the halocline is positioned above the thermocline and hence more a↵ected

by the turbulence.

In the center of the cyclone a temperature and salinity maximum develops over time.

This suggest that upwelling should be present there since ✓ and S are both larger at

greater depths. This is predicted by Ekman theory (equation 2.31) but hardly observed

in the vertical velocity (figure 4.3b). This is probably due to the strong downwelling at

the convergence zones which is one order of magnitude higher than the predicted Ekman
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upwelling and probably disturbs the signal (e.g. by induced upwelling over large parts of

the domain to compensated for the downwelling).

From this it is concluded that the applied strong wind forcing does lead to consider-

able dynamics, turbulence and the establishment of a mixed layer which deepens over

time. However, the halocline is not broken and the mixed layer does not come close to

the temperature maximum at D ⇡ 400m. Furthermore, strong (and likely unphysical)

convergence zones are observed which strongly enhance the mixing.

4.1.3 Run A2

Run A2 is a good example of a KH-instability: The surface currents quickly orient to

the right of the wind stress forcing and form two counteraligned flow bands north and

south of the center (figure 4.4a). The flow velocities in these bands increase until a critical

threshold is reached and the pattern becomes unstable (KH instability). Then the straight

band in the center with very low velocities becomes wavy and suddenly collapses, forming

a counterclockwise rotating eddy (figure 4.4b). The eddy persists for a while and slowly

moves around the domain before it dissolves and the two-band structure is reestablished,

to be followed by yet another instability and an eddy.

Downwelling in this run (as seen by a negative vertical velocity) is mainly concentrated

along leading and trailing fronts of the eddies. Since the eddy rotates counterclockwise,

there is some upwelling in its center but much lower in magnitude. Therefore, ✓ and S

show a maximum in its center. As both increase below the surface, the maxima indicate

upwelling.

Also the developments in the mixed layer are quite di↵erent in this run. While in Run

A1 the Smagorinsky viscosity and the velocity in the upper layer increased with time

and penetrated deeper, this is not the case here and they actually decrease from an early

maximum (figure A.7). Also the increase in density and salinity in the surface layer and

the penetration depth is less (figure A.8).

(a) Surface currents in ms�1, t = 11 h (b) Surface currents in ms�1, t = 24 h

Figure 4.4: Run A2
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A possible explanation for this behavior is that the dynamics in this simulation are

strongly time dependent, since they depend on the formation and dissolution of the eddies.

Overall, the pattern is less constant over time. Therefore changes cannot simply penetrate

deeper and deeper.

4.1.4 Series B

In this series six runs are conducted as outlined in section 3.1 with the wind forcing varied

by a factor as shown in section 3.3. One explicit aim of these runs is to remove the

convergence zones observed in run A1.

One can see clearly that strong dynamics develop in the surface currents. In general the

currents are cyclonic, follow the wind forcing, and are strongest in areas of largest wind

forcing (figure 4.5d). However, occasionally, when the velocities have increased enough,

the currents break out of the cyclonic pattern and show quite di↵erent dynamics which

strongly vary with time (figure 4.5c). Then higher velocities are also observed further

away from the cyclone and may persist there for some time.

(a) Current after 10 hours in ms�1 (b) Current after 14 hours in ms�1

(c) Current after 19 hours in ms�1 (d) Current after 24 hours in ms�1

Figure 4.5: Run B3: Surface current development
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(a) Surface current in ms�1 (b) Vertical velocity in ms�1

Figure 4.6: Run B6: Surface current and vertical velocity at t = 14 h

This behavior appears independent of the strength of the wind forcing and is likely

an example of a KH-instability that occurs when the horizontal velocity shear becomes

too large (figure 4.5a). What varies with the wind are (besides the magnitude of the

velocities) the extend and timing of the fluctuations. For stronger forcing the currents

break out earlier and reach further to the edge of the domain, also ’spilling’ over the

boundary (due to the periodic boundary conditions).

However, these ’breakouts’ do not have a large e↵ect. In particular, no such persistent

convergence zones as in series A are observed in any of the runs of series B. Temporarily,

zones of large vertical velocity w do develop (figure 4.6), but they do not show an un-

physical rhombus structure but are rather a consequence of the temporal changes of the

cyclone and its interaction with the water masses outside its influence and are hence also

very time-dependent. Moreover, the magnitude of w in these regions is much weaker than

in run A1 (maximally w ⇡ �0.1m s�1 compared with w < �0.21m s�1 before).

Figure 4.7: Run B6: w in ms�1, t = 8 h

Initially, as the surface currents gain in strength,

there is Ekman upwelling in the center of the cy-

clone (figure 4.7) and downwelling along the outer

edge where the fast moving water masses of the cy-

clone encounter water masses at much lower veloc-

ity and the velocity shear is highest (figure 4.5a).

As the cyclone becomes more dynamic, up-

welling continues to be mainly concentrated at

the center (while also showing some downwelling

there, probably due to turbulent mixing). The

downwelling zones tend follow the leading and

trailing ’arms’ of the vortex, where a fast moving

water mass collides with a much slower one (fig-

ure 4.6). These arms can be very open or almost completely encircle the cyclone. During
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(a) ✓ in �C (b) ✓ in �C

Figure 4.8: Run B3: ✓ in x� y and x� z plane at t = 24 h

strong outbreaks the pattern of the vertical velocity is much less clear and the upwelling

in the center mostly breaks down. The magnitude of up- and downwelling increases with

forcing strength (�0.056 < w < 0.008 for run A1, �0.09 < w < 0.03 for run A6).

From the resolution of the simulation and the observed quantities one can deduce that

both the Ekman and Rossby number of the flow are large (equations 2.32, 2.33). Hence,

while rotational e↵ects are present (as shown by the upwelling in the center of the cyclone),

inertial and viscous e↵ects are more important. This is seen in the surface currents which

mainly follow the wind forcing. At the beginning of the run the temperature drops very

quickly in the center of the vortex from where it spreads outside, lowering the surface

temperature in the whole domain. This can be explained by the vertical profile which

shows a temperature minimum at very low depth (D < 50m, figure 3.1b). The vortex

results in upwelling via Ekman (2.31) in the center (figure A.9) and hence brings this

colder water to the surface. The currents then distribute it and additionally the heat flux

cools the surface. The upwelling continues which at later times leads to a temperature

Figure 4.9: Run B3: A
h,Smag

in m2 s�1 at y = 2560m
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maximum at the center since now warmer water masses are upwelled (figure 4.8) while the

overall temperature decreases due to the heat forcing.

However, it is clearly visible that both this upwelling and the turbulence-induced mix-

ing (figure 4.9) which primarily acts in the zones of strong wind are unable to change

the temperature profile up to a depth greater than 100m (figure A.10). Mostly these

changes are even restricted to layers above 50m (figure 4.9). The salinity behaves in a

similar way although showing more variation. This, again, is due to the position of the

halocline above the thermocline. The average salinity at the surface increases over time

due to the mixing (which reduces the salinity at depths around 50m). However, there is

virtually no change below 100m even for very strong wind forcing (run B6) (figure A.11).

Figure 4.10: Runs B: D
mix

in m at t= 24 h

Longer simulation times here have very a

similar e↵ect as stronger wind, however,

equally the e↵ect is too small. Using the

MITgcm diagnostics package, the mixed

layer depth can directly be diagnosed by

the model. It returns the depth level up

to which �
✓

(z) � �
✓,surf

+ ��
✓

, where

�
✓

is the potential temperature (Kara,

Rochford, and Hurlburt, 2000). Figure

4.11c shows the resulting plot for run B5.

One can clearly see that both aver-

age and maximal mixed layer depth D
mix

increase with wind forcing (figure 4.10.

However, they do so rather slowly. A

factor of 6 in the wind forcing (which de-

pends quadratically on the wind speed) causes an average deepening by only a factor of

2.

It is important to note that the average mixed layer likely underestimates it, since it

averages over the whole domain of which large areas are not (strongly) a↵ected by the

cyclone. However, the tendency is clear and even the maximal mixed layer depth only

increases slowly.

Therefore, it is found that the applied wind forcing is not able to generate a su�ciently

deep mixed layer. This conclusion can be drawn even when the simulations lasted only

for 24 h since the extension of run B5 for another 24 h shows that the e↵ect is similar

to an increased wind forcing like in run B6. Also, the development of the mixed layer

should slow down with time (compare runs A). The computational resources did not allow

a continuation of all runs B for such a long time but the conclusion is una↵ected by this.

The depth of the mixed layer itself closely follows the currents. It is particularly

large in areas of strong convergent currents (figure 4.11). This result is confirmed by
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the slices through the center of the domain (figure 4.12) that clearly show the vortex.

For the upper ⇡ 50m the strong uplifting of the isopycnals is obvious. The same

e↵ect can be seen for the temperature and salinity. The mixed layer depth is usu-

ally maximal at the outside of the vortex, where the turbulence (A
h,Smag

) is highest.

(a) current in ms�1

(b) r · ~v in ms�2

(c) D
mix

m

Figure 4.11: Run B5: t = 20 h

In these regions one observes isopycnals perpen-

dicular to the surface until a depth D ⇡ 50m

(figure 4.12). Note that the influence of the cy-

clone reaches deeper (up to ⇡ 60 to 100 m) than

the mixed layer through the Ekman-induced up-

welling in the center (uplifting of isolines). How-

ever, the center of the cyclone is not diagnosed as

a deep mixed layer since the density at the surface

is still quite di↵erent from the one at greater depth

and the isopycnals are compressed near the surface.

The limit of the influence of the cyclone can be seen

from the standard deviation of the salinity (figure

A.12) which shows a clear cut at D ⇡ 100m. This

point also deepens with time as expected, and a

similar behavior can be observed for A
h,Smag

, �
✓

and the horizontal velocities.

From the plots of horizontal averages one can as

well observe the ongoing mixing through the ho-

mogenization of the ✓- and S-profiles and the in-

crease in A
smag

over time. The strong e↵ect of the

wind forcing on the observed turbulence can also

be seen (compare figure A.13).

Figure 4.12: Run B6: �
✓

in kgm�3
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(a) Run B3: D
mix

vs A
h,Smag

, line gives the lin-

ear regression

(b) Run B3: Dmix

vs A
h,Smag

, r ·~v is colorcoded

(c) Run B3: A
h,Smag

vs r · ~v

Figure 4.13: Horizontal average of ✓ in �C

In order to investigate which factors are re-

sponsible for a deeper or shallower mixed layer, I

made several attempts to find correlations be-

tween D
mix

and other quantities (such as the

current speed |~v|, the divergence r · ~v, the

wind stress itself or the Smagorinsky viscosity

A
h,Smag

). However, the results are inconclu-

sive. For instance, Figure 4.13a shows the cor-

relation between A
h,Smag

and D
mix

and while

some positive correlation seems to exist (and also

seems plausible), the correlation coe�cient of

R2 = 0.46 is rather small. Figure 4.13b shows a

similar plot, but only taking points with positive

wind stress curl (i.e. rather close to the center

of the cyclone) and additionally colorcoding the

divergence of the surface current. Again, there

appears to be a positive correlation and addi-

tionally larger values of r ·~v seem to correspond

to larger D
mix

but this is also not a very clear

result from a very limited region of the domain.

Another sensible, but weak correlation seems to

exist between r · ~v and A
h,Smag

(figure 4.13c)

which suggests that convergence leads to stronger

turbulence. However, all of the mentioned exam-

ples are not very solid. This could be due to the

complexity of the model and/or nonlinear rela-

tionships between the quantities.
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4.2 Pan-Arctic Simulations (Series C)

(a) Current in ms�1 (b) Current in ms�1

Figure 4.14: Run C3: Current at z = 0m and z = 35m

The currents in series C initially orient at an angle of ⇡ 45� to the wind, towards later

times they tend to align with the wind, at least in the outer regions of the cyclone. In the

interior the currents stay at around 45�. The reason for this e↵ect is the Ekman transport

which, as described in section 2.8, causes surface currents to flow at angle for 45� to the

right of the wind. This is confirmed by the currents at z < 0 which turn to the right with

depth (”Ekman spiral”) as expected (figure 4.14).

One can see that series C is, in contrast to series B, much more dominated by rotation.

This expresses itself in an Ekman number of about unity (the basis for the Ekman balance

to hold) and a small Rossby number (of ⇡ 0.25), showing that the Coriolis force is much

larger than inertial e↵ects. Hence the currents follow more the direction predicted by the

Ekman transport (a rotational e↵ect important at large to planetary scales) than aligning

to the wind forcing as they did in series B.

(a) Run C1 (b) Run C5

Figure 4.15: Current speed in ms�1, t = 29 days
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(a) ✓ in �C, t = 0 days (b) ✓ in �C, t = 29 days

Figure 4.16: Run C3: Sea surface temperature

For weak wind forcings (run C1) the current speed is maximal in regions of highest

wind forcing (figure 4.15a) while for strong forcings (run C5) the currents are much more

influenced by topography. In particular, the current maxima are positioned at the shelf

edge of the Arctic Basin. Instead of entering the shallower shelf sea, they build up flowing

parallel to it, creating a strong current that flows counterclockwise along the edge of

the basin (figure 4.15b). This current reaches much deeper than the surface currents

in other regions and reaches still velocities |v| > 1.5m s�1 at z = �100m. It appears

in all runs (again, note the highly unrealistic scenario of persistent strong wind forcing)

but strongly increases with forcing. It clearly heavily influences the dynamics in this

run, through the transport of momentum and tracers both to deeper levels and to other

regions of the basin. Hence the results are to be taken carefully. In general, one can note

as well that the magnitude of the diverging current decreases over the simulation time.

Figure 4.17: Run C5: Surface height anomaly ⌘
in m

The most probable reason for this is the strong sea

surface depression that develops under the cyclone

(figure 4.17) such that the pressure gradient force

starts balancing the Ekman force. This is likely

also the reason for the alignment of the currents

with the wind at the outskirts of the cyclone.

Due to the removal of the sea ice, the ocean

surface is strongly warmed during the runs. Since

a temperature increase reduces the density, this

warming tends to increase the stability of the wa-

ter column. Hence it acts against the wind-driven

mixing. The area under the influence of the cy-

clone stays relatively cool, though not as cold as

initially. It stays colder where the mixed layer is
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(a) �
✓

in kgm�3, t = 0 days (b) �
✓

in kgm�3, t = 29 days

Figure 4.18: Run C3: Sea surface density

deeper, since here the mixing can distribute the heat more e↵ectively. In the center of the

cyclone, where winds are weaker, the temperatures are higher (figure 4.16).

The ocean under the cyclone also strongly increases in salinity. This is mainly due

to upwelling and mixing which brings more saline waters to the surface. Therefore, the

density at the surface increases significantly (figure 4.18), strongly decreasing the vertical

density gradient and hence stability. This salinity mixing probably plays an important role

in the establishment of such a deep mixed layer. The density increases to a significantly

higher value than in series B (�
✓,max

⇡ 27.3 kgm�3 in contrast to 26.1 kgm�3).

The vertical profile of the relevant quantities shows strong mixing and upwelling. At

(x, y) = (54, 41), a point located in the outer areas of the cyclone with strong wind

forcing, the profiles of temperature and salinity are almost completely homogenized over

the upper 1000m for the strongest wind forcing (run C5). Even the thermocline is almost

removed due to the very strong Ekman upwelling (the temperature maximum is shifted

upwards by more than 200m) and the potential density is almost constant (figure A.14).

However, note that S, ✓, and �
✓

all show a ’step’, i.e. a strong gradient, at a very shallow

depth (< 100m). This step in the profile is interpreted as an e↵ect of the KPP mixed

layer model: due to the large scale of the simulation it can be safely assumed that no

turbulence is explicitly resolved. KPP parametrizes mixing in some boundary layer with

depth h. Hence the layer above the step is homogenized by mixing, while below only

Ekman upwelling is takes place, and KPP suddenly starts acting at the boundary.

In series B it was found that while mixing started from the surface and Ek-

man upwelling was present, no sharp step was formed (parameterizing turbulence in

the same way is not possible due to the very di↵erent size). However, the mixed

layer is much thinner in series B than in series C, hence KPP here appears to be

a more e↵ective method than the Smagorinsky viscosity to cause vertical mixing.
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(a) r⇥ ⌧
w

(b) w (m s�1)

Figure 4.19: Run C3: Wind stress curl and vertical velocity, t = 3 days

Figure 4.20: Run C3: ✓ at x = 1500 km, t = 3
days

The wind forcing in this runs has two main ef-

fects: 1) It causes strong Ekman upwelling which

is proportional to the curl of the wind stress

(equation 2.30, figure 4.19a). Hence we expect a

positive vertical velocity at around y = 1300 km

and y = 1700 km (where x = 1500 km, i.e. along

the line x = const. through the center of the cy-

clone). This is what we find from the plot of

the vertical velocity (figure 4.19b), and at these

points we also observe strong uplifting of the

isotherms while they stay at their initial posi-

tion both in the center and outside of the cy-

clone (figure 4.20). Note that there is no signif-

icant upwelling exactly at the center since here (by construction of the windfield) the

wind stress is zero. 2) It results in a mixed layer caused by the strong wind stress

and parametrized by the KPP model. In this scheme the mixing depends (among

other factors) on the wind stress at the surface, hence we expect the deepest mixed

layer in the regions of strongest wind stress and fastest surface currents. Both is ap-

proximately true. The deepest mixed layer is indeed in the outskirts of the cyclone,

however it is further outside than the maximum surface current speed (figure 4.24).

Probably the mixed layer also depends on the divergence of the current (compare e.g. Run

A1) and indeed the mixed layer is largest where the divergence is negative (i.e. convergence

takes place). Note that the mixed layer is also deepest in areas of negative windstress curl

(figure 4.19a).
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(a) Runs C: D
mix

(m), t = 1 day (b) Runs C: D
mix

(m), t = 29 days

Figure 4.21: Runs C: Mixing depth as function of wind stress

Figure 4.22: Run C3: D
mix

(m) as function of time

One finds, as expected, that the mixed

layer depth deepens over time (figure 4.22).

The increase especially in the average

mixed layer is rather smooth and approx-

imately linear. Note that even for one

month of integration, the average mixed

layer does not reach the thermocline (it

might reach it in regions of higher than

average mixing, combined with strong Ek-

man upwelling). The mixed layer depth

also increases with wind stress (figure

4.21b). The relationship is clearly non-

linear, in particular one observes a level-

ing for large wind stresses. However, these

stresses correspond already correspond to

wind speeds v
w

> 40m s�1. In the typical

range of stresses (⌧
w

< 3Nm�2) the relationship is more linear. The dependence on the

stress is about the same also for short integration times of only one day (figure 4.21a).

These e↵ects can be explained as follows: In areas of negative windstress curl the Ekman

downwelling stretches the isopycnals close to the surface, hence already creating a more

homogenous surface layer. This e↵ect is reinforced by the convergence of the surface

currents. The fast currents and relatively low stratification activate mixing through the

KPP model which then causes an even deeper homogeneous layer, which is recognized as

a mixed layer by the MITgcm diagnostic. Close to the center of the cyclone the e↵ect is

reversed: Ekman upwelling compresses the isopycnals close to the surface while divergence

of the surface currents adds to the upwelling. Additionally, the wind speeds (and hence,

surface current speeds) are lower. Hence the mixed layer generated by KPP mixing is much
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shallower. In the center of the cyclone the wind is zero by construction of the wind forcing

such that no mixing is initialized. The upwelling in neighboring regions also slightly shifts

the isolines upwards here, but the warm water at the surface prevents a mixed layer to

form.

Figure 4.23: Run C3: Vertical velocity profile
for various points, t = 29 days

The Ekman depth is defined as the depth at

which turbulent fluxes go to zero, and hence also

the Ekman velocity w
E

. The geostrophic veloc-

ity w
G

however, is still present and constant if

not acted against by other processes (section 2.8).

Hence the boundary of the Ekman layer can be

found by a plot of the vertical velocity over depth.

In figure (4.23) we see that in this simulation the

Ekman depth can be concluded to range between

50m to 100m.

(a) ⌧
w

(Nm�2), t = 0 days (b) |~v| (m s�1), t = 9 days

(c) r · ~v (m s�2), t = 9 days (d) D
mix

(m), t = 29 days

Figure 4.24: Run C3: Mixing depth
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5 Conclusion

As mentioned in the introduction, the conducted simulations investigated whether it is

possible to disturb the halocline and mix thermocline water masses to the surface by

supplying (cyclonic) strong wind stress.

It has been shown that both LES and pan-Arctic simulations generate significant dy-

namics when forced with the described wind forcing. Ekman transport and upwelling,

wind-driven currents and the establishment of a time- and forcing-dependent mixed layer

were observed. The observations agree with expectations with regard to the di↵erent

size and setup of the simulations. For instance, it was shown that the dynamics in the

pan-Arctic simulations are much more dominated by rotational e↵ects such as Ekman

transport and upwelling than in the LES runs, as expected from the di↵erent domain sizes

and resolutions, and hence e.g. di↵erent Ekman numbers. On the other hand, inertial

and viscous e↵ects were much more important in the LES runs. Note that the issue of

unrealistic current patterns, including the convergence zones, as observed in series A was

successfully resolved by applying a di↵erent wind forcing (series B).

The mixed layer depth was shown to increase as a function of the applied wind stress and

time, showing a nonlinear dependence especially for large ~⌧
w

. This finding is consistent

over all runs of both types of simulations that also agree in the approximate magnitudes.

However, from the results it can be concluded that in neither simulation the mixed layer

was deep enough to reach the temperature maximum at ⇡ 300 to 400 m. This is even

true for extremely strong forcing over one month of integration such as in run C5.

The overall structure of the water column is only a↵ected at the surface and in a limited

region. Only for unrealistically long simulation times a change below 100 � 150 m is

observed (in those cases primarily via Ekman upwelling). Both halocline and thermocline

stay largely intact and the sea surface is not warmed, but cooled via heat flux out of the

ocean. After one day, the mixed layer reaches maximal depths of 55m (series B) and 70m

(series C) for very strong winds (41.89m s�1 and 42.46m s�1, respectively), while for more

realistic speeds around 28m s�1 the mixed layer reaches up to 45m (series B) and 58m

(series C).

Moreover, the imposed cyclone does not lead to a warming of the sea surface. In the

LES runs, upwelling did cause a temperature maximum in the center, however, it was both

of low magnitude and contrasted with a cooling over most of the domain caused by the

heat flux. In the pan-Arctic simulations, the sea surface temperature strongly increased

due to the removal of the sea ice, but showed the smallest increase in areas under the

influence of the cyclone (due to latent heat flux and distribution through mixing). Hence

the cyclone can be concluded to actually have a cooling e↵ect in this situation.

Hence the conclusion of this thesis is that even a very strong storm in a largely ice-free

Arctic is unlikely to have drastic e↵ects on the water column structure as we find it today.
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In particular, it is unlikely to generate su�cient mixing to bring the warm water at ⇡ 300

to 400 m to the surface.

While it was found that the mixed layer deepens with increasing wind, the question how

the it depends on flow parameters such as current speed, divergence or turbulent viscosity

has not yet been fully answers. Attempts were made in this regard, but the results are

not yet very conclusive (figure 4.13). Further parameter studies could be conducted along

these lines to shed more light on the issue.

Future studies could also investigate further how the water column structure might

change in an ice-free Arctic ocean. Already the strong and fast temperature increase

caused by the sea ice removal shows that such a situation would profoundly change the

picture. Removing the sea ice will bring the sea surface into much closer contact with the

atmosphere, and this could, on the long run, well have consequences for the water column

and the dynamics in the Arctic ocean as a whole. Initially, as shown here, the increased

sea surface temperature increases stratification by lowering the surface density. However,

it is also possible that the increased temperature gives rise to even stronger storms which

in turn could strongly a↵ect the stability. Moreover, the sea ice also plays an important

role for the salinity at the sea surface. Its removal could potentially increase the surface

salinity, for instance through higher evaporation rates or through deeper mixing in an

exposed upper ocean. Many other oceanic and atmospheric e↵ects also play a role, such

as the decrease in albedo or possible changes to the large-scale ocean and atmospheric

circulation.

So, while this thesis suggest that the water column is very stable to perturbations,

depending on which processes and feedbacks turn out to be the dominant ones over the

long run, an ice-free Arctic Ocean could have either higher or lower stability. Future

studies could investigate this further. An interesting example would be to run an ice-free

scenario for a very long time to find out if just the removal is su�cient to significantly

change the profile. Also, would this removal have other, long term or long range e↵ects,

such as a change in deepwater formation or ocean currents? Another possibility would be

to do similar experiments as in this study with a coupled ocean-atmosphere model. This

could well have quite di↵erent e↵ects by strongly changing the albedo and enabling much

stronger ocean-atmosphere interactions and feedbacks.
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A Appendix

A.1 LES

A.1.1 2D Runs

Figure A.1: Run 4: Zonal Velocity, horizontally averaged, after 24 hours

Figure A.2: Run 1: Smagorinsky viscosity after 24 hours
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A.1.2 Series A

Figure A.3: Run A1: A
h,Smag

in m2 s�1, t = 52 h

Figure A.4: Run A1: Horizontal standard deviation of zonal velocity

Figure A.5: Run A1: Horizontal standard deviation of Smagorinsky viscosity
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Figure A.6: Run A1: Horizontal standard deviation of Salinity

Figure A.7: Run A2: Smagorinsky Viscosity, horizontally averaged

Figure A.8: Run A2: Potential Density, horizontally averaged
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A.1.3 Series B

Figure A.9: Run B3: Temperature �C at y = 2560m

(a) Run B3 (b) Run B6

Figure A.10: Horizontal average of ✓ in �C

Figure A.11: Run B6: Horizontal average of S in g kg�1
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Figure A.12: Run B6: Standard deviation of salinity �
S

in g kg�1

(a) Run B1: S in g kg�1 (b) Run B1: A
h,smag

in m2 s�1

(c) Run B6: S in g kg�1 (d) Run B6: A
h,smag

in m2 s�1

Figure A.13: Horizontal averages for runs B1 and B6
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A.2 Pan-Arctic Simulations (Series C)

(a) ✓ in �C, t = 0 days (b) �
✓

in kgm�3, t = 0 days

(c) ✓ in �C, t = 29 days (d) �
✓

in kgm�3, t = 0 days

Figure A.14: Run C5: ✓- and �
✓

-profile at (x,y) = (54,41)
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