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Global and regional sea level change during the 20th century
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Abstract Sea level variations prior to the launch of satellite altimeters are estimated by analyzing historic
tide gauge records. Recently, a number of groups have reconstructed sea level by applying EOF techniques
to fill missing observations. We complement this study with alternative methods. In a first step gaps in 178
records of sea level change are filled using the pattern recognition capabilities of artificial neural networks.
Afterward satellite altimetry is used to extrapolate local sea level change to global fields. Patterns of sea
level change are compared to prior studies. Global mean sea level change since 1900 is found to be 1:776

0:38 mm yr21 on average. Local trends are essentially positive with the highest values found in the western
tropical Pacific and in the Indian Ocean east of Madagascar where it reaches about 16 mm yr21. Regions
with negative trends are spotty with a minimum value of about 22 mm yr21 south of the Aleutian Islands.
Although the acceleration found for the global mean, 10:0042 6 0:0092 mm yr22, is not significant, local
values range from 20:1 mm yr22 in the central Indian Ocean to 10:1 mm yr22 in the western tropical
Pacific and east of Japan. These extrema are associated with patterns of sea level change that differ signifi-
cantly from the first half of the analyzed period (i.e., 1900–1950) to the second half (1950–2000). We take
this as an indication of long period oceanic processes that are superimposed to the general sea level rise.

1. Introduction

When planning for the future sea level rise is one of the major concerns in predicting climate and climate
change for the decades to come. Especially for people living in endangered coastal regions and on islands
this is of vital importance. Projections for global sea level rise have been compiled in the IPCC third, the
fourth, and the fifth assessment reports [Church et al., 2001; Bindoff et al., 2007; Church et al., 2013, respec-
tively]. But still these projections vary substantially. It is important first to understand the magnitude and
variability of the past sea level change before we can reduce the uncertainties in future development. By
now there seems to be a consensus about the global mean sea level trend during the last century, but there
is still a disagreement whether there is an acceleration in global sea level rise [Church and White, 2006;
Jevrejeva et al., 2008; Woodworth et al., 2009; or Church and White, 2011] or not [Wenzel and Schr€oter, 2010;
Houston and Dean, 2011; Spada and Galassi, 2012]. Furthermore, satellite altimetry, that is available since the
last decades, has shown the large spatial dependence in the sea level variability not only for coastal areas
but for the whole globe. Various authors, like, e.g., Church et al. [2004], Church and White [2011], Hamlington
et al. [2012], Meyssignac et al. [2012], and others, have attempted to reconstruct this spatial-temporal vari-
ability for the last century and to estimate trends and accelerations. Mostly these attempts apply a variant
of the approach introduced by Church et al. [2004]. This method estimates empirical orthogonal functions
(EOF) from altimetry and reconstructs the corresponding principal components (PC) by a fit to a selected
set of tide gauges, i.e., the method tries to reconstruct the tide gauge measurements by altimetry in the
time derivative space. However, the sea level variations in the open ocean (altimetry) are to a large extent
decoupled from the coastal zone (tide gauges) not only for the annual cycle but up to decadal time scales
[Prandi et al., 2009; Vinogradov and Ponte, 2010; Bingham and Hughes, 2012; Calafat et al., 2012]. Further-
more, Christiansen et al. [2010] and recently Calafat et al. [2014] demonstrated that this method performs
poorly in reconstructing the interannual variability, which limits the value of this approach. They also point
out under which circumstances using a spatially constant field (EOF0) in the reconstruction is advisable.

In this paper, we will address the development of the global and the local sea level during the 20th century
in a slightly, but essentially, different way. The global sea level anomaly fields are reconstructed from tide
gauges (TG’s) for the period 1900–2009 in a two step procedure: at first missing values in the time series of
a selected set of TG’s will be reconstructed. Wenzel and Schr€oter [2010] already demonstrated the
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appropriateness of neural networks
for this task. In Wenzel and Schr€oter
[2010], the neural network used for
gap filling was trained using only
time steps without missing data.
Here we will present an improved
training procedure that can deal
with arbitrarily distributed missing
values even during the training
phase. Sea level anomaly fields are
then calculated from the thus com-
pleted TG records. This will be done
by estimating their mapping onto
the PC’s of the EOF decomposition
estimated from the altimetry data. In
this way, our method differs from
the conventional analysis used, e.g.,
by Church et al. [2004], Church and
White [2006], and Meyssignac et al.
[2012] in the way the PC’s are esti-
mated: those authors estimate them
by fitting the weighted sum of alti-
metric sea level EOF’s at the tide
gauge positions, i.e., they try to
reconstruct the tide gauges by
means of the altimetry at these posi-

tions. The global sea level fields are then a desirable by-product. In contrast to this our focus is the recon-
struction of the altimetry fields, i.e., we will be looking for a direct mapping of the tide gauge signal onto
the PC’s. This way, we alleviate problems of coastal amplification and decoupling. Afterward sea level
change is calculated by combining the estimated PC’s and the altimetric EOF’s as it is performed
conventionally.

2. Reconstruction of Tide Gauge Data

For our purpose, we selected the TG’s in the latitudinal band 65�S–65�N from the Permanent Service for
Mean Sea Level (PSMSL) data archive [Woodworth and Player, 2003] that have revised local reference
(RLR) data and at least 30 annual mean values given. Thereof, we excluded all data from the Mediterra-
nean Sea, the North Sea, the Baltic Sea, and the Sea of Japan. These areas have only a poor spatial repre-
sentation in the altimetry data that will be used for reconstruction later on. Furthermore, semienclosed
basins exhibit their own variability which is not representative for global scales. This selection finally gives
178 TG’s listed in the supporting information and whose spatial distribution is shown in Figure 1 together
with the availability of monthly data. It is obvious that many data are missing (approximately 50%) espe-
cially prior to 1950 and that there is no month at which measurements are available at all the selected
TG’s. However, a prerequisite for the method, that we will use later on to reconstruct the sea level fields,
is to have a complete set of TG data at each time step. Thus, the first task should be to fill the data gaps in
an eligible way. We will use a neural network for this purpose, whose applicability has been shown by
Wenzel and Schr€oter [2010]. All computations to reconstruct the missing TG values will be done in the
space of the monthly differences to avoid problems that may be caused by the different local reference
frames. Furthermore, this makes the data more suitable for the neural network that has a value limiting
characteristic (see below). Spikes, i.e., values that differs more than four standard deviations from the
mean, are removed from the differentiated individual time series.

The neural network acts as a time stepping operator (backward in time) that has two time steps, n and
n 2 1, at the input hindcasting time step n 2 2. While Wenzel and Schr€oter [2010] restricted the training of
the network to examples that have three subsequent time steps without any missing data, we will introduce
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Figure 1. (a) Position of the selected tide gauges. The color shading gives the
amount of available data in percent. (b) Data availability.
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an improved way to train the network that can use all available time steps. It is similar to the adjoint
method used, e.g., in data assimilation and was inspired by reading the appendix in Hsieh and Tang [1998].

Details about the used ‘‘backpropagation’’ neural network can be found, e.g., in Wenzel and Schr€oter [2010]
or Hsieh and Tang [1998]. Here we will give only a short description: a neural network is an artificial neural
system, a computational model inspired by the notion of neurophysical processes. It consists of several
processing elements called neurons, which are interconnected with each other exchanging information. In
a backpropagation network, the neurons are ordered into layers: an input layer on the top, a hidden layer
below and an output layer at the bottom. In addition to the neurons, there is a bias element in the input
and the hidden layer that has no input but a constant unique output value. The information propagates for-
ward through the network from the input to the hidden layer and then to the output. To manage this, each
neuron (including the bias) of one layer is connected to every neuron in the underlying layer. They are not
interconnected within the layers and there is no feedback. Each connection can be characterized by a cer-
tain connection strength or weight. The neurons of the input layer usually do only a scaling transformation
on the input data, while the neurons in the following layers can be divided into two sections: an input sec-
tion that sums the incoming signals from the overlying layer using the individual weights and a transfer/
output section where the resulting signal is modified by a bistable transfer function Ffg, for which it is
most common to use tanh fg. In our case, the total transfer function of the network used is given by:

yn225bo1O � tanh bh1H � fxn; xn21gð Þ (1)

where yn22 is the response of the network to the stimulus fxn; xn21g, i.e., the TG information at time steps
n and n 2 1. bh and bo are the bias elements of the hidden and the output layer, respectively. H represents
the transfer matrix (weights) from the input to the hidden layer and O from the hidden to the output layer.

With dn5fdn;kg being the vector of TG data at time step n and yn5fyn;kg the output of the neural network
corresponding to that time step then the input xn5fxn;kg is given by:

xn;k5
yn;k if dn;k5undef=missing

dn;k otherwise

(
(2)

that is the input used for ‘‘predicting’’ time step n 2 2 is composed of measured data at time steps n and
n 2 1. In case of missing measurements, they are replaced by previous estimates from the neural network.
Because an ‘‘incorrect’’ input value at the time step n or n 2 1 influences the hindcast for step n 2 2, missing
values at the initial time steps N and N 2 1 can be estimated by the adjoint procedure. The dimensions of
the input and the output layer are given by the number of selected TG’s, i.e., there are 356 input and 178
output neurons. For the hidden layer, we will use 300 neurons. The unknown matrices H, O, and the bias
elements bh and bh of the neural network as well as missing values in the initial conditions are estimated by
minimizing the weighted least square costfunction K:
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that includes a ridge regression constraint weighted by cr to minimize/suppress less important entries in
the matrices. ndat are the number of data points and nh, no are the number of entries in the corresponding
matrices H and O, respectively. Prior to applying the neural network the data of the individual TG are scaled
to have a root-mean-square (RMS) value of one. This ensures that the entries in H and O are of the same
order of magnitude, and the weights wn;k of the data misfit part in (3) can be set to one, i.e., we assume
that all tide gauges have the same relative accuracy. As a final step, before estimating the sea level anoma-
lies, the reconstructed TG monthly differences will be rescaled by multiplying with the RMS value used for
scaling.

To estimate an optimal value for the weight cr for the ridge regression constraint a subset of the data is
excluded from the costfunction (3) for testing the performance of the network while scanning cr in the
range 0–1000. This scan is done for eight different sets of retained data (Figure 2). First, we used four dis-
junct sets of randomly chosen measurements (denoted R1–R4 in Figure 2). In the other four cases, the data
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from different periods are retained com-
pletely. These periods are M0: [1900–1954];
M1: [1959–1964] and [1996–2001]; M2:
[1966–1969], [1976–1979], and [1986–1989];
M3: [1971–1974], [1981–1984], and [1991–
1994]. In all of the eight cases about 29,000
measurements, i.e., 25% of the available
data, are kept for comparison. For each test
case, the cr value with minimum error at the
data excluded from the training is identified
(Figure 2) and the corresponding network is
retrained using all available data. This finally
gives eight realizations of the reconstructed
scaled TG monthly differences, where the
RMS error of the ensemble mean stays well
between 5 and 18% of the signals RMS at
the individual TG’s with a mean of 10% (Fig-
ure 3a, black stems). Looking at the longer
periods, i.e., after removing the annual cycle
(Figure 3b), the relative RMS error is about

twice as large. However, the strength of the annual cycle is about 10 times larger as the strength of the
interannual signal. The correlation (Figure 3c) between the data and the reconstruction is well above 0.98 at
all TG’s. Even if the annual cycle is removed from both data sets there are only a few TG’s where the correla-
tion drops below 0.9 (Figure 3d). These are located mainly in Thailand and along the western North Pacific
coast (China, Japan). A low-pass filter with a 1.5 years cutoff frequency is used to eliminate the annual cycle
throughout this paper. The robustness of the results above is tested by the experiment MF (red diamonds
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in Figure 3). In this experiment, the optimized networks are applied with the assumption that all data at Fre-
mantle are unknown. The same test is done for Mumbai (denoted MM, green triangles) and Auckland (MA,
grayish-blue bullets). As expected the quality of the reconstruction degrades for the corresponding tide
gauge: the RMS errors nearly double and the correlations go down. Comparing the RMS errors and correla-
tions for the unfiltered (Figures 3a and 3c) and the filtered time series (Figures 3b and 3d) shows that this
deterioration mainly takes effect on the annual cycle. The results reveal also the influence on the nearby
TG’s as well as some teleconnections reaching as far as to the North Atlantic. However, there is only minor
influence on most of the other TG’s.

The ensemble mean and standard deviation of the reconstructed tide gauge time series (scaled monthly
differences) are shown compared to the PSMSL data in Figure 4 for (a) Brest, (b) Newport, (c) Fremantle, (d)
Kwajalein, (e) Mumbai, and (f) Auckland as examples. For the sake of clearness, these time series are filtered
to eliminate the annual cycle using the same filter as above. The good correspondence between the ensem-
ble mean and the data is already documented by Figure 3. However, it should be noted that the ensemble
spread, that is small where data are available, grows with the length of the data gaps. The reconstructed
tide gauge sea level (RTG 5 cumulative sum of the unscaled monthly differences) compared to the PSMSL
data are shown in Figure 5 for the same TG’s as in Figure 4. There are two versions of the RTG: in the first,
denoted NET, the output from the neural net is used at all time steps and in the second one, denoted
PSMSL1NET, the network output is inserted only where original data are missing. It is obvious from the fig-
ures that the neural network does not reproduce the PSMSL monthly differences exactly resulting in distin-
guishable time series for NET. However, these differences stay well within the ensemble spread of the
reconstruction (light blue dashed lines) that is estimated after adjusting all time series to have a zero mean
during the period overlapping with the altimetry data. For the version PSMSL1NET differences to the
PSMSL data appear only at tide gauges that have gaps in between, like, e.g., Fremantle (Figure 5c) and espe-
cially Mumbai (Figure 5e). These differences are caused by the reconstructed values within the gaps that
give a bridging slope different from the one in the PSMSL data. This becomes evident from looking at the
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data gap in 1963 at Mumbai (Figure 6). The values filling the gap in the monthly differences (Figure 6a)
complement the annual cycle reasonably well. However, because all these values are negative, this results

in an offset of about 7 cm in
the sea level compared to the
PSMSL data (Figure 6b). We will
use PSMSL1NET in the
following.

3. Sea Level
Reconstruction

3.1. Method
The global sea level anomaly
fields for the period 1900–2009
will be reconstructed from the
tide gauge data that were
completed in the previous step
using EOF decomposed satel-
lite altimetry data. In this study,
we will use the data taken
from the CSIRO sea level web
site (http://www.cmar.csiro.au/
sealevel/sl_data_cmar.html)
that are available from 1993
onward. The data from January
1993 to December 2010 will be
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used in this paper. These data have a 1� 3 1� spatial and a monthly temporal resolution. To be consistent
with the tide gauge measurements, we use the version with no inverse barometer correction applied (file:
jb_ibn_srn_gtn_gin.nc; downloaded 3 May 2012).

In contrast to papers following the line of Church et al. [2004] and Church and White [2006], we will stay in
the time domain to do the reconstruction, like, e.g., Ray and Douglas [2011]. For this a common reference,
frame is needed for the tide gauges. While Ray and Douglas [2011] used only an ad hoc solution for this, the
problem can be solved in our case by the following consideration: the altimetric sea level fields are anoma-
lies to a certain mean dynamic topography. Because the tide gauge time series no longer have any missing
data points, we can adjust their temporal mean value to the one of the corresponding altimetry data (near-
est grid point) during the overlapping period. Thus, the tide gauges will be referenced to the same mean
dynamic topography as the altimetry data. Indeed, this is implemented by setting the temporal mean to
zero for both data sets. This changes only the effective mean dynamic topography but has no consequen-
ces for the temporal behavior. Therefore, the altimetry data are processed further as follows: (i) filter the
local time series to exclude the annual cycle (1.5 years cutoff frequency), (ii) subtract the temporal mean
field, and (iii) subtract the monthly global mean values (GMSLA). The latter can be regarded as the given
zeroth PC of the following EOF decomposition. The EOF decomposition results in 23 EOF’s, whereof 12 are
needed to explain 98% of the variance. The first three EOF’s are shown in Figures 7a–7c together with the
corresponding PC’s and the global mean (GMSLA; Figure 7d). The two leading EOF’s/PC’s clearly reflect the
signals associated with the El Ni~no-Southern Oscillation (ENSO).

PC 1 to PC 12 plus the global mean (GMSLA) will be reconstructed from the accordingly filtered RTG data to
derive global sea level anomaly fields from September 1901 to May 2008 (the other data are lost because of
the filtering). In Church et al. [2004], Church and White [2006], or Church and White [2011], these PC’s are esti-
mated by fitting a weighted sum of EOF’s to the existing TG values, i.e., they try to reconstruct the TG time
series from the altimetry EOF’s at the nearest grid point. In contrast to this, our focus is on the reconstruc-
tion of the altimetry fields, i.e., we are looking for a direct mapping of the tide gauge signal onto the PC’s.
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Thus, our procedure is more in the line of Jevrejeva et al. [2006] who estimated weights for the individual
tide gauges to compute the global mean sea level. Each of these principal components, pckðtÞ, will be
reconstructed from the TG data matrix TGðtÞ directly by estimating a mapping vector mk that provides:

pckðtÞ5mk � TGðtÞ (4)

wherein the subscript k gives the number of the PC. We do not look after the EOF’s at this point, i.e., the PC
values are the weighted sum of the TG values wherein the weights even might be negative. The vector mk

is estimated from the period where PC data exist via a least square fit minimizing the costfunction J:

J5
X

n

pcn2
X

l

ml � tgn;l

" #2

1
X

l

gl � ðmlÞ2 (5)

consisting of a data misfit part (first sum on the right-hand side) and a ridge regression constraint (second
part). Within (5) the subscript n denotes the time step and l the tide gauges. We dropped the numbering of
the PC for simplicity. The minimization is done by using a conjugate gradient method. The ridge regression
constraint is essential to damp the influence of the first guess on the solution, because the costfunction
leads to a rank deficit system. There are only 164 data constraints (time steps), which might be linear
dependent, to estimate 178 unknowns. Apart from the ridge regression constraint equations (4) and (5)
describe a set of independent linear regressions from the TG’s to the individual PC’s. For the final sea level
reconstruction, the estimated mapping vectors mk (4) is assumed to be valid for the whole period Septem-
ber 1901 to May 2008.

Several estimates listed in Table 1 are made for each PC that differ in:

1. Whether or not errors in the tide gauge data are accounted for. In case of not accounting for errors only
the ensemble mean of the TG reconstruction is used, otherwise all reconstruction ensemble members are
utilized additionally, i.e., the data misfit part in (5) is made up of eight individual summands, one for each
TG realization.

2. Whether or not a correction of the TG trend is applied to compensate the effect of vertical land move-
ment (VLM) that does not affect altimetry. Either a correction toward the corresponding altimeter trend
at the nearest grid point (ALT) is used following Nerem and Mitchum [2002] or a correction for the glacial
isostatic adjustment (GIA) is applied using the estimates of Peltier [2004].

3. The choice of the weights gl for the ridge regression constraint. They are set either to a constant value or
to gl � rl . Herein, rl is the RMS value of the individual RTG ensemble spread estimated from the whole
period [1900–2010]. Thus, preferably the influence of TG’s with a large uncertainty (5 large data gaps)
will be reduced/suppressed. In both cases, the weights are scales to

X
gl5NT , with NT being the number

of ‘‘training examples.’’

Table 1. Global Mean Sea Level Trend and Acceleration for 1900–2009 Resulting From Different Training Conditions Estimated by
Fitting a Parabola y5a 1 bðt 2�tÞ1cðt 2�tÞ2

TVa TEb TCc RRd b 5 Trend (mm yr21) 2 � c5 Acceleration (mm yr22)

R1 No No Const. 1.60 6 0.16 0.0028 6 0.0048
R1E Yes No Const. 1.92 6 0.14 0.0018 6 0.0048
R2E Yes No �rl 1.90 6 0.10 0.0057 6 0.0048
ACR1 PSMSL No ALT Const. 1.61 6 0.22 0.0023 6 0.0094
ACR1E 1 Yes ALT Const. 1.91 6 0.38 0.0072 6 0.0140
ACR2E NET Yes ALT �rl 1.91 6 0.38 0.0069 6 0.0136
GCR1 No GIA Const. 1.49 6 0.18 0.0029 6 0.0048
GCR1E Yes GIA Const. 1.81 6 0.14 0.0022 6 0.0046
GCR2E Yes GIA �rl 1.78 6 0.12 0.0063 6 0.0046
Total mean: 1.77 6 0.38 0.0042 6 0.0092
Wenzel and Schr€oter [2010]: 1.56 6 0.25 0.0016 6 0.0043
Church and White [2011]: 1:760:2 0:00960:004
Ray and Douglas [2011]: 1.70 6 0.26 Not given

aTV: version of tide gauge reconstruction.
bTE: tide gauge error accounted for.
cTC: tide gauge trend correction: ALT 5 to altimeter trend; GIA 5 Peltier [2004].
dRR: ridge regression weights.
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Considering all RTG reconstructions
each of these estimates is given by an
eight member ensemble, and the final
ensembles of reconstructed GMSLA
and PC’s are composed of 72 members.
Trends, accelerations, etc., will be esti-
mated for every individual ensemble
member, but only the mean of the
appropriate (sub)ensemble will be dis-
cussed. Their errors will be estimated
as twice the standard deviation of the
corresponding ensemble. However,
this makes it problematic to compare
these errors to earlier estimates, e.g.,
from Church and White [2011] or others
because the latter errors result from a
single realization.

3.2. Global Mean Sea Level
The ensemble mean of the recon-
structed global mean sea level anoma-
lies (GMSLA) is shown in Figure 8 with
its standard deviation, where the
ensemble includes all nine PC recon-
struction cases and all eight tide gauge
realizations. The mean reconstruction
shows only marginal deviations from
the altimetry data (Figure 8b). On lon-
ger time scales, it compares also well
to the earlier estimate of Church and

White [2011]. Stronger deviations appear only prior to 1925. Likewise, the estimate of Wenzel and Schr€oter
[2010] stays well at the upper one r error bound of the ensemble. The mean centennial trend results to
1:7760:38 mm yr21, which consequently fits well to the trends given by Wenzel and Schr€oter [2010],
Church and White [2011], or Ray and Douglas [2011]. The mean curve in Figure 8 appears as a relatively
straight line with a nonsignificant positive acceleration of 0:004260:0092 mm yr22. Although the mean
acceleration is much stronger than the one given by Wenzel and Schr€oter [2010], it is still only approximately
half the value of Church and White [2011]. However, a significant positive acceleration should not be
expected before 2020–2030 according to the AR5 projections [Haigh et al., 2014], unless the effect of inter-
nal climate variability is accounted for and removed [Calafat and Chambers, 2013]. More detailed informa-
tion about the estimated GMSLA trend and acceleration from the single PC reconstruction cases are given
in Table 1. As most commonly used these trends and accelerations are computed by fitting the quadratic
regression line (QRL):

y5a1b � ðt2�tÞ1c � ðt2�tÞ2 (6)

to the data, wherein �t is the central time of the considered period. Then, the trend and the acceleration are
given by the first and the second derivative of (6), respectively, evaluated at t5�t , i.e., the trend is given by b
and the acceleration by 2c.

The effect of the different training conditions on the trend can be summarized as follows: accounting for
errors in the TG data increases the centennial trend of the GMSLA (in fact, an unrealistically strong increase
of the noise/error level leads to a centennial GMSLA trend that approaches the trend prescribed by the
altimetry data). Correcting the TG trends for VLM has only little influence but it differs with the choice of the
correction: while using the ALT correction increases the GMSLA trend a bit, it is reduced when using GIA.
However, the cases using ALT show by far the highest error bars especially when accounting for errors in
the tide gauges. For the choice of the weights within the ridge regression constraint, we find a slight
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Figure 8. (a) Reconstructed global mean sea level anomaly. Shown is the mean
from the nine training cases given in Table 1 together with their standard devia-
tion r. The results from Wenzel and Schr€oter [2010] and Church and White [2011]
are included for comparison. (b) Cutout from Figure 8a for the period 1994–2010.
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reduction of the GMSLA trend
when reducing the influence of
the most erroneous tide
gauges (R2 cases, see Table 1
for details). This is consistent
with the finding above, that an
increase in the noise level also
increases the centennial trend.

The effect on the acceleration
is most dramatic when
accounting for errors espe-
cially if the R2 condition (see
Table 1) is applied, although
the highest acceleration
(0:0072 6 0:0140 mm yr22) is
found for case ACR1E (VLM
correction: ALT, accounting for
TG errors, constant regression
weights), but still this value is
lower than the one found by
Church and White [2011]. In
any case, only two of the
accelerations are significantly
different from zero on the two
r level: cases R2E (no VLM cor-
rection, accounting for errors,
variable regression weights)
and GCR2E (VLM correction:
GIA, accounting for errors,
variable regression weights).

The interannual variability of the
GMSLA becomes evident when
subtracting the corresponding
QRL’s (Figure 9a). For the recon-
structions, the individual QRL is
subtracted from each ensemble

member separately, taking the mean and standard deviation afterward. Thus, variations originating from differ-
ences in the QRL’s are removed. The interannual variability varies between 21 cm and 11 cm. It is slightly more
intense than the one from Wenzel and Schr€oter [2010] but weaker than the one from Church and White [2011].
Furthermore, the similarities to the results of Wenzel and Schr€oter [2010] are stronger than to the ones compared
to Church and White [2011], the corresponding correlations are 0.59 6 0.04 and 0.28 6 0.05, respectively. Taking
the standard deviation of (GMSLA-QRL) as a measure of the strength of the interannual variability it is obvious
from Figure 9b that the variability of the mean reconstruction is reduced by the averaging. The overwhelming
majority of the single realizations show stronger variability, but each single value is still lower than the one
obtained by Church and White [2011] except for two ensemble members. However, this does not discredit the
present reconstruction as Christiansen et al. [2010] and Calafat et al. [2014] have shown that the method used
by Church and White [2011] tend to overestimate the interannual variability. The best correlation (detrended
time series) between the interannual variability of our GMSLA and a climate related index is found with the
HadSST2 global mean [Rayner et al., 2006], corr 5 0.37 6 0.06, while only a negligible part can be explained by
the extended multivariate ENSO index, MEI.ext [Wolter and Timlin, 2011], corr 5 0.16 6 0.06. However, it is evi-
dent from Figure 7 that the variability related to the ENSO signal is most inherent in PC 1. Indeed the recon-
structed PC 1 compares well to MEI.ext (Figure 10a) with a correlation (detrended) of corr 5 0.68 6 0.06. Looking
at shorter periods, e.g., a 15 years moving window (Figure 10b), the correlations are even higher, mainly above
0.9 except for the periods [1940–1950] and [1960–1970] where it drops down to 0.71 and 0.77, respectively.
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Figure 9. (a) Variability of the GMSLA after subtracting the corresponding quadratic regres-
sion line. The results from Wenzel and Schr€oter [2010] and Church and White [2011] are
included for comparison. The standard deviation of these curves, shown in Figure 9b as hor-
izontal lines, give a measure for the strength of the interannual variability. The red stems in
Figure 9b represent the values for the individual realizations. Note: the red line indicates the
standard deviation of the mean, not the mean of the individual standard deviations.
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3.3. Comparing to Tide Gauges
Although it was not the focus to reproduce
the tide gauges when estimating the trans-
fer vectors mk it would be interesting how
well the reconstructed sea level anomaly fits
to the tide gauges. Using (4), the recon-
structed sea level RS at the tide gauge posi-
tions (nearest grid point) is given by:

RS5EOFTG � PC5EOFTG �M � RTG (7)

wherein EOFTG contains the values of the
EOF’s involved at the tide gauge positions
and M is build from the transfer vectors mk.
Figure 11 shows the RS for the same tide
gauges as in Figure 5. The resulting RS
appears relatively insensitive to whether it is
estimated from the uncorrected RTG or
from the ones corrected for VLM. A more
detailed inspection showed that this is true
for all 178 TG’s. Furthermore, it is obvious
that the quality of the correspondence
between RS and RTG differs for the posi-
tions not only on short time scales but also
on the longest, i.e., the centennial trend in
this case. However, at least the latter should
be similar, but they are not even if we com-

pare to the trend corrected RTG (given as dashed lines in Figure 11 denoted as (RTG, ALT) and (RTG, GIA),
respectively).

The differences of the centennial trends between RS and RTG, calculated as the linear fit to the time series
RS–RTG, is illustrated in Figure 12. In Figure 12a, the mean of the nine reconstructed centennial trend differ-
ences is shown for all 178 stations as a bar plot. Their spatial distribution is also depicted in Figure 12b. We
note a significant amplitude as well as spread for this difference which we expected to be small. We hesitate
to call this difference an error as it obviously has a spatial structure similar to the trend corrections applied
to the RTG prior to the estimate of the weighting matrix M (cases ACR1 to GCR2E in Table 1).

The GIA corrections, that are generally small, are depicted as red full circles in Figure 12a. If they coincide
with the bar, we would have no difference between the reconstructed sea level RS trend and the GIA cor-
rected TG trend. Clearly this is the case only for few stations. Notice the larger negative values for GIA along
the East coast of the US (number 151 and above) but also for many Pacific islands (number 99–113) and
part of the coast of Japan (47–82). Here the GIA is obviously beneficial, although not strong enough to
explain the discrepancy.

Next, we consider the VLM correction to be given by the altimeter, ALT, represented as green diamonds in
Figure 12a. This correction is approximately one order of magnitude stronger than GIA. It is based on much
smaller timescales of only 20 years and includes many other processes and short term signals. Its spatial var-
iations are much more pronounced. Applying ALT, we find good agreement with reconstructed estimates
for a lot of stations. Most noticeable is the small difference along the US East coast but also for many Pacific
islands (number 99–113) and part of the coast of Japan (47–82). On the other hand, we find several stations
with very high discrepancies. As a conclusion, we have to say that for every type of correction we obtain
very convincing examples of pro and con. Statistically, they perform equally bad. Based on these data for
verification we can neither validate nor reject the reconstructed centennial trends.

Finally, we support our statement that the internal spread of the nine reconstructions is small by depicting
min and max values at the stations as a read vertical line in Figure 12a. A histogram of this spread is shown
in Figure 12c with a maximum around 1 and a median of 1.15 mm yr21. The spread is also the base for esti-
mating the significance of the trend in the following figures. Trends in most areas exceed 1 mm yr21
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making them significantly different from zero. Verification versus independent measurements still remains
a problem. The difference to the verification data sets is as large as the difference between the verification
data themselves. However, to better estimate relative land movement for the past hundred years is beyond
the scope of this study.

3.4. Local Trends and Accelerations
Once the evolution of the global anomaly fields is estimated local trends (Figure 13) and accelerations (Fig-
ure 14) can be deduced. For the period [1994–2008] (Figure 13a) used to estimate M these trends are identi-
cal within plotting accuracy to the ones derived from altimetry. The centennial trend (Figure 13b) appears
as a very smooth field with positive values nearly all over the ocean. Highest values are found in the western
Pacific, up to 6 mm yr21 in the tropical part, and in the Indian Ocean with the maximum east of Madagas-
car. Regions with negative trends are spotty with lowest values (22 mm yr21) found south of the Aleutian
Islands. These local trends are significant at the one r error level of the nine member ensemble.

Looking at the 50 years trends for the periods [1901–1949] and [1950–1999] (Figures 13c and 13d, respec-
tively) the fields show more spatial structure. As for the centennial trend, the fields are essentially positive
and the global mean trends are approximately the same, 1:76 mm yr21, but the locations of the maxima
are different for the single 50 years periods. Most prominent is the reduction of the trend in the tropical
Indian Ocean from about 6 mm yr21 in the first half of the century to 2 mm yr21 in the second half. Further-
more, the sea level rise in the western part of the Pacific strengthens while in the eastern Pacific the positive
trends turn to (not significant) negative values. In the Atlantic, the differences between the first and the sec-
ond half of the century are not that pronounced.

In the Pacific, the centennial trend (Figure 13b) differs totally from the one of Hamlington et al. [2012],
whose estimate is obviously dominated by their leading EOF. For the second half of the last century, one
finds reasonable agreement of the estimated trend fields as compared to Meyssignac et al. [2012] except
for the Indian Ocean, while there is only marginal conformance with Hamlington et al. [2011] or Church
et al. [2004] and nearly no correspondence to Ray and Douglas [2011]. According to Meyssignac et al.
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[2012], these differences might be a consequence of the divergent time span covered by the altimetry
used to compute the EOF’s and of the varying number of EOF’s used for reconstruction, whereof the time
span seems to be the most important factor [Berge-Nguyen et al., 2007]. Furthermore, the differences
result at least in parts from the selection of the tide gauges and from the reconstruction of the sea level
data as well.

Associated with the differences in the semicentennial trends (Figures 13c and 13d) is a clearly structured
field of local accelerations and decelerations (Figure 14) that range from 20:11 mm yr22 in the central
Indian Ocean to 10:10 mm yr22 off Japan and in the western tropical Pacific. This is opposite in sign to the
Woodworth et al. [2009] analysis of the results from Church and White [2006] for large parts of the ocean.
The global mean acceleration (0:004260:0092 mm yr22) is two orders of magnitude lower and nonsignifi-
cant, although the temporal variability of the global mean SLA (Figure 9a) imply a sequence of higher val-
ued accelerations and decelerations on shorter time scales.

4. Concluding Remarks

Sea level is first estimated at tide gauge positions for the full period 1900–2009. Data gaps are filled using
neural network techniques. Comparing our estimates with data withheld during the gap filling process
shows the skill of this type of reconstruction. Inevitably accuracy of the reconstructed values, measured by
the spread of eight independent realizations, decreases with the gap length. For the beginning of the 20th
century, the spread may even reach the signal strength for individual tide gauges. On the other hand,
global sea level and other large scale variations are determined with much higher accuracy. They are based
on a weighted average of all 178 tide gauge records. The standard deviation of this mean is much smaller
than the mean of the standard deviations at tide gauges.
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Comparing our global mean sea level reconstruction to earlier estimates, we observe a good agreement,
but on local scale they differ more or less from the results, e.g., of Church et al. [2004] or Hamlington et al.
[2011, 2012]. Thus, the question arises to what extent the extreme features appearing in the 50 years trend
fields (Figures 13b and 13c) and in the acceleration (Figure 14) are artifacts of the method and/or the
assumptions made. For instance, the importance of the time span used to compute the altimetry EOF’s and
of the numbers of EOF’s used for reconstruction have been shown by Berge-Nguyen et al. [2007] or Meyssi-
gnac et al. [2012]. Similar caveats, of course, apply also for the selection of the tide gauges and the recon-

structed sea level data, although we feel
certain that our results are convincing. Espe-
cially at the beginning of the last century the
majority of the used sea level data are recon-
structed, and spurious teleconnections are
easily generated when the behavior of global
fields are estimated from regional limited
measurements. Furthermore, the trend and
the acceleration fields are indications of long
period variability found, e.g., by Woodworth
et al. [2009] in numerous tide gauges that
obviously induced the 60 years oscillation in
the reconstructed global mean sea level of
Church and White [2011] and Jevrejeva et al.
[2008] as reported by Chambers et al. [2012]
or the even longer oscillations found by
Wenzel and Schr€oter [2010] in the mean sea
level of single ocean basins. This variability
should be caused by changes in the oceanic
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forcing fields and should have a feedback to them. It would be interesting to elaborate this in more detail,
but this is beyond the scope of this study.

One problem remains, verification or rejection of the final results. All attempts to reconstruct past global
sea level variations by combining altimetry and tide gauge records have to make corrections to place both
types of measurement into the same reference frame. How this can be done best for past records remains
an issue which needs attention.
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