

REKLIM – Topic 1

Anja Sommerfeld¹

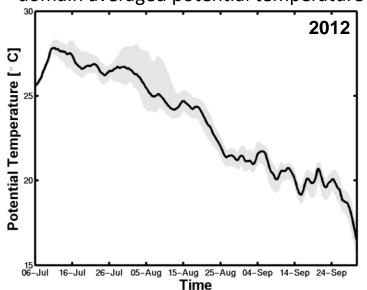
Oumarou Nikiema², Annette Rinke¹, Klaus Dethloff¹, René Laprise²

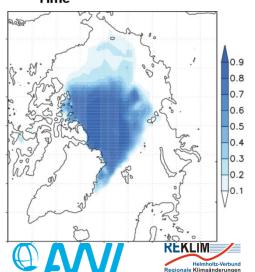
Altrea-wegener-ins
Potsdam, Germany Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research,

Université du Québec à Montréal, Montreal, Canada

Outline:

- Introduction and motivation
- Model set-up: HIRHAM5 over Arctic
- 3) Inter-member variability (IV)
- 4) Diagnostic budget equation for potential temperature
- 5) First results of the budget study
- 6) Summary and Outlook


Arctic Budget Study of Inter-member Variability using


HIRHAM5 Ensemble Simulations

1) Introduction and motivation:

- chaotic and non-linear behavior of atmospheric processes
 - → internal variability in regional models
 - → changes in initial conditions (IC) influence the evolution of simulations
- ensemble of simulations with different IC
 - → physical processes inducing inter-member variability (IV) and its changes can be analyzed and understood
- study is applied over the Arctic for summer 2012
 - → strong sea ice melting
 - → investigation of its influence on atmospheric circulations and resulting effect on IV

Ensemble-mean and spread of vertical and domain averaged potential temperature

3000 2500 2000

250

Water

Arctic Budget Study of Inter-member Variability using HIRHAM5 Ensemble Simulations

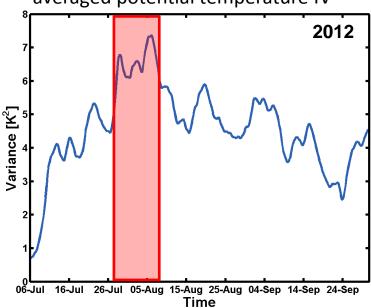
Model set-up: HIRHAM5 over Arctic:

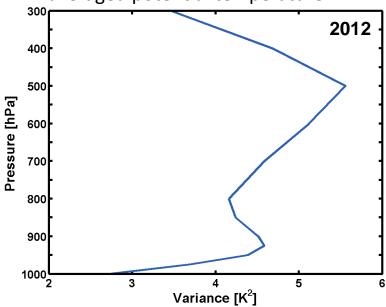
• HIRHAM5 = hydrostatic regional atmospheric model (Christensen et al. 2007)

Dynamical core:	Physical parameterizations:
regional weather forecast	atmospheric general circulation
model HIRLAM7 (Undén et al. 2002)	model ECHAM5 (Roeckner et al. 2003)

- driven by ERA-Interim
- horizontal resolution 25 km, 40 vertical levels up to 10 hPa
- 20 ensemble members differing in IC
 - → first simulation starts on July 1st 2012 at 0000 UTC
 - → last simulation starts on July 5th 2012 at 1800 UTC
 - → analyzed period from July 6th to September 30th 2012

initialization time shifts by 6 hours



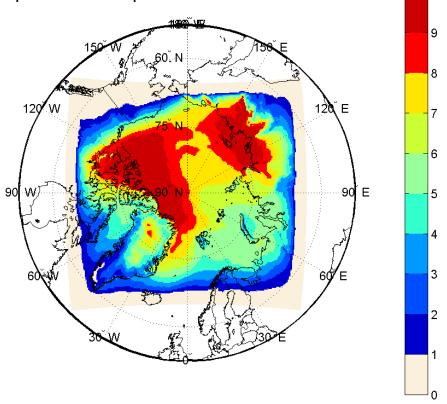

3) Inter-member variability (IV):

Time evolution of vertical and domain averaged potential temperature IV

- IV fluctuates in time
- high values between July 27th and August 7th with

Vertical profile of temporal and domain averaged potential temperature IV

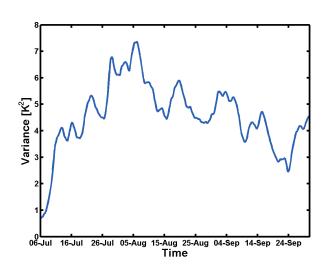
- highest IV at 500 hPa
- second peak at 925 hPa
- lowest values at the surface and at 300 hPa

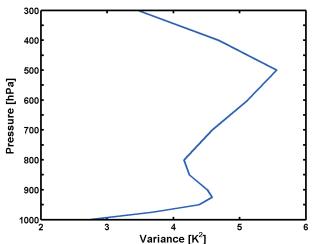

 $[K^2]$

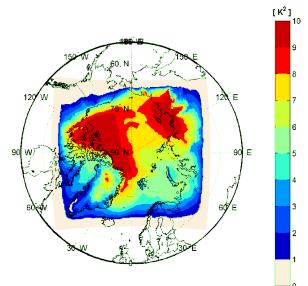
Arctic Budget Study of Inter-member Variability using HIRHAM5 Ensemble Simulations

3) Inter-member variability (IV):

Spatial distribution of time averaged potential temperature IV at 925 hPa


- IV increases toward the center of model domain in each level
- 2 centers of high IV at the Laptev Sea and Beaufort Sea/North America





3) Inter-member variability (IV):

aim of this study:

- understanding the reasons of IV and its temporal changes
 - → applying the diabatic budget study (O. Nikiema et al. 2010)
 - → diabatic and dynamical contributions to IV

4) Diagnostic budget equation for potential temperature :

$$\frac{\partial \sigma_{\theta}^{2}}{\partial t} = -\overrightarrow{\nabla} \cdot \left(\langle \overrightarrow{V} \rangle \sigma_{\theta}^{2} \right) - \frac{\partial (\langle \omega \rangle \sigma_{\theta}^{2})}{\partial p} - 2 \langle \theta_{n}' \overrightarrow{V_{n}'} \rangle \cdot \overrightarrow{\nabla} \langle \theta \rangle - 2 \langle \theta_{n}' \omega_{n}' \rangle \frac{\partial \langle \theta \rangle}{\partial p}$$
diagnostic tendency of
$$A_{p} \qquad B_{p} \qquad B_{p}$$

tendency of potential temperature IV

horizontal transport

vertical transport horizontal baroclinicity

vertical baroclinicity

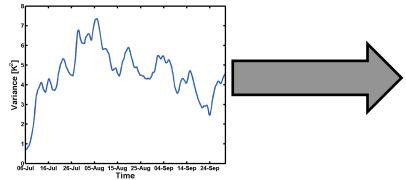
$$+ 2 \langle \theta'_n J'_n \rangle - 2 \langle \theta'_n \overrightarrow{\nabla} \cdot \left(\theta'_n \overrightarrow{V'_n} \right) \rangle - 2 \langle \theta'_n \frac{\partial}{\partial p} (\theta'_n \omega'_n) \rangle$$

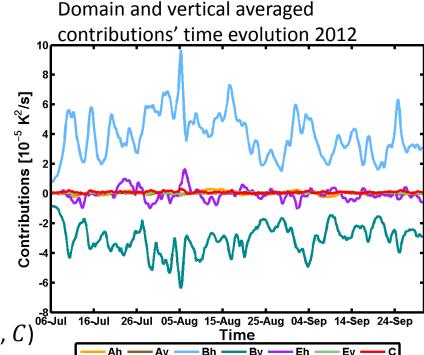
C

diabatic source and sink

 $\boldsymbol{E_h}$

horizontal thirdorder term $\boldsymbol{E_{v}}$

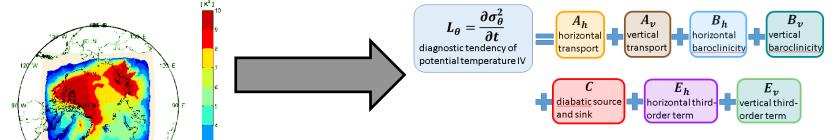

vertical thirdorder term

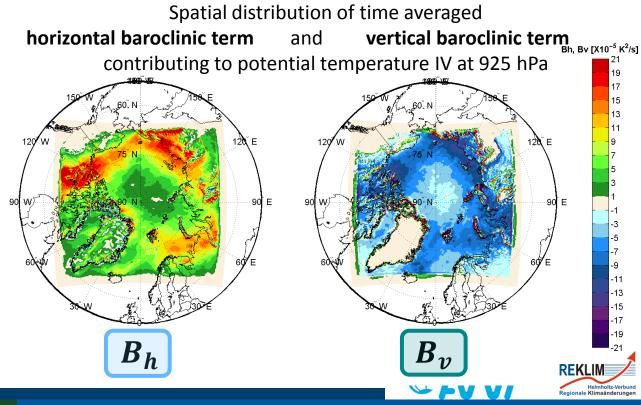


5) First results of the budget study:

 $L_{\theta} = \frac{\partial \sigma_{\theta}^2}{\partial t}$ diagnostic tendency of potential temperature IV $\frac{A_h}{\text{horizontal transport}} \text{ vertical transport} \text{ horizontal baroclinicity}$ $\frac{C}{\text{diabatic source and sink}} \text{ horizontal third-order term}$

- like IV, contributions fluctuate in time
- positive contribution = generation of IV
- negative contribution = reduction of IV
- B_h and B_v strongest influence on IV
 - \rightarrow B_h contributes to generation of IV
 - $\rightarrow B_{v}$ contributes to reduction of IV
- other terms fluctuates around zero
 - a) contribution to IV in general is small (A_v, E_v, C)
 - b) balanced over the model domain (A_h, E_h)





5) First results of the budget study:

• B_h/B_v always positive/negative

- → generating/reducing IV tendency
- absolute values of B_h are higher than absolute values of B_{ν}

6) Summary and Outlook:

- budget study for potential temperature to investigate IV tendency in ensemble simulations of HIRHAM5
- IV fluctuates strongly in time and reaches its maximum in 500 hPa
- IV tendency is mainly generated by horizontal (B_h) and reduced by vertical baroclinicty (B_v)
- results for the Arctic differ to those obtained by *Nikiema et al. 2010* and *2011* for North America using the Canadian RCM
 - \rightarrow generation of potential temperature IV: diabatic term C followed by B_h
 - \rightarrow reduction of potential temperature IV: B_v , followed by transport term A_h
- investigating shorter time periods and individual events of high and low IV
- IV depending on sea ice melting
- application of the budget study for other years

Thanks for

your

attention

