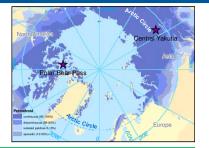
Spatio-Temporal Sensitivity of MODIS Land Surface Temperature Anomalies Indicates High Potential for Large-Scale Land Cover Change Detection in Permafrost Landscapes

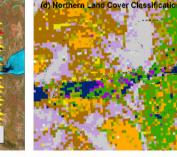
S. Muster¹, M. Langer¹, A. Abnizova², K. L. Young², J. Boike¹ Alfred Wegener Institute for Polar- and Marine Research, Potsdam, Germany: "York University, Toronto, Ontario, Canada

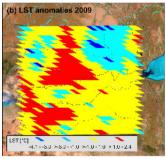
Motivation

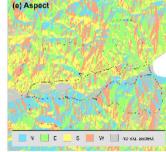

The accelerated warming of the Arctic climate may alter the surface energy balance locally and regionally of which a changing land surface temperature (LST) is a key indicator. Modelling current and anticipated changes of the surface energy balance requires an understanding of the spatio-temporal interactions between LST and land cover.

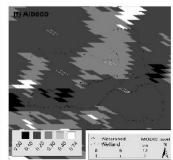
Goals


- (1) Assess the accuracy of MODIS LST V5 1 km level 3 product
- (2) Investigate MODIS LST spatio-temporal sensitivity to land cover properties


Data & Methods

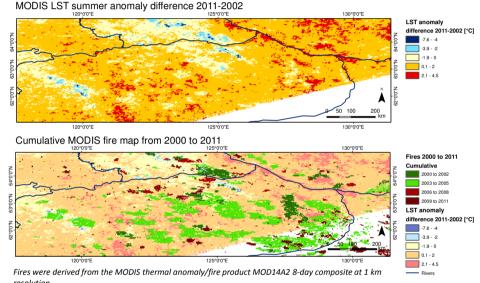

- Spatial LST anomalies were calcuated as the difference between mean daily LST for each pixel and the daily regional mean of the study area.
- LST anomalies of summer periods were averaged for all scenes with regional means larger than 5°C at Bathurst Island (with 19 to 28 observations per pixel) and 10°C in Central Yakutia (with 11 to 65 observations per pixel).


Land surface temperature anomalies at Polar Bear Pass, Bathurst Island (CA)



CULST anomalies 2010

Land cover classes barrer enansely venetaled bedrock bare soll with cryptogam crust - frost b prostrate dwarf shrub tundra tusecck granninoid tungra moiet to dry non-tuescok graminoid dwarf shrub lundra wet secu melland open water snow/ice


Study area

Polar Bear Pass (98° 30'W, 75°40'N) is a low-lying tundra wetland within a barren polar desert environment in the Canadian High Arctic.

Key findings

- Summer LST anomalies showed a robust spatio-temporal pattern taking into account the found uncertainty and different atmospheric conditions in the three vears.
- Land cover and albedo explained most of the variance in LST anomalies: Dry ridge areas heat up most whereas dry barren surfaces with high albedo and wetland areas were coolest.
- Spatial pattern showed fewer positive anomalies in 2010 suggesting differences in surface moisture due to inter-annual differences in the amount of end-ofwinter snow.

Land surface temperature anomalies in Central Yakutia, Siberia (RU)

resolution.

Study area

The investigated region in Central Yakutia is characterized by a thermokarst landscape, with thermokarst lakes, thermokarst valleys, and alases on deep, continuous permafrost dominated by larches.

Key findings

- Between 2002 and 2011 the region showed strong differences of LST anomalies ranging from -7.6 °C to 4.5°C.
- Changes in LST anomaly patterns could be linked to occurrence and age of fires in the taiga zone.

Outlook

- Presented summer MODIS LST anomalies can serve as a baseline against which to evaluate past and future changes in land surface properties with regard to the surface energy balance.
- A multi-sensor approach combining MODIS LST measurements in conjunction with other MODIS products (NDVI, albedo, fire, snow) and highresolution optical and radar imagery promises to be an effective tool for a dynamic, process-based ecosystem monitoring scheme.

4.4 2.0 > 2.0 1.0 > 1.0 1.0 > 1.2 2.4

