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Abstract 
 

Changes in the Southern Ocean (SO) have global consequences. The SO region is responsible for 
about half of the global annual uptake of anthropogenic carbon dioxide (CO2) from the atmos-
phere. As part of the atmospheric CO2 uptake is driven by phytoplankton primary production, a 
significant impact on the feedback of phytoplankton is expected under climate change. Indeed, 
changes in the atmospheric and ocean temperature, wind patterns and sea ice concentration have 
already been documented in the SO region. However, our understanding on how phytoplankton 
respond to ongoing and future environmental changes strongly depends on consistent large scale 
and long term observations. 

As a remote region, substantial time and costs are required to obtain a comprehensive dataset 
for the SO. The use of satellite remote sensing is a cost-effective alternative and has led to im-
portant insights into the current knowledge of phytoplankton dynamics in this region. However, 
this technique does not come without limitations. Ocean colour remote sensing at high latitudes 
has to deal with different issues as for example high cloudiness and the limited number of in situ 
observations for development and calibration/validation of algorithms. Consequently, there is a 
strong need to assess the performance of ocean colour derived-products in the SO.  

Ocean colour remote sensing can be used to estimate net primary production (NPP), abundance 
of phytoplankton functional types (PFT), as well as their spatial and temporal dynamic. Although 
accurate information on NPP is fundamental, large differences have been observed among models 
hitherto applied in the SO. Apart from that, different PFTs play specific roles in the oceanic 
biogeochemical cycle and this information is of key importance on quantifying oceanic NPP. 
Diatoms, for instance, are the main primary producers in the region. Furthermore, additional 
insights into their variability due to environmental changes can be gained by studying the 
phenology of diatom blooms. The underlying aim of this thesis is to shed light into the above 
mentioned topics with a focus on the SO. 

Four main objectives have been pursued: 1) to evaluate the satellite retrievals of euphotic depth 
(Zeu) and how they influence NPP satellite retrievals; 2) to evaluate and improve the satellite 
retrievals of diatom abundance; 3) to investigate the mean patterns and interannual variability of 
diatom bloom phenology and 4) to examine the potential of ocean colour products to access 
environmental changes in the SO. 

The first study analyses satellite retrievals of Zeu, which is the lower limit of the euphotic zone 
and where most of the primary production takes place. Although the Zeu is a key parameter in 
modelling oceanic NPP from satellite data, assessments of the uncertainties of satellite Zeu 

products are scarce. This study investigated existing approaches and sensors to evaluate how 
different Zeu products might affect the estimation of NPP in the SO. Zeu was derived from MODIS 
and SeaWiFS products of (i) surface chlorophyll-a (Zeu-Chla) and (ii) inherent optical properties 
(Zeu-IOP). After comparison with in situ measurements, both approaches have shown robust 
results of Zeu retrievals, but spatial differences were of up to 30% over specific regions. 
Differences between the sensors were less evident. It was also shown that differences larger than 
30% are expected in NPP, depending on the method used to estimate Zeu. 

In the second study, focus is given to the major marine primary producer - the diatoms - and to 
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the importance of the SO in developing a global algorithm for the retrieval of diatom abundance 
using the Abundance Based Approach (ABA). A large global in situ dataset of phytoplankton 
pigments was compiled, particularly with more samples collected in the SO. The ABA was 
revised to account for the penetration depth (Zpd) and to improve the relationship between diatoms 
and total chlorophyll-a (TChla). The results showed a distinct relationship between diatoms and 
TChla in the SO and a new global model (ABAZpd) was suggested to improve the estimation of 
diatoms abundance, which improved the uncertainties by 28% in the SO compared with the 
original ABA model. In addition, a regional model for the SO was developed which further 
improved the retrieval of diatoms by 17% compared with the global ABAZpd model. The main 
finding of this study is that diatom may be more abundant in the SO than previously thought.  

In the third study, the new regional model was used to examine the mean pattern and the 
interannual variability of the diatom bloom phenology from 1997 to 2012. Ten phenological 
indices were used to describe the timing, duration and magnitude of the diatom blooms. The 
results show that the mean spatial patterns are generally associated to the position of the Southern 
Antarctic Circumpolar Current Front and of the maximum sea ice extent. Furthermore, in several 
areas of the SO the interannual variability of the anomalies of the phenological indices is found to 
be correlated with the large scale climate oscillations El Niño Southern Oscillation (ENSO) and 
Southern Annular Mode (SAM). The composite maps of the anomalies revealed distinct spatial 
patterns and opposite events of ENSO and SAM have similar effects in the diatom phenology. For 
example, in the Ross Sea region, later start of the bloom and lower biomass were observed 
associated with El Niño and negative SAM events; likely influenced by an increase in sea ice 
concentration during these events. These results confirm that climate variability and diatom 
blooms in the SO are closely linked through environmental changes and these processes can be 
accessed using ocean colour remote sensing. 
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1 Introduction  
 

1.1 Motivation  
 
Phytoplankton are microscopic unicellular algae and bacteria (cyanobacteria) living in freshwater 
and marine ecosystems. Perhaps the most important aspect of phytoplankton is the fact that they 
are autotroph photosynthetic active organisms and primary producers of organic compounds. 
During photosynthesis they absorb light to break water molecules and assimilate carbon dioxide 
(CO2) by transforming the dissolved inorganic carbon into organic carbon. Subtracting respiratory 
and non-respiratory carbon release gives the net primary production (NPP), which is the main 
food supply of the aquatic ecosystem and a key component of the global carbon cycle.  

What makes marine phytoplankton unique is that although their biomass represents less than 
1% of the global photosynthetic biomass, they are responsible for about half of the total NPP of 
the earth (Falkowski et al. 1998; Falkowski et al. 2004; Field et al. 1998). Estimates of marine 
NPP vary from 39 (Rousseaux and Gregg 2014) to 50 PgC yr-1 (Carr et al. 2006), similar to the 
magnitude of terrestrial NPP (~ 56 PgC yr–1) (Ito 2011). However, the turnover time of marine 
phytoplankton is short, about one week, ultimately higher than terrestrial plants (Falkowski et al. 
1998), which makes marine NPP more efficient than terrestrial NPP. Microalgae, seagrasses and 
other marine primary producers are responsible for other ~ 5 PgC yr–1 (Duarte and Cebrian 1996). 

The current number of marine phytoplankton species in the global oceans is not clear. In the 
early 1990’s the estimate was of ca. 4000 species (Sournia et al. 1991), but nowadays, with the 
advances in technology and sampling effort over the last decades, this number is likely to be 
underestimated. Generally, phytoplankton can be categorized into major groups according to their 
size or biogeochemical function (Nair et al. 2008). There are three main phytoplankton size 
classes (PSC): microplankton (> 20 μm), nanoplankton (2-20 μm) and picoplankton (< 2 μm), and 
four main phytoplankton functional types (PFT): calcifiers (e.g. coccolithophores), silicifiers (e.g. 
diatoms, chrysophytes), nitrogen fixers (e.g. cyanobacteria) and dimethyl sulphide producers (e.g. 
dinoflagellates, haptophytes) (Figure 1.1 upper panel). From a biogeochemical perspective, the 
classification of phytoplankton based on their functionality is preferred to size-based since the 
same PSC may contain phytoplankton with common biogeochemical function (Nair et al. 2008). 

Different PFTs occupy different niches and functionality in the biogeochemical cycle of the 
ocean. For example, diatoms are the major silicifiers in the ocean with frustules made of dissolved 
silicic acid, influencing the cycle of silica in the oceans. Coccolithophores build their external 
plates (coccolith) from calcium carbonate, altering the seawater alkalinity by the release of CO2 

and, in turn, influencing the marine carbon cycle. In the marine carbon cycle, the size of 
phytoplankton is associated with sinking rates. Overall, larger and denser cells have higher 
sinking rates and hence increased export of carbon to the deeper ocean whereas compared to 
smaller cells. Smaller cells tend to sink more slowly, remaining for longer period in the mixed 
layer and increasing their chance to be grazed (IOCCG 2014).  

The fixed organic carbon in the upper ocean is transformed by several pathways in the water 
column. These include zooplankton grazing and excretion, particle aggregation and bacteria 
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decomposition (Siegel et al. 2014) (Figure 1b). These processes are part of the ocean’s biological 
carbon pump. Although most of the organic particles are recycled in the upper ocean (Henson et 
al. 2011), the sinking of organic particles from the euphotic zone exports approximately 6 - 11 
PgC yr-1 to the deeper ocean (Siegel et al. 2014; Yao and Schlitzer 2013).  

 

 
 

 

Figure 1.1. On the top: illustration of the major phytoplankton functional types living in the 
global ocean. On the bottom: simplified scheme of biological carbon pump. Adapted from 
http://earthobservatory.nasa.gov/. 

 
In the recent years, the interest on quantitative estimation of the abundance and dynamics of 

different phytoplankton types has increased under the eminent climate change. To what extent the 
PFTs and primary production will respond to changes in the climate is still unknown. One 
potential effect is the acidification of the oceans. Ocean acidity increases positively with increase 
of anthropogenic CO2 emissions, threating calcifying organisms. In addition, there is mounting 
evidence that the increase in the sea surface temperature will result in a more stratified ocean and 
changes in phytoplankton composition, favoring smaller phytoplankton due to reduced nutrient 
supply (Bopp et al. 2005; Finkel et al. 2010).  

Among the Earth’s oceans, the Southern Ocean (SO) is responsible for about half of the annual 
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global anthropogenic atmospheric CO2 uptake, around 1 PgC (Takahashi et al. 2012). Within this 
region, the major sink occurs between 30°S and 50°S due to biological and physical mechanisms; 
biological utilization of CO2 in summer and the cooling of surface waters in winter (Takahashi et 
al. 2012). In the marginal ice zone, phytoplankton blooms, elevate phytoplankton biomass 
(Behrenfeld and Boss 2014), develop with the retreat of sea ice in springtime and summer, which 
turns surface waters into a strong sink of CO2 (Takahashi et al. 2009; Takahashi et al. 2012). 

Because of the complex spatial and temporal dynamics of phytoplankton, investigations 
usually rely on satellite remote sensing observations. For several years, ocean colour remote 
sensing was regarded as the study of the chlorophyll-a concentration (Chla), the main 
photosynthetic pigment present in phytoplankton and a proxy of their biomass (Martin 2004). 
During the last four decades since the launch of the first ocean colour sensor, the Coastal Zone 
Colour Scanner (1978-1986), many sensors have been launched leading to the development of 
several satellite products (e.g. NPP, PFTs) and significant improvement of our understanding on 
phytoplankton. However, uncertainties still remain.  

Current NPP models differ in terms of complexity and despite the efforts to accurately retrieve 
NPP from ocean colour, large differences among estimates have been observed for the SO 
(Campbell et al. 2002; Carr et al. 2006; Saba et al. 2011). These differences can result from 
uncertainties in the input variables of the models or because the models do not properly represent 
the “reality” (Milutinovic and Bertino 2011). For example, Saba et al. (2011) investigated how the 
skill of twenty one ocean color models are affected by the uncertainties in the input variables (e.g. 
Chla, sea surface temperature) and found that the skills of the models are improved if the errors in 
the input variables are considered.  

Of major interest in studying the oceanic biogeochemical cycle is to know which PFTs are 
present, their abundance and distribution. Within this context, one PFT of special interest includes 
the diatoms, which are the major contributors to the oceanic primary production (Rousseaux and 
Gregg 2014), carbon export and cycling of silica (Smetacek 1999), and together with 
dinoflagellates, the most diverse PFT (Armbrust 2009; Leblanc et al. 2012). Diatoms are also one 
of the largest PFTs in terms of size, ranging from micrometers to a few millimeters (Armbrust 
2009). Given the biogeochemical and ecological importance of diatoms, several methods based on 
satellite remote sensing data have been developed to retrieve their global abundance or dominance 
(Alvain et al. 2005; Bracher et al. 2009; Hirata et al. 2011). Since most of the methods are built on 
empirical relationships and rely on in situ data for model development and validation, refinement 
is needed when additional data are available to improve the retrieval of diatoms for both global 
and under-sampled oceans.   

Furthermore, much of the primary production occurs during phytoplankton bloom events. The 
term “phenology” is used to describe periodic events and their relation to environmental 
conditions  (Schwartz 2013). In the case of phytoplankton it refers to blooms. The number of 
studies on phytoplankton phenology has increased in the recent years since changes in the 
phytoplankton phenology (e.g. start, duration) can have a large effect on the marine ecosystem 
(Edwards and Richardson 2004) and are indicators of environmental changes (Racault et al. 
2012). Moreover, studies have suggested that the phytoplankton phenology is influenced by 
climate oscillations (e.g. Southern Annual Mode – SAM, El Niño Southern Oscillation - ENSO). 
Arrigo and van Dijken (2004) observed a later development of the bloom in the Ross Sea caused 
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by increased sea ice cover during the El Niño of 1997–1998. Alvain et al. (2013) observed an 
increase in the dominance of diatoms in the SO during a positive SAM phase, possibly induced by 
stronger winds which lead to increased mixing and nutrient supply. In spite of these findings, none 
of the studies investigated in detail the mean patterns and the interannual variability of the 
different characteristics and stages of blooms (e.g. start date, end date, duration of the growth and 
decline phases, maximum biomass), their relationship with climate oscillations, neither focused on 
the abundance of diatoms. In the SO, diatom contribution to primary production was estimated 
from the NASA Ocean Biogeochemical Model to represent 89% of the total NPP (Rousseaux and 
Gregg 2014). In addition to that, iron fertilization studies have demonstrated the potential of 
diatoms as major contributors for the biological drawdown of atmospheric CO2 and for the export 
of carbon from the surface to the deep ocean (Smetacek 1999; Smetacek et al. 2012).  

Considering the knowledge gaps addressed in the previous paragraphs, this work aims to 
complement and extend existing studies on ocean colour in the SO. Four main objectives have 
been pursued: 

1) to evaluate the uncertainties of satellite retrievals of euphotic depth (Zeu) and how different 
Zeu retrievals influence  the NPP estimated from satellite; 

2) to evaluate and improve the satellite retrievals of diatoms abundance; 
3) to investigate the mean pattern and interannual variability of diatom bloom phenology; 
4) to examine the potential of ocean colour products to access environmental changes in the 

Southern Ocean. 
 

1.2 Outline of the thesis 
 
Chapter 2 introduces the specific topics of the three main studies developed in this research 

work. It starts by introducing satellite algorithms, moves to the SO and briefly explores the 
dynamics of phytoplankton blooms. In addition, it gives an overview on two important climate 
oscillations which influence the SO, ENSO and SAM. The next three chapters refer to the three 
studies.  

Chapter 3 addresses the uncertainties of the satellite derived euphotic depth (Zeu), which is a 
common variable among different ocean colour NPP models. It examines retrievals from two 
different methods (Chla and inherent optical properties of the water) and sensors (Sea-viewing 
Wide Field-of-view Sensor - SeaWiFS and Moderate Resolution Imaging Spectroradiometer - 
MODIS). It shows how the Zeu product can affect the retrievals of NPP. Furthermore, the NPP 
model used in the study requires the knowledge of the phytoplankton absorption. For this reason, 
the uncertainty of the satellite-derived phytoplankton absorption is also investigated. This chapter 
was published in Remote Sensing of Environment (Soppa et al. 2013).  

Chapter 4 is focused on the satellite retrieval of diatoms abundance. Most investigations have 
been confined to global oceans. In this study, we highlight the importance of the SO in developing 
a global algorithm for diatom using the Abundance Based Approach (ABA) of Hirata et al. (2011). 
A large global in situ dataset of phytoplankton pigments is compiled, particularly with more 
samples collected in the SO. A revision of the ABA is accomplished to take account of the 
information on the penetration depth and to improve the relationship between diatoms and TChla1. 
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As result, the revised global model has improved the retrievals in the SO. Moreover, a regional 
model, which further improves the retrievals of diatom abundance for the SO, is now available. 
These findings were published in Remote Sensing (Soppa et al. 2014).  

Chapter 5 investigates the diatom phenology in the SO applying the regional model to retrieve 
the abundance of diatoms developed in the previous chapter. Using a novel merged satellite Chla 
product applied to the regional algorithm, details are given to the diatom bloom phenology during 
1997–2012. The different characteristics of the phenology (e.g. start, duration, biomass) are 
investigated, as well as the interannual variability and trends. Finally, deep insights are given to 
how the interannual variability of diatom bloom phenology could be modulated by the large scale 
climate oscillations ENSO and SAM.  

Chapter 6, the concluding chapter, draws together the main findings of the thesis and provides 
an outlook for future research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1We refer to Chla (monovinyl chlorophyll-a plus chlorophyllid-a, allomers and epimers) as TChla (Chla plus divinyl 
chlorophyll-a) since Prochlorococcus (which contain divinyl chlorophyll-a) is uncommon in the Southern Ocean south of 
40°S. In chapter 4 we explicit refer to TChla because we consider the global distribution of phytoplankton.   
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2 Scientific background 
 
2.1  Ocean colour retrievals – an overview 

 
The principle of ocean colour remote sensing is that the information of the radiance in the UV-
VIS (ultraviolet-visible) part of the spectrum can be used to infer the water optical properties. The 
total radiance (LT, W m-2 sr-1) measured by the satellite sensor has different origins, but is the 
water leaving radiance (Lw), originated from the in-water scattering, which contains the 
information needed for the retrieval of the water properties (Figure 2.1). Within the water, the 
solar radiation is absorbed and scattered by water molecules and water constituents. These 
constituents, such as the phytoplankton, suspended non-algal particles and colored dissolved 
organic matter (CDOM or gelbstoff), absorb and scatter the radiation at specific wavelengths and 
with different intensities. The different spectral signatures and the fraction of each dissolved and 
particulate constituents, together with the water molecules, control the backscattered radiation that 
leaves the water and which carries information on the optical active constituents.  

 

 

Figure 2.1. A schematic showing the components of the total upwelling radiance at the sensor: 
water leaving radiance (Lw), atmospheric radiance (La) and surface-reflected radiance (Lr). Based 
on Martin (2004).  

 
The Lw represents up to 10% of the total upwelling radiance measured by the satellite sensor 

(average for the visible spectrum, Kirk 2011). The other 90% originates from the scattering within 
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the atmosphere (La – atmosphere radiance, e.g. gases, aerosols, clouds) and the reflection at the 
ocean/water surface (Lr – reflected radiance, e.g. sun glint, foam), but those contributions can be 
mostly separated from the Lw by atmospheric correction algorithms (Kirk 2011). The LT can be 
expressed as the sum of the different radiances (omitting the angular dependencies here and 
further on): 

 
           (2.1) 

 
where λ is the wavelength and t is an atmospheric transmittance factor to account for the 
attenuation of Lw from the surface to the satellite. However, it is the reflected (ρ) upwelling 
radiation from the ocean and passing through the atmosphere that is derived from ocean colour 
sensors and that that is directly related to the water optical constituents (Kirk 2011). The ρ is 
preferred to L because it can be more accurately estimated. Thus, Equation 2.1 can be re-written 
as: 

 
           (2.2) 

 
The reflectance of the ocean ρw (adimensional) can be expressed as: 

 

              (2.3) 

 
where F0 is the extraterrestrial solar irradiance (top of atmosphere radiance, W m-2), θ is the solar 
zenith angle and π converts the solar irradiance to units of radiance. 

Rearranging the equation 2.3, Lw can be obtained as: 
  

            (2.4) 

 
The Lw is often converted to normalized Lw (nLw, W m-2 sr-1) to remove the effects of the 

atmosphere attenuation and solar orientation (Kirk 2011). The nLw is obtained as: 
 

            (2.5) 

 
where εc is a correction factor accounting for changes in the Earth-Sun distance and tD the 
irradiance transmittance factor.   

The nLw is often expressed as remote sensing reflectance (Rrs, sr-1) or radiance reflectance. The 
Rrs is the standard input of many ocean colour algorithms, including the derivation of the Chla 
concentration, obtained as:   

 

                                                                                (2.6) 
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The satellite signal is related to the optical properties of the water and before more details on 
satellite algorithms are introduced, it is worth to define the two classifications of the optical 
properties of the water, which are widely used in ocean optics: (i) the inherent optical properties 
(IOPs) and the apparent optical properties (AOPs). Absorption and scattering of solar radiation are 
IOPs. Their magnitude depends only on the concentration and type of the substance and not on the 
illumination geometry or light distribution in the water (Kirk 2011). The AOPs (e.g. Rrs), on the 
other hand, depend on the IOPs, as well as on the geometrical structure of the light field.  

Thus, the magnitude and the spectral characteristics of the Rrs can be related to IOPs and can 
be expressed as a function of absorption and backscattering coefficients as result of radiative 
transfer models (Gordon et al. 1988): 
 

          (2.7) 

 
where f is an empirical factor that depends on the IOPs, incoming distribution of radiance and λ 
(Reynolds et al. 2001) and Q is the ratio of the upwelling irradiance (Eu) to radiance (Lu). f/Q is 
also specified as a shape factor describing the angular structure of the light field (Morel et al. 
2002; Zaneveld 1995). t is the transmittance factor of the air-water interface, n is the real part of 
the refractive index of the water, a is the total absorption coefficient, bb is the total backscattering 
coefficient. The term “total” refers to the sum of the absorption coefficients of water, dissolved 
matter and suspended particles (non-algal and algal particles). Likewise, bb is the sum of the 
backscattering coefficients of the water and suspended particles; assuming no significant bb for 
dissolved matter. In the next sections, the dependence on wavelength is further omitted for 
simplicity. Most semi-analytical algorithms (e.g. Garver-Siegel-Maritorena Model, Quasi-
Analytical Algorithm) used to retrieve Chla and IOPs are based on the relationship between Rrs 
and IOPs. 

 

2.1.1  Chlorophyll-a concentration 
 

Phytoplankton contain several photosynthetic pigments which absorb light in different parts of 
the spectrum from 400 to 700 nm. The spectral absorption characteristics of phytoplankton are 
modulated by their pigment composition with different pigments exhibiting distinct absorption 
features (IOCCG 2014). These pigments are one of the absorbers of the light in the water; together 
with the coloured dissolved organic matter, non-algal particles and the water molecule itself. The 
Chla is the major photosynthetic pigment present and shared by different phytoplankton groups 
(except for Prochloroccocus sp.). For this reason, it is commonly used as indicator of the biomass 
of phytoplankton.  

The Chla has a distinct spectral characteristic in the visible spectrum, strongly absorbing at 
blue and red bands, and less in the green region (Mobley 1994, Figure 2.2a). This spectral 
signature makes the retrieval of Chla from satellite sensors possible and those were developed 
with bands to exploit the information in the blue (443, 490, 510 nm) and green (550 or 555 nm) 
regions. The standard SeaWiFS (OC4v.6) and MODIS (OC3M) Chla algorithms are empirically 
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derived from a large global dataset of in situ measurements of Chla concentration (hereafter 
referred to as Chla) and the ratio of Rrs in different bands. The Chla is determined from a 
polynomial function that relates the maximum band ratio (X) to the Chla, defined as: 
 

                                                                 (2.8) 
 
where for SeaWiFS, 
 

                                                                          (2.9) 

 
For MODIS two band ratios are used to replace the three band ratios in the SeaWiFS 

algorithm: Rrs(443)/Rrs(550) and Rrs(490)/Rrs(550). The coefficients  and  are 0.3272, 
-2.9940, 2.7218, -1.2259 and -0.5683 for SeaWiFS and 0.283, -2.753, +1.457, +0.659 and -1.403 
for MODIS (Feldman and McClain 2012; O'Reilly et al. 2000). The band ratio is used instead of 
individual Rrs to reduce the uncertainties due to light propagation through the interface water-air 
while the switch of Rrs-ratios preserves a high signal-to-noise ratio (SNR) (Martin 2004; O’Reilly 
et al. 2000). 

As Chla increases, the shape and magnitude of the reflectance spectrum changes (see Figure 
2.2b). The region in the spectrum with higher Rrs shifts to higher wavelengths and the magnitude 
decreases. In low Chla waters the SNR is higher at 443 than at 490 and 510 nm bands, but at 
higher Chla the SNR is lower at 443 nm due to the stronger absorption (lower reflectance) in the 
blue region and thus the other bands are used instead (Dierssen 2010; O'Reilly et al. 2000).  

 

 
Figure 2.2. (a) Specific pigment absorption spectra for major phytoplankton pigments: 
chlorophyll-a (Chla), chlorophyll-b (Chlb), chlorophyll-c (Chlc), photosynthetic carotenoids (PC) 
and photoprotective carotenoids (PPC). Adapted from IOCCG (2014); originally from Bidigare et 
al. (1990). (b) Spectral changes in the Rrs with respect to changes in Chla. Numbers above the 
lines indicates the Chla concentration in mg m-3. Adapted from Dierssen (2010).   

 
Nevertheless, these algorithms were developed considering that the optical properties of the 

water are determined primarily by phytoplankton (case 1 waters), assuming that all other non-
water constituents vary closely with Chla (IOCCG 2006). Thus, when the optical properties of the 
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water are dominated by other constituents (case 2 waters), such as non-algal particles or CDOM, 
the algorithms show higher uncertainties.  

In situ measurements of Chla use mostly either fluorometric or the High Performance Liquid 
Chromatography (HPLC) techniques. The advantages of fluorometric measurements are the lower 
costs and it is less time consuming than HPLC. However, it is less accurate than HPLC due to the 
spectral overlap of the fluorescence of other chlorophyll pigments. For example, when 
chlorophyll-b is present in the sample, it leads to an underestimation of Chla (Arar and Collins 
1997). Nowadays HPLC is the standard method to determine Chla concentration used to develop 
and validate satellite Chla algorithms (IOCCG 2014). In the former days, fluorometric Chla data 
were used for this purpose. Another advantage of the HLPC technique is that it enables the 
simultaneous identification of a whole set of pigments.  

 

2.1.2  Phytoplankton absorption 

 

Chla is not the only pigment present in phytoplankton. There are other pigments that more 
efficiently absorb the light at different wavelengths and with either photosynthetic or 
photoprotective function (Kirk 2011). These pigments are also called accessory pigments. For 
example: chlorophylls (chlorophyll-b), carotenoids and phycobiliproteins (phycocyanin). The 
phytoplankton absorption spectrum results from the combination of the pigments present in the 
phytoplankton. Thus, the spectral signature of the phytoplankton absorption (aph) varies with the 
pigment composition, but also with pigment packaging.  

Similarly to Chla, the phytoplankton absorption can also be derived from Rrs using semi-
analytical algorithms, such as the Quasi-Analytical Algorithm (QAA). The difference to band 
ratio algorithms is that semi-analytical algorithms are based on theoretical models to relate Rrs to 
IOPs, together with empirical models to describe the relationship between IOPs and the water 
optical constituents (Martin 2004). Briefly, the QAA is an inversion algorithm that derives the 
IOPs (absorption and backscattering coefficients at different wavelengths) from the Rrs using 
empirical, analytical and semi-analytical approximations (Hirawake et al. 2011; Lee et al. 2009; 
Lee et al. 2002). First, the total absorption coefficient (a) is calculated at a reference wavelength 
(λ0, 555 nm for SeaWiFS and 550 nm for MODIS): 
 

                                                                        (2.10) 
 
where aw(λo) is the absorption coefficient of pure seawater from Pope and Fry (1997) and,  
 

                                                                                    (2.11) 

 
where rrs is the Rrs just below the surface expressed as:  
 

   (2.12) 
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The rrs can be modeled as a function of the  (represented by u): 

 

  (2.13) 

  
Knowing a(λo) and u(λo), the particulate backscattering coefficient (bbp) at λo can be derived by: 

 

 (2.14) 

 
where bbw is the backscattering coefficient of pure seawater from Morel (1974) at the λo. 
Subsequently, the calculation is propagated to other wavelengths by: 
 

  (2.15) 

 
where Y defines the spectral shape of bb(λ) and is defined as: 
 

   (2.16) 

 
Then the total absorption a can be derived for the other wavelengths as: 
 

  (2.17) 

 
Knowing a(λ), the aph(λ) can be calculated by the following steps: 
 

 (2.18) 

 

  (2.19) 

 

S is a parameter to describe the spectral shape of the absorption of gelbstoff and non-algal 
particles (ag) calculated as: 

 

 (2.20) 

 
ag(443) is determined as: 
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  (2.21) 

 
For the other λ, ag is calculated as: 

  

 (2.22) 
 

When the values of a(λ), aw(λ) and ag(λ) are known, aph(λ) can be derived as: 
 

 (2.23) 
 

The standard in situ measurements of aph are carried out using the filter-pad method. In short, 
water samples are filtered and placed in spectrophotometer which measures the light transmitted 
through the filter. This process yields to the particulate absorption. To obtain the aph, the filter is 
bleached with methanol to remove the pigments and the optical density is measured another time. 
The aph is calculated as the difference between the measurements before and after the pigments 
were removed. A detailed technical description can be found in Tassan and Ferrari (1995).  
 

2.1.3  Euphotic Depth 
 

Photosynthesis only occurs if light is available. The part of the water column with sufficient 
light for supporting photosynthesis and thus NPP is called euphotic zone, or euphotic depth (Zeu) 
(Falkowski and Raven, 2007; Kirk 2011). In biological terms, Zeu is the bottom of the euphotic 
zone. In physical terms, Zeu is the depth where the downward photosynthetic available radiation 
(PAR, EdPAR), the radiation in the spectral range of 400 – 700 nm, is reduced to 1% of its value at 
surface (EdPAR(0)) (Morel and Berthon 1989). 

In ocean colour remote sensing, Zeu is mostly estimated (i) empirically from the surface 
chlorophyll-a concentration (Chla, Zeu-Chla) and (ii) semi-analytically from the inherent optical 
properties of the water (IOPs, Zeu-IOP). The main difference between the two approaches is that 
the derivation of Zeu from Chla assumes that the waters are classified as case 1. On the other hand, 
the IOP approach determines the vertical distribution of light in the water from the IOPs and 
therefore Zeu can be retrieved in optically complex waters as well, as shown by Lee et al. (2007) 
and Shang et al. (2011b). 

The relationship between Chla and Zeu can be expressed as (Morel, in Lee et al. 2007): 
 

                                                                                      (2.24) 
 
From IOPs, the diffuse attenuation coefficient of PAR, KPAR, can be parameterized as a 

function of a(490) and bb(490), which in turn are determined using the QAA as described in the 
previous section (section 2.1.2). The vertical distribution of KPAR(z) is expressed as (Lee et al. 
2005; Lee et al. 2007): 



31 
 

 

                                 (2.25) 

 
where z is the depth and the coefficients K1 and K2 determined as, 
 

                                    (2.26) 
 
where , ,  and  have values of -0.057, 0.482, 4.221 and 0.090, respectively, and, 
 

                                                    (2.27) 
 
where , , ,  and  have values of 0.183, 0.702, -2.567, 1.465 and -0.667, respectively 
(Lee et al. 2005). 
 

As mentioned above, Zeu is the depth where EdPAR(z) is 1% of EdPAR at surface. The 
downward irradiance decreases exponentially with depth according to: 

 
                             (2.28) 

 
Thus, Zeu can be determined as: 

 

                                                                                                            (2.29) 
 

In situ Zeu can be determined from vertical profiles of PAR measured with radiometers. The 
sensors are mounted in a frame and lowered in the water avoiding the shadow of the ship. The 
measurements have to be corrected for a series of uncertainties such as the self-shading, variation 
of the incident sunlight during the deployment, bubbles and waves. 

 

2.1.4  Phytoplankton functional types 
 

As mentioned in Chapter 1, the intensity of the biological pump strongly depends on the size 
and composition of phytoplankton cells, in addition to the structure of the trophic community. For 
this reason it is important to distinguish the phytoplankton functional types (PFTs). Estimates of 
PFTs from satellite can be also applied to support biogeochemical models in parameter estimation 
and validating simulations for example (Robinson 2010). From satellite remote sensing PFTs can 
be detected using different methods. In the following, satellite remote sensing algorithms that are 
able to globally retrieve diatoms are introduced. We split them into abundance based and spectral 
based approaches. 
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2.1.4.1 Abundance based approach  
 

Abundance based approaches (ABA) are often used to retrieve global maps of phytoplankton 
community (PFTs) and size structure. These algorithms are based on the concept that the 
phytoplankton community structure changes with Chla. The Hirata et al. (2011) ABA method uses 
satellite-derived Chla together with empirical relationships between Chla and PFTs (diatoms, 
dinoflagellates, green algae, haptophytes, prokaryotes, pico-eukaryotes and Prochlorococcus sp.) 
and is tuned using in situ phytoplankton pigment measurements. The ABA methods, that are tuned 
using phytoplankton pigment data, are based on the assumption that different PFTs contain 
different types of pigments, and that usually one major pigment (or several depending on the PFT) 
can be attributed to a specific PFT (also called diagnostic pigment - DP, Table 2.1).  

 
Table 2.1. Phytoplankton functional types and their respective diagnostic pigments (Hirata et al. 
2011; IOCCG 2014; Vidussi et al. 2001). 
Phytoplankton Functional Types Phytoplankton pigments / Diagnostic Pigments 
Diatoms Fucoxantin (Fuco) 
Dinoflagellates  Peridinin (Perid) 
Cryptophytes Alloxanthin (Allo) 
Prymensiophytes and chrysophytes 19’-hexanoyloxyfucoxanthin (Hexfuco) 
Prymensiophytes 19’-butanoyloxyfucoxanthin (Butfuco) 
Cryptophytes Alloxanthin (Allo) 
Green algae   Monovinyl chlorophyll-b  
Prochlorophytes Divinyl chlorophyll-b 
Cyanobacteria and prochlorophytes Zeaxanthin (Zea) 

 
The ABA starts by calculating the fraction (f) of Chla attributed to a specific PFT or PSC using 

concentrations of DP from a large in situ database of phytoplankton pigment data (i.e. Diagnostic 
Pigment Analysis – DPA, Vidussi et al. 2001, Uitz et al. 2006). According to Uitz et al. (2006), the 
Chla can be expressed by the weighted sum of seven diagnostic pigments (DP) as: 
 

 
(2.30) 
 
where DPw is the estimated Chla, ai are the partial coefficients (derived from multiple regression 
analysis, Uitz et al. 2006). The summed terms on the right are the concentration of the diagnostic 
pigments representing the main PFTs (Table 2.1). 

The f-PFT/PSC is determined as the ratio of the DPs of a specific PFT/PSC to the sum of the 
weighted concentration of the seven DPs (DPw). For example, the fraction of Chla that is attribut-
ed to diatoms (f-Diatom) is derived as: 
 

  (2.31) 
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f-Diatom values lower than 0 and greater than 1 are set to 0 and 1, respectively. Table 2.2 presents 
the DPA applied to calculate other PFTs and PSCs in Hirata et al. (2011).  
 
Table 2.2. Equations used to calculate f-PFT/PSC (adapted from Hirata et al. 2011). DPw is the 
sum of the weighted concentration of the DP and ai are the partial coefficients as in Uitz et al. 
(2006).  
PFTs/PSCs Equation 
Microplankton (a1 Fuco + a2 Perid) / DPw 
Diatoms (a1 Fuco) / DPw 
Dinoflagellates  (a2 Perid) / DPw  
Nanoplankton (Xn a3 Hexfuco + a6 Chlb + a4 Butfuco + a5 Allo) / DPw 
Haptophytes Nanoplankton - Green Algae 
Green Algae (a6 TChlb) / DPw 
Picoplankton (Yp a3 Hexfuco + a7 Zea) / DPw 
Prokaryotes (a7 Zea) / DPw 
Pico-eukaryotes Picoplankton – Prokaryotes 
Prochlorococcus sp. 0.74 DvChla/Chla 

 
Once the f-PFT/PSC has been determined (Table 2.2), the relationship between f-PFT/PSC and 

Chla can be quantified using empirical equations (Figure 2.3a), with the empirical equation 
varying according to the PFT/PSC (Table 2.3). With the knowledge of the empirical model, its 
parameters and Chla, which is operationally produced as a satellite product, it is possible to 
retrieve the f-PFT/PSC (Figure 2.3b). The Chla of each PFTs/PSC can be determined by 
multiplying the f-PFT/PSC by the Chla. A limitation of retrieving PFTs from HPLC pigments is 
the presence of a DP in more than one PFT (Hirata et al. 2011; Uitz et al. 2006). Thus, 
uncertainties of ABA vary according to the PFT of choice and the best performance was obtained 
for picoplankton (root mean squared error = 7.12 % Chla, see Table 4 in Hirata et al. 2011). For 
diatoms the coefficient of determination was 0.73 and the root mean squared error 7.98 % Chla 
(Hirata et al. 2011).    

 
Table 2.3. Models and parameters used to estimate the f-PFT/PSC (adapted from Hirata et al. 
2011). 
PFTs/PSCs Equation p0 p1 p2 p3 p4 p5 p6 
Microplankton [p0 + exp(p1 x + p2)]-1 0.91 -2.73 0.4     
Diatoms [p0 + exp(p1 x + p2)]-1 1.33 -3.98 0.20     
Dinoflagellates  Microplankton – Diatoms        
Nanoplankton 1 - Microplankton – Picoplankton        
Haptophytes Nanoplankton - Green Algae        
Green Algae (p0 / y) exp[(p1 (x + p2)2] 0.25 -1.26 -0.55     
Picoplankton -[p0 + exp(p1 x + p2)]-1 + p3 x + p4 0.15 1.03 -1.56 -1.86 2.99   
Prokaryotes (p0 / p1 / y) exp[p2 (x + p3)2 / p1

2] + p4 x2 + p5 x + p6 0.007 0.62 -19.52 0.96 0.10 -0.12 0.06 
Pico-eukaryotes Picoplankton – Prokaryotes        
Prochlorococcus sp. (p0 / p1 / y) exp[p2 (x + p3)2 / p1

2] + p4 x2 + p5 x + p6 0.01 0.68 -8.6 0.97 0.007 -0.16 0.04 
x=log10(Chla); y=Chla 
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Figure 2.3. (a) Relationship between Chla and Diatom (% Chla). To get % Chla, the f-Diatom is 
multiplied by 100. The orange line represents the model and fitting parameters of Hirata et al. 
(2011) for Diatoms, as presented in Table 3, red line represents a running mean of the in situ data. 
Modified from Hirata et al. (2011). (b) Mean % of Chla of Diatoms over 1998-2010 for January. 
Modified from IOCCG (2014). 
 
2.1.4.2 Spectral based approach 
 

Spectral approaches to retrieve the phytoplankton community structure are the algorithms of 
Alvain et al. (2005; 2008) and Bracher et al. (2009). Alvain et al. (2005; 2008) developed an 
algorithm called PHYSAT that determines the dominance of PFTs (diatoms, nano-eukaryotes, 
Prochlorococcus, Synechocococus-like and Phaeocystis-like) by identifying their specific spectral 
signatures in the nLw, more specifically in the satellite radiance anomaly (Ra) from SeaWiFS or 
MODIS sensors. Ra is defined as the ratio of nLw and a reference nLw (nLwref) at five wavelengths 
(e.g. 412, 443, 488, 531 and 555 nm for MODIS). The nLwref represents the average nLw spectra 
for different Chla intervals from 0.02 to 3 mg m-3 (Ben Mustapha et al. 2014). The normalization 
by the nLwref removes the first order effect of the Chla in the nLw (Alvain et al. 2005). A dataset of 
satellite Ra spectra is matched with HPLC pigment data collected in different regions of the global 
ocean to identify Ra spectra associated with a specific PFTs. Based on this information, Alvain et 
al. (2005) established thresholds and shape criteria to distinguish between the spectral signatures 
of different PFTs which were initially used to classify the satellite Ra spectra to obtain maps of the 
PFTs dominance.  

The PHYSAT was improved by Ben Mustapha et al. (2014) by using Self-Organizing Maps 
(SOM). The SOM allows to automatically classify a larger number of satellite Ra spectra based on 
their similarity in shape and amplitude, without the necessity of establishing thresholds. The Ra at 
each pixel is assigned to a specific PFT if the Ra spectrum is between the mean ± one standard 
deviation of the specific PFT Ra spectrum (or reference vector in the case of SOM). Otherwise, 
the pixel is assigned to “unidentified phytoplankton assemblage” group (Figure 2.4). Validation 
with in situ pigment data showed 83.3%, 66.7%, 58.1% and 66.7% of successful identification for 
diatom, nano-eukaryotes like, Prochlorococcus and Synechocococus-like, respectively (Ben 
Mustapha et al. 2014). 
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Figure 2.4. Climatology of the dominance of multiple PFTs for January (1997-2010) applied to 
SeaWiFS. White areas represent missing data or unidentified phytoplankton type. Modified from 
Ben Mustapha et al. (2014). 

 
Like PHYSAT, PhytoDOAS is based on analyzing optical information and retrieves diatoms, 

cyanobacteria, dinoflagellates and coccolithophores, by identifying their specific absorption in the 
backscattered solar radiation. This is done by using the differential optical absorption 
spectroscopy method (DOAS). First, the ratio of the backscattered solar radiation at the top of 
atmosphere and the extraterrestrial irradiance, both measured by the sensor, is calculated. 
Exploiting only the differential structures (a fitted low order polynomial is subtracted) all 
contributions of oceanic and atmospheric constituents are fitted to this ratio, for example 
phytoplankton groups, water vapour, water and atmospheric trace gases (e.g. ozone). The 
contributions of constituents with low level of spectral structure, including Mie and Rayleigh 
scattering and absorption of colored detrital matter, are approximated by a low order polynomial.  

 The DOAS method is applied to two spectral windows; one in the UV range of 340 nm to 385 
nm and a second in the visible range of 429 nm to 521 nm. The UV window is used to retrieve the 
spectral signature of the Vibrational Raman Scattering (VRS) of water molecules, a proxy for the 
light penetration depth in the water (Dinter et al. 2015; Vountas et al. 2007). The DOAS-fit in the 
visible window yields the specific phytoplankton absorption signatures. Thus, fitting is carried out 
twice, first excluding the VRS part to derive the fit factor for the PFTs and, second, excluding the 
PFT part to derive the fit factor for the VRS of water molecules, which is extrapolated to the 
visible window. The concentration of each PFT is calculated by dividing the fit factor for the 
specific PFT by the light penetration depth in the water (Bracher et al. 2009, Vountas et al. 2007). 

The extended PhytoDOAS version, called multi-target fit, by Sadeghi et al. (2012) 
simultaneously fits the absorption spectra of diatom, dinoflagellates and coccolithophores. Up to 
now, PhytoDOAS is the only spectral algorithm applied to hyperspectral satellite data. Application 
of PhytoDOAS is restricted to hyperspectral sensors and up to now it was applied to data from the 
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY, level-1 
top of atmosphere data) onboard the European Environmental Satellite (ENVISAT) (Figure 2.5). 
A direct validation with in situ measurements is difficult owing to the large pixel size (about 30 
km by 60 km). Nevertheless, preliminary validation by Bracher et al. (2009) indicated that 
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satellite-derived information on cyanobacteria and diatom distributions matched well with 
corresponding in situ information based on pigment analyses of co-located water samples.  

 

 
Figure 2.5. Monthly Chla for specific phytoplankton groups – October 2009. The coloured circles 
are the Chla of the respective groups derived from HPLC pigment concentration and CHEMTAX 
analysis of in situ samples taken during TransBrom Sonne cruise (9–23 October 2009) (IOCCG 
2014). 
 
2.1.4.3 Potentials and limitations of the methods 
 

The potentials and limitations of the above mentioned algorithms are summarized in Table 2.4. 
Some limitations are occasioned by the sensor and not directly by the algorithms. For example, 
although PHYSAT can be applied on hyperspectral satellite data, currently there is no global 
product of water leaving radiance from hyperspectral sensors, limiting the application of the 
algorithm to multispectral sensors. Besides PhytoDOAS, all current global PFT products are 
retrieved from multispectral sensors, which have a much higher spatial resolution (1 to 4.6 km) 
and temporal coverage (1-3 days), when compared with current hyperspectral sensors. On the 
other hand, the small number of wavelength bands and the broad band resolution of multispectral 
sensors provide limited information on the phytoplankton absorption structures for spectral 
algorithms (i.e. PHYSAT). As mentioned earlier, although different PFTs have different marker 
pigments, they can also have some pigments in common. This is a limitation of retrieving PFTs 
from HPLC pigments using the diagnostic pigment analysis, as in some abundance based 
approaches (i.e. Brewin et al. 2010, Hirata et al. 2011). As shown by Brewin et al. (2014), 
abundance-based approaches can be also parameterized using size-fractionated chlorophyll data 
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derived from filtration and in-vitro fluorometry for example.  
Using PhytoDOAS, the specific optical signatures of different PFTs are separated by their 

specific differential absorption spectra only visible in hyperspectral data. The drawback of 
applying PhytoDOAS is the coarser spatial resolution of the ground scene of current global 
hyperspectral sensors (e.g. SCIAMACHY, 30 km by 60 km) which is satisfactory for open oceans, 
but limited close to the coasts and at the high latitudes where more factors can influence the 
retrievals (e.g. CDOM, sea ice, different surface albedos). A second limitation of current global 
hyperspectral sensors is the revisiting time which in the case of SCIAMACHY is every 6 days. 
Especially for studies on phytoplankton bloom a data product with better temporal and spatial 
resolution is required to meet the high spatial and temporal variability of blooms. This issue limits 
up to now the use of PhytoDOAS products for phenological studies of phytoplankton blooms.  
 
Table 2.4. Potential and limitations of the algorithms described in section 2.3. Based on IOCCG 
(2014). 

Algorithm Potential Limitations 
PHYSAT - detection of multiple PFTs 

- spectral approach 
- accounts for variability in the spectral 
response within a PFT 
 

- retrieves the dominant PFT and not con-
centration 
- requires large number of match-up be-
tween in situ and satellite data for algorithm 
development 
- implemented for SeaWiFS and MODIS 
- requires clear sky conditions 

ABA - detection of multiple PFTs and PSCs 
- retrieves concentration 
- applicable to any sensor that derives 
Chla 

- based on empirical relationships 
- requires large in situ database for algo-
rithm development 
- products should not be treated as inde-
pendent of Chla 

PhytoDOAS - detection of multiple PFTs  
- retrieves concentration 
- spectral approach 

- does not account for variability in the ab-
sorption spectra within a PFT 
- up to date applied only to SCIAMACHY 
with low temporal and spatial resolution  

 

2.2  The Southern Ocean dynamics and phytoplankton blooms  
 
2.2.1  Southern Ocean circulation 
 

The SO is of crucial importance for the global climate. The region is unique in that it contains 
two important circulation features: an important part of the Meridional Overturning Circulation 
(MOC) and the Antarctic Circumpolar Current (ACC) (Cunningham 2005). These two features are 
responsible for storing and transporting heat, salt, CO2, nutrients and other substances, as well as 
anomalies, around the globe.  

The MOC connects all ocean basins through a large-scale system of surface and deep currents 
(Schmittner et al. 2013). The role of the SO in this system includes the formation of the Antarctic 
Bottom Water (AABW) and the wind-driven upwelling of deep waters (e.g. North Atlantic Deep 



38 
 

Water – NADW) (Talley 2013). The SO is the major region of the global oceans where the deep 
waters are upwelled to the surface (Rintoul and Garabato 2013). A conceptual representation of 
the MOC is presented in Figure 2.6a. The major water masses and pathways are next described 
based on the works of Rintoul et al. (1999) and Talley (2013). 

The NADW, Indian Deep Water (IDW) and Pacific Deep Water (PDW) rise into the mixed 
layer in the SO where they form the Circumpolar Deep Waters (CDW). The IDW and PDW are 
less dense than the NADW and upwell above and north of the NADW, being the main source of 
the upper CDW (UCDW). Part of the UCDW is then diverted northward by Ekman transport 
across the ACC and leads to the formation of the Subantarctic Mode Water (SAMW).  

The SAMW is produced during deep winter convection (Rintoul et al. 1999) and is not only an 
important source of nutrients for the global oceans (Sarmiento et al. 2004) but it is also rich in 
anthropogenic CO2 by air-sea exchange (Sabine et al. 2004). The densest portion of the SAMW 
further forms the Antarctic Intermediate Waters (AAIW) (Rintoul et al. 1999). The SAWM and 
AAIW continue flowing northwards into the thermocline and are the main mechanism for 
transporting anthropogenic CO2 to the ocean interior (Sabine et al. 2004).  

The remaining fraction of the UCDW joins the upwelled lower CDW (LCDW), formed from 
the NADW. They are then transported southward by eddies and will contribute to the formation of 
the AABW. The cold winds blowing off Antarctica, over the continental shelves, cause the cooling 
of ocean surface through heat loss as well as the brine release during the formation of sea ice. 
These two processes produce dense waters that sink and form the AABW. Main regions for the 
formation of AABW include the polynyas of the Weddell and Ross Seas. The AABW flows 
northwards until it rises into IDW, PDW and NADW in the subtropics (Talley 2013).   

The zonal circulation of the SO is driven by the ACC. The wind-driven ACC is the strongest 
current of the global oceans (~ 137 Sv in the Drake Passage, Rintoul et al. 2010), flowing 
eastward and connecting the southern part of the Atlantic, Indian and Pacific oceans. The ACC 
transport is constrained into multiple strong narrow jets defined as fronts (Graham and De Boer 
2013; Sokolov and Rintoul 2007). The position of the fronts is mainly controlled by the 
interaction of the flow with the topography (Pollard et al. 2002). Such fronts act as boundaries that 
split the SO in different zones of waters with distinct characteristics (Cunningham 2005; Sokolov 
and Rintoul 2007). The main fronts observed in the ACC are: Subantarctic Front (SAF), Polar 
Front (PF) and Southern Antarctic Circumpolar Front (SACCF) (Figure 2.6b). North of the ACC 
there is the Subtropical Front (STF), the northern limit of the surface waters SAMW and AAIW 
(Orsi et al. 1995).  
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Figure 2.6. (a) Two-dimensional view of the Southern Ocean part of the meridional overturning 
circulation (MOC). NADW, North Atlantic Deep Water; Indian Deep Water – IDW; Pacific Deep 
Water – PDW; Indonesian Throughflow – ITF; Upper Circumpolar Deep Water - UCDW; Lower 
Circumpolar Deep Water - LCDW; Subantarctic Mode Water (SAMW), Antarctic Intermediate 
Water (AAIW). Adapted from Talley (2013). (b) Southern Ocean bathymetry (m) overlaid with 
the mean position of the maximum sea ice extent (1997-2012, solid white line, Fetterer et al. 
2002), Subtropical Front (Orsi et al. 1995) and the Antarctic Circumpolar Current fronts (Orsi et 
al. 1995, Salle et al. 2008). From north to south: Subtropical Front (STF, dashed line), 
Subantarctic Front (SAF, solid line), Polar Front (PF, dashed line), and Southern Antarctic 
Circumpolar Front (SACCF, solid line). SAZ, Subantarctic Zone; PFZ, Polar Front Zone; AZ, 
Antarctic Zone.  
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2.2.2  Phytoplankton blooms 
 

The SO is amongst the most productive regions of the global oceans (Comiso 2010; Rousseaux 
and Gregg 2014). The high seasonal variation of the solar irradiance is the main control of the 
seasonality of the phytoplankton photosynthesis, growth and distribution (Comiso 2010). Phyto-
plankton growth is limited in the winter by the reduced sunlight, lower water temperatures and 
strong vertical mixing. Temperature affects metabolic processes of phytoplankton as well as the 
stratification of the water column. The convective heat loss in the autumn and winter creates deep 
mixed layers that dilute the phytoplankton population and rapidly moves phytoplankton through 
the water column. As a consequence, phytoplankton receive significantly less light than if stand-
ing in the euphotic zone and also the grazing pressure is reduced (Behrenfeld and Boss 2014; 
Franks 2014). Once the solar radiation increases again in spring, the convective mixing is reduced 
and phytoplankton grow and form blooms, given that sufficient nutrients are available. The fol-
lowing decline of the blooms is controlled not only by the mechanisms above mentioned (light, 
temperature, deep mixing) but also major factors are the depletion of nutrients and grazing.  

Although open waters of the SO are generally characterized by high level of macronutrients, 
the phytoplankton biomass remains low in many parts of the region, even in the summer when 
light is normally not limited. The main reason is the lack of the micronutrient iron in the euphotic 
zone, essential for electron transport in photosynthesis. The SO is a typical high nutrient low 
chlorophyll (HNLC) system (Falkowski et al. 1998).  

Nevertheless, the topography of the SO varies largely (Figure 2.6b) and when the flow 
associated with the fronts interacts with topographic features, water rich in macro- and micro-
nutrients rises to the surface and promotes phytoplankton growth and initiation of blooms. The 
waters rich in nutrients and in phytoplankton are then advected horizontally with scales of 
hundreds of kilometers (Sokolov and Rintoul 2007). Additional input of nutrients to the surface 
occurs by the winter deep mixing, vertical diapycnal diffusion, Ekman upwelling, atmospheric 
deposition and island’s shelf sediments (Borrione et al. 2014; Comiso 2010; Tagliabue et al. 
2014). Whereas phytoplankton growth in open waters might be limited by nutrients, the 
continental shelves of the SO have often higher biomass of phytoplankton. In these regions, 
nutrients are supplied by river runoff, shelf sediments and melt of ice. In the seasonal ice zone, the 
area between the minimum and maximum excursion of the sea ice, the increase in phytoplankton 
biomass follows the retreat of sea ice. An important consequence of the melting of sea ice is the 
increase of the vertical stratification of the water. At first, the stratification maintains 
phytoplankton in the upper layers, in the euphotic zone, where nutrients and light promote 
phytoplankton growth. Also important is that the partial ice cover reduces the mixing of the water 
column by the winds (Taylor et al. 2013). As sea ice continues to melt, the area of open waters 
expands. When sea ice has almost disappeared, the wind is able again to mix the water, which in 
turn dilutes phytoplankton in the water column (Taylor et al. 2013). 
 
2.2.2.1 Hypothesis on phytoplankton bloom initiation 
 

To date, there is a general good understanding on the mechanisms controlling phytoplankton 
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blooms in high latitudes, but still the mechanisms leading to the start of the spring bloom are 
discussed. The main hypotheses are briefly introduced below. 

 

2.2.2.1.1 Sverdrup’s Critical Depth Hypothesis 
 

The Sverdrup’s Critical Depth Hypothesis (Sverdrup 1953) is probably the most revisited one. 
This hypothesis is based on the balance between the net primary production and the rate of losses 
(respiration, grazing, sinking, mortality) which is controlled by the amount of available light 
(Franks 2014). The depth where these two processes are equivalent is defined as the critical depth. 
In the winter, phytoplankton population is diluted and mixed in the deep mixed layer. The 
respiration exceeds primary production limiting phytoplankton growth and biomass accumulation 
(Behrenfeld and Boss 2014). In spring, surface heating shoals the mixed layer; phytoplankton are 
trapped in the surface and exposed to higher light levels. If mixed layer depth is above the critical 
depth, the production is superior to the losses and concentration begins to rise. 

Criticisms to the Critical Depth Hypothesis include the use of a constant loss rate and the 
density-defined mixed layer depth. Classically, mixed layer depth is defined as the depth at which 
a density changes by a given threshold value relative to the one at a near-surface (Montegut et al. 
2004). Within this mixed layer the water properties are nearly homogeneous and there is a 
continuous mixing. However, in the Critical Depth Hypothesis there is no differentiation on the 
strength of the mixing or sinking of phytoplankton (Huisman et al. 2002).  

 

2.2.2.1.2 Critical Turbulence Hypothesis 
 

The Critical Turbulence Hypothesis (Huisman et al. 2002) is similar to the Critical Depth 
Hypothesis, but it differentiates between mixed layer and turbulent mixed layer (Behrenfeld and 
Boss 2014). The turbulence influences the light levels which phytoplankton are exposed to, as 
well as the sinking of phytoplankton; hence the development of a bloom depends on the balance 
in the turbulent mixing rates. If the turbulence is above a minimal threshold, critical turbulence, 
phytoplankton are diluted and not exposed to light. On the other hand when the turbulence is low, 
the sinking of phytoplankton out of the euphotic zone dominates and inhibits the development of 
the bloom similarly. However, at intermediate turbulence phytoplankton are maintained at 
adequate light levels, the production exceeds the losses and a bloom develops.   

 

2.2.2.1.3 Disturbance-Recovery-Hypothesis 
 

 The Disturbance-Recovery Hypothesis (Behrenfeld et al. 2013) focus on the role of grazing on 
controlling the balance between production and loss. According to this hypothesis, the decrease in 
phytoplankton during autumn and winter is not only caused by the decrease in sunlight, deep 
mixed layers along with the dilution of phytoplankton, but also by the dilution of zooplankton. 
Accordingly, the phytoplankton biomass increases with the reduction of phytoplankton-grazers 
encounters. Thus, the start of the bloom occurs before the shoaling of the mixed layer in spring, 
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even if the phytoplankton biomass is low due to the dilution by convective mixing (Behrenfeld 
2014; Behrenfeld and Boss 2014). 

 

2.3  Climate oscillations and the influence in the Southern Ocean 
 

The phytoplankton biomass and the start, magnitude and duration of blooms vary each year 
and studies in the SO have suggested that part of this variability is linked to the climate oscilla-
tions ENSO and SAM (Alvain et al. 2013; Arrigo and van Dijken 2004; Montes-Hugo et al. 2008; 
Racault et al. 2012; Smith et al. 2008). Smith et al. (2008), for example, observed a later spring 
sea-ice retreat and lower phytoplankton biomass offshore in the western Antarctic Peninsula in El 
Niño or negative SAM events. ENSO and SAM dominate the climate variability on interannual 
timescales in the tropics and in the SO, respectively. Whereas ENSO is an oscillation of the cou-
pled ocean-atmosphere system, SAM is an oscillation of the atmospheric system.  
 

2.3.1  El Niño Southern Oscillation - ENSO 
 

The ENSO is an ocean-atmosphere phenomenon located in the tropical Pacific ocean that 
occurs irregularly every 2 to 5 years (Clarke 2008). During neutral years, the surface atmospheric 
pressure is low in the warmer waters of the western tropical Pacific and high in the colder waters 
of the central and eastern tropical Pacific. The trade winds that blow eastward tend to pile up the 
warm waters in the western Pacific forming the “warm pool” (Penland et al. 2013). The warm 
water pool leads to strong atmospheric convection. The air in higher altitudes moves eastward, 
sinks over the American continent and returns as easterly winds (Figure 2.7a, Robinson 2010). 
Neutral years are also characterized by a deeper thermocline in the west side and shallower 
thermocline in the east side of the Pacific. 

In El Niño events anomalous high sea surface temperature (SST) are observed in the eastern 
tropical Pacific (Figure 2.7b and 2.7d). These higher SSTs are accompanied by lower atmospheric 
pressure and reduction of the easterly trade winds. With the weakening of the winds the waters of 
the western Pacific are able to expand eastwards and the warm pool expands. This also creates an 
anomalous deeper thermocline in the eastern Pacific and shallower in the west Pacific. 

 In La Niña events the system is reversed and the patterns are similar to normal years, however 
intensified (Figure 2.7c). The easterly winds are stronger than normal. The SST in the east tropical 
Pacific is colder than in normal years and the upwelling is intensified (Figure 2.7e).  
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Figure 2.7. On the left: ocean-atmosphere processes that occur during (a) normal years, (b) El 
Niño event and (c) La Niña event. Modified from Robinson (2010). On the right: composite of 
anomalies of Sea Surface Temperature from November to March in (d) El Niño (1965, 1972, 
1982, 1987, 1991, 1993, 1994, 1997, 2002) and (e) La Niña (1950, 1955, 1956, 1964, 1971, 1974, 
1988, 1998, 1999) events. The maps were produced from the data display pages of the 
NOAA/ESRL Physical Sciences Division, Boulder Colorado, available at 
http://www.esrl.noaa.gov/psd/.  
 

The ENSO strongly influences oceanic and atmospheric processes. One of the strongest El 
Niño was observed in 1982. The upwelling in the coast of Peru was weaker than usual since the 
thermocline in the region is deeper during El Niño events. As a consequence, less nutrients were 
available that resulted in a decrease in the phytoplankton biomass with direct impact in the 
anchovy, sea birds and seals population in the east Pacific region (Clarke 2008). 

Although the ENSO is restricted to the tropical Pacific, its effects can be observed in different 
regions of the globe. Induced changes in sea level pressure, surface air and water temperatures 
and sea ice cover have been observed in different sectors of the SO (Kwok and Comiso 2002). 
However, while the teleconnection mechanisms are well established in the tropical Pacific, they 
are more complex in the SO. The heating in the tropical Pacific ocean and the deep convention 
generate an atmospheric Rossby wave train that propagates until near Antarctica (Yeo and Kim 
2015). In addition to that, the anomalous high SST changes the strength and position of the 
atmospheric cells and jets that connect the tropics to the SO (Yuan 2004). More information on 
this topic can be found in the works of Yuan (2004), L’Heureux and Thompson (2006), Ciasto et 
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al. (2015), Yeo and Kim (2015).  
 

2.3.2  Southern Annular Mode - SAM 
 

The SAM, also known as the Antarctic Oscillation, is the leading mode of atmospheric 
variability south of 20°S (Pohl et al. 2010). It is characterized by differences in the atmospheric 
pressure between mid-latitudes and the Antarctic region. A positive phase of SAM consists of 
anomalous high pressure at mid-latitudes and anomalous low pressure at high latitudes (Figure 
2.8a). This pressure difference strengthens and shift the westerly winds around Antarctica (Figure 
2.8b). The opposite is observed during a negative phase of SAM. 

The influence of SAM has been observed in distinct regions of the SO. The intensified winds 
during a positive phase of SAM are associated with enhanced Ekman transport in the Antarctic 
and Polar Frontal Zone (Lovenduski and Gruber 2005). Changes in the sea ice cover have also 
been observed. Lefebvre et al. (2004) showed that during a positive SAM phase the 
Bellingshausen and Weddell Seas are influenced by warm northerly winds and the sea ice cover 
decreases. On the other hand, the Ross and Amundsen Seas are more affected by southerly winds, 
which increase the sea ice cover.  

Moreover, it has been shown that SAM presents a significant trend towards the positive phase 
in the last decades (Pohl et al. 2010; Sallee et al. 2010). It has also been recognized that ENSO 
and SAM are not linearly independent at interannual time scales (L'Heureux and Thompson 2006; 
Pohl et al. 2010). Studies have also shown that El Niño yields to anomaly patterns in ocean and 
atmosphere similar to a negative phase of SAM, and vice versa (Lovenduski 2007; Pohl et al. 
2010). Fogt et al. (2011) observed that the teleconnection between ENSO and the SO is intensified 
when ENSO co-occur with a weak SAM or when both oscillations coincide with opposing phases 
(e.g. El Niño occurs with a negative SAM phase). When El Niño (La Niña) coincides with 
positive (negative) SAM phase the magnitude of the teleconnection is reduced. 

 

 
Figure 2.8. Regression of anomaly patterns of (a) atmospheric pressure at 700 mb and (b) wind 
stress (dyne cm−2) onto the SAM index. Modified from Lovenduski (2007). 
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3  Study 1: Satellite derived euphotic depth in the Southern 
Ocean: implication for primary production modeling 

 
3.1  Motivation 
 
The uncertainty of NPP models can be reduced by improving the input variables (Saba et al. 2011) 
and a common one, shared by different models (Behrenfeld and Falkowski 1997; Hirawake et al. 
2012; Hirawake et al. 2011; Westberry et al. 2008) is the Zeu. However, there is no detailed 
evaluation of the satellite Zeu in the SO (defined here as the region south of 30°S). A comparison 
of ocean colour sensor/retrievals with in situ measurements, as well as the further impact on the 
NPP estimation is thus necessary. In this context, the main goal of this chapter is to investigate the 
differences in estimating Zeu from satellite remote sensing using different approaches and sensors 
in the SO. We compute Zeu from ocean colour products of (i) Chla and (ii) IOPs and validate those 
using in situ measurements of Zeu. In addition, we compare Zeu derived from the MODIS and the 
SeaWiFS sensors. The approaches and sensors are further examined in terms of the spatial 
distribution of Zeu. Since aph data are used in the NPP calculation, we also examine the 
uncertainties of MODIS and SeaWiFS aph derived with the Quasi-Analytical Algorithm (QAA, 
Lee et al. 2002; Lee et al. 2009). Finally, we apply the absorption based primary production model 
(ABPM, Hirawake et al. 2012, Hirawake et al. 2011) to investigate how different Zeu products 
influence the estimation of NPP in the SO.  

 

3.2  Material and Methods  

 

3.2.1  In situ data 
 
A dataset of in situ measurements of Chla (N=1032) and Zeu (N=1288) in the SO was built to 

validate the satellite measurements. The dataset compiled measurements from 1997 to 2008 taken 
by several investigators (Figure 3.1). The Chla data were restricted to Chla derived from HPLC 
pigment analysis, within 12 m surface layer and taken within 3 hours of the Zeu in situ measure-
ments. An average value of Chla was calculated if two or more samples were collected within the 
surface layer. We used Zeu data provided in the databases that were calculated from in situ meas-
urements of vertical profiles of PAR (N=977). In addition, vertical profiles of PAR were also 
available in the SeaBASS database and those were used to calculate Zeu (N=311). A third dataset 
of in situ measurements of  (N=465) was compiled to validate the  derived from satellite 
Rrs. The  data are derived from filter pad measurements taken in the years 2007, 2008, 2010 
and 2012. The ANT-XXVI/3 and ANT-XXVIII/3 data were measured according to the filter pad 
method described in Taylor et al. (2011). Figure 3.1 presents the relative frequency distribution of 
the Zeu, Chla and spectrally averaged  coefficient over 400–700 nm ( , see section 3.4) in 
situ measurements that matched with SeaWiFS and MODIS data.  
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Figure 3.1. On the left, location of the in situ measurements in light grey and the matched ones 
with satellite in black: (a) Zeu (1288), (b) Chla (1032) and (c)  (465). On the right, the 
respective relative frequency distribution of the matched in situ measurements.  
 

3.2.2 Satellite data 
 

MODIS-Aqua (R2012.0) and SeaWiFS (R2010.0) level 3 products of Chla (CHL1), PAR, Rrs 
were obtained at http://oceancolor.gsfc.nasa.gov/. The data are produced and distributed by the 
NASA Goddard Space Flight Center's Ocean Data Processing System (ODPS). The SeaWiFS da-
taset has the longest time series; however, the data acquisition ended in December 2010. We used 
MODIS and SeaWiFS data at 9 x 9 km2 spatial resolution. Satellite PAR and aph (see section 
3.2.4) derived from Rrs were used in the NPP model. For the validation with in situ measurements 
daily images were used; for spatial distribution analysis we used monthly data. 
 



48 
 

3.2.3  Zeu derived from ocean colour  
 

Two approaches were used to derive Zeu from ocean colour products of: (i) Chla (Zeu-Chla) and 
(ii) IOPs (Zeu-IOP), as presented in section 2.1.3. The QAA (version 5, Lee et al. 2009) was 
applied to derive the absorption and backscattering coefficients at 490 nm (a490 and bb490) from 
the satellite Rrs. The detailed QAA for the retrieval of a490 and bb490 and of Zeu was presented in 
chapter 2 (section 2.1.2). The uncertainties of the IOPs retrieved from QAA are discussed in Lee 
et al. (2005) and Lee et al. (2006; 2010).  
 

3.2.4  Primary production model 
 

The NPP was calculated using the Absorption Based Primary Production Model (ABPM, 
Hirawake et al. 2012; Hirawake et al. 2011), an improved version of the Vertically Generalized 
Production Model (Behrenfeld and Falkowski, 1997) for polar oceans. In the ABPM, the product 
of the chlorophyll-a normalized maximum photosynthetic rate in the water column , mg C 
(mg Chla)-1 h-1) and Chla (mg m-3) is replaced by a linear relation of the spectrally averaged  
coefficient over 400–700 nm ( , m-1). This model eliminates uncertainties of the satellite Chla 
product and the temperature effect on the estimation of the  (Hirawake et al. 2011). The 
ABPM is expressed as: 
 

                                                                 (3.1)  

 
where E0 is the daily integrated photosynthetic available radiation (PAR, Einsteins m-2 day-1) from 
satellite and Dirr is the photoperiod (h) calculated as described in 
http://orca.science.oregonstate.edu/faq01.php. The NPP estimated from Zeu-Chla is represented as 
NPP-Zeu-Chla and from Zeu-IOP as NPP- Zeu-IOP.   

The QAA was applied to derive the  at the SeaWiFS spectral bands of 412, 443, 490, 510 
and 555 nm and MODIS spectral bands of 412, 443, 488, 531 and 555 nm. Satellite ph were then 
derived by adjusting the  integrated over the visible bands of SeaWiFS and MODIS to the in 
situ  over the continuous visible range (400 – 700 nm) (Hirawake et al. 2012, Hirawake et al. 
2011): 

 

                                                                        (3.2) 

 
where λ were the above mentioned spectral bands of SeaWiFS and MODIS. The parameter a 
represents the slope of the regression of the satellite  to the in situ and corresponded to 
1.3656 for SeaWiFS and 1.5354 for MODIS.  
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3.2.5  Validation and statistical analysis 
 

The MODIS and SeaWiFS match ups were obtained when the day, latitude and longitude of 
the in situ observation fell within the limits of 1x1 pixel. The bias, average absolute percentage of 
error (E), root-mean-square error (RMSE) and mean absolute error (MAE) were calculated to 
evaluate the differences between the in situ Zeu and the satellite Zeu: 

 

                                                                             (3.3)  

 

                                                                                                         (3.4) 

 

                                                                     (3.5) 

 

                                                                           (3.6) 

 
where X was the in situ value, Y the satellite value and N is the number of matching pairs. The sta-
tistical indicators bias, E and RMSE were chosen based on the GlobColour Validation 
Report (Durand 2007) and other literatures on satellite validation (Shang et al. 2011b; Zibordi et 
al. 2006). The MAE was used as a statistical estimator of error for comparisons between the 
sensors and  at different wavelengths, since N changes. Willmott and Matsuura (2005) showed 
that RMSE is sensitive to the square root of N and MAE should be preferred instead. No outliers 
were removed. For reference, a 1:1 line was included in the scatterplots to show how well the sat-
ellite and in situ data agree. 

Monthly climatologies of Zeu and NPP in December, January and February, were computed to 
investigate spatial differences. The climatology fields were calculated from monthly images for 
the 2003-2009 period, excluding the year of 2008 when SeaWiFS did not acquire data. For each 
pixel, the relative difference between the spatial fields was derived:  
 

                                                                                                           (3.7) 

 
where A corresponded to Zeu-Chla, Zeu-SWF or NPP-Zeu-Chla and B to Zeu-IOP, Zeu-MODIS or 
NPP-Zeu-IOP. We did not compare the spatial distribution of NPP between the sensors because 

, PAR and Chla might introduce differences in the NPP estimation. 
 

3.3  Results 
 
3.3.1  Comparison of satellite and in situ Zeu 
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Figure 3.2 presents the comparison between satellite and in situ Zeu. The overall statistics show 
that the two approaches agree well with the in situ measurements. When Zeu-SWF was derived by 
the IOP approach, the statistics are slightly better than Zeu-Chla improving the E in 3.5% (Figures 
3.2a and b) and the regression line is close to the 1:1 line (dotted line). On the other hand, Zeu-
Chla shows better results than Zeu-IOP for MODIS, reducing the E in 9.5% (Figures 3.3c and d). 
Differences in log10MAE indicate that Zeu retrieved from SeaWiFS is more accurate than MODIS. 
Negative biases are found for Zeu-MODIS and positive biases for Zeu-SWF.  
 

 
Figure 3.2. Scatterplots of satellite Zeu against in situ Zeu. (a) and (c) Zeu is derived from Chla 
approach (Zeu-Chla), (b) and (d) Zeu is derived from the IOP approach (Zeu-IOP). The solid line 
represents the regression and the dotted line represents 1:1 line as reference.  
 

Compared to collocated in situ HPLC Chla data of our validation dataset, the standard 
SeaWiFS algorithm (OC4v.6) underestimates Chla (Figure 3.3). For MODIS, the OC3M 
algorithm leads to under- and overestimation of Chla depending on the concentration of the in situ 
Chla. For in situ Chla < 1.5 mg m-3, Chla was on average underestimated, whereas for higher 
concentrations (> 1.5 mg m-3) the retrievals were overestimating the in situ values.  
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Figure 3.3. (a) Scatterplots of satellite and in situ Chla. The dotted line represents the 1:1 line as 
reference. (b) Relative differences between satellite Chla and in situ Chla. The dotted line 
represents the zero line. 
 

3.3.2  Spatial distribution of Zeu-Chla and Zeu-IOP  
 

Figure 3.4 presents the spatial distribution of the climatology of Zeu for February, using data 
from 2003 to 2009. Deeper Zeu are associated with oligotrophic waters in the zonal band of 30° - 
40°S. Shallower Zeu are observed in the waters around the Antarctic continent, South America, 
south and west part of South Africa and between 40° - 50°S, except for the eastern Pacific Sector. 
Shallower Zeu are related to terrigenous influence (e.g. La Plata river plume in the Patagonian 
Shelf region) and higher chlorophyll concentrations in upwelling regions (e.g. Benguela 
upwelling), islands (e.g. Kerguelen islands) and continental shelves (e.g. Antarctic Peninsula). The 
difference in calculating the climatology of Zeu from daily or monthly images was small. For 
instance, the standard deviations of the difference between Zeu-Chla calculated from daily data 
and monthly data in February 2003 are 1.22 m for SWF and 1.08 m for MODIS. For the IOP 
approach the values are 0.91 m for SeaWiFS and 0.77 m for MODIS.  

When Zeu-Chla was compared with Zeu-IOP, large differences were observed. While the range 
of Zeu-Chla from SeaWiFS varies between 5.97 and 234.31 m (median = 65.50 m), using the IOP 
approach this range is much narrower, from 2.5 to 150 m (median = 63.93 m). Similar for 
MODIS, Zeu-Chla varies between 5.89 and 259.69 m (median = 65.50 m) and Zeu-IOP from 3.5 to 
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146.3 m (median = 62.37 m). On average, for the entire region, Zeu-Chla from SeaWiFS and 
MODIS are 3.61 and 5.41% deeper than Zeu-IOP. These differences followed a zonal distribution. 
The most notable difference was observed in the Pacific Sector within the 30°- 40°S zonal band, 
corresponding to the South Pacific subtropical gyre, where Zeu-Chla is ~ 20 - 30% deeper than 
Zeu-IOP.  The spatial distribution maps also pointed out differences of about 10 - 15% south of 
60°S, with Zeu-Chla usually deeper than Zeu-IOP; especially for MODIS. Regions corresponding 
to deeper Zeu-IOP were also presented, but they were less abundant and only about ~ 10% deeper.  

 

 
Figure 3.4. Spatial distribution of Zeu in the Southern Ocean (climatology of February). The white 
pixels correspond to areas with no data. 
 

Comparing the sensors, the spatial distribution of Zeu is similar in both approaches, with an 
average difference (DIFF) of -0.005 and 2.68% for Zeu-Chla and Zeu-IOP, respectively in February 
(Figure 3.5). However, the spatial differences are larger south of 60°S and more evident in Zeu-
IOP. A corresponding pattern was observed in December and January.  
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Figure 3.5. Spatial distribution of the relative percentage of difference between SeaWiFS and 
MODIS. The white pixels correspond to areas with no data. 

 

3.3.3  Primary Production 

 
3.3.3.1  Validation of SeaWiFS and MODIS derived aph 
 

The ocean colour NPP model used here is a function of . The can be determined 
empirically through linear relations between in situ  and satellite ph integrated over the visible 
spectral bands of SeaWiFS and MODIS. Hirawake et al. (2012; 2011) calculated these 
relationships based on  derived from ship Rrs at the MODIS and SeaWiFS spectral bands, 
using the QAA. However, within this study the satellite Rrs derived  were not validated due to 
the insufficient number of collocations between satellite and in situ data. Furthermore, at the 
current state of knowledge, there is no information on the performance of the QAA to derive  
from satellite Rrs in the SO. Therefore, before we investigated the NPP, we briefly assessed the 
quality of the  derived from SeaWiFS and MODIS Rrs using the QAA with in situ . Results 
are presented in Table 3.1.  

The E of -SWF increase for increasing wavelengths (except at 443 nm) and negative biases 
indicate an underestimation of . Results for MODIS show similar log10MAE at 412, 443 and 
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488 nm, increasing towards 550 nm. Negative  were retrieved at SeaWiFS bands 490, 510 and 
555 and at MODIS bands 412 and 443 nm and lead to small but negative  Those values were 
removed before the calculation of the statistics presented in Table 3.1. Estimates of NPP on pixels 
with negative  were removed as well. 
 
Table 3.1. Statistical results of the comparison between QAA-satellite derived aph and in situ aph. 
SeaWiFS (N=12)        Range   
Wavelength (nm) r2  log10MAE log10bias E (%)  satellite  in situ 
412 (N=12) 0.81  0.22 -0.20 38.26  0.002 -  0.15  0.001 -  0.110 
443 (N=12) 0.57  0.20 -0.15 36.97  0.003 -  0.171  0.011 -  0.092 
490 (N=11) 0.19  0.20 -0.12 44.71  0.008 -  0.119  0.011 -  0.056 
510 (N=11) 0.06  0.40 -0.32 71.78  0.001 -  0.083  0.006 -  0.054 
555 (N=11) 0.37  0.36 -0.29 60.15  0.0003 -  0.042  0.001 -  0.02 

 (N=11) 0.48  0.20 -0.15 39.29  0.005 -  0.076  0.006 -  0.04 
MODIS (N=36)              
412 (N=34) 0.48  0.17 -0.08 36.53  0.002 -  0.066  0.001 -  0.056 
443 (N=34) 0.49  0.15 -0.04 33.93  0.003 -  0.079  0.002 -  0.064 
488 (N=36) 0.52  0.16 -0.08 29.03  0.0005 -  0.05  0.001 -  0.047 
531 (N=36) 0.48  0.23 0.005 98.53  0.001 -  0.025  0.0001 -  0.025 
550 (N=36) 0.29  0.41 0.41 220.34  0.009 -  0.025  0.0 -  0.014 

 (N=34) 0.58  0.14 0.04 43.46  0.002 -  0.038  0.0005 -  0.029 

 

3.3.3.2  Spatial distribution of NPP-Zeu-Chla and NPP-Zeu-IOP  
 

Generally, higher NPP-Zeu-Chla than NPP-Zeu-IOP  were observed using both sensors over the 
SO (Figure 3.6). For SeaWiFS NPP-Zeu-Chla was 7% higher than NPP-Zeu-IOP and for MODIS 
10.22% higher. The average of NPP-Zeu-Chla and NPP-Zeu-IOP were 321.18 and 283.84 mg C m-2 
d-1 for SeaWiFS, respectively. Using MODIS data the NPP-Zeu-Chla and NPP-Zeu-IOP were 
438.50 and 393.78 mg C m-2 d-1, respectively. Although these differences may not be significant 
for studies focusing on the entire SO, for local comparisons they are relevant. For instance, in the 
region south of 60°S (60°S – 80°S, 120°W – 160°W) NPP-Zeu-Chla was ~ 30% higher than NPP-
Zeu-IOP.  
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Figure 3.6. Spatial distribution of net primary production (in the figure caption called PP) in the 
Southern Ocean (climatology of February). NPP-Zeu-Chla (left), NPP-Zeu-IOP (right) and relative 
percentage of difference between NPP-Zeu-Chla and NPP-Zeu-IOP (center). The white pixels 
correspond to areas with no data. 
 

3.4  Discussion 

 

3.4.1  Validation of Zeu and Chla 
  

This study investigated differences between two approaches to derive satellite Zeu: the first one 
by Morel (in Lee et al. 2007) is empirical and based on Chla and the second one by Lee et al. 
(2005) is semi-analytical and based on IOPs. We focused on the Chla approach because of its 
simplicity, but also to investigate if the known inaccuracy of the standard satellite Chla products 
in the SO would impact the Zeu retrieval. The SO is heterogeneous in terms of bio-optical 
conditions. It comprises not only oligotrophic waters, but ultra-oligotrophic waters (e.g. South 
Pacific Gyre), complex waters (e.g. high concentration of non-algal particles in the Patagonia 
Shelf), upwelling regions (e.g. Benguela upwelling), polar fronts and coastal Antarctic waters (e.g. 
Antarctic Peninsula). For this reason, we included a more complex approach in our investigation: 
the IOP approach, which accounts for the vertical distribution of other in-water components that 
also contribute to the light attenuation. The QAA can be applied globally, regardless of the optical 
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complexity of the water and has been widely used and cited in the literature.  
Our validation dataset covered a wide range of bio-optical conditions (Figure 3.1); however 

uncertainties in Zeu were only improved by the IOP approach for SeaWiFS (Figure 3.2). This ob-
servation agrees with Lee et al. (2007). The authors compared in situ Zeu with Zeu-Chla and Zeu-
IOP calculated from ship borne Rrs in the Monterey Bay, the Gulf of Mexico and the Arabian Sea 
and reported improved Zeu from the IOP approach. In addition, Shang et al. (2011b) studied oligo-
trophic and coastal waters of the South China Sea using MODIS data and showed that Zeu-IOP 
was more accurate than empirically deriving Zeu from Chla (Morel et al. 2007). Within MODIS 
data, our Zeu estimation with the Chla approach yielded better results than the IOP approach.  

Our results indicate that Zeu can be accurately estimated by both approaches and sensors with a 
log10MAE within 0.10 and 0.23 m. The relative consistency observed between the sensors is relat-
ed to the common processing schemes applied, such as the atmospheric correction and data bin-
ning, as already pointed out by Mélin (2011). Differences might be caused by the different cover-
age of areas, spectral bands, orbital characteristics and equator-crossing times. MODIS-Aqua 
crosses the equator at 13:30 pm. For SeaWiFS the equator crossing time drifted throughout the 
mission, from 12:00 to 14:20, but 12:30 pm was used for calculations. Additional sources of error 
in the validation analysis include the in situ measurements, as the use of different field sensors 
and data/sample processing. 

Results of the Chla validation indicate that the satellite Chla products from SeaWiFS are more 
accurate than from MODIS in the SO (Figure 3.3). Our MODIS validation dataset is, however, 
biased towards high Chla waters (Figure 3.1); 95% of the in situ data had Chla > 1 mg m-3 where 
the errors are generally higher as well. In contrast, the SeaWiFS validation dataset has only 65% 
of samples at Chla > 1 mg m-3. For instance, the difference in the log10MAE between MODIS and 
SeaWiFS for Chla < 1 mg m-3 is 0.02 mg m-3 (0.17 mg m-3 for MODIS and 0.15 mg m-3 for Sea-
WiFS); for higher concentrations this difference increases to 0.4 mg m-3 (0.61 mg m-3 for MODIS 
and 0.21 mg m-3 for SeaWiFS). The observed underestimation of Chla by the operational Sea-
WiFS and MODIS algorithms (here only for Chla < 1.5 mg m-3) is in accordance with previous 
studies that used earlier algorithm versions, indicating that this issue still persists in the SO 
(Dierssen and Smith 2000; Garcia et al. 2005; Johnson et al. 2013; Kahru and Mitchell 2010; 
Szeto et al. 2011). Further, it is important to mention that we used surface Chla instead of the 
weighted Chla in the first optical depth. Our coincident in situ measurements of HPLC Chla pro-
files, Kd and Zeu were all concentrated in the Antarctic Peninsula region which represents a par-
ticular region of the SO, thus we used surface Chla values only. Moreover, we avoided the use of 
fluorometric data in our study and used HPLC data. Marrari et al. (2006) showed that the chloro-
phyll fluorescence of accessory pigments (e.g. chlorophyll-b) interferes in the determination of 
Chla by fluorometric methods in the SO.  

Nevertheless, uncertainties of the satellite Chla have some but small influence on the Zeu-Chla, 
which is in part linked to the nature of the power function that empirically relates Zeu to Chla. One 
has to note that we used the Chla even in waters that hardly fit to the Case 1 assumption, for in-
stance on the Patagonian shelf and around the Antarctic Peninsula (Dierssen and Smith 2000; 
Garcia et al. 2005). The error in Zeu induced by the error in Chla depends on the in situ concentra-
tions. A 100% error in lower Chla values has higher impact on Zeu than 100% error in high Chla 
values. For instance, a 100% overestimation in the lowest and highest in situ Chla (0.05 mg m-3 
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and 9.98 mg m-3) of our SeaWiFS validation dataset would lead to an error of 26.79 and 2.82 m in 
Zeu, respectively.  
 

3.4.2  Zeu spatial distribution 
 
The spatial distribution maps of Zeu-Chla and Zeu-IOP highlighted large differences in the 

South Pacific subtropical gyre and south of 60°S (Figure 3.4). Morel et al. (2007) evaluated the 
Chla approach for waters of the South Pacific subtropical gyre with data collected during the 
BIOSOPE cruise and showed that an empirical relationship based on Chla (Morel and Gentili 
2004) was valid to estimate Zeu in those waters. Thus, for this region the satellite Zeu-Chla may be 
the better choice. Unfortunately, beside the data from the BIOSOPE cruise, there were no in situ 
measurements of Zeu available from the South Pacific and other SO subtropical gyres for a 
detailed investigation. Our comparison between satellite and in situ Zeu for data south of 60°S did 
not show significant differences between the approaches for SeaWiFS and slightly better estimates 
of Zeu-Chla for MODIS (Figure A1). Overall, Zeu-IOP was shallower than Zeu-Chla, as observed 
by Lee et al. (2007) for other oceanic regions.  

Although the spatial distribution of Zeu is consistent, it is important to mention that close to the 
Antarctic continent the values might be impacted by ice contamination. Pixels contaminated by 
cloud/ice and straylight are flagged in the Level-3 data. Nevertheless, Belanger et al. (2007) and 
Wang and Shi (2009) showed that the standard SeaWiFS and MODIS flags may not remove all 
pixels impacted by the adjacency effect, sub-pixel ice and mixed ice-water contamination. Based 
on radiative transfer simulations Belanger et al. (2007) showed the significant impact of the 
adjacency effect and sub-pixel ice contamination on the water leaving radiance and derived Chla 
and IOP products. In general, the sub-pixel contamination leads to an overestimation of Chla and 
the total absorption at 443 nm ( ). The adjacency effect overestimates Chla in low Chla waters 
(0.05 mg m-3) and for Chla > 0.5 mg m-3,  and Chla retrievals are underestimated. Wang and 
Shi (2009) observed that MODIS Chla is often overestimated in sea ice contaminated pixels. 
Therefore, both shallower and deeper Zeu regions observed close to the Antarctic continent might 
be biased. 

In addition, when comparing the sensors, the spatial differences were larger close to the sea ice 
edge and were likely related to the few pixels sampled at different times (Figure 3.5). These 
differences were as large as 20% and more pronounced in the Zeu-IOP, which might be explained 
by the following reasons. The IOP approach is probably more influenced by the atmospheric 
correction since the QAA uses the 670 nm band to derive the total absorption at the reference 
wavelength. The 670 nm band is important for the retrievals of IOPs from Rrs in high-absorption 
waters (Lee at al. 2006, Lee at al. 2007). At 670 nm water absorption dominates and the signal to 
noise ratio is low, which in turn leads to a high sensitivity to light conditions. This is also the most 
likely reason for the large differences seen south of 60°S (Figures 3.4 and 3.5). Moreover, 
differences between Zeu-SWF and Zeu-MODIS might be associated to changes in the QAA 
depending on the sensor used. Examples of the QAA adjustment to sensors are the difference in 
reference wavelength (555 nm for SeaWiFS and 550 nm for MODIS) and the constants used to 
derive total absorption at the reference wavelength. These are based on relations to a different set 
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of collocations and the solar zenith angle. An alternative is the use of merged products (e.g. 
GlobColour, OC-CCI), aimed to reduce discrepancies caused by the use of different sensors as 
observed here.  
 
3.4.3  Validation of aph 
 

The assessment of MODIS and SeaWiFS QAA-derived  is presented in Table 3.1. The 
comparison of Rrs-satellite and in situ  shows satisfactory results in terms of log10MAE for 
both sensors at 412 and 443 nm, and at 488 and 531 for MODIS. The percentage differences are 
higher than the values presented by Lee at al. (2011). Nevertheless, Lee at al. (2011) derived  
from ship borne Rrs instead of satellite Rrs; larger uncertainties would be expected in satellite Rrs.  

The E of -MODIS at 412 and 443 is comparable to the values reported by Shang et al. 
(2011a) when evaluating QAA-derived  from satellite MODIS Rrs in the Taiwan Strait as well. 
At 488 nm the error is lower. Generally, -MODIS showed lower log10bias and log10MAE than 

-SWF for the same wavelengths. Further, the comparison of log10MAE from the Chla and 
443 validations suggested improvement of 443 over Chla in the SO for MODIS, as ob-

served by Shang et al. (2011a) in the Taiwan Strait.  
Uncertainties in the validation of the satellite  could be introduced by error in the in situ 

measurements of , as well as in the satellite Rrs and in the estimation of gelbstoff absorption by 
the QAA (Lee et al. 2006; Lee et al. 2011; Shang et al. 2011a). Unfortunately, it is beyond the 
scope of this study to propose modifications in the algorithm for the SO. Hirawake et al. (2011) 
modified the QAA based on underwater spectral radiation data and in situ  from the Indian 
Sector of the SO. This modified QAA was also tested by us, but the results were less robust than 
with the original QAA (results not shown). In part, regional differences across the SO, as dis-
cussed above and as seen in the Zeu, make it difficult to extrapolate local properties to the entire 
region.  

Because Zeu-IOP was calculated using the same approach as , we could also expect an 
improvement of Zeu-IOP over Zeu-Chla; particularly for MODIS that showed a larger difference in 
the validation between the two Zeu approaches and lower uncertainties of aph490 than Chla. How-
ever, this was not observed here and it is likely related to our validation datasets of Zeu,  and 
Chla which greatly differ in number of samples and location. Moreover, our  validation dataset 
is small, especially for SeaWiFS. From 271 in situ  collected between 2007 and 2010, 12 
matched with SeaWiFS observations. Persistent cloudiness and high solar zenith angles limit the 
satellite retrievals in the SO. 

 

3.4.4  Primary Production 
 
Finally, the impact of the Zeu products on the NPP was as expected; deeper Zeu led to an 

increase in NPP as more light was available (Figure 3.6). Note that the classification of empirical 
and semi-analytical used for Zeu is not valid for NPP since both NPP-Zeu-Chla and NPP-Zeu-IOP 



59 
 

used derived from QAA. The spatial differences observed between Zeu-Chla and Zeu-IOP 
strongly influenced the NPP estimation. In both NPP calculations we used the same set of input 
data (PAR, Dirr, ), except for Zeu, thus the observed differences can be directly attributed to Zeu. 
In particular, NPP-Zeu-Chla estimates were much higher than NPP-Zeu-IOP in the western part of 
the South Pacific subtropical gyre and south of 60°S. The latter region is of great importance in 
the global carbon cycle, as pointed out by Arrigo et al. (2008) and Takahashi et al. (2009). 
According to these authors, once the sea ice retreats in springtime, more light and nutrients 
become available enhancing the development of phytoplankton blooms and leading to a strong 
sink of atmospheric CO2. Accurate estimates of NPP are essential for a better understanding of the 
role of the SO in the global carbon cycle. 

From the results presented here it becomes clear that the uncertainties of Zeu should be 
considered to improve the estimates of NPP. Saba et al. (2011) investigated how satellite derived 
sea surface temperature, mixed layer depth, Chla and PAR affected the NPP estimates of 21 ocean 
colour models. They found that when uncertainties of the Chla are accounted for in NPP models, 
the root mean square difference is reduced by 44% in the Antarctic Polar Front Zone. They also 
observed that biases in the ocean colour NPP estimates are related to the water column depth, 
possibly due to uncertainties in the Zeu. 

 
3.5  Conclusions 

 
Here we provided a quality assessment of the Zeu derived from MODIS and SeaWiFS using a 

large dataset of in situ measurements in the SO. In summary, satellite Zeu derived using the Chla 
and IOP approaches are reliable in the region. Although uncertainties depend on the sensor and 
approach used, the best results were obtained by the IOP approach using SeaWiFS data. Within 
the MODIS data, Zeu estimation with the Chla approach generally yielded better results than the 
IOP approach. When assessing the differences in the spatial distribution between Zeu-Chla and 
Zeu-IOP, large discrepancies were observed over specific regions with significant impact on the 
NPP retrievals. Those differences were not observed in the validation. Therefore, we emphasize 
the importance of spatial studies together with the validation using in situ measurements for 
comparing ocean colour satellite products retrieved from different sensors and approaches. 
Further, we validated aph and found that MODIS data lead to lower uncertainties of  and 
aph443 than SeaWiFS data.  

To which extend these results are influenced by the lack of in situ measurements in our dataset 
used for validation and/or by regional differences in the SO is still unclear. To look more deeply in 
this issue and to address these differences found in the spatial distribution of Zeu and NPP, a more 
representative dataset of simultaneous bio-optical and NPP data is necessary. The results 
presented here can support future campaigns by prioritizing areas of disagreement between 
approaches and poorly sampled regions to reduce uncertainty of NPP in regional and global 
scales. In addition, special designed satellite missions using at least two quasi-polar orbits and 
same optical sensor could be considered. In this case, earlier (later) equator crossing time in 
descending (ascending) mode would increase signal to noise for the SO, thus reducing 
uncertainties of NPP estimates. 
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4  Study 2: Global retrieval of diatoms abundance based on phy-
toplankton pigments and satellite data 

 
4.1  The role of diatoms in the Southern Ocean 
 
Diatoms are the most diverse phytoplankton group of the global oceans (Armbrust 2009) and the 
highest number of endemic diatoms species is found in the SO (Smetacek et al. 2004). These or-
ganisms occur in a wide range of environments due to several abilities. Under nutrient or light 
stress, diatoms can: migrate in the water column by controlling their buoyancy, store nutrients in 
the central vacuoles for later use, reduce iron requirements and maintain symbiosis with nitrogen 
fixing cyanobacteria (Armbrust 2009; Kooistra et al. 2007). In addition, diatoms produce thick 
cell walls, spines and toxins to avoid grazers (Kooistra et al. 2007; Smetacek 1999) and the rapid 
mass sinking events are considered a seeding strategy to overcome periods adverse to growth 
conditions (Kooistra et al. 2007; Smetacek 1985).  

In iron-limited regions of the SO, the community of diatoms is dominated by large species 
with thick silica shells and high silica to nitrogen ratio (>2, Smetacek et al. 2004) for grazer pro-
tection (Assmy et al. 2013). Key species in iron-limited regions include the endemic Fragilariop-
sis kerguelensis and Thalassiothrix antarctica (Smetacek et al. 2004). While the biomass is recy-
cled in the surface by grazing, the sinking out of the thick shells sequesters silica, resulting in loss 
of Si (silica sinkers) but retention of N and P at surface. Part of the frustules will dissolve while 
sinking and accumulate as silicic acid in the Circumpolar Deep Water and part will be buried into 
the sediments forming the major global biogenic silica accumulation (Smetacek 1999; 2004).  

In iron-replete regions on the other hand, large-medium sized and weakly silicified diatoms 
prevail. These diatoms have high growth rates and form high biomass blooms that drive the car-
bon pump (Smetacek et al. 2004). Common diatoms include Thalassioria antarctica and the ge-
nus Chaetoceros. As a result, diatoms shape the biogeochemistry of the oceans as carbon and sili-
ca sinkers (Assmy et al. 2013; Smetacek et al. 2004), in addition to their role in the marine food 
web leading to intensive fisheries in coastal waters (Armbrust 2009).  
 
4.2 Motivation 
  

This second study examines the satellite retrievals of diatoms abundance derived by the ABA 
of Hirata et al. (2011). Compared to optically based approaches, a great advantage of the ABA is 
the smaller computational effort; even if the satellite data volume becomes larger with higher 
temporal and spatial resolutions, the data processing load is not heavy and re-processing can also 
be done relatively easily. The ABA can be applied to global level-2 or level-3 products of TChla, 
which are freely available to the scientific community, as opposed to, for example, PhytoDOAS 
method that uses the top of atmosphere radiance data (i.e. level-1 product) which is not freely 
available. On the other hand, because ABA is an empirical model, it is recommended to re-
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evaluate the approach in the light of additional in situ phytoplankton pigment data and/or satellite 
data. 

This study is based on two premises: (i) diatoms are the major primary producers and key 
players in the carbon and silicon pump in the SO and (ii) 90% of the diffusely reflected irradiance 
measured by ocean color sensors originates from the first optical depth, also referred to as the 
penetration depth (Zpd) (Gordon and Mccluney 1975). These premises are also general limitations 
of the existing ABA. Although Hirata et al. (2011) used a large global dataset of phytoplankton 
pigments, new measurements, particularly in the SO (defined here as the region south of 50°S), 
have become available since then. Main objectives of this study are: 

(1). Compilation of a new and large global dataset of in situ phytoplankton pigment profiles, 
including more measurements in the SO (Figure 4.1) which was not well covered previously, and 
to investigate the relationship between fractional contribution of diatoms and TChla using the new 
dataset in comparison to previous findings. 

(2). Refinement of the ABA to account for the pigment information in the Zpd (ABAZpd). In 
ABA (Hirata et al. 2011), the fractional contribution of diatoms to TChla was estimated based on 
the previous work of Uitz et al. (2006), who used the phytoplankton pigment concentration inte-
grated over the euphotic depth (Zeu). However, the pigment concentration estimated by the satel-
lite sensor is an optically-weighted concentration in the Zpd, which is approximately 4.6 times 
shallower than the Zeu (Hyde et al. 2007). 

(3). Evaluation of the performance of the ABA (i.e. ABAZpd) for global oceans and for the SO 
region. 
  

 
Figure 4.1. Distribution of the quality controlled in situ measurements. The SO, region south of 
50°S, is the portion of the global ocean presented in blue. 
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4.3 Data and Methods 

 

4.3.1  In Situ Measurements of Phytoplankton Pigments 
 

A dataset of phytoplankton pigment profiles measured with the HPLC technique was supple-
mented with data obtained from the SeaWiFS Bio-optical Archive and Storage System – Sea-
BASS (Werdell et al. 2003), Marine Ecosystem Data – MAREDAT (Peloquin et al. 2013), and 
from the individual cruises KEOPS (Uitz et al. 2009b), Bonus Good Hope, ANT-XVIII/2 - 
EisenEx, ANTXXI/3 – EIFEX (Smetacek et al. 2012), ANT XXVI/3, ANT XXVIII/3, Sonne 
SO218 (Cheah et al. 2013), Merian 18-3, Meteor 55 and Meteor 60. The pigments from the cruis-
es Meteor 55, Meteor 60, ANT XXVI/3 and ANT-XVIII/2 were measured in accordance with the 
method described in Hoffmann et al. (2006) and for the cruises Merian 18-3 and ANT XXVIII/3 
in accordance with Taylor et al. (2011). 

The data were quality controlled in a way similar to the one used by Uitz et al. (2006) and Pel-
oquin et al. (2013): (i) Samples with accessory pigment concentrations below 0.001 mg m-3 were 
set to zero, (ii) samples with TChla below 0.001 mg m-3 and fewer than 4 accessory pigments 
were excluded. To ensure that the profiles had a minimum vertical resolution, we restricted the 
dataset to profiles with at least (i) one sample at the surface (0 to 12 m), (ii) one sample below the 
surface, (iii) samples collected at four or more different depths, and (iv) with one sample within 
the Zpd. The last quality control measure was based on the log10-linear relationship between TCh-
laZpd and the sum of all accessory pigments in the Zpd (TACCZpd). Data that fell outside the 95% 
confidence interval were removed. The quality controlled dataset was corrected for Fuco to ac-
count for its co-existence in other PFTs, in accordance with Hirata et al. (2011). 

In addition, samples located in coastal waters (< 200 m) were excluded using the ETOPO1 ba-
thymetry (Amante and Eakins 2009). The final dataset contained 3988 samples, which were ran-
domly split into work (70% of the data) and validation (30% of the data) subsets. While the whole 
dataset was used to calculate the partial coefficients used for estimating f-DiatomZpd, the work and 
validation subsets were used for model development and validation of the ABAZpd, respectively.  

 

4.3.2  Satellite Data 
 

Eleven years (2003–2013) of MODIS Aqua Level 3 4km binned TChla data (R2012.0) were 
used. MODIS is a multispectral sensor on board of the Aqua satellite and with global coverage. 
The data were obtained from http://oceancolor.gsfc.nasa.gov/ at daily temporal resolution. Month-
ly averages of diatoms abundance were calculated onto a 10 minute grid and used to derive clima-
tological maps of diatoms abundance. To avoid coastal waters, where the retrieval of the ABA 
was not intended, we removed grid cells located in waters shallower than 200 m using the 
ETOPO1 bathymetry (Amante and Eakins 2009). 

 

4.3.3  An Improved Abundance Based Approach 
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In previous approach (Hirata et al. 2011), the f-Diatom was calculated using the coefficients of 
Uitz et al. (2006), which take account of the phytoplankton pigment integrated over the Zeu. Here, 
we extended the ABA to take account of the information in the Zpd. For this purpose, we recalcu-
lated the coefficients ai (Eq. 2.30) using the updated global dataset of HPLC phytoplankton pig-
ment profiles. The weighted pigment concentration in the Zpd (DPZpd) was calculated as described 
in Gordon and Clark (1980) for TChla: 

 

                                                                                                              (4.1) 

 
where C is the TChla at a depth z and g is: 
 

                                                                                                  (4.2) 
 
The same approach was applied to the other pigments. The light attenuation coefficient (Kd490, 

m-1) was estimated from profiles of chlorophyll-a concentration (Morel and Maritorena 2001): 
 

                                                                  (4.3) 
 
where Kdw (m-1) is the attenuation coefficient for pure water (0.01660 at 490 nm). The Zpd was 
computed as Zpd = Zeu/4.6 and Zeu was derived from the surface TChla as  
(Morel, in Lee et al. 2007). Profiles were interpolated with 1-m increments from the deepest sam-
ple to the sample closest to the surface before the calculation of DPZpd.  

Nonlinear minimization was used to retrieve the partial coefficients, which represent the esti-
mates of the TChla to the DP ratios (Uitz et al. 2006). The function to be minimized is expressed 
as: 

   
                                         (4.4) 

 
where c is a vector containing the seven coefficients which each correspond to each DPZpd on the 
log scale, and MZpd a matrix containing the seven DPZpd. The nonlinear minimization method re-
quires an initial guess of c, which was obtained from the multiple linear regression analysis. The 
standard deviation of the coefficients is given by the square root of the diagonal elements of the 
inverse of the Hessian matrix. 

Using the new coefficients, the f-DiatomZpd was calculated for each sample of the work and 
validation subsets. The work subset was then sorted according to the TChlaZpd and smoothed with 
a 5-point running mean filter to improve the signal-to-noise ratio (Hirata et al. 2008; Hirata et al. 
2011). Next, the relationship between f-DiatomZpd and TChlaZpd was quantified using a nonlinear 
least-square fit applied to the work subset and represented by a model and its fitting parameters. 
Once the model has been defined, satellite-derived TChla data was applied to the model to obtain 
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the global distribution of f-DiatomZpd. Diatom abundance (DiatomZpd, mg m-3) is then obtained by 
multiplying f-DiatomZpd by TChlaZpd.  

The accuracy of the new model was tested using the validation subset. The uncertainties were 
estimated by the mean absolute error (MAE, Willmott and Matsura 2005) between the modeled 
and the measured (in situ) DiatomZpd. The models were compared by the difference between the 
MAE of the original model and the new model, relative to the original model, and expressed in 
percent (%). The data were log transformed prior to the calculation of the validation statistics. We 
used log10(data + λ) where λ=0.00003, approximately one half of the smallest non-zero value of 
the in situ DiatomZpd validation data, since the dataset contained zeroes. In addition, to investigate 
whether using different partial coefficients results in significant changes in f-Diatom, we estimat-
ed f-Diatom using the coefficients of Uitz et al. (2006) and Brewin et al. ((2014)) and compared 
the results based on the coefficient of determination. The processing steps of ABAZpd are summa-
rized in Figure 4.2. 

 

 
Figure 4.2. A flow chart of the processing steps conducted to retrieve diatom abundance using 
ABAZpd. 
 

4.3.3.1  A Regional Model for the SO 
 

The main difference between the SO model and the global model is that the relationship be-
tween DiatomZpd and TChlaZpd is investigated not in terms of f-DiatomZpd, but instead in terms of 
the concentration of TChlaZpd that is attributed to diatoms, similar to the approach adopted by 
Brewin et al. (2010) to retrieve phytoplankton size classes. As in Brewin et al. (2010), the fit func-



66 
 

tion was applied to log10-transformed data. To develop the regional model for the SO, we selected 
the samples of the global work and validation datasets that were located in the SO, creating a SO 
work and a validation dataset with 1069 and 460 samples, respectively. The relationship between 
DiatomZpd and TChlaZpd was investigated and validated. Note that for the work dataset we applied 
the running mean exclusively to the SO data.  

 

4.3.4  Statistical Analysis of Trends  
 
Linear trends were computed for February from monthly standardized anomalies over the 

2003-2013 period in the SO using the regional model. To remove the seasonal cycle we calculated 
the monthly anomalies in diatoms abundance for each grid cell by subtracting the climatological 
mean from the corresponding monthly mean (e.g., February 2003 - climatology of February). The 
monthly anomalies were divided by the corresponding climatological standard deviation (e.g., 
standard deviation of February) to enable the direct comparison of trends between different re-
gions (grid cells). The trends were computed using the non-parametric Kendall’s tau test with 
Sen’s method at the 95% confidence level and in grid cells with 100% temporal coverage.  
 

4.4 Results and Discussion 

 

4.4.1  The ABAZpd 
 
Table 4.1 shows the partial regression coefficients, and their respective standard deviation, cal-

culated with Eq. 4.4. For comparison, we also present the partial coefficients estimated by Uitz et 
al. (2006), Brewin et al. (2014) and Fujiwara et al. (2014). Comparing our coefficients with those 
from Uitz et al. (2006), there is a notable difference, except for the coefficients of Fuco and 
TChlb. These differences result from the inclusion of more profiles, their geographical distribu-
tion, the adjustment of Fuco prior to the DPA analysis, and because we used the pigment concen-
tration weighted in the Zpd, while Uitz et al. (2006) integrated the pigments over Zeu. When com-
pared to the two other studies, where the partial coefficients were derived from surface measure-
ments, our coefficients are more similar to those described in Brewin et al. (2014). Brewin et al. 
(2014) included measurements of five Atlantic Meridional Transect (AMT) cruises in the Atlantic 
Ocean, while Fujiwara et al. (2014) used measurements from three cruises in the Western Arctic 
Ocean. Although our dataset includes measurements from these regions, the number of samples in 
the Arctic region is fewer than that from the Atlantic (Figure 4.1). 
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Table 4.1. The partial regression coefficients and standard deviation (in brackets) where available. 
The number of samples is indicated by N. The empty fields indicate that the coefficient is not 
statistically significant. 
Coefficients Ocean N Fuco Perid Hexfuco Butfuco Allo TChlb Zea 
Present 
study 

Global 3988 1.554 
(0.010) 

0.413 
(0.568) 

0.855 
(0.068) 

1.174 
(0.145) 

2.387 
(0.099) 

1.062 
(0.070) 

2.037 
(0.040) 

Uitz et al. 
(2006) 

Global 2419 1.41 
(0.02) 

1.41 
(0.10) 

1.27 
(0.02) 

0.35 
(0.15) 

0.60 
(0.16) 

1.01 
(0.10) 

0.86 
(0.09) 

Brewin et al. 
(2014) 

Atlantic 466 1.72 1.27 0.68 1.42 4.96 0.81 1.28 

Fujiwara et 
al. (2014)* 

Arctic 76 1.85 1.49 1.74  5.88 1.31 3.54 

* standard errors are less than 1. 
 

Moreover, we have re-run the analysis taking into consideration the surface samples (< 12 m) 
from our profiles and observed only a slight difference in the coefficient of Fuco (1.531) as com-
pared to the weighted Zpd concentrations. Except for Perid and Hexfuco, the standard deviation of 
our coefficients are lower than, or similar to, the ones obtained by Uitz et al. (2006).  

Nonetheless, we observed very similar f-Diatom values when using the partial coefficients of 
Uitz et al. (2006), Brewin et al. (2014) and ours. The coefficients of determination are higher than 
0.98, suggesting the choice of partial coefficients has no influence on the retrievals of f-Diatom, 
which is consistent with Brewin et al. (2014). Brewin et al. (2014) compared size-fractionated 
chlorophyll (SFC) estimated from phytoplankton pigment data and calculated using Uitz et al. 
(2006) partial coefficients and their own, with size-fractionated filtration (SFF) measurements. 
They observed biases between SFC and SFF for nanoplankton and picoplankton size classes; 
however, the variations in the partial coefficients did not influence the results significantly. The 
high correlation between the TChlaZpd and , with DPw calculated using Eq. 4.4 (r2 = 0.85,  
= 0.86 TChlaZpd + 0.074, N = 3988, p < 0.001), gives us confidence to use the partial coefficients 
to determine the f-Diatom. 

Figure 4.3 shows the change in the f-DiatomZpd with increasing TChlaZpd. The green and blue 
lines represent the new model (ABAZpd) and the model of Hirata et al. (2011) (ABA*), respective-
ly, parameterized with the DPZpd dataset. The red line represents the original model and fitting 
parameters of Hirata et al. (2011) (ABA**). It can be seen that diatoms are dominant at high TCh-
laZpd (Figures 4.3a and b), which is consistent with previous studies (Hirata et al. 2011) even if a 
significant number of new samples were added in our dataset. Moreover, we also observed unusu-
ally high f-DiatomZpd in low TChlaZpd waters (< 0.1 mg m-3, N = 670). Taking a closer look at the 
profiles, in which FucoZpd corresponded to at least 50% of the TACCZpd, we observed that most of 
the data (12 out of 16) are from samples taken in Antarctic, in the East Antarctic marginal ice 
zone (BROKE cruise, Wright and van den Enden 2000). On average, the ratio of FucoZpd to TCh-
laZpd is 0.165 for the entire DPZpd dataset, 0.071 excluding the SO data, but 0.317 for the SO data, 
indicating higher f-DiatomZpd values in low TChlaZpd waters in the SO. 
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Figure 4.3. Relationship between TChlaZpd and f-DiatomZpd: (a) Global dataset (N = 2806), (b) 

global dataset excluding SO data (N = 1737) and (c) SO data (N = 1069). The datasets were 
smoothed with a 5 point running mean to improve the signal-to-noise ratio (Hirata et al. 2011) The 
green and blue lines represent the new model (ABAZpd) and the model of Hirata et al. (2011) 
(ABA*) parameterized with the DPZpd dataset. The red line represents the original model and 
fitting parameters of Hirata et al. (2011) (ABA**). The fitting parameters are presented in Table 
4.2. The MAE values refer to the errors in terms of f-DiatomZpd. Note that we could not fit the 
global models to the SO dataset exclusively. The cyan and green lines in (c) represent the regional 
model for the SO and the ABAZpd plotted with the global fitting parameters as reference. 
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Table 4.2. Models of f-DiatomZpd as a function of TChlaZpd and their respective fitting parameters 
used to plot the lines in Figure 4.3a and 4.3b. Note that we could not fit the global models to the 
SO data exclusively. The fitting parameters of the original ABA model of Hirata et al. (2011) 
(ABA**) do not change and therefore they are presented only once in the table. 

 f-DiatomZpd Model a0 a1 a2 a3 
 ABAZpd a0 + a1sin(a2(x + a3))  0.4629 0.3921 1.2214 -0.01412 

Global dataset ABA* [a0 + exp(a1x + a2)]-1 1.0733 -2.0484 0.1314 - 
 ABA** [a0 + exp(a1x + a2)]-1 1.3272 -3.9828 0.1953 - 

Global dataset  ABAZpd a0 + a1sin(a2(x + a3))  0.3909 0.4131 1.3763 -0.0114 
excluding SO 

data 
ABA* [a0 + exp(a1x + a2)]-1 1.5890 -4.3778 -0.1521 - 

x=log10(TChla) 
*model of Hirata et al. (2011) parameterized with the DPZpd dataset. 
**original model and fitting parameters of Hirata et al. (2011). 
 

Considering our newer dataset, Hirata et al. (2011) considerably underestimates f-DiatomZpd in 
almost the entire TChlaZpd range (Figure 4.3a - red line). This is partly due to the difference in the 
dataset used. When we fit their model to the new dataset, the model is found to fit well to the data, 
as indicated by the low errors (Table 4.3 and Figure 4.3a - blue line). However, it fails when pre-
dicting f-DiatomZpd in very low TChlaZpd waters, mostly for the SO. Thus, we test a new model, a 
sinusoidal function to better fit this observed trend in the SO (Table 4.3, Figure 4.3a - green line). 
The ABAZpd and ABA* produce almost identical curves for TChlaZpd above 0.065 mg m-3 and 
similar fitting and validation statistics. The ABA** model provides accurate retrieval of diatoms 
globally. However, it produces larger errors than the ABAZpd and the ABA* do for the SO. The 
ABAZpd improves the MAE by 27.96% for the SO (Table 4.4 and Figure A2 in the Appendix). 
 
Table 4.3. Statistical results of the fits for the global dataset and global excluding SO data using 
the fitting parameters of Table 4.2. Note that we could not fit the global models to the SO data 
exclusively. The fitting statistics for the SO dataset refer to the regional SO model (Figure 4.5). 
The MAE is given in f-DiatomZpd for the global models and for the regional model in mg m-3 
(log10-transformed data). 

Fit  N r2 p – value MAE  
 ABAZpd 2806 0.71 = 0 0.085 

Global dataset ABA* 2806 0.70 = 0 0.087 
 ABA** 2806 0.66 = 0 0.118 

Global dataset  ABAZpd 1737 0.89 < 0.001 0.036 
excluding SO data ABA* 1737 0.88 < 0.001 0.037 

 ABA** 1737 0.88 < 0.001 0.038 
SO dataset Regional model 1069 0.95 < 0.001 0.104 

*model of Hirata et al. (2011) parameterized with the DPZpd dataset. 
**original model and fitting parameters of Hirata et al. (2011). 
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Table 4.4. Statistical results of the validation in terms of diatoms abundance. Note that we could 
not fit the global models to the SO data exclusively. The results for the SO dataset correspond to 
the global models using the global fitting parameters and the regional model. The MAE is given in 
mg m-3. The statistics were calculated with log10-transformed data (e.g., log10(y+0.00003)). 

Validation  N r2 p - value MAE  
 ABAZpd 1182 0.57 < 0.001 1.219 

Global dataset ABA* 1182 0.55 < 0.001 1.217 
 ABA** 1182 0.57 < 0.001 1.035 

Global dataset  ABAZpd 722 0.59 < 0.001 0.883 
excluding SO data ABA* 722 0.68 < 0.001 1.195 

 ABA** 722 0.69 < 0.001 1.200 
 ABAZpd 460 0.40 < 0.001 0.559 

SO dataset ABA* 460 0.39 < 0.001 0.562 
 ABA** 460 0.39 < 0.001 0.776 
 Regional model 460 0.39 < 0.001 0.465 

*model of Hirata et al. (2011) parameterized with the DPZpd dataset. 
**original model and fitting parameters of Hirata et al. (2011).  
 

To further investigate the influence of the SO data, we removed these data from the work 
dataset (38% of the data), recalculated f-DiatomZpd, and fitted the models (Figure 4.3b and Table 
4.2). The comparison of Figure 4.3a and Figure 4.3b shows clearly the influence of the SO data, 
which is responsible for most of the data spread in Figure 4.3a as well as for the high f-DiatomZpd 

in low TChlaZpd waters. When we exclude the SO data from the analysis, the fits improve greatly 
the MAE decrease to values close to 0.04 (Table 4.3). In addition, it leads to a better 
representation of the diatom abundance in oligotrophic waters, as well as to an underestimation of 
the actual f-DiatomZpd in the SO, as shown in Figure 4.4. The advantage of including the SO data 
is a more realistic retrieval of diatoms in the SO, but an overestimation in other regions of low 
TChlaZpd. While the in situ data show that the f-DiatomZpd might be very low (~ 0) at very low 
TChlaZpd (e.g. in oligotrophic gyres), the predicted f-DiatomZpd presents values higher than zero, 
overestimating f-DiatomZpd in the oligotrophic gyres. 

 

 

Figure 4.4. Monthly mean TChlaZpd (mg m-3) of diatoms for February 2003 using the ABAZpd 
model parameterized with: (a) Global dataset (average = 0.060 mg m-3) and (b) global dataset 
excluding SO data (average = 0.041 mg m-3). White areas correspond to waters with depths 
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shallower than 200 m or without satellite information. 

 
It should be noted that the model used to retrieve f-DiatomZpd as a function of TChlaZpd was 

empirically built upon in situ datasets, which showed that diatoms tend to be the dominant PFT at 
high TChla. However, this may not be the case of blooms of mixed PFTs, or dominated by a dif-
ferent PFT as pointed out by Brewin et al. 2010. For example, the coccolithophore Emiliania hux-
leyi typically occur in the North Atlantic and can form massive blooms in the Bering Sea (Iida et 
al. 2002). In the Ross Sea in the SO, blooms of the haptophyte Phaeocystis antarctica can exceed 
15 mg m-3 and dominate the spring bloom, following by a later development of diatom blooms in 
the summer (Smith et al. 2012). In such cases, additional information on PFTs derived from 
methods that do not depend on this assumption (e.g. PhytoDOAS) may improve the knowledge on 
the diatom abundance and their distribution pattern.  

Moreover, we did not obtain significant results in fitting the two global models to the SO data 
exclusively (Figure 4.3c, ABAZpd plotted as reference). The diatoms in the SO exhibit a variability 
which is different from other oceanic regions (e.g., the North Pacific and the North Atlantic), and 
there is a need for a regional SO model. Thus, we developed a regional model for the SO, and the 
relationship between TChlaZpd and DiatomZpd can be expressed as: log10(y) = 1.1559log10(x) + (-
0.2901) (Figure 4.5). The validation results of the SO model show that the regional model is con-
sistent and more appropriate than the global ABAZpd model for retrieving diatoms in the SO (Ta-
ble 4.4 and Figure 4.5). The regional model improved by 17% the retrieval of diatoms abundance 
in the SO compared with the ABAZpd.  
 

 
Figure 4.5. On the left: relationship between TChlaZpd and DiatomZpd in the SO with the fit 
function plotted in blue (log10 transformed data). On the right: validation calculated with both 
log10 transformed data (e.g. log10(y+0.00003)). The red line represents the 1:1 line. 

 
The ideal global retrieval of diatoms should apply the ABAZpd model parameterized with the 

global dataset excluding SO data (Figure 4.3b green line) to the region north of 50°S, and the re-
gional SO model for waters south of 50°S. These two models presented overall the lowest fitting 
and validation errors for the corresponding regions. This approach would not only provide more 
accurate retrievals of diatoms in the SO, but also overcome the overestimation of the global AB-
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AZpd model in oligotrophic waters. However, applying two models generated a non-negligible off-
set between the SO and adjacent oceans (result not shown). 

 

4.4.2  Satellite Retrieval of Diatoms using ABAZpd 
 
Acknowledging the uncertainties of the satellite Chla product, we first assessed the difference 

between the satellite retrievals of diatom abundance using the ABAZpd and the original ABA, for 
the SO and global oceans. As expected from the previous findings (Figure 4.3a), we observed 
that, on average, higher abundances of diatoms were retrieved with the ABAZpd than with the orig-
inal ABA for the entire 2003-2013 period. For the SO, the concentration of diatoms calculated 
using the global ABAZpd is 0.074 mg m-3 and for the global oceans 0.070 mg m-3. In contrast, es-
timates of diatoms with the original ABA are 0.049 and 0.050 mg m-3, respectively. For compari-
son, the concentration of diatoms using the regional SO model is 0.117 mg m-3. This evidence of 
the enhanced abundance of diatoms retrieved from the global ABAZpd model and from the region-
al SO model suggests that the production and export of carbon to the deep ocean might be larger 
than previously expected in the SO.  

The new global climatology of diatom abundance is presented in Figure 4.6. The climatology 
for the SO is presented in the Appendix (Figure A3). The general distribution of the global diatom 
abundance is in line with current knowledge on the distribution of diatoms, i.e. higher concentra-
tions of diatoms in the upwelling and coastal regions. Low concentrations of diatoms are observed 
in oligotrophic waters of the subtropical gyres and in HNLC waters, such as regions in the SO 
where waters are rich in macronutrients but are lacking in iron. There is also a clear seasonal cycle 
in the polar regions, with diatoms reaching the highest concentrations during their respective 
summer months, which is also observed in the climatology for the SO. Among other important 
patterns is the increase in diatom concentration from January to March and again high concentra-
tions in September in the Arabian Sea. These observed patterns are associated with the Northeast 
and Southwest monsoons, respectively. According to Garrison et al. (2000), the monsoon seasons 
are generally characterized by increased concentrations of diatoms, thus our result shows a con-
sistency with the previous in situ study too.  
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Figure 4.6. Climatology of TChlaZpd of diatoms (mg m-3) for the months of January to December 
based on the period 2003-2013 retrieved using the ABAZpd model. White areas correspond to 
waters with depths shallower than 200 m or without satellite information. 
 

The climatology mostly covers the spatial variability, within a limited temporal range, whereas 
the trend gives information for a longer period, and both are important information for the under-
standing of ocean biogeochemistry. The spatial variability of the linear trends of diatom abun-
dance in the SO is high, and no significant trend was observed for most of the sub regions of the 
SO (results not shown). Overall the trend for the SO was 0.036 (year-1) (p-value = 0.019). Clearly, 
a more detailed analysis is needed to investigate the main driving forces behind these trends.  

 

4.4  Conclusions 
 

In conclusion, we have shown that the original ABA underestimates the diatom abundance in 
the SO. Our investigation revealed that diatoms in the SO might be more abundant than previous 
thought, possibly because (1) the lack of in situ phytoplankton pigment data, and that (2) the rela-
tionship between Chla and the f-Diatom in the SO is distinct from the global relationship. 

We have developed a new global and a regional ABAZpd that improves the uncertainties of the 
retrievals of diatoms in the SO. The mean absolute error (MAE) declined from 0.776 to 0.559 us-
ing the global ABAZpd, improving by 28% the estimation of diatoms in the SO. The regional mod-
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el further improved the MAE by 17% (MAE = 0.465) compared with the global ABAZpd model. 
This was achieved by re-evaluating the ABA using a large dataset of global phytoplankton pig-
ment profiles spanning 24 years (1988–2012). Additionally, the ABA was further improved by 
considering the information in the Zpd. 

We have shown that the ideal global retrieval of diatoms combines the ABAZpd model fitted to 
the dataset (excluding SO data, MAE = 0.883) with the regional SO model. However, applying 
two models generates an offset between the oceans, thus selective use of the global and the SO 
algorithms may be necessary depending on the objective of the application. 

Satellite retrievals of PFTs are a useful tool for identifying and quantifying their presence in 
the oceans and in this study we have advanced our knowledge on the retrieval of diatoms from 
space by identifying limitations and developing improvements. Future studies should focus on 
optimizing the ABA method also for other PFTs. 
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Chapter 5 
 
Mean patterns and interannual variability of diatom 
phenology in the Southern Ocean 
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5  Study 3: Mean patterns and interannual variability of diatom 
phenology in the Southern Ocean 

 

5.1  Motivation 
 
In the previous study we have advanced our knowledge on the retrieval of diatoms abundance 
from space by identifying limitations of the original method and developing a regional model for 
the SO. However, the mean patterns and interannual variability of the diatom bloom phenology in 
the SO remain unquantified. As the major primary producers in the region (Rousseaux and Gregg 
2014), this study is focused on their specific phenology and variability. The aim of this chapter is 
improve previous studies on phytoplankton bloom phenology by: (i) focusing on the SO, (ii) using 
a new merged satellite Chla product with better spatial and temporal coverage than the datasets 
used in previous studies, (iii) examining a longer time series (1997-2012), (iv) looking at the 
concentration of Chla of diatoms using the regional algorithm of Soppa et al. (2014), (v) 
examining the different characteristics of the phenology, (vi) investigating trends, and for 
completeness, (vii) investigating if the interannual variability of the diatom phenology could be 
modulated by the large scale climate oscillations ENSO and SAM. 

 
5.2  Data and Methods 

 

5.2.1 Satellite data 
 
We analysed 15 years (September 1997 – April 2012) of the level 3 Chla data (ESACCI-OC-

L3S product, 4 km, version 1.0) from the Ocean Colour Climate Change Initiative (OC CCI). The 
OC CCI project is a European effort to produce high quality ocean colour products combining the 
MERIS, MODIS-Aqua and SeaWiFS sensors. Current data processing improves limitations of 
ocean colour remote sensing in polar regions due to low solar elevation and frequent cloud cover. 
Radiometric contaminations by sun glint, thin clouds or heavy aerosol plumes are removed from 
the MERIS with the Polymer algorithm (Steinmetz et al. 2011), while the SeaWiFS and MODIS 
data are processed for atmospheric correction with the algorithm of Gordon and Wang (1994). 
Subsequently, the SeaWiFS OC4v6 algorithm is applied on the merged remote sensing reflectance 
data to obtain the OC-CCI Chla product. The global validation of the Chla product with in situ 
HPLC Chla have shown that the relative errors are lower than 30% for most of the Chla range, 
except for concentrations lower than 0.1 mg m-3 (Krasemann et al. 2014). More details on the 
project and processing steps can be found in http://www.esa-oceancolour-cci.org/, where also the 
Chla data are available.  

In our study, we calculated weekly averages of Chla from daily data onto a 15 minutes spatial 
grid for the area south of 50°S. To avoid coastal waters, we removed the three closest grid cells to 
the coastline. Diatom abundance was derived by applying the regional ABAZpd SO model (Soppa 
et al. 2014) to the weekly Chla data, hereinafter referred to as Diatom-Chlorophyll-a (Dia-Chla).  
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5.2.2 Polar fronts position 
 
We used the weekly position of the Polar Front (PF), available at http://ctoh.legos.obs-

mip.fr/applications/mesoscale/southern-ocean-fronts, which is derived based on sea level anoma-
lies observed in altimetry data and climatological mean sea level from historical data and ARGO 
profiles (Sallée et al. 2008). The mean and the standard deviation of the PF position were calcu-
lated from 1997 to 2012, for the months of September to April, the same period that was used to 
describe the phenology (see section 2.4). The standard deviation of the latitudinal position of the 
PF was used as a proxy of the interannual variability of the PF position. In addition, we included 
the mean position of the Southern Antarctic Circumpolar Current Front (SACCF) in our analysis. 
The SACCF position is derived from historical hydrographic data of the SO until 1990 (Orsi et al. 
1995). 

 

5.2.3  Maximum Sea Ice Extent 
 

We used monthly sea ice extent data  (Fetterer et al. 2002) for the SO to delineate the seasonal 
ice zone. The seasonal ice zone is the area delimited by the winter maximum of sea ice extent 
(NSDC 2015) which occurs in September. Sea ice extent data is available by the National Snow 
and Ice Data Center (NSIDC) at 
ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/shapefiles/. The maximum sea ice extent 
of September was binned into longitude bins of 1 degree. Coordinates were automatically extract-
ed from the sea ice extent data and statistics (mean and standard deviation) of the latitude values 
were calculated for each longitude bin to examine the interannual variability in the entire period 
(1997 to 2012). 
 
5.2.4  Climate indices 
 

To investigate if the Dia-Chla phenology in the SO is influenced by ENSO and SAM, we used 
two indices: the Multivariate El Niño Southern Oscillation index (MEI) and the Antarctic Oscilla-
tion (AAO) index. The MEI, available at http://www.esrl.noaa.gov/psd/enso/mei/#loadings, is 
based on six variables (cloudiness, sea surface temperature, sea-level pressure, surface air temper-
ature and the zonal and meridional components of the surface wind) over the tropical Pacific from 
30°N to 30°S (Wolter and Timlin 1993). Positive MEI values characterize El Niño events while 
negative values indicate La Niña events. The Antarctic Oscillation (AAO) index, available at 
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/monthly.aao.index.b7
9.current.ascii.table, is based on the first principal component of monthly mean pressure anoma-
lies at 700 mb for the region south of 20°S (Mo 2000). Positive/negative phases of the Southern 
Annular Mode (SAM) are associated with positive/negative values of AAO, respectively. Annual 
ENSO and SAM indices were calculated by averaging their respective indices from September of 
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the previous year to April of the following year, the same period used to estimate the phenological 
indices (Figure 5.1). 

 

 
Figure 5.1. Time series (adimensional) of annual Multivariate ENSO Index (MEI, solid line) and 
Antarctic Oscillation index (SAM, dashed line). 

 

5.2.5  Phenological indices 
 

We assessed the diatom phenology using the threshold method of Siegel et al. (2002). 
Phytoplankton blooms start (defining the bloom start date - BSD) when the Chla value exceeds 
the value of 5% above the median (Siegel et al. 2002) and remains above this threshold for at least 
two consecutive weeks (Thomalla et al. 2011). To isolate primary blooms from secondary blooms, 
we first identified the maximum Chla of the time series and then looked backwards in time to find 
the bloom start date (Brody et al. 2013). The bloom end date (BED) was determined as the first 
week when Dia-Chla level fell below the threshold. The period between bloom start date and end 
date defines the total bloom duration (BD). Within this period the Dia-Chla reaches a maximum 
(CM) at the date of Dia-Chla maximum (CMD). The sub-periods before and after the maximum 
determine the bloom growth duration (BGD) and bloom decline duration (BDD), respectively. 
During the growth duration, the average (CAV) and integrated Dia-Chla values (CI) are 
calculated. In addition, the amplitude of the bloom (CA) is determined as the difference between 
maximum and threshold Dia-Chla value. The phenological indices are listed in Table 5.1 and 
illustrated in Figure 5.2. Using these indices, we analyzed the phenology in the entire time series 
(1997 to 2012), each year from September to April of the following year (e.g. September 2002 - 
April 2003).  

Before computing the phenological indices, the time series were linearly interpolated in time to 
fill gaps less than 3 weeks in length (Henson and Thomas 2007). After the temporal interpolation, 
if there were remaining gaps of more than two weeks between the date of Dia-Chla maximum and 
the estimated bloom start or bloom end date, these phenological indices were not calculated to 
avoid erroneous detection of the bloom timing. This led to slightly different data coverage of the 



79 
 

phenological indices. The best data coverage is achieved for date of Dia-Chla maximum, Dia-Chla 
maximum and amplitude.  

 
Table 5.1. Phenological indices. 
Indices Abbreviation Units 
Bloom Start Date BSD Week 
Date of Dia-Chla Maximum  CMD Week 
Bloom End Date BED Week 
Bloom Duration BD Week 
Bloom Growth Duration   BGD Week 
Bloom Decline Duration BDD Week 
Dia-Chla Amplitude CA mg m-3 
Dia-Chla Maximum CM mg m-3 
Dia-Chla averaged over BGD CAV mg m-3 
Dia-Chla integrated over BGD CI mg m-3 

 

 
Figure 5.2. Schematic of the indices used to describe the diatom phenology. 
 

5.2.6  Statistical analysis 
 

The mean spatial patterns were obtained by averaging the 15 years of phenological indices. 
The interannual variability of the diatom phenology was examined by: (i) the relative standard 
deviation (RSD) of the indices, (ii) trends, (iii) correlations and partial correlations with ENSO 
and SAM and, (iv) composite maps of the anomaly of the indices. The relative standard deviation 
is the standard deviation of the indices divided by the average over the 15 years. Trends, correla-
tions and composite maps were calculated using the standardized anomaly data. Standardized 
anomalies (adimensional and hereafter termed as anomalies) were produced by subtracting the 
average (15-yr) from the annual phenology data (e.g. 2002-2003) and dividing by the standard 
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deviation (15-yr), pixel by pixel. Trends were investigated with non-parametric Kendall’s tau test 
with Sen’s method at the 95% confidence level for each grid cell (only when 100% of data were 
available). The correlation between the climate indices and anomalies of the phenological indices 
was determined using Spearman correlation. Partial correlations were used to study the influence 
of both oscillations separately, for example, by considering the relationship between SAM and 
Dia-Chla maximum after removal of the variance of ENSO (Pohl et al. 2010). Composite maps of 
the anomalies of the phenological indices were computed by averaging the anomalies from the 
different phases (positive/negative) of the ENSO and SAM, as well as for amplified years (e.g. El 
Niño coincided with negative phase of SAM). Using composite maps we investigated the domi-
nant patterns of the anomalies associated with the different phases and oscillations (Kwok and 
Comiso 2002).  

 

5.3  Results and discussion 

 

5.3.1  Mean spatial distribution of the phenological indices 
 
The spatial patterns of the diatom phenological indices averaged over 15-yr of data are pre-

sented in Figures 5.3 to 5.5, together with the corresponding latitudinal variation in Figure 6. The 
spatial patterns of the indices are generally associated to the location of the asymmetric contour of 
the Southern Antarctic Circumpolar Current Front (SACCF) and of the maximum sea ice extent. 
This association is strong for the start date, date of maximum (peak), growth duration and total 
duration of the blooms. The connection between the indices and the fronts is clearer especially in 
the western part of the SO.  

The general pattern of the bloom start date is consistent with Thomalla et al. (2011). The 
blooms start and the date of the maximum of Dia-Chla is reached earlier north of the SACCF - 
outside the seasonal ice zone (Figure 5.3). The authors linked the start of the blooms south of 
40°S to the light availability (indicated by PAR). The development of the blooms in the SO fol-
lowing the increase in the seasonal PAR was also described by Racault et al. (2012). On the other 
hand, the end of the bloom of diatoms is more likely related to the exhaustion of nutrients 
(Smetacek 1999; Smetacek et al. 2004; Smetacek 1985). Borrione and Schlitzer (2013) suggested 
the exhaustion of silicate as limiting factor for the end of the spring bloom of diatoms in the South 
Georgia region. Grazing pressure is thought to control the diatom species composition and bio-
mass, rather than the end of the diatom blooms (Smetacek et al. 2004).  

In the seasonal ice zone the start of the bloom is driven by light as well as water column stabil-
ity; as the sea ice retreats, the melting of ice increases the stratification of the water column which 
favors to maintain the phytoplankton in the euphotic zone. The end of the bloom occurs when the 
mixed layer deeps caused by wind forcing, which dilutes the phytoplankton in the water column 
(Taylor et al. 2013). Apart from melting of ice and wind forcing, changes in mixed layer depth in 
the SO are also caused by heating from the atmosphere (Sallee et al. 2010). 

Particularly notable is the early start of the blooms in the waters surrounding Antarctica (light 
green), caused by the opening of areas free of ice around the continent. Arrigo et al. (2012) 
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showed that in the Amundsen polynya small areas free of ice occur throughout the year and that 
their size increases with three factors: advection of sea ice offshore, increase in temperature and 
melting of ice. These factors, combined with an increase in solar radiation and water column sta-
bility, as shown by Taylor et al. (2013), are linked to the earlier bloom start date in these waters 
surrounding Antarctica as compared to waters northwards of the seasonal ice zone. 

 

 
Figure 5.3. Spatial distribution of the mean diatom phenology in 1997 – 2012: (left) bloom start 
date – BSD, (center) date of Dia-Chla maximum – CMD, (right) bloom end date - BED. Grey 
areas represent missing data. Black solid lines show the mean position of the Polar Front (Sallee 
et al. 2008) over 1997-2012. Dashed lines show the Southern Antarctic Circumpolar Front (Orsi et 
al. 1995). Purple line displays the mean position of the maximum sea ice extent over 1997-2012 
(Fetterer et al. 2002). 
 

In general, the duration of the blooms is shorter south of the SACCF, in the seasonal ice zone, 
and vice versa. Outside this region it forms a belt of higher values (longer duration) around the 
Polar Front (PF), particularly between 30°W and 120°E (Figure 5.4). Compared to Racault et al. 
(2012), the overall duration of the blooms is shorter. The average duration of the blooms for the 
regions 50°S-60°S and 60°S-70°S was 8.3 and 6.5 weeks, while these authors reported 14 and 11 
weeks, respectively. However, the authors used satellite Chla data to investigate the phytoplank-
ton phenology, which includes all PFTs while in the present study we looked specifically at the 
diatom Chla concentration.   

As shown by Taylor et al. (2013), the duration of the bloom in the seasonal ice zone results 
from a combination of factors influencing the growth and decline phases of the bloom, mainly 
light and stability of the water column, while nutrients are less important. The belt of “longer last-
ing” blooms outside the seasonal ice zone is likely linked to a complex inter-play of different forc-
ings: longer light periods and deeper mixed layers (Sallee et al. 2010) that enhance the supply of 
nutrients at surface as well as reduce the grazing pressure by zooplankton (Behrenfeld et al. 
2013). The mixed layer depth is deeper in the vicinity the fronts; around 100 m in the summer and 
up to 400 m in the winter (Sallee et al. 2010).  
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The deepening of the mixed layer in the winter together with diapycnal diffusion replenishes 
the surface with nutrients from subsurface waters, including iron (Tagliabue et al. 2014). It is 
known that iron is a limiting nutrient in the surface waters of the SO controlling phytoplankton 
growth, particularly in the open ocean. This micronutrient is rapidly depleted by spring blooms. In 
late spring and summer, phytoplankton relies on the pelagic recycling until the following deepen-
ing of the mixed layer in autumn (Tagliabue et al. 2014). Open ocean diatoms have the ability to 
reduce their requirement of iron (Armbrust 2009) which can help to sustain their blooms for long-
er periods.  

In regions where the Antarctic Circumpolar Front (ACC) interacts with the topography, the nu-
trient supply is enhanced (Sokolov and Rintoul 2007) leading to higher Chla and consequently, 
higher amplitude of the blooms (Figure 5.5). This occurs for example in the Pacific Antarctic 
Ridge (see Figure 7 in Sokolov and Rintoul 2007). The enrichment from the coastal and shelf sed-
iments close to islands (e.g. Kerguelen, Crozet and South Georgia Islands) are also important 
sources of nutrients, especially iron (Blain et al. 2007; Borrione et al. 2014; Planquette et al. 
2007). Other important factors controlling the duration of the bloom are the increasing in grazing 
pressure and algal viruses (Behrenfeld et al. 2013; Smetacek et al. 2004).   

 

 
Figure 5.4. Same as Figure 5.3, but for bloom growth duration (BGD), bloom decline duration 
(BDD) and total duration (BD) of the blooms. Units are in week. 
 

The relationship of the biomass indices with the fronts is not as evident as for the other indices 
(Figure 5.5). The spatial distribution shows that more intense blooms (higher biomass) occur in 
coastal regions, in the seasonal ice zone and in the Atlantic sector of the SO. Sokolov and Rintoul 
(2007) have showed that at a broader scale the distribution of Chla is mainly controlled by the 
upwelling of nutrients via Ekman transport while the upwelling associated with bathymetric 
features is responsible for the magnitude and duration of the blooms. Blooms around Antarctica 
can be considered as more efficient blooms, with short duration and high biomass. 

 



83 
 

 

Figure 5.5. Same as Figure 5.4, but for Dia-Chla maximum (CM), Dia-Chla amplitude (CA), Dia-
Chla average (CAV) and Dia-Chla integrated over the growth duration (CI). Units are in mg m-3. 
 

The latitudinal variability displays, from north to south, a progressive delay in the start, maxi-
mum and end date of blooms until about 73°S (Figure 5.6). The opposite is observed for the dura-
tion; there is a decrease in the growth, decline and total duration of the bloom from north to south. 
South of 73°S the trend is reversed except by the growth duration which holds at about the same 
duration. The biomass indices present similar latitudinal variations, but are rather small until the 
first peak at ~ 67°S, followed by two steep peaks at ~ 72°S and at ~ 76°S, and then decreasing 
towards the south.  

 

 
Figure 5.6. Schematic representation of the latitudinal variability (longitudinal average) of the 
phenological indices: bloom start date (BSD), date of Dia-Chla maximum (CMD), bloom end date 
(BED), bloom growth duration (BGD), bloom decline duration (BDD), bloom duration (BD), Dia-
Chla maximum (CM), Dia-Chla amplitude (CA), Dia-Chla averaged BGD (CAV), Dia-Chla 
integrated over BGD (CI). 
 

5.3.2  Interannual variability  
 

The relative standard deviations of two of the phenological indices over the 15 years are dis-
played in Figure 5.7. To investigate whether the variability could be associated with a variation in 
the mean position of the Polar Front and in maximum sea ice extent, their relative standard devia-
tions are also shown (dashed lines). The spatial patterns of the relative standard deviation of the 
bloom start date, date of Dia-Chla maximum and bloom end date are very similar to each other, as 
well as among the duration or biomass indices. This is corroborated by the correlation maps 
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among the date, duration and biomass indices presented in Figure A4. Figure 5.7 shows the maps 
with the highest variability of the relative standard deviation, namely bloom start date and Dia-
Chla amplitude. The spatial variability of relative standard deviation of the duration indices does 
not show a clear pattern and therefore is not presented.  

Comparing the relative standard deviation maps of bloom start date and Dia-Chla amplitude, 
the spatial distribution is different. The bloom start date presents higher variability in the vicinity 
of the fronts, while the amplitude shows higher variability in the seasonal ice zone. This suggests 
that the environmental forcings controlling the start date and the amplitude of the bloom are dif-
ferent. It is important to note that the variability of the indices is linked to the main position of the 
PF and the maximum sea ice extent, rather than with their variability which is low (dashed lines).  

The variability of the amplitude of the bloom seems to be linked to the interannual variability 
in the sea ice concentration, which in turn controls the light availability and the stability of the 
water column. On the other hand, the variability in the bloom start date is probably related with 
the variability in the nutrient supply which is large where the seasonal amplitude of the mixed 
layer depth is strong and small in the ice-influenced region.  

 

 
Figure 5.7. Spatial distribution of the relative standard deviation (RSD) of the bloom start date 
(BSD) and Dia-Chla amplitude (CA) for 15 years of data (1997-2012). Grey areas represent miss-
ing data. Black continuous lines represent the mean Polar Front position (Sallee et al. 2008) and 
dashed black lines the standard deviation of the position over 1997-2012. Purple continuous lines 
indicate mean of the maximum sea ice extent (Fetterer et al. 2002) and dashed purple lines the 
standard deviation of the position for the years of 1997 to 2012. White line indicates the mean po-
sition of the Southern Antarctic Circumpolar Front (Orsi et al. 1995). 
 

5.3.2.1  Trends 
 

Most of the indices are not gap free and for this reason trends could only be determined for the 



85 
 

date of Dia-Chla maximum, Dia-Chla maximum and amplitude. For the same reason the anomaly 
data were not detrended afterwards. Trends in the Dia-Chla amplitude are very similar to Dia-Chla 
maximum and not shown.  

Coherent patches of significant positive and negative trends were detected for the date of Dia-
Chla maximum and Dia-Chla maximum (Figure 5.8). For example, in the region between the 
Malvinas and South Georgia Islands (Figure 5.8, green star) there is a trend towards an earlier 
maximum of the bloom leading to higher biomass (Dia-Chla maximum). However, the 
relationship between the date of the maximum of the bloom and the biomass can be reverse as 
well, as in the region south of 60°S and between 120°E and 150°E (Figure 5.8, black star) where a 
later start of the bloom leads to an increase in biomass. Although we could not estimate trends in 
the bloom start date and bloom end date, we can expect a similar pattern to the ones detected for 
date of Dia-Chla maximum since these indices are highly correlated (Figure A4). 

These observations combined with recent studies on the trends in sea surface temperature 
(Maheshwari et al. 2013) and sea ice cover (Maksym et al. 2012) over the last three decades, 
suggest a link between these two variables and the diatom phenology. For example, in the region 
south of 60°S and from 60°E to 120°E (Figure 5.8, grey star) the earlier date of Dia-Chla 
maximum and the increased Dia-Chla maximum coincide with the observed increase trend in SST 
and decrease in sea ice cover (earlier sea ice melt). 

Compared to literature, the spatial distribution of trends in Dia-Chla maximum are similar to 
trends in total Chla from SeaWiFS reported by Henson et al. (2010) and Siegel et al. (2014) for 
the 1997-2007 and 1997-2010 periods, respectively. The last study on global total Chla trends 
(1998-2012), by Gregg and Rousseaux (2014), displays large areas in the SO with positive trends 
as we observed here, but also positive trends between the 60°E and 150°E north of 60°S whereas 
we observed negative trends. Different trends can be expected due to the different variables used 
(total Chla instead of Dia-Chla), as well as data treatment (bias correction, data assimilation) 
performed by the authors. 

 

 
Figure 5.8. Trends of the standardized anomalies of date of Dia-Chla maximum (CMD) and Dia-
Chla maximum (CM). Reddish colour indicates a positive trend and bluish indicates a negative 
trend. Only statistically significant trends (p < 0.05) are shown. The stars highlight the regions 
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between Malvinas and South Georgia Islands (green) and south of 60°S between 120°E to 150°E 
(black) and 60°E to 120°E (grey). 
 

5.3.2.2 Relationships with ENSO and SAM 

 

5.3.2.2.1 Correlation maps 
 

To further explore the interannual variability of the diatom phenology, we examined the 
relationship of phenological indices with ENSO and SAM (methods described in section 5.2.5 and 
5.2.6). During the 1997-2012 period there were six El Niño years (1997/1998, 2002/2003, 
2003/2004, 2004/2005, 2006/2007, 2009/2010), eight La Niña years (1998/1999, 1999/2000, 
2000/2001, 2005/2006, 2007/2008, 2008/2009, 2010/2011, 2011/2012), seven years of positive 
phase of SAM (1998/1999, 1999/2000, 2001/2002, 2007/2008, 2008/2009, 2010/2011, 
2011/2012) and four of negative phase (2000/2001, 2002/2003, 2003/2004, 2009/2010). The 
correlation maps are presented in Figure 5.9 for date of Dia-Chla maximum and Dia-Chla 
maximum as representative of the date indices and biomass indices, respectively. Significant 
positive (negative) correlations indicate that the anomalies are in phase with ENSO and SAM. 
Coherent areas in the duration indices are less evident for the duration indices and not shown.  

Several areas show significant correlation between ENSO/SAM and the diatom phenology. 
The correlation coefficients for ENSO are opposite to that of SAM. For example, the date of Dia-
Chla maximum in the sector of the seasonal ice zone between 120°W-150°W is negatively 
correlated with ENSO (MEI index) and positively correlated with SAM (AAO index). Moreover, 
the patterns in El Niño (La Niña) years and negative (positive) SAM are similar. These results are 
in line with observations of the sea ice concentration, SST, Chla and wind speed and direction in 
the SO (Lovenduski 2007; Pohl et al. 2010). Smith et al. (2008) also observed that high biomass 
offshore the Western Antarctic Peninsula region was associated La Niña and/or positive SAM 
events. Hence, we can expect the spatial patterns of the anomalies of phenological indices during 
El Niño (La Niña) years and negative (positive) phase of SAM to resemble each other.  

The most remarkable feature in the correlation maps of the date of Dia-Chla maximum can be 
seen in the Pacific Sector (90°W to 150°W), north of the PF and south of the maximum sea ice 
extent. This pattern is consistent with the results of Kwon and Comiso (2002) and Lefebvre et al. 
(2004) for earlier periods, 1982-1998 and 1980-1999 and using satellite and model data, 
respectively. For the same region, Kwon and Comiso (2002) observed an increase in SST and a 
decline in sea ice concentration associated with El Niño. Lefebvre et al. (2004) showed that the 
winter sea ice concentration decreases in negative SAM events. As a result, an earlier start, 
maximum and end of the bloom can be expected in El Niño or negative SAM events. 

The Dia-Chla maximum displays less significant correlations, but the general pattern of Dia-
Chla maximum is consistent with the results of Lovenduski and Gruber (2005) for the relationship 
between satellite Chla and SAM. In contrast, the general increase in diatom concentration 
between 50°S and 70°S during positive SAM event showed by Hauck et al. (2013) was not 
observed in our results. The authors used a coupled ecosystem – general circulation model and 
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lagged correlations (4 months) to investigate the relationship and these might be the cause for 
disagreement between the results, as well as the different periods analysed in their study (1948-
2010) and in the present study (1997-2012). In addition, the observed lower Dia-Chla maximum 
at 60°E during El Niño (negative correlation) can be linked to lower SST in El Niño years, as 
shown by Kwon and Comiso (2002) (see Figure 6 in Kwon and Comiso, 2002).  

Because SAM and ENSO are not linearly independent at interannual time scales during the 
austral summer season (L’Heureux and Thompson 2005; Pohl et al. 2010), we expected that some 
of the variability we observed related to SAM may be biased by ENSO, or vice versa. This was in 
part confirmed by the partial correlations (Figure A5), but the differences between the correlations 
and partial correlations are in general small. Higher differences were observed between the date of 
Dia-Chla maximum and MEI. The correlations with SAM and between the Dia-Chla maximum 
and MEI/SAM did not change. One possible reason for not observing differences is that the short 
time series used here might not allow distinguishing the respective influence of the oscillations.  

  

 
Figure 5.9. Correlation coefficients of the standardized anomalies of date of Dia-Chla maximum 
(CMD) and Dia-Chla maximum (CM) vs. ENSO (MEI) and SAM (AAO) indices. Only 
statistically significant trends (p < 0.05) are shown. Black and purple lines indicate the mean 
position of the Polar Front and maximum sea ice extent over 1997-2012, respectively. 
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5.3.2.2.2 Composite maps of anomalies 
 

The composite maps of the anomalies of bloom start date, Dia-Chla maximum and bloom du-
ration are shown in Figures 5.10, 5.11 and A6, respectively, and provide insight onto the magni-
tude of the anomalies during the ENSO and SAM events. In the seasonal ice zone there are two 
regions with inverse patterns and high anomalies of bloom start date: the Weddell Sea region 
(white dashed box) and the sector between 120°W and 180°W (white box), north of 70°S. In the 
Weddell Sea, El Niño/negative SAM years are characterized by later start, shorter duration and 
slightly higher biomass, which are likely a response of more extensive ice cover in these years 
(Kwok and Comiso 2002; Lefebvre et al. 2004). In the sector between 120°W and 180°W the pat-
tern is inversed. 

Alvain et al. (2013) showed that, on average, the frequency of diatom dominance (derived us-
ing the PHYSAT) is higher in positive phases of SAM as a response of more intense winds and 
nutrient supply. Their spatial pattern of differences between monthly mean diatom frequency 
dominance during positive and negative SAM events reveal large areas with negative differences 
as well (see Figure 3a in Alvain et al. 2013). To compare our results with those from Alvain et al. 
(2013), we calculated the differences between the composite maps of Dia-Chla maximum anoma-
lies during positive SAM and negative SAM phases (not shown). Our spatial pattern is very simi-
lar to that presented in their study for most of the region.  

 

 
Figure 5.10. Composites of bloom start date (BSD) standardized anomalies during El Niño 
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(N=6), La Niña (N=8), positive SAM (N=7) and negative SAM (N=4) years. Grey areas represent 
missing data. Black lines show the mean position of the Polar Front (Sallee et al. 2008) over 
1997-2012. Purple line displays the mean position of the maximum sea ice extent (Fetterer et al. 
2002) over 1997-2012. The white boxes depict the Weddell Sea region (dashed) and the sector 
between 120°W and 180°W. 

 

 
Figure 5.11. Same as Figure 5.10 but for Dia-Chla maximum. 

 

5.3.2.2.2.1 Composite maps of anomalies in amplified years 

 
In addition to these anomalous years influenced by ENSO and SAM, the effect of these oscilla-

tions can be amplified when El Niño (La Niña) coincides with negative (positive) phase of SAM. 
During the period studied, three years (2002/2003, 2003/2004, and 2009/2010) were characterized 
by El Niño co-occurring with negative phase of SAM, and six years (1998/1999, 1999/2000, 
2007/2008, 2008/2009, 2010/2011, 2011/2012) of La Niña and positive phase of SAM (Figure 
5.1). The composite maps of bloom start date and Dia-Chla maximum for the amplified years are 
presented in the appendix (Figure A7). Unfortunately, because of the short length of our time se-
ries it was not possible to distinguish between amplified and non-amplified years. 
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5.4  Concluding remarks 
  

We have used a solid and widely applied method to investigate phytoplankton phenology from 
ocean colour data (Brody et al. 2013; Henson et al. 2009; Henson and Thomas 2007; Racault et al. 
2012; Siegel et al. 2002; Thomalla et al. 2011). This method differs from Behrenfeld (2010), 
where the bloom starts when the net phytoplankton growth rate becomes positive. Another differ-
ence is that Behrenfeld (2010) accounts for the dilution effect; when the mixed layer is deeper 
than the Zeu the phytoplankton concentration is diluted and that can mask an increase in the net 
growth rate (Behrenfeld 2010). Although Zeu can be accurately retrieved from satellite data in the 
SO (Soppa et al. 2013), the uncertainties of the mixed layer depth datasets at weekly or monthly 
resolution has still to be investigated. In addition, in our analysis the start of the bloom was de-
fined as an increase of Chla over a threshold, after identifying the peak of biomass. An advantage 
of this method is that it is more suitable for studying the mismatch hypothesis between phyto-
plankton and higher trophic levels (Brody et al. 2013) because it is based on the timing of the 
maximum biomass. On the other hand, by this definition there will always be a bloom, even in 
regions where the amplitude of the Chla is very low, as between 120°E and 150° E (Figure 5.5).  

The advantage of using satellite data to study phytoplankton phenology is widely recognized. 
The high temporal resolution allows investigating the full development of the bloom and the 
spatial coverage enables to compare different regions simultaneously in time. However, there are 
still knowledge gaps related to the ocean colour data that can affect the phenology studies and 
where further investigations are needed. One limitation is that some regions of the SO present a 
deep Chla maximum (~ 60 - 90 m) which is not seen by the sensor (e.g. southern Indian and 
Pacific sectors of the SO, Holm-Hansen et al. 2005). This implies that subsurface blooms deeper 
than the first optical depth are not accounted for in the satellite data. A second limitation is that 
due to gaps in satellite data the date of the actual Chla maximum, for example, may be missed 
(Kahru et al. 2011). In fact, Racault et al. (2014) showed that the error in the date of Chla 
maximum arising from gappy datasets is nearly two months (global average). Data gaps also 
reduce the length of the times series and the significance of the statistical tests. We have attempted 
to minimize this error by filling the gaps by linear temporal interpolation and through the use of 
merged satellite Chla product. For example, in January 2012 the average number of observations 
in the SO improved by 45% using the merged satellite Chla data than if only using MODIS data. 
Another way to overcome this issue is to apply techniques such as the Data Interpolating 
Empirical Functions method (DINEOF, Alvera-Azcarate et al. 2007) to reconstruct the missing 
data fields. Thus, a future goal is to reprocess the dataset of diatom concentration with the 
DINEOF to obtain a gap-free dataset and to investigate the impact of missing data to determine 
the phenological indices. This will make possible to estimate trends for the indices that remained 
not analyzed because of the lack of gap-free time series and it will possibly increase the 
significance of the correlations discussed in the section 5.3.2.2. 

Phytoplankton blooms phenology has been studied before using satellite Chla data. However, 
by looking at the total Chla provided by the satellite the contribution of all different PFTs are 
taken into account. Using satellite-derived diatom concentration, we were able to look specifically 
at the fraction or concentration of Chla that belongs to diatoms. We investigated the mean patterns 
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of the diatom phenology, but the most interesting results are related to the interannual variability. 
We find a clear correspondence between ENSO and SAM and the phenology of diatoms, as 
revealed by the correlation and the anomaly composite maps. These climate oscillations have 
different effects among the regions of the SO. It is also evident that different phases in 
ENSO/SAM have opposite effects in the diatom phenology. These results emphasize the influence 
of climate oscillations over the SO and in the diatom phenology, which may be enhanced in 
amplified years. For the first time these findings are described for the SO.  

The mechanisms by which ENSO and SAM climate oscillations are associated with diatom 
phenology will be investigated in a following study. From the literature we obtained the evidence 
of the complex and strong link between these components through changes in the environment 
(e.g. sea ice concentration, sea surface temperature, mixing); our next step is to quantify it. This 
can be performed for example, by examining the composite maps of sea ice concentration during 
the different phases of ENSO/SAM and also looking at correlations between the sea ice concen-
tration and the phenological indices. Besides that, we did not found a literature which fully covers 
the period we investigated.  

In addition, such investigation needs a comprehensive dataset including not only information 
on SST and PAR, as usual used in phytoplankton phenology studies since these variables are 
freely available from remote sensing, but also water column mixing, sea ice concentration, dis-
solved iron and silicate for example. Combining remote sensing and model data can help to ex-
plain the missing link between climate oscillations, environmental anomalies and diatom phenol-
ogy. A better understanding of diatom phenology also requires a consideration of the grazing 
pressure, which unfortunately cannot be easily estimated, at least not at the temporal resolution 
required, and probably for this reason its role on the diatom phenology is not well known. 

Last, the knowledge of other PFT forming blooms in the SO, mainly haptophytes, is important 
to understand phytoplankton community shift and the factors controlling it. E. huxleyi are known 
to occur along the “Great Calcite Belt” in the SO and dense blooms are often observed at the shelf 
break and off the Patagonian shelf after the spring bloom of diatoms. Moreover, while is generally 
accepted that diatoms dominate the spring bloom in the SO (Smetacek 1985) this might not be 
true everywhere as for the case of the spring bloom of P. antarctica in the Ross Sea (Smith et al. 
2012). 
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6 Synthesis and major outcomes 
 

Changes in the SO are occurring, regardless if driven by natural or anthropogenic climate 
variability. Among the most remarkable changes is the increase in the sea ice cover by 5% per 
decade in the Ross Sea and the decrease by 7.1% per decade in the Bellingshausen/Amundsen Sea 
(Comiso 2010). An important question which needs to be addressed in a changing SO is how 
these changes are reflected in the phytoplankton composition, distribution and NPP and hence in 
the biogeochemical cycles and ecosystem functioning. 

The SO is, like the North Atlantic, a major region for uptake and long term storage of 
anthropogenic atmospheric CO2 (Hauck and Völker 2015; Sabine et al. 2004; Takahashi et al. 
2012). Part of the uptake is biology-driven. Maier-Reimer et al. (1996) addressed the importance 
of the marine biological pump in the global atmospheric CO2 concentrations. Using a coupled 
ocean-biogeochemical model, they found that without the biological uptake the CO2 concentration 
in the atmosphere would rise ~100 ppm in 50 years, which translates to an increase of 213 PgC. 
For comparison, the preindustrial concentration was 280 ppm in the year 1800 and the current 
concentration (March 2015) is 400.83 ppm (Dlugokencky and Tans 2015); that is an increase of 
120 ppm (255 PgC) in 215 years. The current level is also considerably higher than the 
concentration of 172-300 ppm for the last 800.000 years measured in ice cores from Antarctica 
(Luthi et al. 2008). 

The projected consequences of increasing anthropogenic atmospheric CO2 in the SO include 
strengthening of the westerly winds, ocean acidification, warming and freshening of surface 
waters, enhanced stratification and decrease in sea ice extent (Bindoff et al. 2011; IPCC 2014). It 
is argued that the enhanced stratification will reduce the vertical supply of nutrients to the surface 
and lead to a community shift from large to smaller phytoplankton (Bopp et al. 2005; Finkel et al. 
2010). This view is not supported by Kemp and Villareal (2013). The authors argue that diatoms, 
which are in general medium and large phytoplankton, survive in a wide variety of conditions and 
may adapt to a more stratified ocean due to their ability to grow in deeper layers under low light 
conditions, to migrate in the water column by physiologically controlling their buoyancy, thus 
enhancing the nutrient uptake. Further, open ocean diatoms can reduce their requirement of iron 
under iron limiting conditions (Armbrust 2009).  

Alongside anthropogenic-induced change, much of the variability in the SO has been associat-
ed to natural climate oscillations ENSO and SAM (Alvain et al. 2013; Arrigo and van Dijken 
2004; Hauck et al. 2013; Kwok and Comiso 2002; Lovenduski 2007; Lovenduski and Gruber 
2005). SAM has shown a positive trend towards positive events (Pohl et al. 2010; Sallee et al. 
2010; Thompson et al. 2011) and the coupling with ENSO may strengthen the anomalies generat-
ed by SAM in the SO (Fogt et al. 2011).  

Satellite observations provide the means for monitoring large scale changes in the SO 
productivity; however, the separation of natural from anthropogenic influence is difficult using 
ocean colour remote sensing. Short times series are currently available relative to the large 
interannual variability intrinsic to phytoplankton (Beaulieu et al. 2013; Henson et al. 2010). 
Henson et al. (2010) have shown that longer times series (~ 40 years) are required to detect 
climate change trends on the satellite ocean productivity in the SO; a challenging task that 



94 
 

depends on the endurance of the satellite missions. The merging of data from different sensors as 
performed by the ESA GlobColour and ESA OC CCI projects is a current effort to achieve this 
aim which depends on simultaneous data acquisition, cross-calibration between sensors and data 
merging (Beaulieu et al. 2013). Unfortunately, to date, only MODIS-Aqua, launched mid of 2002, 
and the Visible Infrared Imager Radiometer Suite (VIIRS) launched end of 2011, are operational 
at global scale, and there is a growing concern on MODIS-Aqua which is experiencing sensor 
degradation since 2011.  

Another important application of ocean colour is data assimilation and validation of marine 
biogeochemical models (Robinson 2010). Furthermore, the use of satellite data in conjunction 
with information derived from models can provide a more complete description of the 
biogeochemical processes in the water column and on the export of carbon to deeper layers. In 
situ data is also certainly very useful, but those are rather sparse and unable to solve the spatial 
and temporal variability required to study these processes. A promising technology is the Bio-
Argo float, which is another way of obtaining continuous ocean optical information. Argo floats 
have now for 15 years measured profiles of temperature and salinity at daily temporal resolution 
in the SO and recently, they have been equipped with several sensors to measure bio-optical 
properties of the oceans (e.g. Chla, PAR, CDOM). These Bio-Argo floats are still experimental 
but will potentially improve the number of bio-optical observations in the SO and together 
provide information on the vertical structure of these properties (http://www.euroargo-
edu.org/explore/argoeu_2.php).  

The synergistic use of ocean colour remote sensing, biogeochemical models and in situ obser-
vations provide complementary information and they have to walk together towards their im-
provement. From the ocean colour perspective, it implies that we do not only need sustained and 
consistent ocean colour observations, but also to understand the typical patterns of phytoplankton 
community composition and NPP in the SO. To assess the effects of unusual events on ocean bi-
ology we need first to understand its natural variability; a baseline against which to compare these 
events (Henson 2014).  

This thesis was set out to investigate ocean colour retrievals and phytoplankton dynamics in 
the SO and it was developed as a multidisciplinary work using in situ and remote sensing data. 
The studies developed here have moved forward our knowledge of ocean colour in the SO and 
contributed to a better understanding of the ocean biogeochemical cycle from the ocean colour 
perspective by adding new information on the uncertainties in the input terms of NPP models, on 
the estimation of diatoms abundance and on the variability of diatoms phenology. 

For the first time uncertainties of ocean colour retrievals of Zeu have been investigated in the 
SO (Chapter 3; published in Soppa et al. 2013). Two Zeu retrievals (Zeu-Chla and Zeu-IOP) from 
SeaWiFS and MODIS have been validated with in situ measurements of Zeu. The results showed 
that both methods and sensors provide consistent estimates of satellite Zeu, although satellite 
retrievals of Chla have substantial uncertainties. Spatial differences between Zeu satellite products 
have been found and it is likely that these differences were not detected in the validation effort 
due to the limited and uneven distribution of the in situ measurements. Therefore, we reinforce the 
importance of looking at spatial patterns, together with in situ validation for comparing ocean 
colour data retrieved from different approaches. Thus, the choice of the Zeu product led to 
substantial differences in the satellite NPP over specific regions of the SO. In addition, a parallel 
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objective of this study was to examine the uncertainties of satellite aph as it is an input term in the 
ABPM NPP model as well. As for Zeu, the validation of satellite aph was the first efforts to 
investigate uncertainties in the SO and the results presented here can serve as a reference for 
future studies.  

To which extent one Zeu product leads to improved NPP retrievals in comparison to the other 
one is a task for future research and could potentially suggest the more appropriate Zeu satellite 
product for a given NPP model. A similar investigation could be conducted for aph and, in 
addition, by examining the combined effect of the uncertainties of different input terms in the NPP 
estimation, as performed by Saba et al. (2011). However, Zeu, aph and the ABPM were not 
considered in their study; neither the use of different algorithms to retrieve the input terms of the 
NPP models. 

Moreover, the skill of satellite NPP models can be improved by separating the contribution of 
different PFTs. Biogeochemical models (e.g. NOBM - NASA Ocean Biogeochemical Model, 
Gregg and Casey 2007, PISCES - Pelagic Interaction Scheme for Carbon and Ecosystem Studies, 
Aumont and Bopp 2006) frequently represent the community structure by including the infor-
mation of one or more PFTs allowing to investigate their specific contribution to the NPP and bio-
geochemical cycles. Few ocean colour studies (Uitz et al. 2009a, 2010; Uitz et al. 2009b; Uitz et 
al. 2012) have so far focused on this topic due to the difficulty in estimating the Chla and the pho-
tophysiological properties specific to each phytoplankton group (Uitz et al. 2010), but their im-
portance is acknowledged. There is an increasing effort in the ocean colour community to develop 
and improve PFTs retrievals using remote sensing. Equally important is the tuning of global satel-
lite PFT approaches to regional application. Today global scale studies and parametrizations usu-
ally fail to fully capture important regional differences in the ocean properties which influence the 
phytoplankton community composition (Brito et al. 2015).            

Regarding this limitation, the second study, presented in Chapter 4 and published in Soppa et 
al. (2014), has identified that the satellite derived diatom abundance using the ABA is underesti-
mated in the SO. This conclusion has been achieved by revising the global ABA with a new in 
situ dataset that included more phytoplankton pigment samples from the SO. It was observed that 
the global relationship between Chla and the f-Diatom is not appropriate for the SO. A new global 
function that accounts for the relatively high concentration of diatoms in low Chla waters was 
proposed, improving the retrievals in the SO using the global parametrization, but leading to an 
overestimation in other regions. Therefore, and for the first time, a regional ABA model for the 
SO was developed which further improved estimation of the diatom abundance in the region.  

Yet, the remoteness of the SO is still a limitation. Research cruises in the SO tend to focus on 
regions with elevated phytoplankton concentration and close to the continents for logistic reasons 
and scientific interests (e.g. sea ice, carbon export). Again, the development of new field 
observation systems as Bio-Argo floats and gliders could help to obtain a better spatial and 
temporal coverage in the SO. It is a long term aim to obtain a proper in situ bio-optical data set of 
the SO that once achieved will allow to investigate the spatial differences observed in the first 
study and will improve global and regional parametrizations of the relationship between Chla and 
diatoms developed in the second study.  

With the information of PFTs from satellite, the next stage is to investigate their dynamics. The 
third study analyzed the diatom bloom phenology over 15-yr (Chapter 5) using the regional model 
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to retrieve the concentration of diatoms in the SO. Although important, phenology studies focused 
on diatoms have not been conducted so far. The diatom bloom phenology was investigated using 
ten indices that described the timing, duration and magnitude of the bloom at different stages. The 
mean patterns revealed that diatom blooms are spatially and temporally heterogonous and are 
associated with the position of the SACCF and the maximum sea ice extent. Earlier start and 
maximum were observed in blooms north of the SACCF - outside the seasonal ice zone. Their 
duration is also longer than blooms formed in the seasonal ice zone. On the other hand, blooms 
around Antarctica are more intense blooms, with shorter duration and higher biomass, than 
blooms outside this region.  

In addition to the mean patterns, knowledge was gained in the relationship between large scale 
climate oscillations (ENSO and SAM) and diatom bloom phenology. The robust signals of ENSO 
and SAM observed in the phenological indices across different regions of the SO indicated 
influence of these climate oscillations on the environment and diatom phenology. A follow-up 
study should address in more detail the underlying mechanisms associated with changes in the 
diatom phenology, for example, by looking at correlations and composite maps of sea ice 
concentration or sea surface temperature and diatom phenology during ENSO and SAM events. 
Once available, a longer time series of data should be employed likewise to examine trends and to 
better distinguish between ENSO and SAM influence in the region.  

If changes in the phytoplankton bloom phenology can be monitored, it may serve as indicator 
for subsequent changes in the food web, productivity and ocean biogeochemistry. Future research 
should focus on optimizing the ABA to other PFTs to expand the understanding on their dynamics 
and interaction with other PFTs. However, since the ABA method is based on the assumption that 
diatoms dominate at high Chla, it might incorrectly identify other PFTs occurring at high 
concentrations. A combination with data provided by the PhytoDOAS method applied to 
hyperspectral data, for example, can lead to a more objective characterization of the PFTs.  

Recently the SynSenPFT Project founded by ESA 
(http://www.awi.de/en/research/young_investigators/helmholtz_university_young_investigators_g
roups/phytooptics/projects/synsenpft/), under the Scientific Exploration of Operational Missions 
Program, has been initiated. One of the main objectives is to develop improved PFT products by 
the synergistic use of low spatial resolution hyperspectral data with high spatial resolution 
multispectral data. Satellite retrievals of diatom, coccolithophores and cyanobacteria will be 
developed using the ABA and PhytoDOAS methods. By the choice of these two methods, the high 
spatial resolution of the PFTs derived with ABA and the high spectral resolution data used by 
PhytoDOAS to derive PFTs can be exploited.  

Ocean colour remote sensing has proven to be a valuable tool to adequately examine primary 
production and the phytoplankton composition in a changing SO. In the future, long term high 
quality time series will be available for further investigations in the topic of this thesis given the 
continuity of the satellite space programs. The upcoming multispectral and hyperspectral sensors, 
the Ocean Land and Color Instrument (OLCI) on Sentinel-3 and the Tropospheric Monitoring 
Instrument (TROPOMI) on Sentinel-5P, are expected to be launched in October 2015 and 2016 
respectively, as part of the ESA Sentinels mission. They will support the challenging task of 
building a long and accurate global data record from ocean colour remote sensing. 

 



97 
 

Appendix 
 

 

 

 
 

Figure A1. Scatterplots of satellite Zeu-Chla and Zeu-IOP against in situ Zeu south of 60°S. The 
solid line represents the regression and the dotted line represents the 1:1 line as reference. 
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Figure A2. Scatterplot of the validation for the global DPZpd dataset (N= 1182): (a) new model 
(ABAZpd), (b) model of Hirata et al. (2011) parameterized with the DPZpd dataset (ABA*) and (c) 
original model and fitting parameters of Hirata et al. (2011) (ABA**). The samples located in the 
SO are presented in grey (N = 460), together with the statistics of the validation. The red line 
represents the 1:1 line. The statistics were calculated with log10 transformed data (e.g. 
log10(y+0.00003)). 
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Figure A3. Climatology of TChlaZpd of diatoms (mg m-3) using the regional algorithm for the SO 
based on 2003-2013 period. The austral winter months of May, June, July and August are not 
presented due to too few number observations available in these months. White areas correspond 
to waters with depths shallower than 200 m or without satellite information. 
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Figure A4. Spearman correlation coefficients between the time series of phenological indices (15-
yr, 1997 – 2012): bloom start date (BSD), date of Dia-Chla maximum (CMD), bloom end date 
(BED), bloom growth duration (BGD), bloom decline duration (BDD), bloom duration (BD), Dia-
Chla maximum (CM), Dia-Chla amplitude (CA), Dia-Chla averaged BGD (CAV), Dia-Chla 
integrated over BGD (CI). Only statistically significant trends (p < 0.05) are shown. White areas 
correspond to non-significant correlations or missing data. Black and purple lines indicate the 
mean position of the Polar Front and the mean position of the maximum sea ice extent over 1997-
2012, respectively. 
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Figure A5. Partial correlation coefficients of the standardized anomalies of date of Dia-Chla 
maximum (CMD) and Dia-Chla maximum (CM) vs. ENSO (MEI) and SAM (AAO) indices. Only 
statistically significant trends (p < 0.05) are shown. Black and purple lines indicate the mean 
position of the Polar Front and the mean position of the maximum sea ice extent over 1997-2012, 
respectively. 
 



102 
 

 
Figure A6. Composites of bloom duration standardized anomalies during El Niño (N=6), La Niña 
(N=8), positive SAM (N=7) and negative SAM (N=4) years. Grey areas represent missing data. 
Black lines show the mean position of the Polar Front (Sallee et al. 2008) over 1997-2012. Purple 
line displays the mean position of the maximum sea ice extent (Fetterer et al. 2002) over 1997-
2012. The white boxes depict the Weddell Sea region (dashed) and the sector between 120°W and 
180°W. 
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Figure A7. Composites of bloom start date (BSD) and Dia-Chla maximum (CM) standardized 
anomalies during amplified years. Left plot: El Niño and negative SAM (N=3). Right plot: La 
Niña and positive SAM (N=6). Grey areas represent missing data. Black and purple lines indicate 
the mean position of the Polar Front and the mean position of the maximum sea ice extent over 
1997-2012, respectively. The white boxes depict the Weddell Sea region (dashed) and the sector 
between 120°W and 180°W. 
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