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I 

ABSTRACT. 

Vast parts of Arctic Siberia are underlain by ice-rich permafrost, which is exposed to different 

processes of degradation due to global warming. Thermal erosion as a key process for landscape 

degradation causes the recent reactivation and formation of new landforms like thermo-

erosional valleys and gullies. However, a statistical assessment about the decisive factors and 

the locations most susceptible for this phenomenon is still missing. This study investigates the 

influence of different geomorphological parameters on the occurrence of recently observed 

thermal erosion using a GIS-based approach and statistical modeling by logistic regression. The 

study site is located on an island within the Arctic Lena River Delta and is mainly composed of 

ice- and organic-rich deposits. Field surveys and mapping of high-resolution remotely sensed 

data revealed that thermal erosion occurs predominantly i) on very steep slopes along the 

margins of the island, ii) in the upper reaches of deeply incised thermo-erosional valleys and 

iii) in thermo-erosional gullies. Several potentially influencing environmental parameters were 

derived by a combination of high-resolution satellite imagery and 2 m-DEM. The full set of 

parameters was reduced stepwise within the logistic regression model. This approach allows 

the selection of a parsimonious model, i.e. a best-fit model using as few variables as possible. 

The parameters Contribution of warm open surface water, Relief ratio, Direct solar radiation 

and Snow accumulation turned out be the decisive factors for thermal erosion. Uncertainties in 

the model due to sampling and model selection were evaluated statistically and spatially 

through the generation of 100 models. Receiver Operating Characteristics (ROCs) were used 

to validate the spatial predictive capability of each model run. The consensus map as the median 

of all susceptibility models represents the final susceptibility map. The agreement between 

mapped and predicted erosion is generally very high within the study site, confirmed by an Area 

under the ROC curve (AUC) of 0.957 for the consensus map. The variability of predicted 

erosion probabilities between the single models is about four percentage points per cell within 

the study site and thus, very low. Mismatches between observed and predicted erosion could be 

attributed to the generation of the explanatory environmental parameters and the modeling 

approach. Model results seem promising for the spatial prediction of susceptible sites for 

thermal erosion, but require external validation on other sites with comparable environmental 

conditions. 



II 

ZUSAMMENFASSUNG. 

Große Teile der sibirischen Arktis gründen auf besonders eisreichem Permafrost, welcher als Folge 

des Klimawandels verschiedenen Degradationsprozessen ausgesetzt ist. Thermoerosion als ein 

Schlüsselprozess der Landschaftsdegradation führt zur Reaktivierung und Bildung neuer 

Geländeformen wie Thermoerosionstäler und –gullies. Eine statistische Auswertung über die 

entscheidenden Faktoren und die Standorte mit den höchsten Anfälligkeiten gegenüber diesem 

Prozess fehlt jedoch bislang. Diese Arbeit untersucht den Einfluss verschiedener 

geomorphologischer Parameter hinsichtlich des Auftretens von rezent beobachteter Thermoerosion 

anhand eines GIS-basierten Ansatzes und statistischer Modellierung mittels logistischer 

Regression. Das Untersuchungsgebiet liegt auf einer Insel im arktischen Lena Delta und besteht 

größtenteils aus eis- und organikreichen Ablagerungen. Geländearbeiten und Kartierungen in 

hochauflösenden Fernerkundungsdaten zeigten, dass Thermoerosion hauptsächlich i) auf sehr 

steilen Hängen entlang des Inselsaums, ii) im Oberlauf von tief eingeschnittenen 

Thermoerosionstälern und iii) in Thermoerosionsgullies auftritt. Mehrere potentiell einflussreiche 

Umweltparameter wurden mittels einer Kombination aus einem 2m-DHM und Satellitenbildern 

abgeleitet. Die komplette Reihe an Umweltparameter wurde innerhalb des logistischen 

Regressionsmodells stufenweise reduziert. Dieser Ansatz erlaubt die Auswahl der wichtigsten 

Faktoren, welche gleichzeitig das beste Modell erzeugen. Die Faktoren Einfluss von warmen 

Oberflächenwasser, Reliefgradient, Direkte Sonneneinstrahlung und Schneeakkumulation 

erwiesen sich als die entscheidenden Faktoren für Thermoerosion. Unsicherheiten im Modell 

aufgrund von Stichproben und Modellauswahl wurden statistisch und räumlich ausgewertet durch 

die Bildung von 100 Modellen. Die Receiver Operating Characteristic (ROC) Kurve wurde zur 

Validierung der räumlichen Vorhersagekraft sowohl für jedes einzelne, als auch für das Consensus 

Modell, welches den Median aus allen Modellläufen darstellt, verwendet. Die Übereinstimmung 

zwischen kartierter und vorhergesagter Erosion innerhalb des Untersuchungsgebiet ist im 

Allgemeinen sehr hoch, was eine Fläche unter der ROC Kurve von 0.957 für das Consensus Modell 

bestätigt. Die Variabilität der vorhergesagten Erosionswahrscheinlichkeit im Untersuchungsgebiet 

zwischen den einzelnen Modellläufen beträgt etwa 4 Prozentpunkte pro Pixel, was als sehr gering 

zu interpretieren ist. Unterschiede zwischen beobachteter und vorhergesagter Erosion konnten auf 

die Erzeugung der erklärenden Umweltparameter und den Modellierungsansatz zurückgeführt 

werden. Die Modellergebnisse wirken vielversprechend für die räumliche Vorhersage von 

Thermoerosion, bedürfen aber einer externen Validierung in Gegenden mit vergleichbaren 

Umweltbedingungen. 
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1 Introduction 

The periglacial environment reacts very sensitively to thermal changes, particularly in 

recent times of global warming (Romanovsky et al., 2010a; 2010b) The average surface 

temperature in the Arctic has increased by c. 0.09°C per decade for the last century, which is 

about 50 % greater than the average of the whole Northern Hemisphere (AMAP, 2011). The 

effects on the polar geomorphology are shown by a broad variety of actively degrading 

landforms (Kokelj and Jorgenson, 2013). Thawing permafrost can lead to mass movements 

resulting in features like Active Layer Detachments (Lewkowicz and Harris, 2005; Lewkowicz 

and Kokelj, 2002; Rudy et al., 2013) and Retrogressive Thaw Slumps (Lacelle et al., 2010; 

Lantuit and Pollard, 2005; Lantz and Kokelj, 2008); to the subsidence of the surface and/ or the 

formation of lakes as examples of thermokarst (Bouchard et al., 2014; Grosse et al., 2011; 

Morgenstern et al., 2011); and to new drainage networks through changes in runoff regimes 

known as thermal erosion. Especially in regions with high ground ice content, these processes 

dominate the shape of Arctic coastal lowlands (Dallimore et al., 1996). Hence, they have an 

immense influence on the local and regional water balance (Karlsson et al., 2012), which can 

in turn affect the vegetation pattern and the ground thermal conditions (Schuur et al., 2007). 

Besides the alteration of the Arctic ecosystem, they also contribute to the release of soil organic 

carbon and thus, can be a decisive factor for global warming (Schuur et al., 2008; Walter et al., 

2007; Zimov et al., 2006). Up to 1500 Pg of Soil Organic Carbon or 50 % of world’s below 

belowground organic carbon, respectively, are stored in the permafrost regions, of which 800 

Pg are perennially frozen. This demonstrates the vulnerability of permafrost deposits to thaw. 

Furthermore, the potential release of this carbon storage reveals its importance as a positive 

feedback mechanism to the global carbon cycle (Hugelius et al., 2014; Koven et al., 2011; 

Tarnocai et al., 2009). 

While the formation and spatial distribution of thermokarst lakes have been studied at 

many sites in the circumpolar permafrost region (Lenz et al., 2013; Marsh et al., 2009; Pohl et 

al., 2009; Yoshikawa and Hinzman, 2003), comparatively few studies exist about thermo-

erosional landforms. Thermal erosion is a combination of both mechanical forces, i.e. the 

hydraulic effect of flowing water across a surface, and thermal forces, i.e. heat transfer into the 

ground, causing the thaw of underlying permafrost (Costard et al., 2007; Dupeyrat et al., 2011). 

Several studies observed the effect of thermal erosion on Arctic coastlines (Günther et al., 2013; 

Lantuit et al., 2012; Wobus et al., 2011) and on river banks of large river systems draining into 
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the Arctic Ocean (Costard et al., 2007; Gautier et al., 2003). Towards the interior of ice-rich 

permafrost lowlands, thermal erosion is often a mixture of two or more forms of landscape 

degradation. For instance, the growth of a thermokarst lake can lead to the drainage over a pre-

existing thermokarst depression causing rapid valley incision (Labrecque et al., 2009; Lauriol 

et al., 2009). Some case studies (Fortier et al., 2007; Godin et al., 2014; Toniolo et al., 2009) 

focused in detail on the description and quantification of single processes in thermo-erosional 

gullies. Morgenstern (2012) qualitatively present the diversity of thermo-erosional landforms 

and considered general possible driving factors. They showed that the shape and dimensions of 

thermo-erosional landforms vary a lot, and that they always depend on multiple preconditions. 

However, a statistical assessment about the decisive environmental parameters for 

thermal erosion on ice-rich permafrost is still missing. Spatial modeling, i.e. developing a model 

to explain the spatial distribution of a phenomenon, faces this problem (Heckmann et al., 2014). 

In this regard, logistic regression is a frequently chosen approach because it allows establishing 

a statistical relationship between potential controlling variables and the occurrence of the 

phenomenon. The second benefit of this method is that these susceptibility maps indicate also 

the future potential locations of erosion. The reason why logistic regression has not been applied 

for modeling erosion susceptibility in the Arctic might come from the remote and inaccessible 

locations, which make ground truth a difficult task. Nevertheless, the application of logistic 

regression for modeling the susceptibility for gully erosion (e.g. Akgün and Türk, 2011; 

Conoscenti et al., 2014; Lucà et al., 2011; Martı́nez-Casasnovas et al., 2004) or landslide hazard 

(e.g. Ayalew and Yamagishi, 2005; Dai and Lee, 2002; Lee, 2005; Ohlmacher and Davis, 2003) 

shows its valuable potential in geomorphological research and risk assessment. On the other 

hand, these results cannot be transferred to the Arctic where the environmental setting (i.e. 

climate, topography, lithology, soil, land use, etc.) is completely different.  

This study focuses on two sites located on Sobo-Sise Island in the Arctic Lena River 

Delta. The environmental conditions are representative for a major landscape unit in the 

Siberian arctic lowlands, called Ice Complex. The study aims to close the knowledge gap 

regarding the causes for the degradation of ice-rich permafrost by thermal erosion in this 

landscape. The following research questions have been formulated: 

1) What are the decisive environmental parameters, which cause thermal erosion on 

ice-rich permafrost? 

2) Which locations in the study sites are most susceptible for thermal erosion? 
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A GIS-based approach is applied to derive datasets of thermo-erosional features and 

potential influencing environmental parameters using a DEM and satellite imagery. Stepwise 

logistic regression is used to detect the dominant influencing parameters for thermal erosion. 

The final susceptibility map serves to identify the most susceptible locations for thermal erosion 

within the study sites and to discuss the validity of the modeling results. 
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2 Scientific background 

2.1 Permafrost 

Permafrost is defined as perennially frozen ground that remains at or below 0°C for at 

least two consecutive years (Van Everdingen, 2005). About 24 % of the land area of the 

Northern hemisphere is underlain by permafrost (Brown et al., 1997; Zhang et al., 1999).  

The permafrost distribution is represented as a series of quasi-concentric zones in which 

permafrost is 1) continuous, 2) discontinuous or 3) sporadic or isolated. Accordingly, this 

means that permafrost underlies either  

1) all terrestrial surfaces except local anomalies like taliks below major water 

bodies; or  

2) those in which the climate is conducive to permafrost but details of its geography 

are influenced by factors like slope gradient and aspect, vegetation pattern, thermal properties 

of the substrate, etc.; or  

3) those in which permafrost occurs only under localized circumstances favorable 

to its formation or preservation, e.g. in peat deposits (Nelson et al., 2002) (Figure 1). 

Figure 1: Map of distribution and properties of permafrost and ground ice in the Northern Hemisphere (20°N to 

90°N). Permafrost extent is estimated in percent area (90-100%, 50-90%, 10-50%, <10%, and no permafrost) as 

suggested by Brown et al. (1997, 1998). The arrow indicates the study region Lena Delta (Datasource: AMAP, 2011). 
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The depth of permafrost ranges from several meters or few decameters to a maximum of 

about 1600 m in parts of Siberia (Embleton and King, 1975). Permafrost depth represents a 

negative thermal balance between the surface, referred primarily to air temperatures, and the 

subsurface conditions, mainly controlled by the geothermal heat gradient (French, 2007). 

In vertical dimensions, the 

ground can be subdivided into an 

active layer, which is affected by 

seasonal freeze and thaw cycles, and 

into the permanently frozen 

underground with an annual 

temperature amplitude nearly zero. 

The permafrost table delineates the 

boundary between these two layers, 

which is often a varying intermediate 

zone than a distinct boundary. The 

depth of the active layer can vary 

significantly from year to year as well as between locations due to a broad variety of influencing 

factors, e.g. climate, topographic orientation, vegetation, soil properties or snow cover. The 

depth of seasonal thaw increases from North to South with few centimeters in the high Arctic 

to several meters in Subarctic environments (Schirrmeister et al., 2012b). Non-frozen areas 

within a permafrost zone are called taliks. They occur below water bodies (supra-permafrost 

talik), as enclosed lenses due to high salt content (intra-permafrost talik) or as the never frozen 

zone below the maximum permafrost depth (sub-permafrost talik) (French, 2007) (Figure 2). 

 

Figure 2: Schematic sketch of a vertical permafrost profile showing the 

relationship between permafrost, permafrost table, active layer and 

supra (1), intra (2, 3) and sub permafrost taliks (4) (after French, 2007). 
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2.2 Permafrost aggradation 

The type of ground ice can be classified by the source of the water prior to freezing and 

the processes, which transfer water to the freezing plane (Mackay, 1972). 

The freezing of pore water in the soil leads to the formation of pore ice as a process of 

in-situ-freezing, or to the separation of ice in ice lenses, described as ice segregation. The 

respective type of ground ice depends on the amount and availability of moisture and the 

properties of the soil, mainly controlled by the grain size and thermal conductivity. Ice lenses 

may range in thickness from hairline to more than 10 m (Van Everdingen, 2005). 

For this work, the focus is on a third type of ground ice, called ice wedges. They are 

considered as one of the most characteristic features in the Arctic periglacial environment. 

Ice wedges are massive bodies of wedge-shaped ice and best develop in unconsolidated 

sediments of the poorly drained tundra in the zone of continuous permafrost. When air 

temperatures drop well below 0°C in early winter, the thermal gradient from the surface to the 

ground leads to the contraction of ice and, subsequently, to cracking, i.e. a vertical opening of 

the ice wedge from the top to its interior. The width of a crack is only about 1 cm, but can reach 

depths of about 5 m (Mackay, 1974). With the beginning of the melting season in spring/ early 

summer, the crack fills with water from melting snow. Refreezing and repeated cracking in the 

following years causes the ice wedge to 

grow progressively in horizontal and 

vertical direction. Ice wedges grow in 

upward direction. Their size and shape 

is a function of both horizontal and 

vertical growth rates based on the 

thermal changes in the upper 5 to 10 m 

of the permafrost (Black, 1976). 

Because ice is less dense than the 

surrounding frozen sediment, further 

growth of the wedge results in the 

deformation of adjacent sediment in 

horizontal and vertical directions 

(Lachenbruch, 1962). These strong 

stresses in the underground can alter the 

Figure 3: Schematic diagram of the growth of epigenetic and 

syngenetic wedges. The wedges develop from youngest (1), to 

intermediate (2) and oldest (3) stage. In cross sections, ice wedges 

show a two-sided layering due to the seasonal growth along the 

crack (a, b, c each represent a freezing period) (Mackay, 1990). 
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shape of an ice wedge from the exemplary, triangular wedge towards an irregular, columnar 

bulk (Lachenbruch, 1966). In general, the size of ice wedges can vary from less than 10 cm to 

more than 3 m in diameter and from one to more than 10 m in depth. Maximum dimensions are 

observed in northeastern Siberia with vertical extents of 30 to 50 m and horizontal extents of 

more than 10 m (Czudek and Demek, 1970) (Figure 7). 

Ice wedges can be subdivided into syngenetic and epigenetic ice wedges due to 

differences in growth relative to the land surface (Mackay, 1990, 1972) (Figure 3). 

Epigenetic ice wedges grow 

in pre-existing permafrost and are 

usually much younger than the 

surrounding material. The surface 

of the adjoining ground may be 

raised slightly because of both the 

accumulation of organic matter 

and the uplift of the adjacent 

ground caused by the volume 

addition of wedge ice. Usually, 

they become about 1 to 1.5 m wide and not more than 4 m deep (Harry and Gozdzik, 1988). 

Syngenetic ice wedges can achieve much greater dimensions. They grow 

contemporaneously with the accumulation of material on the ground surface. They typically 

occur on floodplains as fluvio-

aeolian deposits, beneath peat in 

polygonal tundra or at the bottom 

of slopes as gelifluction deposits. 

In general, syngenetic ice wedges 

reach their maximum volumes 

where the ice-accretion rate is high 

and sediment accumulation is low 

(French, 2007).  

A clearly detectable network 

of regularly arranged polygons 

develops on the surface with a 

polygon  

trough 

Figure 4: Schematic cross section (left) and plane view (right) of an ice 

wedge polygonal network (Meyer, 2003). 

Figure 5: Oblique view on a partially water filled polygonal network on 

Samoylov Island (Lena Delta). General diameter of polygons is c. 15 m 

(Source: K. Piel, AWI). 
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raised rim on either side of the crack (Figure 4). The slight depression above the crack is called 

polygon trough. The spatial pattern of pentagonal, hexagonal, or orthogonal polygons is a 

complex, site-specific system, depending on several influences like snow and vegetation cover 

or the occurrence of a water body in the vicinity. In regions with high ice content, the centers 

of the polygons are often filled with water because the growing ice wedges reach the table of 

seasonally thaw (Figure 5).  

2.3 The Siberian Ice Complex 

About 290.000 km² of Siberia are underlain by a very ice-rich type of permafrost called 

Ice Complex (Grosse et al., 2013) (Figure 6). The combination of long-term stable, cold 

continental climate since the late Pleistocene and the absence of glaciation in this region 

allowed the deposition of sediments with a volumetric ice contents up to 90 % (Figure 7). 

The distribution of the Ice Complex is linked to the interaction of several 

geomorphological, geological and climatic processes described as the process of nival 

lithogenesis (Kunitsky, 2007). The formation of the Ice Complex started about 80 ka BP and 

ended with the transition to the Holocene at 12 ka BP (Schirrmeister et al., 2012a).  

Figure 6: Map of the distribution of ice-rich permafrost deposits in Arctic and Subarctic lowlands. The arrow indicates the 

study region Lena Delta (Schirrmeister et al., 2012a). 
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At the beginning, mixtures of 

windblown snow, plant and mineral 

detritus accumulated in numerous 

perennial snowfields in 

topographically protected zones of 

hills and low mountain ranges 

(Kunitsky et al., 2002). Besides the 

aeolian transport, more silt-sized 

mineral detritus was produced by 

intense frost weathering around the 

snowfields. Over the time, large 

amounts of plant and clastic detritus additionally accumulated in these snowfields. This material 

was transported downslope as runoff from meltwater. Several processes of sediment transport 

(alluvial, proluvial, colluvial, slope wash, solifluction, permafrost creep, and eolian) deposited 

and reworked this mixture of fine-grained sediment in the foreland of the mountain ridges over 

thousands of years. Large plains and alluvial fans developed in Northern Siberia. The cold 

climate conditions promoted the growth of thick syngenetic ice wedges on these supersaturated 

flat accumulation plains, building up the 40 to 50 m thick Ice Complex deposits. The formation 

of the Ice Complex is described as polygenetic according to the various processes of transport, 

accumulation and re-sedimentation (Schirrmeister et al., 2011a).  

 

2.4 Degradation of ice-rich permafrost 

With the transition from Late Glacial to Holocene, warmer summer temperatures initiated the 

thaw of permafrost deposits. During the Early Holocene Optimum thawing of Ice Complex 

reached its maximum (Grosse et al., 2007). About 70 % of the whole Arctic Ice Complex terrain 

was affected by thermokarst-related processes (Walter-Anthony et al., 2014), while smaller 

subsets around the Laptev Sea show slight variations thereof, e.g. 78 % in the Lena-Anabar 

coastal lowlands (Grosse et al., 2006) or 65 % in the Kolyma lowlands (Veremeeva and Gubin, 

2009). Nevertheless, several studies in other permafrost landscapes also observed a significant, 

partially abrupt increase of thermokarst activity in recent decades (Agafonov et al., 2004; Jones 

et al., 2011; Jorgenson et al., 2006; Osterkamp et al., 2009).  

Figure 7: Syngenetic ice wedges and intrapolygon frozen sediment 

columns of an Ice Complex exposure on Bolshoy Lyakhovsky Island. 

Person for scale. Picture from Schirrmeister et al. (2012). 
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Figure 8: Scheme of thermokarst development in Ice Complex landscapes, adapted for the Lena River Delta, in plain view 

(left) and cross section (right). 1: Undisturbed polygonal tundra. 2: Initiation of Thermokarst lakes on Ice Complex uplands 

with lateral and vertical thermokarst development. 3: Maturity of thermokarst lakes with lateral expansion only, lake 

sedimentation and talik development. 4: Partial drainage of thermokarst basin. Refreezing of former lake bottom with ice 

aggradation and peat accumulation. 5: Partial drained coalesced thermokarst basin with pingo (Source: Morgenstern et al, 

2011). 
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The degradation of ice-rich permafrost proceeds in a succession of different stages, first 

described by Soloviev (1962) and Czudek and Demek (1970) for Central Yakutia and refined 

by Jorgenson and Osterkamp (2005) for boreal permafrost ecosystems. Morgenstern et al. 

(2011) specified the development of thermokarst on Ice Complex landscapes in Siberian coastal 

lowlands by a conceptual model (Figure 8). 

Starting from the original low center polygonal tundra (Figure 8-1), water accumulates 

along the ice wedge troughs or in polygonal ponds which grow and coalesce. The polygon rims 

subside due to melt of subsurface ice wedges. The sediment packages between the wedges keep 

their height and form a flat top. Thus, former low-center polygons change to high-center 

polygons. This implies first a shift of the local hydrological characteristics and, subsequently, 

a change in the regional runoff regime of the tundra surface (Figure 9). 

Continuous thawing and erosion leave isolated thermokarst mounds (or baydjarakhs in 

Yakutian language) consisting of fine-grained sediment or peat remnants of Ice Complex 

deposits. The occurrence of baydjarakhs is linked to a relief gradient where water from thawing 

ice wedges is directly discharged towards lower relief units, e.g. a lake, a depression or a major 

river (Figure 10). 

A thermokarst lake will develop where a sufficient amount of water is concentrated 

(Figure 8-2). Due to the high heat storage capacity of the growing lake and its heat transfer into 

the ground, a talik can develop, if the lake does not freeze completely in winter. The taliks 

Figure 9: Transition from low-center polygons with water-filled ponds towards high-center polygons with water-filled 

troughs. These troughs serve as initial pathways for discharge towards lower relief levels. The arrows indicate direction 

of currently developing discharge channels. Example from Sobo-Sise Island, Lena Delta (Source: Quickbird02, IR-Channel). 
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extend sometimes several decametres to more than 100 m in depth (West and Plug, 2008). The 

ice loss below the lake causes a subsidence of the lake bottom and a compaction of both Ice 

Complex and lake sediments, called taberit (Figure 8-2 & 3). The lake laterally may increase 

its size by lateral expansion (i.e. thermal abrasion on the shores). It can coalesce with other 

thermokarst lakes to form larger inland water bodies with several kilometers in diameter (Figure 

11).  

However, these lakes can drain by one single rapid, catastrophic event or slowly over a 

longer period for several years, shaping a distinct valley after the outlet. This process represents 

one type of thermal erosion (Figure 8-4). 

A thermokarst depression (or alas in Yakutian language) remains, which consists of a flat 

floor with a distinct transition towards comparatively steep slopes. The floor can be covered 

with eroded material from the alas slopes (Figure 12). New permafrost aggradation can start in 

the partially or fully drained lake bottom. Epigenetic ice wedges with thicknesses of 5 to 7 m 

Figure 10: Alas with distinct transition from the floor towards slopes with stabilized baydjarakhs. Baydjarakhs are 

typically 3 to 10 m in diameter. Scene from Sobo-Sise Island, Lena Delta. 

Figure 11: Series of coalescent small-size lakes on the Ice Complex surface on Sobo-Sise, Lena Delta. All these lakes may 

once form a larger waterbody (Source: Quickbird02, Channels 4-3-2). 
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can grow into the flat ground by seasonal freeze-and-thaw-cycles and a new polygonal net may 

develop (Morgenstern et al., 2011). These second-generation surface features can degrade 

again, form new thermokarst lakes etc., thus representing a polycyclicity of relief genesis. 

 

2.5  Thermal erosion 

Thermal erosion is defined as “the erosion of ice-bearing permafrost by the combined 

thermal and mechanical action of moving water” (Van Everdingen, 2005). This process differs 

from the development of thermokarst, which occurs due to thermal melting followed by 

subsidence of the ground. Thus, thermal erosion also contains the removal and transport of 

thawed sediment. 

Typical locations for this process are Arctic coasts (Günther et al., 2013; Lantuit and 

Pollard, 2008), riverbanks of large rivers in permafrost landscapes (Costard et al., 2003; Gautier 

et al., 2003) and the surfaces of ice-rich sediments (Fortier et al., 2007; Godin et al., 2014). In 

this study, the focus is on ice-rich permafrost, where thermal erosion causes the rapid formation 

of thermo-erosional gullies and valleys (e.g. Morgenstern, 2012). Here, common stages in the 

erosion of underlying ice wedges include slumping, piping and the creation of small tunnels 

(French, 2007). 

Morgenstern (2012) observed eight different types of thermo-erosional landforms on ice-

rich permafrost, ranging from small water tracks to actively eroding gullies and stabilized 

valleys. 

Figure 12: Example for two drained lakes on Sobo-Sise Island, Lena Delta. Left: Recently, completely drained lake 

surrounded by fresh bayjdarakhs. Right: Well-developed, second generation polygonal network in an old, partially 

drained lake (Source: Quickbird02, Channels 4-3-2). 
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Table 1: Categorization of thermo-erosional valleys and corresponding hydrological features (from Morgenstern, 2012). 

Category Occurrence Characteristics Hydrologic 

regime 

Short, straight gullies On alas and 

thermokarst 

lake slopes 

Radially arranged around lakes 

and alasses; v- to u-shaped; steep 

gradient; up to few meters deep 

and wide; dense, fresh vegetation 

Intermittent 

streams 

Drainage pathways in 

alasses 

On alas floor Connect residual and secondary 

thermokarst lakes in partly 

drained alasses with the stream 

network outside the alasses; 

slightly intented into the alas 

floor; low gradient; up to a few 

meters wide; dense, vital 

vegetation 

Intermittent and 

small permanent 

streams 

V-shaped ravines Along steep 

coasts and 

cliffs; often due 

to lake drainage 

V-shaped; steep to moderate 

gradient, upt o tens of meters deep 

and wide; vegetation cover on 

floor and lower slopes often 

disturbed 

Intermittent 

streams 

V-shaped valleys In upper parts of 

the watersheds 

on Yedoma 

surfaces 

Mostly tributary valleys; V-

shaped; moderate to low gradient, 

up to tens of meters deep and 

hundreds of meters wide; intact 

vegetation cover 

streams 

U-shaped valleys On Yedoma 

Surface 

U-shaped; low gradient, up to tens 

of meters deep and several to tens 

of meters wide; flat valley floor 

with vital vegetation 

Intermittent and 

small permanent 

streams 

U-shaped valleys of 

permanent streams 

and rivers 

Lower parts of 

long streams 

close to their 

mouth 

U-shaped; low gradient, up to tens 

of meters deep and hundreds of 

meters wide; broad floors with 

distinct floodplains; often bare 

sediment exposed; oxbow and 

small thermokarst lakes 

Permanent, 

meandering 

streams 
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Broad valley 

floodplains 

Lower parts of 

long streams 

close to their 

mouth 

Low gradient, up to tens of meters 

deep and hundreds of meters to 

kilometers wide; broad floors with 

distinct floodplains; often bare 

sediment exposed; oxbow and 

small thermokarst lakes 

Permanent, 

meandering 

streams 

Water tracks On gently 

sloping Yedoma 

surfaces; on 

large, slightly 

inclined alas 

floors 

Arranged in parallel; low 

gradient; not or only slightly 

indented into the surface; 

dense,vital vegetation 

Poorly developed 

runoff systems 
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3 Regional setting and study site 

3.1 Study region Lena Delta 

3.1.1 General regional setting 

The Lena Delta covers about 32000 km2 and 
 
is the world's largest Arctic delta (Walker, 

1998). The Lena River originates in the Baikal mountains, flowing about 4400 km to the North 

and discharges on average 520 km³/ yr into the Laptev Sea within a corridor between 72° and 

74° N and 123° and 130° E (Schwamborn et al., 2002) (Figure 13). The enormous sediment 

load (17.6*106
 
t/yr) from the 2.5*106 km² catchment has built up a semi-circular accumulation 

plain (Gordeev and Sidorov, 1993; Rachold and Grigoriev, 1999). It is bounded to the East, 

North and West by the Laptev Sea, a shelf sea of the Arctic Ocean, and to the South by the 

Chekanovsky and Kharaulakh ridges with maximum elevations up to 500 m a.s.l (Schirrmeister 

et al., 2011b). The whole region is underlain by continuous permafrost with a maximum 

Figure 13: Map of the Lena Delta including the main river branches, the geomorphologic terraces (3rd terrace fasciated in 

black) and locations mentioned in the text (Study site Sobo-Sise highlighted in green). Data source: Landsat ETM+, SRTM. 
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thickness of about 500 to 700 m (Romanovskii, 2004). The delta consists of several hundreds 

of river branches, which form more than 1500 islands (Are and Reimnitz, 2000). The 

combination of tectonic stresses, eustatic sea level rise and sediment transport formed its present 

shape and sedimentary structure since the late Pleistocene (Schwamborn et al., 2002). 

 

3.1.2 Geology and sediment succession in the Lena Delta 

The position in the Arctic Rift Zone has led to vertical block tectonics with narrow long 

horsts, grabens and synclines in the Lena Delta and the surrounding marine region. The modern 

seismic activity is still very high, especially in the shallow, broad shelf of the Ust-Lena-Rift 

system in the north-eastern offshore region (Drachev, 2000; Franke et al., 2000) (Figure 14). 

The tectonic stresses caused channel migration in the delta, which is apparent in a remarkable 

linearity of the main branches like the Olenyokskaya or the Bykovskaya channel (Schwamborn 

et al., 2002) (Figure 13). Such shifts in the main runoff direction occurred several times since 

the late Pleistocene. In this period of extreme dry-continental climate conditions, the position 

of the Lena Delta extended far northwards due to regression of the Laptev Sea with a sea level 

about 80-100 m lower than today 

(Hubberten et al., 2004; Romanovskii 

et al., 2000). The Holocene represents 

a phase of transgression with a rapid 

eustatic sea level rise. The current sea 

level was reached by the middle of the 

Holocene, c. 5 ka BP (Bauch et al., 

2001). Consequently, the interaction of 

climatic changes and tectonic stresses 

caused periods of activity and 

inactivity in different parts of the delta. 

Thus, three geomorphological terraces 

developed in the Lena Delta (Figure 13 

and Figure 14).  
Figure 14: Schematic sketch of main faults in the Lena Delta Region 

(Schirrmeister et al. 1999, based on citations therein). 
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The first terrace represents the 

modern active zone of sedimentation, 

located mainly in the eastern part of 

the delta. The Holocene-aged 

sediments (max 6 to 5 ka BP) with 

elevations of 1 to 12 m a.s.l. show 

inverse layering which demonstrate 

present high energetic sedimentation 

conditions in the delta plain 

(Schwamborn et al., 2002). Sediment 

accumulation on the floodplains 

occurs in early summer when the 

Lena River reaches its yearly peak discharge after snow melt (Figure 16). Discharge amounts 

in June can be 55 times greater than the low basal winter discharge (Yang et al., 2002). Ice 

barriers can raise the river level for more than 10 m and cause vast inundations. 

The second terrace with heights ranging from 20-30 m a.s.l. formed during the transition 

from late Pleistocene to early Holocene (17 to 12 ka BP). Results of sedimentological analysis 

state a braided river system, which deposited enormous amounts of fine-sandy sediments. This 

period of increased river discharge is assumed to have lasted for only a short time (maximum 

discharge around 13 ka BP), 

representing an abrupt climatic 

warming (Schwamborn et al., 2002). 

Tectonic uplift in the western part of 

the delta is supposed to cause the 

current inactivity of the second terrace 

(Schirrmeister et al., 2011a). Located 

in the northwestern part of the delta, it 

covers about 23 % of the delta area.  

For this study, the third terrace 

is of peculiar interest. The elevation of 

the third main terrace ranges from 20 

to 66 m a.s.l.. They are located at the 

Figure 15: Schematic sketch of the main geomorphic terraces in the 

Lena Delta (Schwamborn and Griegoriev, 1999). 

Figure 16: Mean discharge of the Lena River at Stolb in close vicinity 

to Samoylov Island. Note the distinct peak in June, which leads to 

severe flooding (R-ArcticNET, 2015). 
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southern margins of the Lena River Delta. It is the smallest terrace by area with about 1700 km² 

and covers nearly 6 % of the whole delta surface (Morgenstern et al 2011). The third terrace 

represents the oldest part of the delta. It consists of two distinct layers. In the lower deposits, 

the facies consists of fine-grained fluvial sands with alluvial peaty layers (ca. 88 to 43 ka BP), 

representing a Paleo-Lena River deposition. After an abrupt facies change, Ice Complex 

deposits of polygenetic origin follow on top with extremely ice-rich sediments containing thick 

ice wedges (Schwamborn et al., 2002). The Ice Complex in the Lena Delta developed between 

43 and 14 ka BP due to cold climate conditions in this region. In this period, the Chekanovsky 

and Kharaulakh Ridge represent the main sediment source for the growth of syngenetic ice 

wedges in a poorly drained accumulation plain. Tectonic movement forced a tilt of the islands 

of the third terrace with uplift in the western part of the Lena Delta and subsidence in the east, 

showing a relative relief gradient of about 20 m from west to east. Schwamborn et al. (2002) 

regard tectonic activity in the development stage as the decisive factor for the strong facies 

boundary between fluvial sands and overlying Ice Complex (Figure 17). 

With the transition to the Holocene, the degradation of the Ice Complex started due to the 

ameliorated climate conditions, which is evident in the occurrence of thermokarst and thermo-

erosional landforms throughout the islands of the third terrace. These negative relief features 

became filled with eroded material and new polygonal ice-wedge systems developed in these 

Figure 17: Ice Complex bluff on Kurungnakh Island near Samoylov Island with Olenekskaya Channel and eroded bluff 

deposits in the foreground. The dashed black line indicates the boundary between fluvial sands and Ice Complex 

deposits. Note the bulky peat inclusions between the wedges. Scale: Vertical extent of the Ice Complex wall c. 45 m. 
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sediments. Peat accumulated on the surface between 4 and 1 ka BP, which is again affected by 

thermokarst processes in recent time (Schirrmeister et al., 2011b; Schirrmeister et al., 2002a, 

2002b; Wetterich et al., 2008). 

 

3.1.3 Climate characteristics of the Lena Delta 

The Lena Delta is dominated by an Arctic continental climate regime with maritime 

influence due to its vicinity to the Laptev Sea. The longest consecutive climate record 

representative for the Lena Delta is located at the southern margin of the delta near Tiksi (71.63 

N, 128.87 E) (Figure 18). While the mean annual air temperature is negative (−13.5 °C), there 

exists a high annual amplitude from −32 °C in January to 6.5 °C in July. This is a consequence 

of the position in the Arctic with low or zero insulation in winter during polar night and inverse 

conditions in summer during polar day. 

The mean annual precipitation at Tiksi is 323 mm. Due to its location near the Laptev Sea 

with surrounding mountains this value would probably not represent the general precipitation 

characteristics in the Lena Delta. In this regard, the meteorological station on Samoylov Island 

(see Figure 13) delivers data that are more reliable. Here, observations from 1999 to 2011 show 

a mean annual amount of rainfall of about 

125 mm. Most rainfall occurs between 

middle of May to the end of September. 

70% of these rainfall events are 

characterized as light rainfall events with 

1 mm precipitation and only 1% of the 

collected events are described as heavy 

precipitation events > 16mm (Boike et al., 

2013).  

The transition from rain to snow 

starts between September and October. 

The maximum snow depth varies on 

average between 30 and 40 cm, but it is 

highly variable due to micro-topographic 

effects. Strong Arctic winds redistribute 

Figure 18: Mean annual temperature and precipitation at Tiksi 

(Roshydromet, 2015). 

Mean 
Temp. 

Precip. 

Tiksi 10 m a.s.l. 
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the snow and can lead to accumulation in polygon centers on the one hand and to snow-free 

sites on polygons rims on the other hand. Thus, snow patches form, which can even outlast the 

complete summer season under favorable conditions (Kunitsky et al., 2002). Snowmelt usually 

starts in the second half of May, causing an over-saturation of the flat polygonal tundra in the 

following months due to low evaporation (Boike et al. 2013). 

In contrast to the general strong Arctic warming trend (AMAP, 2011), no clear increase 

in annual air temperatures was observed on Samoylov Island over the past few years, even 

though some winters were not as cold as mean winter temperatures (Boike et al., 2013) (Figure 

19). 

 

3.1.4 Vegetation and soils 

The vegetation period in the Lena Delta lasts up to three months. The Arctic vegetation 

shows a low diversity and is adapted to extreme environmental conditions like low solar 

radiation and temperatures, high wind speeds and wet soils through both low annual rates of 

growth and low maximum growth heights. The Lena Delta is covered by typical tundra 

vegetation, consisting of grasses, sedges, mosses, lichens, herbs and dwarf shrubs. The 

composition of species varies locally between wet and dry tundra based on differences in 

surface wetness (Boike et al., 2013; Muster et al., 2012) (Figure 20). 

Long-term stable cold-climate conditions impeded soil genesis and led to a considerable 

accumulation of organic matter in the Quaternary, which is additionally supported by fluvial 

and/or aeolian sediment input (Zubrzycki et al., 2014, 2013). This organic-rich surface layer 

Figure 19: Mean monthly air temperature and net radiation record for Samoylov Island, 1998- 2011 (Boike et al. 2013). 
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generally ranges between 1 to 3 

m in thickness. In general, the 

depth of the active layer upon Ice 

Complex deposits ranges 

between 15 and 70 cm. Deep 

frost penetration and frost-action 

processes reshape the active 

layer. Permafrost soils are 

classified as cryosols (FAO, 

2014) or gelisols (Soil Survey 

Staff, 2014). Soil conditions in 

cryosols can differ greatly 

between single sites due to a varying depth of the water table in the soil, leading to oxidative or 

reducing conditions. The most common soil types in the Lena Delta are Glacic Aquiturbels, 

Typic Aquiturbels and Typic Historthels (Kutzbach et al., 2004). 

Figure 20: Differences in the composition of vegetation between polygon 

rim and polygon center. Scale: diameter of polygon c. 5 m (Picture by N. 

Bornemann, 2014). 
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3.2 Key region Sobo-Sise 

3.2.1 Geology and geomorphology  

Sobo-Sise is an island in the southeastern part of the Lena Delta. Its west to east trending, 

elongated shape mainly developed by the interaction of two main branches of the Lena River. 

Towards the north, the Sardakhskaya Channel borders the island, whereas the Bykovskaya 

Channel forms the southern margins (Figure 21). 

Although there is currently no detailed information about the island's geological setting, 

Sobo-Sise can be roughly subdivided into two sections. Large parts of the southern as well as 

smaller parts of the western reach belong to the first terrace. This terrace consists of floodplains 

with a different annual sedimentation activity. Lower parts (max. 4 m a.r.l.) of the first terrace 

comprise sandbanks that change their shape and spatial distribution after the annual Lena flood 

in late spring. Higher levels of the first terrace comprise shallow lakes, ponds and oxbows. Late 

Pleistocene Ice Complex deposits underlie the main part of Sobo-Sise. This study focuses 

exclusively on Ice Complex terrain, which comprises a size of 319 km². 

Figure 21: Sobo-Sise Island in the eastern Lena Delta with Ice Complex uplands and surrounding floodplains. Thermokarst 

features are clearly visible on the Ice Complex surface. A histogram stretch was applied in order to highlight the 

differences of reflectance between floodplains and Ice Complex uplands (Source: RapidEye, Channels 5-3-2). 
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According to their origin as an accumulation plain in the foreland of the Kharaulakh 

Ridge, the Ice Complex deposits form uplands with homogeneous elevations between 25 - 35 

m a.r.l. (max. elevation: 39.2 m a.r.l.). These deposits show a very high absolute ice content of 

80 – 90 %. They consist of thick ice wedges, with a maximum depth of 20 m and width up to 5 

m, and bulky peat inclusions. The subsurface structure of the Ice Complex is well demonstrated 

on a nearly vertical exposure at the northern tip of Sobo-Sise, where the Sardakhskaya Channel 

hits the Ice Complex and leads to massive thermal river erosion (Figure 22). In contrast to other 

Ice Complex sites, no underlying fluvial sands are present at this spot, which is a result from 

tectonic subsidence of the Ice Complex islands in the eastern Lena Delta as described in Sec. 

3.1.2 (Schwamborn et al., 2002). 

Various types of permafrost degradation exist on Sobo-Sise. The island shows the highest 

number of lakes among all Ice Complex islands in the Lena River Delta. Morgenstern et al. 

(2011) reported 841 major lakes (> 900 m²), covering 32.2 % of the total island surface. They 

occur on the Yedoma uplands as well as in the broad alasses and can exceed a size of 3 km². 

The alasses, which cover 27.2 % of the island total area, dissect the landscape into several 

distinct Yedoma uplands. 

 

Figure 22: Ice Complex outcrop at the northern tip of Sobo-Sise. During higher water levels, the Sardakhskaya Channel 

forms a thermo-erosional niche, which favours massive block failure at the bluff. Note the high ice content and the bowl-

shaped peat layers on top (image by A. Morgenstern 2014). 
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3.2.2 Study sites on Sobo-Sise 

On Sobo-Sise, two sites on Ice Complex terrain were chosen during the expedition in 

August 2014 for the study on controlling factors of thermal erosion. A broad corridor (ca. 9 km) 

of coalesced alasses separates the two Yedoma uplands into a western and northern area of 

interest (in the following Sobo West and Sobo North) (Figure 21). 

Sobo West comprises a size of 5.23 km² with an absolute altitude difference of 30.5 m 

within the study site. The Lena River erodes the northern margin thereby creating a steep bluff 

with prominent baydjarakhs. The northeastern and eastern boundary of the study site is marked 

by a moderate slope from the Yedoma uplands towards a flat alas floor (max.elev. 3-5 m a.r.l.). 

The watersheds of the investigated streams delineate the southern and western borders of the 

study site. 

The second study site Sobo North is situated at the northeastern tip of Sobo-Sise. Sobo 

North is bounded from its westernmost until its northernmost point by a floodplain with 

elevations between 1 and 3 m a.r.l.. The Lena River forms a 1.6 km long vertical bluff from the 

northern tip until the easternmost point of the study site. The watersheds of the streams draining 

from the Ice Complex into the Lena River delineate the eastern and southern margins of the 

study site. With approximately 2 km², the size of Sobo North is less than half than that of Sobo 

West, whereas the maximum elevation difference within the study site is the same (31 m). 
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4 Material and methods 

The methodological framework to address the aim of this work contains  

I. Field work to characterize the study sites and map erosional features (Sec. 4.1) 

II. Generation of a high-resolution DEM and orthorectified satellite images on the basis of 

GeoEye-2 stereo satellite imagery (Sec. 4.2);  

III. GIS-based mapping of thermo-erosional features and determination of potentially 

influencing environmental parameters (Sec. 4.3);  

IV. Statistical modeling of controlling factors for thermal erosion using logistic regression 

and generation of susceptibility maps (Sec. 4.4). 

 

  

Field work

•Definition of the study sites

•Mapping of erosional features

•GCP collection

Raw data processing

•DEM generation & editing 

•Orthorectification of GeoEye-1 image pairs

GIS dataset

•Mapping of thermoerosional features

•Deviation of influencing parameters

Statistical modeling

•Detection of decisive factors for erosion via logistic regression

•Generation of susceptibilty maps

•Validation

Figure 23: Overview of the methodological approach applied in this study. 
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4.1 Field work 

Two Ice Complex sites were defined as key sites for mapping thermo-erosional features 

during the expedition in August 2014. This study focuses on thermal erosion under recent relief-

shaping conditions. Thus, only relief entities that indicated contemporary erosion in terms of 

exposed bare soil were considered as erosional features. These manually mapped erosional 

features served as a validation database for automated GIS-mapping (Section 4.3.1). 

Furthermore, fieldwork included a detailed description of geomorphological characteristics and 

relief conditions. Observed environmental processes at recently eroding sites provided a 

valuable input for determining the potential influencing parameters in the logistic regression 

model (Section 4.3.2). Exemplary discharge and water temperature measurements were 

conducted on accessible locations at the outlet of streams with different sizes in order to 

investigate the relationship between these parameters and the occurrence of erosion.  

The remote sensing datasets (Section 4.2) require georeferencing with known in-situ 

coordinates (Ground Control Points, GCPs). 22 GCPs were collected from stable immobile 

surface features like the intersections of polygonal troughs using a tachymeter (Zeiss ELTA 

C30), handheld GPS (Garmin GPSmap 62stc) and real time kinematic differential GPS (Leica 

Viva GNSS GS10) instruments. The absolute accuracy of each survey method ranges from c. 2 

cm (differential GPS) to ≤ 1 m (tachymetry) and c. 2 m (averaging function of handheld GPS). 

4.2 Remote sensing data processing 

4.2.1 Raw DEM processing with GeoEye-1 data 

The accurate identification and mapping of thermo-erosional features requires both very 

high resolution planimetric (2D) and topographic (3D) data. The commercial satellite GeoEye-

1 delivers one of the world’s highest-resolution satellite imagery products available. It has a 

pansharped resolution of 0.5 m and provides four channels (RGB, NIR). The concept of 

stereophotogrammetry allows the extraction of height information from overlapping satellite 

images (stereopairs), enabling the generation of high resolution DEMs. A raw DEM for Sobo-

Sise Island was built by Günther (2015; unpublished data) from three GeoEye-1 stereopairs 

recorded on July 27 (West), August 15 (Central) and August 24 (East) 2014 (Figure 24). The 

raw DEM was georeferenced with the 22 GCPs collected during expedition with a RMSE of 

1.58 m (Günther 2015, pers. comm.). 
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Stettner (2015) described the process of DEM generation with PCI Geomatica in detail. 

It consists of  

1) converting the raw images into epipolar pairs;  

2) extracting DEMs from the overlap between the epipolar pairs;  

3) geocoding the epipolar DEMs on the basis of the geometric model and merge 

them into one DEM; and  

4) editing poorly correlated areas in the DEM.  

Steps 1-3 were performed by Günther (2015; unpublished data). This study focused on 

DEM editing and refinement (Step 4), which is described in the following section. 

 

 

4.2.2 DEM editing 

The raw DEM contained pixels with failed or incorrect values (artifacts) which had to be 

replaced. As a first step, two filters were applied on the entire DEM to remove noise (i.e. single 

or few spurious pixels). The first filter calculates the average and variance in a 9 x 9 moving 

window excluding failed and background pixels. If the center pixel had a higher deviation than 

two standard deviation from the mean, it was set to NoData. The second filter counted the 

Figure 24: Extent of acquired GeoEye-1 stereopairs (Channels 4-3-2). River branches and enclosed floodplains that 

were excluded from DEM generation (see Sec. 4.2.2) are illustrated in yellow. Background: RapidEye, 30 June 2014, 

Channels 5-3-2. 
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number of NoData-values immediately surrounding each pixel. If five or more NoData-pixels 

border the center pixel, the center pixel is also set to NoData. These failed pixels are then 

interpolated using an inverse distance algorithm from the surrounding pixels (PCI Geomatics, 

2014). 

Small parts (< 2 %) of the island were covered by clouds and cloud shadows. The DEM 

showed a strongly undulated surface in these areas. Elevation values diverged highly due to 

failed image alignment during DEM generation. The stereopairs were visually checked for the 

occurrence of clouds and affected areas were masked in the DEM. These masks were filled by 

an alternating application of the “Remove Bumps” and “Remove Pits” filter. Both filters use a 

7 x 7 kernel, which replaces all pixels with slope gradients greater than 5 % (PCI Geomatics, 

2014). 

Water bodies were the most common source for artifacts. The image matching process 

produced an inconsistent value range for lake pixels differing strongly both in positive and 

negative direction from the mean expectable lake elevation. This was due to the special 

topographic and illumination conditions on lakes and lake boundaries. The spectral properties 

of lakes were observed to be generally homogeneous within one scene, but their reflectance 

values changed significantly between two satellite scenes (i.e. within one stereopair) due to the 

different angle of view of the satellite sensor. Additionally, strong winds caused waves, which 

biased image alignment results. Aquatic vegetation in the nearshore environment raised the 

local lake level above the expected mean lake level. Bluffs with a vertical elevation shift of 

several meters between lake and land surface within few pixels (e.g. where the Sardakhskaya 

Channel hits the Ice Complex, see Figure 21) are another source of errors. Maximum deviations 

compared with the “true” elevations occurred where clouds superimposed lakes. These errors 

were corrected manually. 

Open water surfaces showed a very strong absorption of the incident infrared radiation. 

In the greyscale infrared band of satellite data, water bodies appeared very dark in contrast to 

the highly reflecting surrounding vegetation and soil cover (Pietroniro et al., 2005). For each 

stereopair, one scene was selected for a threshold-based reclassification of the infrared channel. 

The values of the Digital Number (DN) in the infrared band of each scene differed slightly due 

to haze in the atmosphere. Hence, the water threshold values had to be defined by visually and 

for each scene separately (Table 2). 
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Table 2: Threshold values for lake masking. 

 First, each satellite image selected for masking had to be orthorectified using the cloud 

corrected DEM as topographic input. This step ensured the correct planimetric position of the 

water mask on the DEM surface. After the threshold application, the raster datasets were 

converted into a polygon vector shapefile. All water bodies with sizes smaller than 100 m² were 

removed, because misaligned elevation values only occured on water bodies with markedly 

larger aerial extents. The polygons were converted to lines to deviate the shore line of each lake. 

Subsequently, the mean elevation of each shore line and its standard deviation were calculated. 

The difference of these values was assigned to each polygon. Finally, the elevation of each 

polygon was burnt as a constant value into the DEM. The intention for this process was to create 

a hydrologically correct DEM. If simply the mean values of each polygon would be considered, 

“lake plateaus” (i.e. lake levels situated above the surrounding land surface) could have been 

created resulting from wrong interpolation in the nearshore zone. Instead, the method chosen 

here suggested the following. If elevation values of the shoreline pixels only fluctuated within 

a small range (within a decimeter range) around the mean, the lake level were decreased only 

by this comparatively small value. If shoreline pixels showed a strong deviation from the mean 

(in the order of several meters), they were burnt by far deeper into the DEM. However, in terms 

of watershed analysis, hydrological correctness was still guaranteed, as each lake should 

represent a depression in the surrounding landscape (for an example see Figure 25).  

The final water mask for Sobo-Sise Island contained more than 12.000 water bodies. The 

automatic procedure presented here reflected a cost-benefit effective approach as ground based 

water level measurements seemed to be an inadequate effort. 

A second mask comprised the Lena River branches and was developed based on three 

orthorectified GeoEye scenes where the elevation was set to zero. This adjustment ensured the 

correct planimetric representation of river pixels, which are supposed to exhibit the sea level 

(i.e. a total elevation of 0 m.a.s.l.). The Lena River Delta channels were extracted using the 

same grey-value threshold values as presented in Table 2 and were burnt into the DEM using a 

constant elevation of 0 m.a.sl. 

Covered part of GeoEye-1 scene DN value for greyscale threshold in the IR band 

West 0 – 210 

Central 0 – 260 

East 0 – 220 
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The southern and northern margins of the central scene were covered by dense cirrostratus 

clouds, which prevented greyscale thresholding. Major lakes were manually masked and filled 

by the procedure described above. 

The resolution of the final DEM is 2.0 m. Its validity was checked visually due to missing 

comparative data in this region and showed a satisfying level of detail. All steps were performed 

using the packages Ortho Engine and Focus of the software PCI Geomatica (V. 2014). 

Figure 25: Masking of a medium sized lake in the western part of Sobo-Sise (scale in the middle picture applies to all). The 

yellow polygon represents the lake mask derived from the threshold-based reclassification of the NIR-band (left). The 

mean elevation of the shoreline (6.27 m a.s.l.) and its standard deviation (0.59 m) were extracted from the raw DEM 

(middle) and their difference (5.68 m a.s.l.) was burnt as the new elevation into the DEM (right). Note the strongly 

undulated lake surface (middle) which is now replaced by a constant elevation value (right). 

Figure 26: Final DEM of Sobo-Sise. Background: RapidEye, Channel combination 5-3-2. 
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4.3 GIS datasets 

4.3.1 Mapping of thermo-erosional features 

Thermo-erosional features showed a small scaled, heterogeneous pattern in the study 

sites. Manual mapping of each single erosional patch, especially along the numerous baydjarakh 

outcrops, proved an inefficient and subjective, user-dependent task. Instead, the Modified Soil-

Adjusted Vegetation Index (MSAVI) was chosen as an alternative approach for automatic 

mapping of erosion pixels. The MSAVI (Qi et al., 1994) was developed to increase the 

vegetation signal while reducing the influence of the soil background to a minimum. It is a 

further development of the Soil Adjusted Vegetation Index (Huete, 1988), as it replaced the 

former user-defined soil brightness factor L with a self-adjusted L-factor. MSAVI depends on 

the relationship between the red and near-infrared channel and was calculated from the GeoEye-

1 scene following the equation (1). 

����� = (2 ∗ 
�� + 1 −  �(2 ∗ 
�� + 1�� − 8 ∗ (
�� − �����
2  

The index value range lies between -1 and 1, where pixels with vegetation (higher 

reflectance in the NIR channel) strongly tend towards 1. 

The soil signal in the tundra vegetation cover is comparatively high due to active 

cryoturbation (Sec. 3.1.4). Two well-identifiable classes remained in the adjusted MSAVI maps 

that could be clearly distinguished by a threshold: vegetation and, consequently, no vegetation. 

The no-land-use-class could only consist of water and bare soil, since there exists no land use 

on the Yedoma uplands.. All pixel values in the MSAVI maps below an empirical threshold 

(Table 3) were assigned to this class and clipped with the water and cloud mask, generated in 

Sec 4.2.2. Different thresholds were necessary due to emerging vegetation between the image 

acquisitions, which changed the reflectance values within the satellite bands. 

The remaining soil pixels showed a good agreement with the conditions in the field (Figure 27). 

In Sobo West, the frequency of erosion cells was �������� =  24101 and ������������ =
 1282498 for non-erosion cells, respectively. For Sobo North, the corresponding values were 

�������� = 4877 and ������������ =  484452. Thus, the relative frequency of erosion was 

1.845 % for Sobo West, 0.997 % for Sobo North and 1.614 % for both study sites. 
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Table 3: Thresholds in GIS data sets. 

  

Covered part of 

GeoEye scene 

MSAVI  NDVI NIR channel 

 Detection of erosional 

features 

Detection of water 

tracks/ moist surfaces 

Delineation of open 

water bodies 

West 0.78 0.75 0 – 400 

Central 0.62 0.68 0 – 440 

Figure 27: Example for semi-automatic mapping of thermo-erosional features using MSAVI thresholding along the Ice 

Complex bluff in the western test site. Notice the good distinction between the stabilized slopes with green vegetation 

and erosion on baydjarakhs and on the headscarps of the bluff.  
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4.3.2 Selection of environmental parameters 

The purposeful selection of environmental parameters is a prerequisite for the generation 

of a logistic regression model (Hosmer Jr et al., 2013). This step required a detailed conceptual 

knowledge about the environmental system and involved processes therein and, furthermore, a 

precise spatial calculation and quantification of the latter. The chosen parameters had to 

comprise all different natures of the phenomenon (topographic, hydrological, climatic, etc.), 

which were expected to affect its occurrence (Van Den Eeckhaut et al., 2006). The parameters 

chosen in this study were the following: 

1) Contribution of surface open water 

2) Contribution of water tracks 

3) Slope 

4) Profile curvature 

5) Relief ratio 

6) Potential incoming solar radiation 

7) Snow accumulation 

In situ measurements of these variables were impossible, as the distribution of these data 

was spatially continuous across the study sites. They were derived from the 2m-DEM and 

GeoEye-1 data either directly or via proxies. Erosion susceptibility mapping on this high level 

of detail enabled a very fine spatial discrimination of the influence for each parameter on pixel 

scale. However, this came with the price of increasing computation time. 

 

Contribution of surface open water 

Costard et al. (2007) and Wobus et al. (2011) observed increasing thermo-erosion rates 

along perennially frozen riverbanks and coastlines as a consequence of rising water 

temperatures due to climate change. Laboratory experiments on ice-rich soils and mathematical 

modeling (Costard et al., 2003; Dupeyrat et al., 2011; Randriamazaoro et al., 2007) supported 

the empirical observations. Randriamazaoro et al. (2007) tested ablation rates by raising ground 

ice temperature, discharge and water temperature, and found the latter to be the predominant 

parameter. 

Warm running surface water along Yedoma landscapes was considered as a driving agent 

for thermal erosion in this study, though it became apparent that single water temperature 

measurements at the stream outlets during the expedition did not represent the whole season. A 



Material and methods 
_________________________________________________________________________________ 

 35

high degree of surface disturbance (gullying, block failure, in channel erosion) was explicitly 

observed in thermo-erosional valleys where water from the upper drainage basins accumulated. 

The evaluation of satellite and DEM data demonstrated an increased surface cover by open 

water bodies like thermokarst lakes and polygonal ponds in these catchments. Temperature 

measurements in randomly selected waterbodies proved that they partly heat up to more than 

15°C on warm summer days. Provided the coupling to the stream network, the assumption was 

that the higher amount of contributing open warm surface water, the likelier is the occurrence 

of erosion along the drainage pathway. 

The spatial dataset for this variable required preprocessing of both the DEM and satellite 

imagery. In order to provide a continuous flow from the waterbody to the stream outlet, spurious 

or artificial (cf. the burnt lakes) sinks had to be filled in the DEM using the algorithm of Wang 

and Liu (2006). While water bodies < 100 m² were not considered in the water mask during 

DEM editing (Sec. 4.2.2), they were now re-included to form a grid of discharge initiation cells. 

The surface area of each pixel (4 m²) was routed and cumulatively accumulated downstream 

using the Multiple Flow Direction algorithm (MFD; Freeman, 1991) as it was recommended 

by Erskine et al. (2006) for comparable terrain. The convergence factor which limits flow 

partitioning was set to 4 according to Holmgren (1994). The resulting grid differed from a 

“common” flow accumulation grid, because a stream network could only evolve from 

predefined input cells. Thus, only those cells that were coupled to the modeled stream network 

cells were assigned a positive value, all other decoupled cells contained the value 0 (i.e. no flow 

accumulation). 

 

Contribution of water tracks 

A further insight from fieldwork was the presence of a complexly branched, capillary 

system of small water tracks on the Yedoma uplands. These water tracks flew along the polygon 

structure, but they did not cut into the surface. Thus, they could not be interpreted as a stream 

network in its original sense, consisting of visible running water in a well-developed valley. 

These water tracks concentrated at some point in the relief, which caused thermal erosion and 

the formation of an incised valley. Vital, dense vegetation covered the shallow streambeds of 

the water tracks. The same type of vegetation stabilized the slopes of distinct valleys where the 

active layer was supersaturated due to both thawing subsurface permafrost and contributing 

water tracks. 
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Both origins of dense vegetation cover were grouped into one class, which explained the 

effect of “non-visible” surface water on thermal erosion. The Normalized Difference 

Vegetation Index (NDVI) proved an effective proxy to detect affected surfaces. This index uses 

the rationale that vital green plants highly absorb visible red light and, while they strongly 

reflect near infrared (NIR) radiation. It is calculated by the following band ratio: 


��� = 
�� − ���

�� + ���  

In this study, vital vegetation in water tracks and on slopes could be clearly distinguished 

from the surrounding tundra vegetation, because NDVI values increased with higher vitality. 

Further data processing followed the approach as described for Contribution of surface open 

water. All vegetation pixels below an empirical threshold (Table 3) were discarded and the 

surface area of the remaining pixels was accumulated downstream. 

 

Slope 

Slope determines the rate of change of elevation in the direction of the steepest descent. 

Slope is a key component in landscape evolution, because it affects the velocity of both surface 

and subsurface flow, and thus, the erosion potential (Bou Kheir et al., 2008; Conforti et al., 

2011; Valentin et al., 2005). The slope map was directly derived from the DEM using the 

algorithm of Zevenbergen and Thorne (1987). 

 

Profile curvature 

Profile curvature describes the rate of change of slope gradient parallel to the direction of 

maximum slope. It is a proxy for local flow acceleration and thus, for the potential of erosion 

(Wilson and Gallant, 2000). In terms of thermal erosion, profile curvature accounts for the 

mechanical flow power of water, which was not yet considered in this study as a potential 

influencing factor. The profile curvature map was derived with the same algorithm as for slope, 

but the input DEM had to be smoothed with a 3x3 median filter. This step was necessary 

because calculations with the original DEM resulted in a very noisy surface. Positive curvature 

values characterize local convexity, whereas negative values represent slope concavity.  

 

Relief ratio 

The stability of Yedoma slopes is strongly affected by the Lena River. The fluvial erosion 

at the toe of the slopes causes an increase in stress on the back of the slope, which counteracts 
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a steady state topography. This process is especially active during spring flood when thermo-

erosional valleys are inundated several hundreds of meters in some cases, depending on the 

local topography and the maximum river level during the flood. The flood removes the sediment 

in the valleys, resulting in a change of the former stream gradient. The proximity to streams is 

regarded as a decisive factor in landslide and gully erosion susceptibility research (e.g. 

(Nefeslioglu et al., 2008; Yalcin, 2008; Yilmaz, 2009). However, this study also considered the 

difference in elevation between the base level and any specific location within the catchment, 

because erosion was assumed not to be only a function of distance, but also of potential 

gravitational energy at this location. The gradient between each grid cell and the base level is 

calculated using the relief ratio (Rr): 

�# =  $%
$&  

where δH represents the elevation difference between the specific location and the outlet. δL is 

the overland flow distance to the outlet. Note that δL is not the direct/ Euclidean distance, but 

the distance of the flow path along the DEM surface from the respective grid cell to the outlet. 

 

Potential incoming solar radiation 

Slope asymmetries were observed in thermokarst basins (Ulrich et al., 2010) and in 

thermo-erosional valleys (French, 1971). Different degrees of slope stabilities were associated 

with the influence of incoming solar radiation. French (1971) stated that northeast facing slopes 

in thermo-erosional valleys are most susceptible for solifluction due to lower reception of solar 

Figure 28: Asymmetric thermo-erosional valley (Sobo West, E in Figure 32). Left: Mapped erosional features above True 

Color Composite (GeoEye-1). Right: Modelled solar insolation. Note the distinct differences between solar insolation on 

south and north facing slopes and the dominance of erosion on the north facing slopes. The grey frame represents the 

angle of view from Figure 30. 
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radiation. The decreased evaporation on these slopes resulted in higher soil moisture, which 

promoted erosion. The same effect was observed within the study (Figure 28 and Figure 29). 

In this study, the direct potential solar radiation was calculated for each cell of the 2m-

DEM, using the algorithm of Böhner and Antonić (2009). Insolation data were modelled for 

each hour between 01 June and 01 October. The evaluation of long-term climate data from Tiksi 

Meteorological Station proved that the maximum daily temperature generally exceeded 0°C in 

this period, which was regarded as a potential trigger for thermal erosion.  

 

Snow accumulation 

French (1971) furthermore postulated that the above-mentioned microclimatic 

differences on the two slopes could be related to the dominant westerly winds in his study site 

(Beaufort Plain, N.W.T., Canada). These strong winds caused snowdrift and deposition 

preferentially on the lee sides of valleys and promote evaporation from exposed slopes during 

summer season. Woo et al. (1983) noted high snow densities in incised valleys and gullys due 

to snow compaction. 

The same process was observed in the Lena Delta, where strong, gusty winds in winter 

redistributed the snow and caused a low snow cover on the tundra surface (Boike et al., 2013, 

Figure 29: Difference in thermal erosion on north and south facing slopes along the valley from Figure 29. Note the snow 

patch from winter along the north facing slope in this picture, taken on 10 Aug 2014 (A. Morgenstern). 
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2008; Kutzbach et al., 2007; Sachs et al., 2008). Thermo-erosional valleys and lee sides of the 

bluffs acted as snow traps due to the decrease of wind speeds.  

This study considered the effect of snow accumulation as well. It was argued that 

compacted snow in incised valleys provides a continuous surface moisture beyond the period 

of snowmelt in early June. Additionally, snow insulates the underlying permafrost from surface 

freezing during winter. This promotes a consistent surface instability especially on north facing 

slopes, which are additionally shielded from solar radiation and winds. The presence of snow 

patches on the north facing slopes in two valleys during the summer expedition supported this 

idea. Both sites were strongly affected by thermal erosion (see Figure 29 as one example). 

Several physically-based models have been developed to calculate the spatial distribution and 

accumulation of snow in Arctic terrain (Essery et al., 1999; Liston and Sturm, 2002; Pomeroy 

et al., 1997). Determining their input parameters would require detailed in situ measurements, 

which is why the model presented here is very simplified. The assumption was that snow 

accumulates on lee sides and is blown away from windward sides. The Windward/ Lee Index 

implemented in SAGA GIS (Böhner and Antonić, 2009) calculates this wind effect for a given 

Figure 30: Daily maximum wind speeds  at Tiksi Meteorological Station between 1966 and 2014. The mean daily 

maximum wind speed shows a rather constant variability during the year whereas the gusts (represented by the 

percentiles and the absolute observed daily maximum) significantly increase during winter. 
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topography using a DEM and 

a constant wind direction as 

input parameters. Values 

below 1 indicate wind 

shadowed areas, whereas 

values above 1 indicate areas 

exposed to wind. The Tiksi 

Meteorological Station 

provides a full set of wind 

speeds and directions from 

1966 to 2014. It was evident 

that wind speeds were higher 

in the winter season, 

underlining the influence on 

snow redistribution by wind 

gusts (Figure 30). Winter was 

defined as the period where air temperatures dropped below 0°C, which was on a long-term 

average between 01 October and 01 June. The average wind direction in winter of 264° (WSW; 

Figure 31) was used for running the model.  

All environmental parameters were calculated in ArcGIS (V. 10.3) and SAGA GIS (V. 

2.1.4). 

  

Figure 31: Maximum wind speeds and wind directions for Tiksi between 1961 

and 2014. All pairs in this period, measured in 3h intervals, were taken into 

calculation. This explains the slight discrepancy between the yearly average 

(221°) and the winter average (264°). 
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4.4 The susceptibility model 

4.4.1 The principle of logistic regression 

This study used binary logistic regression to measure the relationship between a 

categorical dependent variable and a set of independent variables. In logistic regression, the 

dependent (or response) variable is binary or Bernoulli distributed. A grid cell ' (' ∈ )1, … , �, 

with � as the number of observations could either be affected by erosion (-� = 1� or not (-� =
0�. The independent variables can have different scales of measurement (categorical or 

continuous); in this case, all environmental parameters were continuous. The aim of logistic 

regression is to construct a function, which predicts the probability for an event using a linear 

combination of the predictor variables (Menard, 2010). 

Referred to the present study, a logistic regression model was not used to calculate the 

expected value of the response variable for every grid cell i (-�  =  0 or -�  =  1), but to model 

the probability for erosion for each cell to be affected by erosion: .�  =  /(- � =  1�. This is 

achieved by implementing a link function, which specifies a function of the expected value of 

-. The use of this link function represents a flexible generalization of linear models, called 

generalized linear models (GLMs). A GLM generalizes ordinary regression models, because it 

allows the response variable Y to have a distribution other than the normal (e.g. in this study 

binomial distribution) (Agresti, 2007). 

In the following, the aim is first to demonstrate properties of ordinary regression models, 

since GLMs represent an extension of ordinary linear regression models. A simple univariate 

logistic regression model is defined as 

- =  01 +  02 3 

or 

�(-� =  01 + 02 3 

1) -� represents the response (or dependent) variable with a normal distribution. 

2) X is the explanatory (or independent) variable, which predicts the dependent variable. 

It is linear in the parameters 01 +  023, with 01 representing the intercept or the 

constant of the equation.  

3) The link function represents the mean 4 of the probability distribution of -, by 4 =
 �(-�. The link function defines a function that relates the mean to the linear 
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predictor. Here, it is the Identity Link,  5(4�  = 00 +  01 3. It is called Identity because 

the mean is modelled directly, thus it is identically with the linear combination of 

regression coefficients and variables (Agresti, 2007).  

In binary logistic regression, the response is binary by 1 (here: erosion) and 0 (here: no 

erosion). The distribution of - is defined as the probabilities /(- =  1�  =  6 for success 

(erosion) and /(- =  0�  =  (1 −  6� for failure (no erosion). Its mean is �(-� =  6. While 

the relationship between predictors and response variable is linear in ordinary regression, the 

response in the binary logistic regression model is non-linear, because - is bounded between 0 

and 1 (Menard, 2010). The value of 6 can vary as the value of 3 changes. 6 is expressed by 

6(3� to demonstrate its dependence on from the explanatory variable. 

In ordinary regression, 4 =  �(-� is a linear function of 3. For a model with a binary 

response, the corresponding expression is 

6(3�  =  01  +  023 

This is called a linear probability model, because the probability of success changes 

linearly in 3. The parameter 02 represents the change in the probability per unit change in 3. 

This model represents a GLM with a binary response variable and an identity link function 

(Agresti, 2007). Again, the problem is that this linear function predicts probabilities of 6(3� <
0 and 6(3� > 0. The step for solving this problem is to replace the linear response variable 

6(3� by a link function, which represents the chances or odds for being a success:  9(:�
2� 9(:�. 

Unlike 6(3�, the range of the odds can take values towards positive infinity, but are have a 

minimum value of 0. Another transformation of this term generates a variable that also covers 

the range from 0 towards negative infinity. The natural logarithm of the odds is called the logit 

link function 

5(3� = log > 6(3�
1 −  6(3�? 

The logit becomes negative and larger in absolute value as the odds decrease from 1 

towards 0, and becomes increasingly large in the positive direction as the odds increase from 1 

towards infinity. Using the natural logarithm of the odds that 6(3� = 1 as the dependent 

variable circumvents the problem that the estimated probabilities might exceed the range 

between 0 and 1 (Menard, 2010). 

The relationship between response and explanatory variable is  
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log > 6(3�
1 −  6(3�? =  01  +  023 

The logit can be converted back to 6(3� by exponentiation, which represents the probability of 

success (Menard, 2010) 

6(3� = @ABCAD:
1 +   @ABCAD: 

This study represents a multivariate case, where the probability of erosion is explained 

by a set of several predictors (32, 3�, … , 3E�, as described in the previous section. The resulting 

probability for erosion 6(3� is linear in the combination of these variables with their estimated 

regression coefficients (00, 01, 02 …  0F�: 

6(3� = @ABCAD:ABC AD :DCAG :GC⋯CAI :I
1 +   @ABCAD:ABC AD :DCAG :GC⋯CAI :I 

 

The 0 coefficients are derived by a maximum likelihood estimation. This method 

maximizes the value of the likelihood function, which indicates how likely it is to obtain the 

observed value of the response variable, given the values of the explanatory variables and their 

coefficients 01, 02, 0� … 0E. Details how to construct the likelihood function for binary logistic 

regression are given e.g. in (Agresti, 2007; Hosmer Jr et al., 2013). 

4.4.2 Stratified sampling and multicollinearity analysis 

Within the study sites, erosion and non-erosion cells were by far not equally distributed 

(ratio 1: 61), which is described as a rare-event dataset. (King and Zeng, 2001) stated that 

building a model with this ratio causes an underestimation of the probability for the erosion 

events. They gave recommendations how to correct the dataset for these rare events. One 

suggestion was to take stratified random samples with a defined ratio of erosion and non-erosion 

cells, which was also applied in this study. 

Heckmann et al. (2014) highlighted the two most important prerequisites for logistic 

regression that are  

1) the independence of the observations and; 

2) uncorrelated explanatory variables. 

cf. 1) The independence of observations must be neglected for both response and 

explanatory variables, because spatial data are highly autocorrelated. This is due to the fact, that 
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neighboring cells show very similar or equal values. Thus, if a model only is built only from 

adjacent cells containing the same information, the independence of each observation cannot 

be maintained. To encounter this problem, a stratified random sampling approach was chosen 

(cf. Van Den Eeckhaut et al., 2010) using the strata algorithm in R’s sampling package 

(Barcaroli, 2014). A grid with a cell size of 10000 m² (100 m resolution) was imposed on the 

original dataset (2 m res./ 4 m² cell size). Both erosion and non-erosion cells existed in 90 grid 

tiles. From each of the 90 grid tiles, one erosion cell and four non-erosion cells were randomly 

selected together with the values of the respective environmental variables in this cell, resulting 

in a total sample size of 450 cells (90 events vs. 360 non-events). Heckmann et al. (2014) 

observed in a comparable dataset, that this ratio produces the lowest diversity in the model (i.e. 

the lowest number of included environmental parameters after stepwise selection; see Chapter 

4.4.3). The total sample size avoided the sample being to large (which causes overfitting of the 

model) and was agreement with a sample size of 200– 600 observations recommended by Hjort 

and Marmion (2008). However, the sample size must still be large enough (Heckmann et al., 

2014). Few observations result in high uncertainties during the estimation of the parameter 

coefficients. Additionally, an insufficient sample size may not cover the full variety of the 

environmental parameter. Green (1991) analyzed the variability of explanatory variables in 

regression models and postulated a minimum sample size of �J�� > 50 + 8K, where K 

represents the number of explanatory variables. Thus, this criterion (here �J��: 50 + 57 =
107 ) is also fulfilled. However, note that the chosen stratified random sampling was a 

simplified approach, which rather minimized than prevented spatial autocorrelation. An 

alternative sampling strategy is given e.g. in Brenning (2005), who uses correlograms to 

estimate the sampling range between cells. 

cf. 2) The second prerequisite accounts for the independence of the explanatory variables. 

The presence of correlated parameters in logistic regression hampers the estimation of the 

model coefficients and increases their variance. A small change in the observations of correlated 

parameters can cause large errors during the maximum likelihood estimation of the parameter 

coefficients. Moreover, if an explanatory variable can be directly replaced by another, it 

becomes unclear, which one to choose as the appropriate model (Agresti, 2007). 

First, the correlation between each single environmental parameter was tested by 

constructing a cross correlation matrix. Each 'th observation of any environmental parameter 

was compared with the 'th observation of any other environmental parameter. The respective 
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coefficient of determination �², calculated from the residuals of their linear relationship, was 

recorded in the correlation matrix. It appeared that the parameters Contribution of surface open 

water and Contribution of water tracks were highly correlated (�� = 0.79�, because they were 

both calculated with the same flow routing algorithm. The initiation cells for the downstream 

routing may show a different spatial pattern and quantity in both datasets. However, as these 

cells accumulated in the same main channels, the correlation within the main channels was 

nearly perfect. Studies that encountered the same problem of parameter correlation decided to 

combine the correlated datasets into a single parameter. However, the field observation in this 

study implied that thermal erosion was more likely to be provoked by streams from open water 

bodies, because water tracks also occurred in stable catchments with no evidence for thermal 

erosion. Thus, the parameter Contribution of water tracks was excluded from further analysis. 

Furthermore, correlation can arise from the combination of several parameters, which is 

called multicollinearity. Perfect multicollinearity occurs when one explanatory variable can be 

linearly predicted with at least one other explanatory variable. This was checked by calculating 

the variance inflation factor (VIF). The VIF for each explanatory variable was calculated by 

setting up a linear regression model of one explanatory variable versus all other explanatory 

variables. The Coefficient of Determination ��� represents the proportion of variance for each 

variable ', i.e. how well each tested variable ' can be explained by the set of the other 

explanatory variables (O’Brien, 2007). The VIF for the 'th variable was calculated by the 

formula 

��O� = 1
1 − ���

 

The VIF for each environmental parameter is given in Table 4. 

Table 4: Calculated Variance Inflation Factors (VIF) for the selected environmental parameters. 

Contribution of 

surface open water 

Slope Profile 

curvature 

Relief 

ratio 

Potential 

incoming solar 

radiation 

Snow 

accumulation 

1.142 2.793 1.146 1.818 2.995 1.541 
 

Generally, VIFs greater than 10 indicate strong multicollinearity and variables above this 

threshold should be omitted in logistic regression. This rule of thumb is questioned by O’Brien 

(2007) who suggests to include variables with even higher VIFs. However, as the highest 

observed VIF was 2.995 for the variable Potential incoming solar radiation, all remaining six 
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variables were kept for further analysis. VIFs were calculated using the vif algorithm of R’s car 

package (Fox and Weisberg, 2010). 

4.4.3 Stepwise selection of environmental parameters 

In order to find the decisive parameters, the six environmental parameters were reduced 

stepwise to a best minimum for generating the logistic regression model. The final model of 

each run is characterized by a parsimonious amount of predictor variables, which describe the 

response variable as well as possible. Stepwise reduction of explanatory variables helps to avoid 

model overfitting. An overfit occurs when many variables predict the occurrence of 

comparatively few events. The resulting susceptibility map may show a very good success rate 

for the present study for which the model was fitted, but the model parameters may perform 

poorly in new study sites (Petschko et al., 2014, referring to Hosmer Jr et al., 2013). 

The Akike Information Criterion (AIC) measures the model’s goodness of fit, while it 

penalizes the model for redundant parameters (Akaike, 1974). The AIC is defined as  

��P = 2F − 2 log(&� 

where F is the number of model parameters and & the maximum likelihood of the 

regression model. The preferred model is the model with the lowest AIC value. The selection 

process starts with a full model including all randomly sampled explanatory variables. Then, 

the number of model variables is iteratively reduced. A decrease in the AIC value causes the 

exclusion of another variable (forward exclusion). If the AIC value increases, then the variable 

is resumed (backward selection) and another variable is excluded etc. This backward and 

forward selection procedure continues until the model finally reaches the best combination of 

maximum likelihood and minimum model parameters. The remaining parameters after AIC-

based selection are used for fitting the final model and predicting the probability for erosion in 

the study sites. 

Note that there is no statistical test to compare AIC-values of different models and that 

parameter selection in this study depends on an information criterion, not a significance based 

test. However, the AIC has found a widespread application in geoscience. AIC-based parameter 

selection was used in both forward direction (starting with one single predictor in the model, 

e.g. Brenning, 2009) and backward direction (eliminating predictors from a full model, e.g. 

Gorsevski et al., 2006). The stepwise combination of forward and backward parameter 

selection, as chosen in this study, is the most common method (e.g. Goetz et al., 2015; Lepore 
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et al., 2012; Petschko et al., 2014; Van Den Eeckhaut et al., 2010). Additionally, Brenning 

(2005) found stepwise variable selection using the AIC superior compared to other machine-

learning classifiers because the latter favored model overfitting. 

AIC-based parameter selection was performed using the algorithm stepAIC in the R 

package MASS (Venables and Ripley, 2015). 

 

4.4.4 The consensus map and the IQR90 map 

Constructing a model from randomly sampled data reduces spatial autocorrelation and 

fulfils the independence assumption of single observations. The resulting model from that 

sample might have a good fit due to stepwise AIC-based selection of explanatory variables. 

Nevertheless, the final model itself depends on the randomly selected cells of response and 

explanatory variables. Applying the same selection procedure on another random sample can 

lead to the selection of different environmental parameters and different model coefficients 

when fitting a new model. 

Heckmann et al. (2014) and Marmion et al. (2009) recommended to repeat the modeling 

procedure many times and to construct a consensus map from all susceptibility maps. To avoid 

coincidentally choosing a model with a poor fit, the sampling, stepwise variable selection, and 

model fitting was repeated 100 times. Each fitted model was applied on the data from its 

selected environmental parameters to generate the corresponding susceptibility map for the 

study sites. From the stack of all 100 susceptibility maps, the consensus map was calculated. 

This map represents the median of all predicted probabilities for each cell in the study site. The 

uncertainty per cell is indicated by the interquantile range IQR90 map (.1.QR − .1.1R�, which 

reflects 90% of the modelled susceptibility values. The IQR90 is an indicator of model 

dispersion and quantifies the uncertainty for each raster cell due to the variability of each model 

run. The analysis of the IQR90 is a helpful tool to demonstrate the spatial distribution of model 

uncertainty (Heckmann et al., 2014). 

The consensus and IQR90 maps were generated with the R package raster (Hijmans and 

van Etten, 2012). The R script for model generation and susceptibility prediction was partially 

adopted from Heckmann et al. (2014) and modified with the friendly permission by the 

principle investigator. 
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4.4.5 Model evaluation: Decisive environmental parameters 

Besides the generation of susceptibility maps, the aim of this study was to detect the 

decisive environmental parameters for thermal erosion. In this regard, stepwise selection of 

model parameters was a good indicator about the overall importance of a single parameter. A 

high significance in the models was attributed to those environmental, which formed part in 

(nearly) all model runs. Thus, the percentage occurrence of each parameter during the 100 

model runs represented one measure of parameter importance. 

Another possibility of assessing the importance of a parameter is to analyze its 

standardized coefficient. This study encountered a typical problem in logistic regression, that 

the explanatory variables do not share the same units and scales. For example, the effect on the 

dependent variable by a one-unit change of e.g. Slope could not be compared with a one-unit 

change of e.g. Solar Radiation, because Slope was measured in degree and Solar Radiation in 

kWh per square meter. If the coefficients are standardized, their values can be interpreted in 

terms of the relative influence of an independent variable on the dependent variable. In this 

study, the easiest way to standardize the coefficients was chosen, which is to standardize the 

values of the environmental parameters with 4 = 0 and S� = 1. After conversion, a one-unit-

change in a standardized explanatory variable corresponds to a one-standard-deviation change 

in the original explanatory variable. Consequently, each coefficient in the regression model 

represents the effect of a one-standard-deviation change in an explanatory variable (Agresti, 

2007; Menard, 2004). 

The number of the final parameters in each model run varied due to random sampling and 

stepwise parameter selection. It was not the scope to focus on the precise values of the single 

parameters. This was not possible, because model parameters do not co-exist consistently in all 

models after stepwise selection and each run draws on different observations due to random 

sampling. The aim of standardization was to compare the overall relative influence of the 

different environmental parameters on the dependent variable across the model runs. 

 

4.4.6 Model validation 

The produced susceptibility models required validation in order to investigate the 

agreement of the model results with the real occurrence of erosion. Chung and Fabbri (2003) 

stated that any prediction model without validation is useless and has hardly any scientific 
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significance. Validation can be performed by splitting the dataset either randomly or 

systematically into test and training areas (e.g. Hjort and Marmion, 2008). Another possibility 

for checking the model transferability is to apply the model in another, spatially and/ or 

temporally independent dataset (Chung and Fabbri, 2003). The dataset in this study was not 

partitioned. Only few observations existed for erosion in thermo-erosional valleys, whereas the 

data basis for erosion along the bluff was estimated to be sufficient. The full dataset was 

considered for model generation because finding the decisive factors and predicting the 

susceptibility for the variety of erosion occurrence was one of the main goals of this study. No 

comparable spatially independent datasets were available with respect to spatial resolution, 

temporal comparability and ground-truthed erosional features.  

Thus, the goodness of fit of each model run was evaluated within the existing dataset to 

explore the success of the predicted erosion susceptibility with regard to mapped erosional 

features (Chung and Fabbri, 2003). Hosmer Jr et al. (2013) recommended analyzing the area 

under the Receiver Operating Characteristic (ROC) curve to interpret model accuracy. ROCs 

plot the proportion of positive cases (i.e. erosion) correctly predicted (≙ true positive rate), 

versus the proportion of false positives in the total of negative observations (≙ false positive 

rate) (Beguería, 2006). The values below the ROC curve range between 0.5 and 1. A diagonal 

line in the ROC plot, which indicates complete randomness in predicting erosion and non-

erosion events, represents the “null” situation and hence, a very poor predictive power of the 

model (Menard, 2010). The closer the area under the curve (AUC) converges towards 1, the 

better is the model’s capability to discriminate between correctly predicted erosion and non-

erosion cells. The benefit of ROCs is that the user does not have to define a cutpoint, i.e. a 

distinct threshold, which separates the modelled probabilities into two fixed categories 

indicating “erosion” and “no erosion”. The ROCs and their respective AUC were calculated for 

all 100 model runs using the R package ROCR (Sing et al., 2005). 
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5 Results 

5.1 Field observations 

This section describes the characteristics of thermo-erosional landforms and associated 

environmental processes of the two study sites, which were observed during the expedition to 

Sobo-Sise in August 2014. During the field season, the weather changed from dry and hot to 

more rainy conditions, resulting in a large variability of discharge amount and water 

temperature. This fact obviates an interpretation concerning the influence of these parameters 

on erosion. In the following, selected discharge values are presented to provide an overall 

impression of discharge quantities within the study sites. 

 

5.1.1 Sobo West 

A bifurcated, well-developed stream dominated the western part of the study site (Figure 

32 A). At the stream outlet, the highest discharge rate of Sobo West was determined (16.6 l s- 1). 

Erosion occurred in the lower reaches due to accumulated discharge from the 

Figure 32: Study site "Sobo West". The capital letters indicate different geomorphological units as mentioned in the text. 

Numbers in circles indicate the location of the images in Figure 33 (Source: GeoEye-1, Natural Color Composite; contour 

lines were derived from the generated DEM). 
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large catchment as well as in the upper 

reaches, where surface runoff from the 

Yedoma surface concentrated. The middle 

reaches of this valley were covered by vital 

vegetation and showed no evidence for 

erosion. 

Several thermo-erosional gullies cut 

deep into the bluff along the course of the 

Lena River (Figure 32 B, Figure 33 �). They 

showed a high degree of disturbance with 

block failure and smaller slumps in their head 

cut zones. In contrast to the mature valley A 

in Sobo West, erosion was present along the 

full length of the gullies. Subsurface flow 

(piping) led to the formation of ice caves, 

which collapsed and promoted further 

erosion. Discharge rates ranged between 0.72 

and 2.14 l s-1. The baydjarakhs along the bluff 

tended to topple due to their steep faces and 

undercutting by small streams (< 0.02 l s-1 

discharge). These runlets converge along the 

bluff as meltwater from the Ice Complex 

bluff. The bluff eroded retrogressively 

towards the Yedoma surface and formed a 

distinct, concave scarp at the transition 

between Yedoma surface and the bluff. The 

turbidity of streams flowing over the Ice 

Complex bluff indicated a high degree of sediment suspension, and thus recent thermal erosion. 

In the northeastern section, two stabilized valleys (in terms of the absence of 

contemporary erosion) drained onto a densely vegetated floor of a former lake (Figure 32 C). 

The cross-sections of the valleys showed a very smooth profile with discharge rates comparable 

to those of the gullies along the bluff. 

� 

� 

� 

Figure 33: Examples for thermo-erosional landforms in study 

site Sobo West: � thermo-erosional gully at the Ice 

Complex bluff; � slight incision of water tracks flowing 

towards the alas; � thermo-erosional valley. Locations are 

given in Figure 32. All photos by A. Morgenstern. 
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Short drainage pathways with very low discharge rates (0.1–0.5 l s-1) flew down the slopes 

on the eastern margin (Figure 32 D, Figure 33 �). Their streambeds followed the structure of 

polygonal tundra and were covered with vital, dense vegetation. Slight incision occurred at the 

toe of the slopes, whereas the upper slopes showed a straight profile. Another thermo-erosional 

valley, developed by lake drainage, existed in the southeastern margin (Figure 32 E, Figure 

33 �). Although this drainage had occurred several decades ago, the degree of erosion 

especially in the upper and middle reaches of the stream was still very high.  

Flattened vegetation in the incised head reaches of the valleys A and E implied a long 

snow cover at these locations. The degree of surface disturbance was also highest at these 

locations. Erosion occurred predominantly along slopes exposed in northern direction (NW-

NE) of these valleys. 

 
5.1.2 Sobo North 

Three thermo-erosional valleys discharged towards the floodplain in the western section 

of the study site (Figure 34 A). They cut deep into the Yedoma surface with evidence for erosion 

especially in the upper reaches of the valleys. Here, bare soil was visible along the steep 

Figure 34: Study site "Sobo North". The capital letters indicate different geomorphological units as mentioned in the text. 

Numbers in circles indicate the location of the images in Figure 35 (Source: GeoEye-1, Natural Color Composite; contour 

lines were derived from the generated DEM). 
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sidewalls. The outlets of those valleys 

were relatively broad and covered with 

dense aquatic vegetation. The formation of 

the westernmost valleys was influenced by 

lake drainage (see the well-defined basin 

around the upper reaches of the valley). Its 

morphometry changed within 100 meters 

from a V-shaped valley (with active 

erosion in the head cut zone (Figure 35 �) 

towards an U-shaped valley with a more 

than 50 m broad floor and only little 

surface water flow (Figure 35 �). 

The streams, which discharged 

towards the north, showed only little 

evidence for incision in spite of the 

presence of  a considerable amount of 

water (0.96–5.95 l s-1) (Figure 34 B). In 

some places, they dropped more than 20 m 

as waterfalls over the vertical Ice Complex 

bluff directly into the Lena River. They 

showed no evidence for erosion and their 

streambeds were covered with vital 

vegetation (Figure 35 �).  

The valley at the eastern end of the 

bluff reached the Lena River on river level 

and showed moderate disturbance along 

its course (Figure 34 C). 

  

� 

� 

Figure 35: Examples for thermo-erosional landforms in study 

site Sobo North: � deeply incised head cut zone after the 

drained lake; � dense vegetated streambed of the same valley, 

� slight incision of water tracks flowing towards the Lena River. 

Locations are given in Figure 34. 

� 

� 
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Field mapping during the expedition revealed that the key locations for thermal erosion were 

found 

1) on very steep slopes along the bluffs, specifically on the protruding baydjarakhs 

along the bluff;  

2) in the upper reaches of thermo-erosional valleys, where water from the upper 

drainage basins concentrates; and 

3) on steep slopes and in the streambeds of V-shaped thermo-erosional valleys and 

thermo-erosional gullies. 

5.2 Model parameters 

This section evaluates the remaining model parameters after stepwise variable selection and 

model fitting (Sec. 4.4.3). Figure 36 illustrates the distribution of the estimated coefficients of 

each model parameter for all 100 model runs. The percentages at the bottom part of the figure 

represent the occurrence of each model parameter after stepwise AIC-based selection divided 

by the number of model runs. A table of the selected environmental parameters and their 

estimated coefficients for all 100 model runs is provided in the supplementary material of this 

study. 

Figure 36: Distribution of parameter coefficients in 100 models. The percentage values above the parameter names 

indicate the percentage occurrence of the parameter in all model runs. Annotation. Boxes: interquantile range (25–75 % 

of the total distribution); whiskers: 1.5 * interquantile range; thick horizontal line: median. 
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The environmental parameters Snow accumulation, Relief ratio and Direct solar radiation 

formed part in each model run. Contribution of surface open water and Profile curvature were 

members in more than three fourths of all model runs, whereas Slope played only a minor part 

in the models (16 %). The range of model coefficients was very close for all model parameters 

except for Contribution of surface open water. A positive influence of the estimated coefficient 

on the logistic regression model was observed for the parameters Contribution of surface open 

water, Relief ratio and Profile curvature, whereas Snow accumulation and Direct solar 

insolation had negative coefficients. Slope takes both, positive and negative values.  

5.3 Consensus and IQR90 maps 

The use of stepwise AIC-based model selection reduced the number of environmental 

parameters to a best-fit minimum. The spatial probability for erosion in each cell within the 

study sites can be predicted by the cell values of the remaining parameters and their estimated 

coefficients. Figure 38 and Figure 39 show the spatial probability for erosion in both study sites 

as a consensus map of 100 model runs (Sections 4.4.3 and 4.4.4). Their uncertainties are 

represented by the IQR90 maps (Figure 40 and Figure 41), which comprise 90 % of the 

variability in all model runs. High-resolution maps are part of the supplementary material of 

this study. 

The locations of highest erosion susceptibility in Sobo West, highlighted by reddish to 

purple colors, are concentrated in the head reaches and streambeds of deeply incised valleys 

(Figure 38 A & E), as well as in two major and several smaller thermo-erosional gullies along 

the bluff (Figure 38 B). Thin branches of lower probabilities propagate from major water bodies 

towards thermo-erosional valleys and gullies. Erosion susceptibility along the Ice Complex 

bluff is generally high at the toe and moderate (yellow colors) at the upper zone of the bluff. 

Lower probabilities of erosion (light yellow and bright yellow colors) are modeled for the two 

stabilized valleys (Figure 38 C) and the slope towards the alas (Figure 38 D). The flat Yedoma 

uplands showed very low or no susceptibility (light blue colors).  

For Sobo North, the highest predicted probabilities occurred in the head reaches of the 

three contemporarily eroding, deeply incised valleys in the western part (Figure 39 A) as well 

as in the thermo-erosional valley at the eastern margin of the study site (Figure 39 C). Moderate 

to high erosion probabilities were assigned to the steep slope between the valleys in the western 
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part (Figure 39 A) as well as to a valley, which drains towards the Ice Complex bluff (left B in 

Figure 39).  

The predicted erosion susceptibility in both study sites was generally low, but the absolute 

predicted probabilities differed between the sites. In Sobo West, the mean predicted probability 

for erosion was 5.8 %. Here, 77.2 % of all cells in the consensus map were assigned a predicted 

erosion probability of less than 5 %. In contrast, the mean predicted probability in Sobo North 

was lower (3.4 %). Consequently, the percentage of cells with predicted values lower than 5 % 

was higher (88.2 %) in the northern study site.  

The spatial variability of predicted erosion probabilities per cell, represented by the 

IQR90 maps, was also low for both study sites. The data values in both IQR90 maps were 

strongly positively skewed with an average of 0.0423 for Sobo West and 0.0377 for Sobo North, 

respectively (Figure 37). In other words, the range of predicted probabilities per cell varied on 

average by about 4 percentage points from the cell mean value in the consensus map. 

Uncertainties greater than 10 % occurred only rarely. The highest uncertainties were found in 

the modeled channels from the Contribution of surface open water dataset (Figure 40 and 

Figure 41).  

  

Figure 37: Probability density distribution of the IQR90 values for the study sites Sobo West and Sobo 

North. 
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5.4 Validation 

The qualitative evaluation of predicted erosion probabilities in Section 5.3 revealed that 

the selected model parameters yield a certain degree of spatial variability in the susceptibility 

maps. ROCs (see Section 4.4.6 ) quantify and visualize the success of mapped and predicted 

erosion for each model run within the study site. For clarification, validation via success rates 

as applied in this study measures the agreement of mapped and predicted erosion within the 

area the model was created. Success rates differ from prediction rates, which measure the 

transferability of a model generated in a test site, with data from a spatially and/ or temporally 

independent training site. 

The left panel in Figure 42 shows the success curves for the 100 models. The curves lie 

close to each other and show low variability. No outliers exist for the model runs, thus indicating 

a stable performance of all models. This is additionally supported bythe close range of the AUC 

values (Figure 42 right panel), ranging from a minimum of 0.939 to a maximum of 0.965. The 

median map as the proposed consensus of all models has an AUC value of 0.957. According to 

Hosmer Jr et al. (2013), success rates > 0.9 describe an outstanding discrimination between true 

positive and false positive rate. This demonstrates the good performance of selected 

environmental parameters in the model runs, which generate a precise representation of current 

erosion susceptibility. As an example, the false positive rate at 80 % true positive rate in the 

consensus map is only 5.5 %. This measurement explains the model’s ability to predict correctly 

Figure 42: Evaluation of ROC curves (success rate). Left panel: ROC curves for 100 model runs. The red line indicates 

the Consensus model as the median of all model runs. Right: Distribution of AUC values for the ROC curves from 

the left panel. 
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the occurrence of mapped erosion within the study site, while it classifies most of the non-

erosion cells as stable.  

 

6 Discussion 

6.1 Model parameters 

The presentation of selected model parameters in Section 5.2 revealed differences in the 

percentage occurrence of each parameter in the susceptibility models as well as variances of 

the estimated parameter coefficients. The following paragraph discusses each model parameter 

in detail. 

Slope: The positive and negative values of the coefficient values explained why the 

parameter Slope was considered least in all model runs. Erosion occurred on relief units with 

variable slope characteristics. Recent thermal erosion took place in steep slope sections, e.g. in 

the head cut zone of incised valleys and along the steep bluff, but also in the streambeds of the 

thermo-erosional valleys with very low slope gradients. Steep erosional slopes represent the 

initiation of recent erosion. In contrast, areas with lower slopes and erosion indicate terrain units 

where active permafrost degradation has already occurred in a former period. This conflict 

made it difficult to define a statistical relationship between Slope and the probability of erosion, 

because erosion was mapped in locations with both, high slopes (positive coefficients) and low 

slopes (negative coefficients). Furthermore, the generation of the slope map highly depends on 

the DEM quality, because slope represents the first derivative of elevation. A high dispersion 

of slope values along the valley slopes additionally displayed a critical point during parameter 

selection and model fitting. Consequently, this parameter was excluded in most model runs. 

Contribution of surface open water: This parameter had both, the largest variability of 

estimated coefficients and the highest absolute coefficient values. Both effects can be explained 

by the value distribution in this dataset and the random sampling during model generation. The 

Contribution of surface open water dataset represents a modeled linear stream network with 

specifically high values at sites of open water body accumulation , and zero values at sites of  

no accumulation. By contrast, the occurrence of erosion represents an areal feature (Figure 43). 

During model generation, cells from the areas affected by erosion were randomly selected and 

the set of environmental parameters at these cells predicted the probability of erosion. The open 

water dataset did not occupy the full area of erosion cells due to its linear behavior. Thus, it was 
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possible that an erosional cell was randomly chosen, although no flow accumulation was 

calculated. On the other hand, if an erosional cell represented a cell of flow accumulation, the 

influence of this parameter was very strong during model generation. As explained in Section 

4.4.5, a one-standard-deviation change in the contribution of surface open water dataset had in 

this case a stronger effect than a-one-standard deviation change of any other environmental 

parameter. Consequently, the more erosional cells were “hit” in the random sample by the open 

water stream network, the higher the value of the parameter coefficient was. Conversely, if 

insufficient stream cells were sampled for predicting erosion, the variance of the estimated 

coefficient was too large and the parameter was removed from the model. This phenomenon 

explained the absence of this parameter in 19 % of all model runs. 

Snow accumulation was considered in every model run and had the second largest 

absolute coefficient values. This demonstrated the strong effect of snow accumulation on 

thermal erosion. The sign of the parameter coefficient was negative due to the data input. 

Negative values indicated leeward locations and thus, high snow accumulation. 

Relief ratio represented another stable parameter during all model runs. The positive 

values indicated that locations with a higher relief ratio were more susceptible for erosion. This 

was especially true along the Ice Complex bluff. Erosion occurred along the head scarps of the 

bluff and on the baydjarakhs. Both features had a high gravitational energy as well as a short 

distance to the base level. 

Figure 43: Example for accumulation of surface open water cells in a thermo-erosional valley (image section is the same as 

in Figure 28). Note that the modelled stream network occupies only parts of the mapped thermo-erosional features. 

Values are standardized with µ= 0 and σ= 1. 
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Profile curvature showed slightly positive values. Accordingly, contemporary erosion 

was more likely to be observed on convex than on concave surfaces. This statement is true for 

erosion on baydjarakhs and for the transition from Yedoma uplands towards thermo-erosional 

valleys. However, erosion also occurred in streambeds with a convex profile curvature. Similar 

to the Slope parameter, the uncertainty resulted in a partial exclusion of Profile curvature in 

23 % of the model runs. 

Direct solar insolation was the third stable parameter, which was chosen in every model 

run. The negative values supported the assumption that erosion was more likely to occur on 

surfaces with reduced solar insolation. This was in agreement with field observations, which 

indicated that north facing slopes with lower solar radiation in summer promoted erosion 

(Figure 28). 

In summary, the datasets and applied methods suggested Snow accumulation, Relief ratio, 

Direct solar insolation and the Contribution of surface open water to be the decisive parameters 

for thermal erosion on ice-rich permafrost. The first three parameters were the most stable 

variables due to their persistent occurrence in the model runs, whereas Contribution of surface 

open water had the strongest influence in the logistic regression model. 

 

6.2 Qualitative and quantitative model evaluation 

6.2.1 General model performance within the study sites 

The general spatial pattern of modelled erosion susceptibility in Sobo West agreed with 

the mapped pattern of contemporary erosion. Recently active parts in the landscape, i.e. deeply 

incised valleys and the Ice Complex bluff, were very well distinguished from the stable Yedoma 

surface. This delineation between high and low susceptible areas was also successful for large 

parts of Sobo North. The different environmental settings helped to explain the discrepancy 

between the mean predicted erosion probabilities in the two study sites. Sobo West with its 

steep, elongated bluff and deeply incised valleys and gullies offered more locations for thermal 

erosion (based on ideal conditions according to the environmental parameters). In Sobo North, 

the relief had a rather uniform character and especially the highly susceptible bluff was missing. 

The on average low probability for thermal erosion in both study sites (5.2 %) agreed with the 

concept of a rare event dataset and demonstrated the localized occurrence of this phenomenon. 
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However, two observations in the susceptibility and IQR90 maps disagreed with the 

expected model outcome. The first problem addresses the high spatial uncertainties, visible as 

a linear network of high values in the IQR90 maps in both study sites (Figure 40 and Figure 

41). These uncertainties resulted from the strong influence of the Contribution of open water 

dataset on the logistic regression model. This parameter was not present in every model run 

despite its strong impact on the model output (cf. Section 6.1). Thus, its absence caused spatial 

uncertainties, i.e. high values in the IQR90 map. The accumulation effect of this parameter is 

highlighted on the lake surfaces in Figure 39. Here, the variability values increase towards the 

outlets of the lakes. The increase in susceptibility is conceptually correct, because increasing 

surface water accumulation is associated with higher susceptibility. Yet, in terms of purposeful 

susceptibility zonation, this can be rather interpreted as noise in the consensus map. The effect 

of this parameter is discussed in more detail in a case study located in Sobo North (Section 

6.2.3). 

The second major discrepancy between observed erosion and modeled susceptibility aims 

at the Ice Complex bluff in Sobo North (Locations B in Figure 39). The efficiency of thermal 

erosion at this site is promoted by a high heat transfer of the flowing water of the Sardakhskaya 

Channel into the Ice Complex deposits, followed by mechanical transport of the thawed 

sediment through the high stream current. Figure 21 and Figure 22 provided a local overview 

and an in-situ photograph of the situation along the bluff. The analysis of multi-temporal 

satellite imagery revealed an average bluff retreat of ca.12 m yr-1 at this location (Figure 44).  

Figure 44: Retreat of the Ice Complex bluff (study site Sobo North) between the years 1975 (Hexagon; 16 Jul 1975), 2001 

(Landsat 7; 30 Jul 2001) and 2014 (GeoEye-1; 08 Jul 2014). 



Discussion 
_________________________________________________________________________________ 

 66

The predicted erosional susceptibility along the bluff is as low as on the adjacent Yedoma 

uplands despite the high annual thermo-erosional activity along the bluff. However, the missing 

delineation of increased susceptibility is conceptually correct. In this study, thermal erosion 

was considered as a process controlled by local topography, at sites where the interaction of 

warm running water and topo-climatic parameters caused recent surface instabilities. Erosional 

features were defined as exposed soil and the geomorphological parameters at these cells were 

selected to model the corresponding probabilities of erosion. Given these considerations, it is 

not possible to delineate susceptibility for this specific type of fluvio-thermal erosion along the 

Lena River. The annual rates of fluvio-thermal erosion along the bluff by the Lena River 

exceeded the slope driven thermal erosion in thermo-erosional valleys by a multiple. The 

different types of relief degradation by thermal erosion express this difference. The fluvio-

thermal erosion by the Lena River represents an external process affecting the bluff, whereas 

thermal-erosion in thermo-erosional valleys (as the prevailing type of erosion in the study sites) 

can be interpreted as an in-situ process. The transport capacity of the small streams originating 

at the Yedoma uplands and dropping as water falls into the Lena River, is insufficient to cause 

significant mechanical stress for erosion in the streambeds. Thus, the effective period for 

adjusting the local stream gradient by thermal erosion in the streambeds is too short compared 

to the high annual rate of bank erosion of the Lena River. 

Regarding the methodological challenges, no erosion in terms of exposed soil was 

mapped due to the direct change within one cell from vegetated Yedoma uplands to the Lena 

River. The mapping of erosional features in contemporary GeoEye-1 satellite images exhibited 

the use of historical satellite imagery, although the multi-temporal mapping (Figure 44) 

revealed the high erosional activity. Additionally, none of the selected environmental 

parameters was capable or scientifically justifiable of demonstrating the change of elevation 

from ca. 20 m a.r.l. towards river level within one cell. As an example, applying the parameter 

Direct solar radiation at this location would have been unjustified, because the failure of the 

bluff was related to undercutting of the Lena River, not to the reduced solar radiation on the 

north-facing bluff. In summary, a delineation of higher susceptibility along the bluff may be 

desirable, but was not feasible with the approach chosen in this study. 

In the following, one case study for each study site (see insets A1 in Figure 38 and A2 in 

Figure 39) is used to display and discuss the strengths and drawbacks of the susceptibility 

models. 
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6.2.2 Case study A1 (Sobo West) 

The top panel of Figure 45 illustrates a common situation along the steep Ice Complex 

bluff in the western study site with a very heterogeneous pattern of erosion. Erosion was 

mapped in i) a deeply incised valley and in short gullies; ii) on the north facing flanks of 

baydjarakhs; iii) on the toe of the Ice Complex bluff and; iv) on the head scarp of the bluff. 

The highest probabilities of erosion (dark red to purple colors) were predicted for the 

valley and the gullies, as well as for the toe of the bluff. Especially for the deeply incised valley 

in the eastern section mapped and predicted erosion showed a very good agreement. Here, the 

full set of selected environmental parameters pertained to predict erosion. The valley faces 

towards the north and receives less solar radiation, thus promoting higher surface moisture. 

Snow can remain for an extended period due to the deep incision. A lake in the upper catchment 

feeds the valley, promoting heat transfer into the ground and thaw of underlying permafrost. 

The relief ratio is high, because the valley drops ca. 25 m in less than 200 m of horizontal 

distance. Hence, predicted probabilities ranged between 0.8 and 1 for the valley floor. However, 

high uncertainties existed for the modelled stream before it enters the valley. This is, as pointed 

out in Section 6.1, an effect of the partial absence of the parameter Contribution of surface open 

water in the 100 model runs. Yet, assuming the strong influence of this parameter on thermal 

erosion, this pathway provides useful information about the direction of further valley 

development. 

Predicted probabilities along the toe of the bluff showed a similarly good agreement with 

mapped erosion. The decisive parameters at this location were again high Relief ratio, low 

Incoming solar radiation as well as high Profile curvatures. Lateral erosion along the bluff by 

the Lena River results in a permanent reshaping of the bluff through the removal of sediment. 

The toe forms a convex profile, thus promoting erosion. Consequently, the good spatial 

delineation of erosion was also indicated by the low variability in the models, as demonstrated 

in the IQR90 map. 

The visual validation of erosion on baydjarakhs that occurred between the toe and the 

head scarp revealed problems. Despite its high planimetric resolution, the DEM was not capable 

to entirely reflect the small-scale relief differences along the slope. If the quality was sufficient, 

baydjarakhs were classified with very high (> 0.7) susceptibility values. Failing that, the 

susceptibility values rarely exceed low to moderate (< 0.4) values. Another explanation of this 

error is,  probably to a lesser degree, a  mismatch between the DEM and the satellite image. A  
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Figure 45: Case study A1 (Sobo West). Comparison of mapped erosion pixels (top panel), predicted erosion from 

the consensus map (middle panel) and the spatial variability in terms of the IQR90 map (bottom panel). Scale in 

the upper panel fits for all panels. 
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small offset between the exact location of mapped erosion on the baydjarakhs and the 

corresponding values of the environmental parameters results in spurious prediction values for 

these cells. 

The head scarps along the bluff reflect the largest discrepancies between detected and 

predicted erosion. Many cells receive no or low susceptibility for erosion. Again, the DEM 

might not provide a sufficient level of detail to display the abrupt step in the relief. Head scarps 

differ from other observed erosional features, because the longitudinal profile of the scarp is 

highly concave. In the regression model, the parameter Profile curvature is associated with a 

positive coefficient (Section 5.2), which rather predicts erosion on convex relief units. The 

consensus map reports consistently low susceptibility values in all models for the head scarp 

zone. This demonstrates the low predictive power of the model for this surface feature. 

 

6.2.3 Case study A2 (Sobo North) 

Case study A2 is located in the western section of Sobo North. The environmental setting 

of the detailed study A2 differs from the example above, because a flood plain with elevations 

between 2-4 m a.r.l. represents the base level of erosion. Three thermo-erosional valleys cut 

deep into the Yedoma uplands. Erosion was mapped in their head reaches and partly in their 

middle reaches (Figure 46 top panel). 

Moderate to high susceptibility values were confined exclusively to those valleys and the 

slope in-between facing towards the floodplain (middle panel in Figure 46). This slope is a 

representative example for relief entities in both study sites with high predicted probabilities, 

but no observed erosion. The environmental setting along the slope seems suitable for thermal 

erosion. Its convex longitudinal profile is combined with a high relief ratio, a northern exposure 

and favorable conditions for snow accumulation. The absence of erosion could be explained 

with the low influence of the Lena River on the slope’s base level. The toe of the slope is rarely 

affected during extreme flood events, unlike example A1, in which the bluff is in regular 

interaction with the river by the annual Lena flood. However, the contemporary high slope 

stability does not exclude future erosion on this slope. Undercutting by several extreme flood 

events can destabilize the slope within a few years. Moreover, erosion might occur as slow 

denudation process on micro-topographic scale along the slope, which does not necessarily 

implies recent exposure of bare soil. For clarification, the scope of a susceptibility map is the 

detection  of  potentially  vulnerable  sites by  a  set  of  environmental  parameters.  Thus,  the  
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Figure 46: Detailed study A2 (Sobo North). Comparison of mapped erosion pixels (top panel), predicted 

erosion from the consensus map (middle panel) and the spatial variability in terms of the IQR90 map 

(bottom panel). Scale in the middle panel fits for all panels. 
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parameters can predict a high local probability for erosion, even if contemporarily no erosion 

is observed. Generally, discrepancies between mapping and prediction should always be 

regarded critically. However, as they can arise as a logical consequence of the local interaction 

of the model parameters, they must not necessarily represent an error in the model. 

The western most valley revealed some difficulties in the interpretation of the consensus 

map. Like in example A1 (Section 6.2.2), a stream modelled from the surface open water dataset 

flows towards the valley, which is indicated by increasing susceptibility values towards the 

head cut of the valley. Predicted erosional susceptibility showed high values in the upper 

reaches, which was in agreement with mapped erosion (middle panel in Figure 46). The 

decreased probabilities towards the outlet matched with observed dense vegetation in the 

streambed during the expedition. Here, the vegetation stabilizes the valley floor. However, the 

closer examination displayed a linear feature of very high probabilities (> 0.7) along the valley 

floor after the zone of active erosion. The reason for this phenomenon was the influence of the 

surface open water parameter. This error occurred, because the linear accumulation of 

contributing water pixels is not capable of modeling the non-linear relationship between this 

parameter and thermal erosion. Conceptually, susceptibility values should slowly increase, 

starting with a minimum at the lake and reach a maximum, when the modelled stream enters 

the upper zone of an existing valley. At this location, the heat transfer of warm water into the 

ground is highest. When the water flows towards the middle and lower reaches, the 

susceptibility should decrease, since the valley already possesses a high degree of stabilization 

in these reaches. Here, underlying permafrost had already thawed, which makes these sections 

less susceptible for thermal erosion. However, the logistic regression model can only treat 

monotonic increasing relationships between the explanatory variable and the response variable. 

Consequently, an increase in the values of Contribution of surface open water is coherent with 

an increase of susceptibility. The strong model’s dependence on this environmental parameter 

explained the inappropriate high susceptibility values in the lower reaches of this valley. 

Conversely, the absence of this parameter in 19% of all model runs caused a very high 

variability in predicting the susceptibility for the same cells (see bottom panel in Figure 46). 

The co-existence of both, high susceptibility and high uncertainty, raised the question about the 

validity of this parameter in this specific case. On the contrary, the effect of increasing 

susceptibility from the head cut until the outlet is desired for recently developing valleys and 

gullies along the bluff (see example A1). As long as bare ice is directly exposed to warm water, 
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it is assumed that an increasing amount of warm water also results in an increased rate of 

erosion. Generally, the consideration of contributing warm water as a driving agent for thermal 

erosion has produced good model results at different locations within the study sites. However, 

improvements regarding the generation of this parameter could also enhance the performance 

and validity of the model.  

A further problem addresses mapping errors. The semi-automated mapping approach 

classified a vast part in the middle reach of the same valley as an erosional feature (Figure 46 

top panel). The identification as bare soil was correct, but the comparison of classified soil 

pixels with in situ photographs revealed that these pixels reflect deposited sediments from the 

head cut zone. Thus, they rather represent the consequence of erosion, not its cause. As an 

indication of the good predictive quality of the model, only low to very moderate susceptibility 

values were predicted for the spurious mapped erosional cells. In this particular case, the model 

represents the reality better than the mapped erosional features. 

6.2.4 Summary of qualitative model fit 

The visual interpretation of model success allowed the delineation of five categories in 

terms of agreement between mapped and predicted erosion. 

Good model results were found in the headcut zone and on the steep slopes in the upper 

reaches of incised thermo-erosional valleys and in thermo-erosional gullies. Here, the 

interaction of warm contributing surface water, low incoming solar radiation, high relief energy 

and long residence time of accumulated snow reflected the pattern of contemporary erosion in 

a realistic way. 

Medium model fit was observed for the baydjarakhs along the steep thermo-erosional 

bluff in Sobo West. The partial discrepancies between mapped and predicted erosion could be 

attributed to inaccuracies in the raw data, mainly DEM quality and/ or a mismatch between the 

DEM and the orthorectified satellite imagery. 

Poor model results were identified along the head scarps of the thermo-erosional bluff. 

The low success of recognition depended on the specific morphological characteristic of those 

erosional features and the DEM quality. 

High susceptibility without mapped erosion was predicted for steep slope sections along 

the alasses. The combination of environmental parameters supported the assumption that slopes 

along alasses are highly susceptible for future erosion. However, erosion might occur on a 
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longer time scale with a lower degree of surface disturbance exhibiting the observation of recent 

erosion.  

High susceptibility values and high uncertainties appeared upstream and downstream of 

warm surface open water passing the active zones of thermo-erosional valleys. The paths of 

increased susceptibility upstream of thermo-erosional valleys indicate potential trajectories for 

future valley development. Assuming the strong influence of surface open water on thermal 

erosion, the uncertainties related to this parameter show additional requirements in terms of 

model and parameter improvement. 

 

6.2.5 Validation 

The validation of the consensus model showed an outstanding AUC value of 0.957, which 

demonstrated a very good discrimination between stable and active landscape units within the 

study sites. Similar good success rates for logistic regression models were reported in other 

studies (e.g. Pradhan and Lee, 2010; Regmi et al., 2014; Van Den Eeckhaut et al., 2010). 

However, the high success rates in this study also resulted from the specific characteristics of 

the Yedoma landscape. The success rates reflected better the small proportion of high 

susceptibility values along the bluff and in deeply incised valleys compared to the high 

proportion of low susceptibility values on the uniform Yedoma uplands. Thus, success rates in 

the presented landscape type will always perform better than in e.g. steep alpine terrain with 

generally higher predicted probabilities for the occurrence of the phenomenon (Frattini et al., 

2010). Moreover, because the success rate compares the goodness of fit of predicted erosion 

probabilities with observed erosion in the same study site, it will always show better results 

than a prediction rate, which validates the model performance with data from a spatially 

independent study area (Chung and Fabbri, 2003). Consequently, if a model possesses already 

a poor success rate, it will perform even worse in another study site. Thus, most reported 

prediction rates rarely exceed AUC values of > 0.9, e.g. 0.83 in Heckmann et al. (2014), 0.836 

in Ayalew and Yamagishi (2005), 0.842 in Yilmaz (2009) or 0.86 in Meusburger and Alewell 

(2009). However, the presented success rates seem promising as they indicate that the selected 

model parameters will also perform well in predicting thermal erosion in other study sites with 

comparable environmental conditions. Additionally, the IQR90 map provided valuable 

information about the spatial model variability, which the AUC values are unable to represent. 
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The combination of both methods are found to be a good approach for qualitative and 

quantitative validation of model uncertainty and to give further suggestions for model 

improvements. 

 

6.3 Outlook 

The results of this study provide a basis for further work in terms of data collection, 

processing and modeling of thermal erosion in order to refine model results. 

Godin et al. (2014) observed increasing hydrological connectivity to promote the 

development of thermo-erosional gullies. In this study, the susceptibility model supported the 

assumption that coupled streams of warm surface water promote thermal erosion. However, 

this theory could not be verified empirically due to insufficient measurements in the field. 

Discharge and water temperature measurements over an entire summer season in both stable 

and unstable valleys would help to support this hypothesis. In the same way, Fortier et al. (2007) 

demonstrated the strong impact of snowmelt on thermal erosion. Since this effect was also 

accounted high priority in this model, fieldwork is supposed to generally improve the process 

understanding. 

The review on predicted susceptibility on the steep slopes along the Ice Complex bluff in 

Sobo West stressed the influence of DEM noise on prediction accuracy. The environmental 

parameters are derivatives of the DEM and react very sensitively on DEM resolution. Noise in 

the explanatory parameters can distort the parameter selection process in stepwise logistic 

regression and the estimation of model coefficients. For future studies, affected areas in the 

DEM could be replaced by using other methods for DEM generation. As a first trial, a survey 

along an Ice Complex bluff with terrestrial structure from motion technique showed a very high 

level of detail and a lesser degree of spatial uncertainty in the DEM. However, a larger areal 

coverage using this method might be difficult to realize. If noise continues to exist in the DEM, 

a cell resolution of 2 m can limit the stability of the regression model. Some authors resampled 

the fine raster resolution to a coarser resolution, resulting in a smoothed, generalized terrain 

(e.g. Heckmann et al., 2014). This method has proved to affect the spatial delineation of 

susceptibility classes in the susceptibility map (e.g. Lucà et al., 2011). The advantages and 

drawbacks of different mapping units for hazard assessment besides the raster cell (terrain units, 

unique condition units, slope units, topographic units) have been proposed and discussed in 
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literature (e.g. Guzzetti et al., 1999). Some studies preferred slope units over cell units due to 

better accuracies between observed and predicted cases (Baeza et al., 2010; Frattini et al., 2010). 

However, it has to be kept in mind that as the cell size is increased or transformed to a major 

mapping unit, information is lost and spatially the precision of modeling erosion susceptibility 

is partly affected. This can be a problem concerning the small-scale occurrence of thermal 

erosion in this study. Thus, comparing and finding the ideal mapping unit for predicting thermal 

erosion might be a challenging task. 

With respect to the environmental parameters, improvements are especially necessary for 

the Contribution of open water surfaces parameter. Currently, this parameter represents a quasi-

two-dimensional stream network with linear behavior. However, warm water causes a lateral 

heat transfer into the ground and, hence, the formation of a thermo-erosional niche (Fortier et 

al., 2007; Godin et al., 2014). The undercutting causes instabilities and failure not only at the 

water ice interface, but also at elevated and distal parts of the slope. The modelled stream 

network denies this effect since it assigns high susceptibility values only to cells within the 

streambed. An improved version of this dataset would also consider the flow depth and the 

cross section of the valley along the flow path. Ideally, flow accumulation values should 

increase and spread laterally in deeply incised, V-shaped valleys. When the stream flows 

towards broad, stabilized cross sections, accumulation values should decrease again, because 

these valley sections are less prone to thermal erosion. 

As noted in Section 6.2.3, logistic regression models can only handle linear relationships 

between explanatory variables and predicted probabilities. This was challenging for the linearly 

increasing Contribution of open water surfaces parameter used in this study. However, it was 

supposed that erosion probability decreased when the parameter had passed a specific tipping 

point in the relief. Hjort and Luoto (2011) suggested using Generalized Additive Models 

(GAMs; a non-parametric extension of GLMs) for explanatory variables with a nonlinear 

relationship of the dependent variable. The authors highlighted the greater flexibility and 

capacity of GAMs, which provide more accurate models than GLMs. A broad variety of 

statistical approaches exists in predictive geomorphological and susceptibility mapping besides 

GLMs and GAMs. Several studies compared their applicability, degree of model fit and 

prediction skills (e.g. see in Hjort and Marmion, 2008; Luoto and Hjort, 2005; Rossi et al., 

2010; Yilmaz, 2009). However, the choice of the best modeling method differed in each study, 

because the performance of the respective method depends on numerous factors as data 
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resolution, environmental setting, selection of explanatory variables, etc. The application of 

these models on the present data would reveal the relative validity of logistic regression for 

susceptibility mapping.  

Finally, external validation in the sense of prediction rates (Section 5.4) has highest 

priority for further analysis. The Ice Complex islands in the Lena River Delta represent potential 

test sites due to their climatic and geological similarities. However, Morgenstern (2012) 

observed a great variability in the valley and stream morphology as well as in the stream density 

on these islands. Furthermore, Pollozek (2015) reported different changes in the spatial extent 

of thermo-erosional valleys on the four major Ice Complex islands within the delta. Rates of 

changes varied between 0.4 and 2.1 % in the period from 1975 to 2011, whereas the greatest 

increase was observed on Sobo-Sise. Thus, validation with data from these study sites will 

reveal whether the decisive parameters found on Sobo-Sise will also perform well in 

susceptibility modeling on other Ice Complex landscapes. Other studies used temporal 

validation, i.e. testing the predictive power of a model generated from events from a former 

time period with cases observed at a later period (e.g. Guzzetti et al., 2006; Meusburger and 

Alewell, 2009; Rossi et al., 2010). As Pollozek (2015) stated, the temporal changes of thermo-

erosional valleys indicate a slow process of landscape degradation. Prior satellite images do not 

command the same information (resolution, bands, etc.), which were used to map erosion in the 

present dataset As thermal erosion represents a small-scale and locally confined phenomenon, 

the detection of actually active parts in the landscape between different time steps is assumed 

to be problematic. Despite its difficult application, temporal validation would be another option 

for assessing the model transferability. 

 

6.4 Future degradation of ice-rich permafrost by thermal erosion 

The benefit of susceptibility maps consists not only in the delineation of present-day 

vulnerability, but also in the identification of future sites of landscape degradation. The results 

of this study showed that the Ice Complex is affected by in-situ thermo-erosional processes. 

The efficiency was largest at the rapid transition from the uplands to thermo-erosional valleys 

and gullies. These locations (e.g. valleys Figure 38 A & E; Figure 39 A & C) are expected to 

be the most susceptible locations for future thermal erosion. External influences like the lateral 

fluvio-thermal erosion of the Lena River (Figure 44) additionally destabilize the base level of 
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the Ice Complex and promote a long-term disequilibrium in the hydrological system of the 

island. 

The question of how thermal erosion will contribute to the degradation of ice-rich 

permafrost in the future is difficult to answer in times of global climate change. At most sites 

in the Arctic region, permafrost temperatures have increased during the past three decades, 

which was referred to increased air temperatures and changing snow cover in this period 

(Vaughan et al., 2013). Rising air temperatures are associated with the thawing of frozen ground 

layers and active layer deepening (Anisimov and Reneva, 2006; Jorgenson et al., 2006). 

However, the interaction between climate and permafrost is complex, since permafrost 

degradation has also been observed in regions with an observed decrease in air temperature 

(Osterkamp et al., 2009). However, air temperatures in the Polar Arctic are expected to rise by  

2.2 to 8.3°C until the end of the 21st century (Collins et al., 2013), leading to a substantial loss 

in permafrost extent (Koven et al., 2013).  

Ice-rich permafrost is regarded as the permafrost type most vulnerable type to climate 

warming (Shur and Jorgenson, 2007). The increasing thaw of underlying frozen sediments is 

expected to provide an additional amount of surface water. Drainage networks are likely to 

increase in extent, because the greater surface water runoff exceeds the storage capacity of the 

active layer (Rowland et al., 2010). Consequently, thermal erosion will occur as a widespread 

phenomenon in Arctic environments and will be additionally promoted by the growth and 

subsequent drainage of thermokarst lakes (Grosse et al., 2011). However, the uncertainty about 

the future development of thermo-erosional landforms is subject of a recent scientific debate. 

Parameters like topography, surface water, groundwater, snow, soil, vegetation and active layer 

thickness will form a complex system with positive and negative feedbacks on the resilience 

and vulnerability of permafrost to climate change (Jorgenson et al., 2010). New thermo-

erosional landforms were reported to develop abruptly within a very short period of time (Godin 

et al., 2014; Jorgenson et al., 2006; Toniolo et al., 2009). However, their impact on the 

geomorphology is assumed to form long-term relief units in the permafrost landscape (Gooseff 

et al., 2009). Climate-change induced thermal erosion is supposed to alter terrestrial and aquatic 

Arctic ecosystems. Disturbances in the vegetation cover will likely result in a growing influence 

on plant species composition, e.g. by a rapid colonization of exposed soils and a movement of 

species beyond their present geographic distribution (Lantz et al., 2009). Arctic streams already 

showed an increased rate of sediment and nutrient delivery from thermo-erosional features, 
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which will furthermore affect aquatic habitats (Bowden et al., 2008). On a global scale, thermal 

erosion represents a decisive process in the release of previously bound organic carbon and 

methane from the frozen ground (Schuur et al., 2008). Despite uncertainties in climate 

scenarios, Schuur et al. (2015) estimated the carbon emissions from permafrost to increase 

global temperatures by 0.13–0.27°C until the end of the 21st century. 

Concluding, the recent and future development of thermo-erosional landforms is 

attributed major importance for future research. A precise determination and quantification of 

this process is necessary, since thermal erosion causes physical, chemical and biological 

changes across both spatial and temporal scales. As thermal erosion is a so far little investigated 

phenomenon, the decisive factors found in this study represent a first step to understand the 

complex interactions between process components and landscape evolution. The generation of 

susceptibility maps proved to be a useful tool to identify the locations with the highest 

vulnerability to thermal erosion. A further improvement of the datasets and modeling 

techniques is recommended to extent the findings of this study on a larger spatial scale and thus, 

to assess the overall impact of thermal erosion on the degradation of ice-rich permafrost. 
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7 Conclusions 

Although thermal erosion accounts for a large geomorphological impact on ice-rich 

permafrost landscapes, few studies have addressed the spatial occurrence and the decisive 

factors for this type of erosion. The present study investigated these research gaps using satellite 

imagery and DEM analysis for deriving potentially influencing parameters and logistic 

regression for susceptibility modeling on an island in the Arctic Lena River Delta. The 

environmental parameters were reduced stepwise in the model and the modeling procedure was 

repeated 100 times to avoid the risk of accidentally choosing a model with a poor fit. 

Contribution of surface open water, Snow accumulation, Relief ratio and Potential 

incoming solar radiation were found to be the most significant and stable parameters in the 

logistic regression models. These components were in agreement with the conceptual 

understanding of thermo-erosional processes and were reported in previous studies. The 

consensus map (the median of all model runs) exhibited a satisfying match with the mapped 

erosional features. Accordingly, the upper sections of deeply incised valleys and gullies and 

steep bluffs at the margins of the study site received the highest susceptibilities. These relief 

units are expected to show high vulnerability also in other sites of ice-rich permafrost, although 

an external validation was not possible in this study. 

The generation of a consensus map proved to be an adequate solution to account for the 

variability in the model building process. Furthermore, the analysis of the IQR90 map, which 

encompasses 90 % of the modelled susceptibility values, was an efficient way for quantifying 

the spatial uncertainty of the consensus map. In doing so, the predictive power of the final 

susceptibility map turned out to be depending on a) DEM resolution, b) the method of producing 

the explanatory parameters and c) the modeling approach.  

Future work will include the prediction for erosion susceptibility using other terrain 

mapping units besides the raster cell resolution to avoid the inclusion of DEM noise in the 

model. Furthermore, the environmental parameters, especially the Contribution of the open 

water parameter will receive improvements to better reflect their impact on contemporary 

erosion. Different modeling approaches besides the logistic regression model will be applied to 

include non-linear relationships between environmental parameters and erosion in the 

susceptibility model. Finally, model validation in a spatially independent dataset has highest 

priority. This step would verify the transferability of evidences concerning the decisive 

parameters and predicted erosional susceptibility found in the study site.  
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