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IV Abstract 

Abstract 

About 25 % of the land mass of northern hemisphere is underlain by permafrost, which is 

one of the largest carbon pools. Yedoma Ice Complex is a particularly ice-rich type of 

permafrost. As a consequence of rapid climate warming of the Arctic, permafrost is 

affected by degradation processes like thermokarst. Thereby organic carbon is partially 

dissolved (DOC) in thermokarst lakes, and transported via rivers into the Arctic Ocean. 

On this way, large parts of DOC are mineralized by microbial processes and emitted as 

CO2 and CH4 to the atmosphere. The influence of different landforms in thermokarst 

affected permafrost regions on DOC concentration has not been thoroughly investigated. 

Addressing this research gap, this thesis examined the relationship between landscape 

units, water chemistry and hydrology for a small study site in the Lena River Delta, 

Siberia. On the basis of GeoEye satellite imagery eight landscape units were determined. 

These include thermokarst lakes and streams on the first terrace and on Yedoma Ice 

Complex, Yedoma Ice Complex streams, which are fed by the Ice Complex, Yedoma Ice 

Complex uplands, first terrace relict lake, and the Olenyokskaya Channel. Concerning pH 

value, electrical conductivity, isotopic composition and DOC concentration summer 

surface water samples and soil water samples of 2013 and 2014 were analyzed. These 

analyzes revealed that the system of the thermokarst lake Lucky Lake, its drainage flow 

path and source waters on Yedoma Ice Complex, is divided by landscape units. Source 

waters show significantly higher DOC concentrations and lower electrical conductivity 

than Lucky Lake and the drainage flow path. This suggests that labile organic carbon of 

Yedoma Ice Complex reaches the lake by degradation. Yedoma Ice Complex lake 

processes, despite evaporation, further reduce DOC concentration rapidly, probably by 

mineralization of labile DOC. Along the drainage flow path no further decrease of DOC 

concentration was observed, despite of changing discharge. Using discharge data of 2013 

a DOC flux of about 220 kg in 29 days for the study site was calculated. A temporal 

variability of DOC concentration during the sampling periods was not determined using 

the utilized data. 

 

 

 



 
V Kurzfassung 

Kurzfassung 

Etwa 25 % der Landmasse der nördlichen Hemisphäre wird von Permafrost unterlagert, 

welcher einer der größten Kohlenstoffspeicher ist. Yedoma Eiskomplex ist ein besonders 

eisreicher Permafrosttyp. Als Folge der raschen Klimaerwärmung in der Arktis ist 

Permafrost von Degradationsprozessen, wie Thermokarst, betroffen. Dadurch wird 

organischer Kohlenstoff teilweise in Thermokarstseen gelöst (DOC), und gelangt über 

Flüsse in den Arktischen Ozean. Auf diesem Weg wird ein großer Teil von DOC durch 

mikrobielle Prozesse mineralisiert und als CO2 und CH4 in die Atmosphäre emittiert. Der 

Einfluss verschiedener Landschaftsformen in von Thermokarst betroffenen 

Permafrostregionen auf die DOC Konzentration wurde bisher nicht umfassend untersucht. 

Diese Masterarbeit widmet sich dieser Forschungslücke und Untersucht die Beziehung 

zwischen Landschaftseinheiten, Wasserchemie und Hydrologie in einem kleinen 

Untersuchungsgebiet im Lena Delta in Sibirien. Auf der Grundlage von GeoEye 

Satellitenbildern wurden acht Landschaftseinheiten bestimmt. Dazu zählen 

Thermokarstseen und Bäche auf der ersten Terrasse und auf dem Yedoma Eiskomplex, 

Yedoma Eiskomplexbäche, die vom Eiskomplex gespeist werden, das Hochland des 

Yedoma Eiskomplex, ein Restsee auf der ersten Terrasse, und der Olenyokskaya Kanal. 

Bezüglich pH Wert, elektrischen Leitfähigkeit, Isotopenzusammensetzung und DOC 

Konzentration wurden Oberflächenwasserproben und Bodenwasserproben aus dem 

Sommer 2013 und 2014 analysiert. Diese Analysen zeigten, dass das System vom 

Thermokarstsee „Lucky Lake“, seine Abflusskette und Quellenwässer auf dem Yedoma 

Eiskomplex von den Landschaftseinheiten unterteilt werden. Die Quellenwässer weisen 

eine deutlich höhere DOC Konzentration und niedrigere elektrische Leitfähigkeit als 

„Lucky Lake“ und Abflusskette auf. Dies deutet darauf hin, dass labiler organischer 

Kohlenstoff vom Yedoma Eiskomplex durch Degradation in den See gelangt. See-

Prozesse auf dem Yedoma Eiskomplex führen trotz Evaporation zu einer raschen 

Reduzierung der DOC Konzentration, wahrscheinlich durch Mineralisation des labilen 

DOC. Entlang der Abflusskette wurde kein weiteres Absinken der DOC Konzentration 

beobachtet, trotz sich verändernder Abflusswerte. Unter Verwendung der Abflussdaten 

aus 2013 wurde ein DOC Austrag von 220 kg in 29 Tagen für das Untersuchungsgebiet 

berechnet. Eine zeitliche Variabilität der DOC Konzentration in der Beprobungsperiode 

konnte mit den genutzten Daten nicht bestimmt werden.   



 
1 Introduction 

1 Introduction 

Polar regions are particularly affected by the increase of global temperature. In the last 

decades the annual mean temperature in the Arctic rose almost twice as fast as in other 

regions in the world (AMAP, 2011). Arctic permafrost regions, about 25 % of the land 

mass of the northern hemisphere, are one of the world’s largest carbon pools. Permafrost 

developed during the last ice age as a result of severe cold-climate conditions in non-

glaciated areas and is therefore sensitive to climate change. In Siberia large areas are 

underlain by a particularly ice-rich type of permafrost. This Yedoma Ice Complex 

contains large quantities of fossil organic carbon (SCHIRRMEISTER et al., 2011a). 

TARNOCAI et al. (2009) estimated about 1700 Gt soil organic carbon stored in permafrost 

regions in high latitudes. About 400 Gt of this are locked in Yedoma deposits. As a result 

of permafrost degradation organic carbon is partially dissolved in thermokarst lakes and is 

transported to rivers and the Arctic Ocean. Large parts are emitted as CO2 and CH4 to the 

atmosphere by mineralization (FREY & SMITH, 2005). The export of organic carbon via 

rivers to the ocean is a major component of the global carbon cycle and a sensitive 

component of high-latitude carbon cycles (FINLAY et al., 2006; SPITZY & LEENHEER, 

1991). Rapid permafrost degradation due to thermokarst and thermo-erosional processes 

can release DOC and nutrients from several meters below the active layer (BOWDEN et al., 

2008; VONK et al., 2013). These changes in permafrost, caused by increasing 

temperatures, have significant impacts on the hydrology and biogeochemical cycling in 

periglacial ecosystems, as the surface area of water bodies is likely to increase due to 

permafrost degradation (FREY & MCCLELLAND, 2009; PROKOVSKY et al., 2011). These 

arctic matter fluxes are proposed to increase in the future (FINLAY et al., 2006). HOLMES 

et al. (2012) found that Arctic rivers deliver 34-38 Tg yr
-1

 of DOC to the Arctic Ocean. 

As a result, arctic ecosystems shift from carbon sink to a carbon source (OECHEL et al., 

1993). 

Carbon in arctic soils has a high climate and scientific relevance and is frequently the 

object of investigation (CHRIST & DAVID, 1996; HOBBIE et al., 2000; SHENG et al., 2004; 

STRAUSS, 2014). Many studies of DOC in soils and its release have been published (NEFF 

& HOOPER, 2002; PASTOR et al., 2003; FREEMAN et al., 2004; PROKUSHKIN et al., 2009; 

WICKLAND et al., 2007). BENNER et al. (2004), HOLMES et al. (2008) and RAYMOND et al. 

(2007) analyzed the DOC transport in rivers to the Arctic Ocean. Several studies 
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published estimations for annual DOC discharge from the Lena River of 4.1 to 4.9 Tg C 

yr
-1

 (DITTMAR & KATTNER, 2003) and 5.6 to 5.8 Tg C yr
-1 

(RAYMOND et al., 2007; 

HOLMES et al., 2012). In recent years thermokarst lakes have been studied. BOIKE et al. 

(2015) analyzed thermal processes of lakes in the Lena River Delta, MANASYPOV et al. 

(2014) focused on thermokarst lake waters in different permafrost zones, and SHIROKOVA 

et al. (2013) found a negative correlation between DOC concentration and the size and 

age of thermokarst lakes. But different landscape units and their influence on the amount 

of DOC and other water chemistry parameters in permafrost landscapes have not been 

thoroughly investigated. This knowledge gap will be addressed by this thesis, which aims 

at quantifying the contribution of different landscape units, hydrological processes, 

thawing permafrost and their interrelation to the surface water chemistry and their 

transport to the headwaters. Therefore, the relationships between landscape units, water 

chemistry and hydrology will be examined for a small catchment in the Lena River Delta, 

Siberia. 

This will be done by analyzing the contribution of different periglacial landscape units to 

the DOC concentration, pH value, electrical conductivity and isotope composition in 

surface waters. In addition to this spatial analysis the temporal variability during the 

summer period will also be examined as well as the relationship of the DOC 

concentration with other hydro chemical parameters and hydrological conditions within 

the catchment.  

In summary, this thesis will answer the following research questions: 

 Which landscape units can be determined in the study site? 

 How do hydrochemical parameters vary spatially between the different landscape 

units? 

 Which sources of DOC can be distinguished?  

 How does DOC vary during the sampling periods? 

 How much DOC is transported into the Lucky Lake and further into the 

Olenyokskaya Channel? 

 

 

 



 
3 Scientific background 

2 Scientific background 

2.1 Permafrost  

Permafrost is defined as “ground (i.e. soil and/or rock) that remains at or below 0 °C for 

at least two consecutive years” (FRENCH, 2007). It captures more than 20 % of the worlds 

land area (FRENCH, 2007) and is primarily located in the polar regions. There are four 

major zones in permafrost distribution: the continuous, the discontinuous, the sporadic 

and the isolated permafrost zone (Figure 1). In the continuous zone 90 to 100 % of the 

area is underlain by permafrost. In the discontinuous zone 50 to 90 %, in the sporadic 

zone 10 to 50 % and in the isolated zone less than 10 % of the area is underlain by 

permafrost. Permafrost also occurs in mountain regions, like the European Alps. 

Permafrost is driven by several factors which controls its distribution. Climate is one of 

the most important drivers, followed by snow cover, topography, vegetation, material and 

water bodies (FRENCH, 2007). 

 

Figure 1: Permafrost extent 
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Permafrost is overlain by a layer which freezes in autumn and thaws in summer. This 

active layer varies in depth which also depends on the location and the enumerated 

driving factors. During the Weichsel glaciation Siberia was not glaciated to a greater 

extend and the ground was not protected from continuously cold air by an isolating snow 

cover. This climatic history leads to a permafrost depth of up to 1,500 m in Siberia 

compared to a permafrost depth of 20 m in Scandinavia. Figure 2 schematically shows a 

profile between the Arctic Ocean and the Sea of Japan with permafrost characteristics that 

vary by latitude. It clarifies the increasing depth of permafrost and decreasing active layer 

thickness with higher latitudes and higher mean annual air temperature. The non-frozen 

area in permafrost is called talik (FRENCH, 2007).  

 

 

Figure 2: Permafrost transect (after FRENCH 2007, modified by STRAUSS 2010) 

 

2.1.1 Ground ice 

The term ground ice contains all types of ice in freezing and frozen ground and is 

characteristic for permafrost (VAN EVERDINGEN, 2005). Ground ice consists of loose 

sediments which is conjunct with ice. Thereby ground ice content in permafrost and 

landscape stability are closely linked. This means that degradation processes of 

permafrost leads to loss of stability in the landscape system (ROMANOVSKY et al., 2007). 

2.1.2 Yedoma Ice Complex 

Several definitions exist for the term ‘Yedoma’. In this thesis Yedoma is defined as a type 

of Ice Complex with ice-rich syngenetic permafrost deposits. The term ‘Ice Complex’ 

describes frozen deposits of different ages, compositions, genesis and thickness 

(SOLOV’EV, 1959). Driven by specific climatic and environmental conditions in the late 



 
5 Scientific background 

Pleistocene, Yedoma is originated from sedimentation and syngenetic freezing 

(SCHIRRMEISTER et al., 2013). Due to the high ground ice content Ice Complex is 

sensitive to climate warming and prone to degradation. So the ongoing global warming 

could transform the organic-rich Ice Complex from a long-term carbon sink to a carbon 

source that releases greenhouse gases (ZIMOV et al., 2006; SCHUUR et al., 2008). At thaw 

slumps, lake shores, and river banks Yedoma deposits are disclosed (SCHIRRMEISTER et 

al., 2013). Typical for landscapes with Yedoma are especially large ice wedges and large 

amounts of fossil organic carbon (SCHIRRMEISTER et al., 2011a). Interactions of climatic, 

landscape and geological preconditions are drivers of the Yedoma formation 

(SCHIRRMEISTER et al., 2013). In the first step of Yedoma formation accumulation of 

windblown snow, plants and fine-grained mineral detritus occurs in areas of e.g. low 

mountain ranges, areas among hills, steep slopes, valleys and cryoplanation terraces 

(Figure 3a). A mat of detritus gets formed and transported by meltwater. Downslope 

mineral debris and plants accumulate. Then fine-grained sediments are formed due to 

cycles of freeze and thaw in combination with wet conditions (Figure 3b). Fine-grained 

detritus gets transported by slope wash, solifluction, permafrost creep, alluvial, proluvial, 

colluvial and/or eolian processes (Figure 3c). This leads to the accumulation of different 

Yedoma deposits and to a development of polygonal ice-wedges by aggraded sediments 

(Figure 3d) (SCHIRRMEISTER et al., 2011b).  

 

Figure 3: Ice Complex formation (modified after SCHIRRMEISTER et al., 2011b) 
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2.2 Permafrost degradation 

Permafrost undergoes degradation processes due to its climate sensitivity and the ongoing 

global warming. These include permafrost warming, active layer deepening and decrease 

in permafrost thickness and extent. Those processes started after the Last Glacial 

Maximum 21,000 years BP (GROSSE et al., 2013). Two major types of permafrost 

degradation interacting with each other are thermokarst and thermal erosion.  

2.2.1 Thermokarst 

Thermokarst is a process which forms characteristic landscapes. It is defined as surface 

thaw of ice-rich ground or melting of massive ground ice. This process results in surface 

subsidence and leads to the formation of thermokarst lakes and basins (VAN EVERDINGEN, 

2005). Changes in geomorphology, vegetation and climate are the main causes of 

thermokarst. Thermokarst processes are linked with globally significant emissions of 

methane from associated thaw lakes (FREY & MCCLELLAND, 2009).   

 

 

Figure 4: Scheme of thermokarst development in cross section (modified after MORGENSTERN et al., 2011) 

 

As a consequence of increasing soil temperature massive ground ice starts to thaw and the 

ground surface collapse. Figure 4a schematically shows the undisturbed Yedoma uplands 

with polygonal tundra in the Lena River Delta. Due to thawing of ice-rich permafrost 

surface subsidence starts and meltwater of massive ground ice as well as meteoric water 
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collects in the thermokarst basin (Figure 4b). In this initial stage of thermokarst 

development lake sedimentation occurs and the talik is in a non-steady state. Figure 4c 

shows a thermokarst lake, which has thawed deposits of the Ice Complex in its basin and 

developed a talik. Subsequent to this stage the thermokarst basin with the thermokarst 

lake gets partially drained, and refreezing of former taliks, lake sediments with ice 

aggradation and peat accumulation occur (Figure 4d) (MORGENSTERN et al., 2011). This 

development is accompanied by changes in surface hydrology, disturbance of vegetation, 

and mobilization of organic carbon pools (ZIMOV et al., 1997; OSTERKAMP et al., 2000; 

GROSSE et al., 2011). Thermokarst lakes range in size from 100 m to several kilometers in 

diameter and the depth depends on the amount and distribution of ground-ice (GROSSE et 

al., 2013). Lakes formed by thermokarst in the Lena River Delta are usually not more 

than 5 m deep (BOIKE et al., 2015). 

2.2.2 Thermal erosion 

Thermal erosion is defined as erosion of ice-bearing permafrost. This process is 

characterized by the combination of thermal and mechanical action of moving water (VAN 

EVERDINGEN, 2005). Typical locations for thermal erosion are river banks and coastlines, 

lake shores, and partially ice-rich lowlands. Thermo-erosional gullies and thermo-

erosional valleys or valley streams are the resulting landforms in lowlands 

(MORGENSTERN et al., 2012). 

2.3 Permafrost hydrology 

Because permafrost acts as an impermeable layer, in continuous permafrost landscapes 

hydrologic fluxes from groundwater are negligible to non-existent (FRENCH, 2007). In 

discontinuous permafrost landscapes the lake water balance is influenced by groundwater 

flux. Sub permafrost groundwater movement is limited to taliks (Figure 2) and lateral 

water movement is limited to the active layer (supra permafrost groundwater). Three 

types of taliks exist. The supra-permafrost talik occurs below water bodies whereas intra-

permafrost taliks are enclosed lenses within permafrost. Sub-permafrost taliks occur in 

unfrozen zones beneath permafrost (FRENCH, 2007). Regarding to thermokarst lakes, 

snowmelt in spring, rainfall in summer, and contribution of ground-ice regulates the 

storage of water (GROSSE et al., 2013). In winter, water balance of thermokarst lakes is 

locked. 
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2.4 Permafrost carbon 

Soils are the second largest reservoirs of carbon, following the oceans with a carbon 

reservoir of 40,000 Gt (ZIMOV et al., 2009). ZIMOV et al. (2009) estimated the permafrost 

reservoir to be about 900 Gt with about 500 Gt in Yedoma ice type whereas TARNOCAI et 

al. (2009) published that terrestrial permafrost stores 1,672 Gt of carbon. Organic carbon 

is a result of metabolic activities of living organism (e.g. decomposition of plants, 

bacterial growth) and can be distinguished in particulate (POC), dissolved (DOC), 

purgeable (VOC) and non-purgeable (NPOC) organic carbon (Figure 5). Organic carbon 

remaining in an acidified solution after purging it with gas is called non-purgeable 

organic carbon (NPOC) and organic carbon removed from a sample after purging with an 

inert gas is called purgeable or volatile organic carbon (VOC). The term ‘Organic Matter’ 

(OM) includes DOC and POC (SEMILETOV et al., 2011). Particulate and dissolved organic 

carbon differ in size, dissolved organic carbon is organic matter that passes a 0.7 µm filter 

whereas particulate organic carbon is too large. DOC is an important component of the 

global carbon cycle (BATTIN et al., 2009) and acts as a transport vector for metals and 

organic pollutants (LAUDON et al., 2012). With water as transport medium, soils with a 

high content of organic matter causes DOC in rivers and lakes. Autochthonous (produced 

in lake) and allochthonous (produced in catchment) DOC are subdivisions for DOC in 

lakes (TRANVIK et al., 2007).  

 

 

Figure 5: Subdivision of carbon 
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Terrestrial plant detritus, mineral soils and resuspended river sediments are the most 

dominant riverine allochthonous inputs of DOC (BAUER & BIANCHI, 2011). Via river 

discharge DOC is transported from arctic land to the Arctic Ocean entering the Arctic 

carbon cycle. During these processes microbial communities and photochemical reactions 

lead to DOC mineralization and it returns to the atmosphere as CH4 and CO2 (SCHUUR et 

al., 2009; BAUER & BIANCHI, 2011; FRITZ et al., 2015). 

As in Figure 6 shown the Artic carbon cycle includes two stocks of carbon: the terrestrial 

and the oceanic. Between those two carbon stocks a transfer of DOC, DIC, POC, PIC and 

CH4 from the Arctic land stock to the Arctic Ocean stock occurs. Between the atmosphere 

and both arctic carbon stocks an exchange of CO2 and CH4 exists. Additionally between 

Arctic Ocean carbon stock and Pacific and Atlantic Ocean there is an exchange of DOC, 

DIC, and CH4 (MCGUIRE et al., 2009).  Several studies (e.g. HOLMES et al., 2008; FREY & 

MCCLELLAND, 2009) found substantial seasonal variability in lability of DOC. In spring, 

by short residence time and cold temperatures limiting microbial processes, DOC is 

relatively labile. DOC in summer is relatively refractory because an increased thaw depth 

causes limited interactions with shallow organic soils and slow water movements 

(HOBBIE et al., 2000; STRIEGL et al., 2005; WICKLAND et al., 2007; HOLMES et al., 2008; 

FREY & MCCLELLAND, 2009). Permafrost degradation is an important reason for the 

transport of DOC from highly organic soils to rivers and lakes and further due to river 

discharge or lake drainage to the Arctic Ocean.   

 

 

Figure 6: Arctic carbon cycle (after MCGUIRE et al., 2009) 
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3 Study area 

3.1 Regional setting 

With a length of 4,400 km the Lena River is one of the biggest rivers in Russia and one of 

the six largest Arctic watersheds (FREY & MCCLELLAND, 2009). The Lena River Delta 

covers an area of 29,000 km
2
 with thousands of islands (SCHNEIDER et al., 2009). The 

Lena River Delta region is underlain by continuous permafrost with a mean annual 

temperature of -10 °C at 10 m depth but observations since 2006 noticed that it has 

warmed by more than 1.5 °C at 10.7 m depth (BOIKE et al., 2013; 2015). The study area in 

the southern part of Kurungnakh Island (72° 23’N; 126° 03’E) in the Lena River Delta is 

located in the continuous permafrost and subarctic tundra zone. It is characterized by 

continental arctic climate with short cold summers with mean temperatures between 4 and 

8 °C in July and long winters with mean temperatures between -36 and -32 °C in January 

(MORGENSTERN, 2012). The mean annual precipitation is about 260 mm (BOIKE et al., 

2008). 

 

Figure 7: Regional setting and distribution of the three geomorphological terraces in the Lena River Delta (modified 

after SCHNEIDER et al., 2009). The green dot marks the study site. 
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Studies of SCHWAMBORN et al. (2002) showed that the Lena River Delta can be divided in 

three main geomorphological terraces (Figure 7). This subdivision is due to different ages 

of sediments and deposits, as a consequence of their genesis. The first terrace is the 

youngest terrace and formed during the Mid Holocene. Patterned ground of ice-wedge 

polygons, thermokarst lakes, active flood plains and ice-rich sediments characterizes the 

terrace with a surface elevation of 1-12 m above sea level (a.s.l.) (SCHWAMBORN et al., 

2002).    

The second terrace is characterized by a lack of silt, clay or organic matter and low ice 

content (SCHWAMBORN et al., 2002; BOIKE et al., 2013). It was formed during the 

transition from Late Pleistocene to the Holocene and has a surface elevation of 11-33 m 

(a.s.l.) (SCHNEIDER et al., 2009).    

The third terrace was formed in the foreland of Chekanovsky and Kharaulakh ridges, 

which contains remnants of Ice Complex accumulated during the late Pleistocene 

(SCHWAMBORN et al., 2002; SCHIRRMEISTER et al., 2003). The surface of the third and 

oldest terrace is characterized by thermokarst depressions with circular lakes and thermo-

erosional valleys. This terrace reaches mean elevations of 30-40 m above sea level. The 

occurring fluvial sands, with plant remains and alluvial peaty layers with high gravimetric 

ice content, originate from the early and middle Weichselian period (SCHWAMBORN et al., 

2002; SCHIRRMEISTER et al., 2011b). 

 

Figure 8: Stratigraphical composition of the third terrace (Photo by M. Ulrich 2008) 
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Divided in two late-Pleistocene units and one Holocene unit (Figure 8), each unit of the 

third terrace is characterized by different properties (SCHWAMBORN et al., 2002; 

SCHIRRMEISTER et al., 2003, WETTERICH et al., 2008). The oldest unit (Figure 8c) 

contains fluvial, interbedded medium-to-fine-grained and silty sand deposits with 

inclusions of plant remains and peaty layers, and a gravimetric ground ice content of 20-

40 wt% (MORGENSTERN et al., 2011). The Ice Complex unit of the late Pleistocene 

(Figure 8b) is characterized by peat, silty sand, and peaty paleosoil layers with 38-133 

wt% gravimetric ground ice content (MORGENSTERN et al., 2011). Ice bands, lens-like 

reticulated ice veins in mineral-rich layers, and especially tall ice wedges with gas 

bubbles characterizes the Ice Complex cryostructure (SCHIRRMEISTER et al., 2011b). The 

youngest unit from the Holocene (Figure 8a) contains silty-sandy peat and deposits of 

thermokarst (SCHIRRMEISTER et al., 2003).  

3.2 Study site 

The study site is located in the south of Kurungnakh Island in the Lena River Delta and 

includes the Lucky Lake, its inflows and outflows, and surrounding lakes. The first and 

the third terrace (Yedoma Ice Complex) are the main geomorphological units in this area. 

Partially Kurungnakh Island and thus also the study site is overlain by Yedoma Ice 

Complex deposits (SCHWAMBORN et al., 2002), which have been affected by terrain 

subsidence and surface changes due to thermokarst and thermal erosion since the 

transition from Pleistocene to Holocene. The study site is characterized by different 

periglacial landscape units (e.g. Yedoma uplands, thermokarst lakes and basins, thermo-

erosional gullies, streams, polygonal tundra and ponds of the first terrace), which were 

formed since 13 to 12 ka BP (MORGENSTERN et al., 2011; 2012). The development of 

thermokarst in the study area was driven by changes in climate conditions to a warmer 

and more moisture climate during the transition from late Pleistocene to Holocene.  

The Lucky Lake is a thermokarst lake, which has deeply subsided into the Yedoma 

upland and is therefore bordered by steep slopes. In the northeast of the lake the Ice 

Complex landscape drains into the lake by two gulleys (Figure 9). In the southeast a 

second thermokarst lake (Oval Lake) drains into the Lucky Lake and the main outflow, 

connecting Lucky Lake and Olenyokskaya Channel, is located at the southwestern shore 

of Lucky Lake. 
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Figure 9: Study site in the south of Kurungnakh Island. Background image: GeoEye, band combination 3,3,3(r, g, b)  

projection UTM Zone 52N within WGS 84 datum. Overview image: RapidEye, band combination 3,3,3(r, g, b)  

projection UTM Zone 52N within WGS 84 datum. 

 

3.2.1 Vegetation 

Due to extreme climate conditions in the Arctic, the vegetation period in the Lena River 

Delta is limited to three months in summer. Thereby the vegetation is poor in species 

(SCHULTZ, 2000). According to the land cover classification of SCHNEIDER et al. (2009) 

vegetation vary between the different terraces of the Lena River Delta. The first terrace, 

represented at the southern tip of the study site, is allocated to the wet, sedge- and moss-

dominated tundra as well as to the moist grass- and moss-dominated tundra. At the major 

channels mainly non-vegetated and shallow water areas are characteristic. The third 

terrace, the northern part of the study site, is characterized by moist grass- and moss-

dominated tundra as well as dry tussock tundra. 
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4 Methods 

The methodological approach combines laboratory work for hydrochemical 

measurements and analysis of satellite imagery with a geographical information system 

(GIS) (Figure 10). For analyses and interpretation isotopic composition of the collected 

samples, discharge data of 2013, meteorological date and literature was used. 

 

 

Figure 10: Methodology of this thesis 

 

4.1 GIS analyses and landscape units 

Using ArcGIS (10.3, ESRI) satellite imagery was analyzed to identify different landscape 

units in the study area (Figure 11). At first the study area was divided into major 

geomorphological units. Shapefiles of thermokarst lakes and basins in the study area were 

available from MORGENSTERN et al. (2011). These boundaries were used to determine 

thermokarst lakes in the study area. Additionally streams of the thermokarst lake Lucky 

Lake and its inflows were digitized in GIS on the basis of GeoEye satellite imagery 

(UTM Zone 52N within WGS 84).  
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Figure 11: Decision tree to divide the study area in landscape units. 

 

4.2 Meteorological data 

Meteorological data for the study site were available from Samoylov Island weather 

station. This station was installed in 1998 (BOIKE et al., 2008) and recorded data including 

air temperature (2 m height), radiation, humidity, wind speed and direction, and snow 

depth (BOIKE et al., 2013). Measurements of air temperature in °C in 30 minutes intervals 

were averaged for each day. The half-hourly measurements of precipitation in mm were 

summed for each day. 

4.3 Discharge 

During field work in 2013 two weirs were installed Lena Delta expedition members at the 

outflow of Lucky Lake on Yedoma Ice Complex and downstream on the first terrace 

(Figure 12). Both weirs are combined with a radar height sensor. In 10 minute intervals a 

sill referenced water level was measured. This water level (mm) was subtracted from 

sensor height and discharge (l s
-1

) was calculated by using the following formula: 

Q = 0.0000004 * (WL)
3
 + 0.0011 * (WL)

2
 + 0.1358 * (WL) - √(WL) + 3.488. 

Q is discharge and WL is the sill referenced water level subtracted from sensor height 

(RBC FLUME, 2000). Measurements of weir 1 were already analyzed and discharge was 

calculated by NIEMANN (2014).  
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Figure 12: Location of weirs (white arrow) and sample collection. The yellow line divides the study area in Yedoma Ice 

Complex (above) and first terrace (bellow). Background image: GeoEye-1, band combination 3,3,3(r, g, b)  projection 

UTM Zone  52N within WGS 84 datum. 

 

Additionally, this data were available in m
3
 d

-1
 for the time period from 27.07.2013 to 

26.08.2013 (NIEMANN, 2014). Discharge measurements of weir 2 were analyzed after 

NIEMANN (2014), by using the data records (l s
-1

), and were converted into m
3
 d

-1
. The 

discharge data of 2013 was used to calculate the flux of DOC at both weirs. The DOC 

flux is the product of summed discharge and DOC concentration. 

4.4 Hydrochemical analyses 

In this thesis 198 water samples of 2013 and 2014 were analyzed (Figure 12). Lena Delta 

expedition members collected 96 water samples in summer 2013, which were already 

measured by laboratory staff. Hence, results of lab analysis for hydrochemical parameters 

of 2013 were available for this thesis. In summer 2014 overall 102 surface water samples 

were collected from Lena Delta expedition members (Table 1) but hydrochemical 

measurements to determine pH value, electrical conductivity and DOC concentration for 

those samples had to be carried out. Fresh samples were collected with a 250 ml bottle. 

As backup sample and for isotope analyze 30 ml of the original sample were filled in two 

smaller bottles. 
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Table 1: Number of collected water samples in each landscape unit 

Landscape unit 2013 2014 

Yedoma Ice Complex 

 

 

 

A - thermokarst lakes 12 4 

B - streams 18 17 

C – streams fed by Ice Complex 5 0 

D – Yedoma uplands (soil water) 23 0 

First terrace E – relict lake 1 3 

F - thermokarst lakes 3 9 

G - streams 20 24 

Olenyokskaya Channel              H 14 45 

Total 96 102 

  

For analyzes of DOC 20 ml of the sample was filtered by a 0.7 µm pore size filter, 

preserved with 20-50 µl of 30 % hydrochloric acid (HCl) and send to Alfred Wegener 

Institute in Potsdam. The laboratory results of 198 water samples, which have been 

mapped after fieldwork, were allocated to the determined landscape units by using the 

decision tree (Figure 11). 

4.4.1 pH value 

The pH value indicates whether a solution is acidic or alkaline and ranges between 0 

(acidic) and 14 (alkaline). With a pH value of 7 a solution is neutral. To determine the pH 

value a pH meter (WTW MultiLab 540) were used. A small amount of each sample was 

filled into a measurement glass and the electrode of MultiLab was inserted. The voltage 

between glass and reference electrode is used for the calculation of the pH value 

(Handbook WTW, 1989). 

4.4.2 Electrical conductivity 

The electrical conductivity indicates the concentration of ions (anions and cations) in a 

sample. A high electrical conductivity means a high concentration of ions and vice versa. 

Measured with MultiLab 540 the electrical conductivity is recorded in µS cm
-1

 and 

applied to a reference temperature of 25 °C (Handbook WTW 1993).  

4.4.3 Stable hydrogen and oxygen isotopes 

Isotope analyses of hydrogen (δD) and oxygen (δ
18

O) were already measured with a 

Finnigan MAT Delta-S mass spectrometer at the isotopic lab of Alfred Wegener Institute 

in Potsdam by using the equilibration technique (MEYER et al., 2000). This samples were 

collected from Tiksi (71°38’N, 128°52’E), which is close to the Lena River Delta. The 
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results are given as permil difference to V-SMOW (‰ vs. VSMOV) and plotted in a 

δ
18

O-δD diagram. The lowest δ
18

O and δD values reflect the coldest temperature. Vice 

versa, higher δ
18

O and δD values reflect warmer temperatures (MEYER et al., 2002). 

DANSGAARD (1964) defined that precipitation deriving from evaporation of ocean water 

and secondary evaporation processes can be identified by the slope in a δ
18

O-δD diagram. 

The Global Meteoric Water Line (GMWL) was defined by CRAIG (1961) as reference and 

is a linear correlation of worldwide freshwaters. It is expressed as:  

δD = 8 * δ
18

O +10. 

The isotopic composition of water varies due to the process of fractionation. CLARK & 

FRITZ (1997) described this process as temperature-dependent, which take place during 

phase changes. Two types of fractionation occur under kinetic or equilibrium conditions. 

Hence, this process is linked to evaporation/condensation and freezing/melting. The slope 

of the GMWL is about 8. A lower slope of about 4 to 5 and a larger deviation from the 

GMWL indicates that evaporation occurred. Disequilibrium processes result in deviation 

from the GMWL and δ values above the GMWL. With a trend to lower δ values (first 

meltwater) and afterwards to higher δ values (final meltwater) melting is a fractionation 

process in disequilibrium (CLARK & FRITZ, 1997). Additionally mean δ values of rain 

were available from KLOSS (2008). 

4.4.4 DOC concentration 

High-temperature catalytic combustion, low-temperature chemical oxidation and 

photochemical oxidation are the main methods for the measurement of DOC 

concentration (BAUER & BIANCHI, 2011). In this study ‘Shimadzu TOC-VCPH’ for high-

temperature catalytic combustion was used. For the monitoring during the measurement 

and validation of the results, standard samples and blank samples (ultrapure water) with 

known concentrations of organic carbon were added to the sample extent.  

The direct method or so called NPOC-method (Non-purgeable-organic-carbon) was used 

to determine the DOC concentration. 9 ml of the sample was filled into a special 9 ml 

glass vial. Each vial was sealed with an aluminum foil and placed in the vial rack of 

‘Shimadzu TOC-VCPH’. The vial rack has 93 places for vials. In one measurement cycle 

about 70 places can be stocked by samples. The remaining rack places were stocked by 

vials with blank samples and standard samples. During measurement the sample was 

acidified with hydrochloric acid to a pH value of 2-3 and afterwards treated with oxygen 
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gas, which eliminates the component of inorganic carbon. Total inorganic carbon is 

converted to CO2. In the next step NPOC passes the catalyst, where it heats up to 680 °C 

and the CO2 passes the NDIR detector (Non Dispersed InfraRed). The NDIR detector 

measures the concentration and related software calculates the average of up to five 

measurement procedures of each sample (Manual Shimadzu/TOC-V, 2008). The DOC 

concentration is recorded in mg L
-1

.  
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5 Results 

5.1 GIS analyses and landscape units 

The major landscape units in the study area in the south of Kurungnakh Island are the 

Yedoma Ice Complex, the Olenyokskaya channel and the first terrace. Demonstrated in 

Figure 13 the area of Yedoma Ice Complex is characterized by flat inclined uplands (D) 

with thermokarst lakes (A) and basins, and streams (B, C). The streams of the Yedoma 

Ice Complex in the study site are divided into the stream that drains the Lucky Lake (B), 

inflows of this stream, and streams, which are fed by the Ice Complex and flow into the 

Lucky Lake (C). With an area of 1,228,688.9 m
2
 and a maximum depth of about 8 m 

(NIEMANN, 2014) the Lucky Lake is the largest thermokarst lake in the study site. The 

neighbored Oval Lake has an area of 450,134.6 m
2
, a depth of about 9 m (MORGENSTERN 

et al., 2011) and drains via a stream into the Lucky Lake.  

 

 

Figure 13: Landscape units in the study site. A – Yedoma Ice Complex thermokarst lakes, B – Yedoma Ice Complex  

streams, C – Yedoma Ice Complex streams fed by Ice Complex, D – Yedoma Ice Complex uplands (soil  water), E – first 

terrace relict lake, F – first terrace thermokarst lakes, G – first terrace streams. The yellow line divides the study area 

in Yedoma Ice Complex (above) and first terrace (bellow). Background image: GeoEye-1, band combination 3,3,3 (r, g, 

b) projection UTM  Zone  52N within WGS 84 datum. 
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The three streams in the northeast of the Lucky Lake, which are fed by the Ice Complex, 

have lengths of 454.9 m, 607.7 m and 1,010.6 m (Table 2). These streams, more 

specifically, are flumes which develop when snow melt begins. The outflow of Lucky 

Lake, here defined as main stream, has a length of 1,053.7 m on the Yedoma Ice Complex 

and a bigger inflow from western of the study site with a length of 778.2 m.     

The first terrace in the study area is characterized by low elevation, polygonal tundra with 

numerous ponds, relict lakes (E) and thermokarst lakes (F). The streams of this terrace 

(G) include the main stream, inflows and the outlet. The main stream on both terraces can 

be described as valley with a stream course. On the Yedoma Ice Complex the main 

stream valley has a width of about 200 m, whereas the main stream valley on the first 

terrace has a width of about 80 m (STETTNER, 2014). Two thermokarst lakes of the first 

terrace in the study site have been considered in this thesis. With areas of 45,895.2 m
2
 and 

35,142.3 m
2
 they are much smaller than thermokarst lakes on the Yedoma Ice Complex. 

Additionally one relict lake with an area of 2,883.9 m
2
 has been identified, which is a 

remnant of an almost completely drained lake. The main stream on the first terrace has a 

length of 2,876.3 m.  

 

Table 2: Properties of landscape units on Yedoma Ice Complex and first terrace. 

Landscape unit area [m2] length [m] 

Yedoma Ice 

Complex 

A - thermokarst lakes Lucky Lake 1,228,688.9  

Oval Lake 450,134.6  

B - streams main stream  1,053.7 

inflows  484.4 

  778.2 

C – streams fed by Ice Complex  454.9 

 1,010.6 

 607.7 

First terrace E – relict lake 2,883.9  

F – thermokarst lakes Lake 1 45,895.2  

Lake 2 35,142.3  

G - streams main stream  2,876.3 

inflows  571 

 119.4 

 269.7 
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Thermokarst lakes on Yedoma Ice Complex (A) drain into the stream on Yedoma Ice 

Complex (B), further in the stream on the first terrace (G), which is drained by 

thermokarst lakes on the first terrace (F), and flow into the Olenyokskaya Channel. 

Hence, landscape unit A, B, F, and G are the drainage flow path, whereas streams, which 

are fed by the Ice Complex (C), and soil water of Yedoma upland (D) are source water.  

5.2 Meteorological data 

Meteorological data of 2013 show fluctuating temperature with temperature differences 

of 11°C in a few days (Figure 14). Two bigger precipitation events at the beginning of 

July (> 200 mm) and in the middle of August (> 160 mm), and a rain event in the 

beginning of September (> 60) can be noticed. During field period of 2014 a decrease in 

air temperature from 7 °C to -3.8 °C at the end of May was measured. Afterward the 

temperature increased to 13 °C within two weeks. Till the end of measurements the 

temperature fluctuates between about 6.5 °C and about 16.5 °C. Two bigger precipitation 

events for this time were recorded in the middle of July (> 130 mm) and in the middle of 

August (> 80 mm). 

 

  

Figure 14: Meteorological situation during field work in 2013 and 2014. 

 

-10

-5

0

5

10

15

20

0

50

100

150

200

250

0
1
.0

7
.2

0
1

3

0
8
.0

7
.2

0
1

3

1
5
.0

7
.2

0
1

3

2
2
.0

7
.2

0
1

3

2
9
.0

7
.2

0
1

3

0
5
.0

8
.2

0
1

3

1
2
.0

8
.2

0
1

3

1
9
.0

8
.2

0
1

3

2
6
.0

8
.2

0
1

3

0
2
.0

9
.2

0
1

3

0
9
.0

9
.2

0
1

3

1
6
.0

9
.2

0
1

3

2
3
.0

9
.2

0
1

3

3
0
.0

9
.2

0
1

3

2
6
.0

5
.2

0
1

4

0
2
.0

6
.2

0
1

4

0
9
.0

6
.2

0
1

4

1
6
.0

6
.2

0
1

4

2
3
.0

6
.2

0
1

4

3
0
.0

6
.2

0
1

4

0
7
.0

7
.2

0
1

4

1
4
.0

7
.2

0
1

4

2
1
.0

7
.2

0
1

4

2
8
.0

7
.2

0
1

4

0
4
.0

8
.2

0
1

4

1
1
.0

8
.2

0
1

4

1
8
.0

8
.2

0
1

4

2
5
.0

8
.2

0
1

4

0
1
.0

9
.2

0
1

4

0
8
.0

9
.2

0
1

4

te
m

p
e

ra
tu

re
 [°C

] 

p
re

c
ip

it
a

ti
o

n
 [
m

m
] 

Precipitation Temperature



 
23 Results 

5.3 Discharge 

The discharge of weir 1 and weir 2 in the main stream were plotted in Figure 15. 

Additionally DOC concentrations of water samples, collected at these weirs during 

discharge record, were added. Discharge generally decreased during the measuring 

period. At weir 1 discharge decreased from about 1,700 m
3
 d

-1
 to about 200 m

3
 d

-1
.  And 

at weir 2 discharge decreased from about 3,000 m
3
 d

-1 
to about 500 m

3
 d

-1
. Only due to the 

precipitation event in August (> 10 mm) the discharge increased at weir 1 from 270 m
3
 d

-1
 

to 518 m
3
 d

-1 
and at weir 2 from 1116 m

3
 d

-1
 to 1625 m

3
 d

-1
. DOC concentrations of 

samples, collected at the two weirs during the period of discharge measurement, were 

added to the figure. Although discharge differs at both weirs, DOC concentration is 

similar. 

 

 

Figure 15: Discharge of weir 1 and weir 2, daily precipitation and DOC concentration in 2013. 
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5.4 Hydrochemical parameters  

The hydrochemical parameters were summarized for 2013 and 2014 in Table 3 and 

Figure 16. Because the values are not normally distributed, the median was used for 

further considerations.   

 

Table 3: Summarized DOC concentration [mg L-1], electrical conductivity (EC) [µS cm-1] and pH value of different 

landscape units for 2013 and 2014. 

Landscape unit no. of 

samples 

DOC 

median  

DOC 

range          

EC 

median           

EC 

range          

 

pH 

value 

median 

pH 

value 

range 

Yedoma Ice 

Complex 

A thermo-

karst lakes 

16 5.3 4.9-11.3 131 68-

133 

7.5 5.8-7.9 

B streams 35 5 3.5-5.9 126 41-

151 

7.1 6.6-8 

C streams 

fed by Ice 

Complex 

5 10.9 8.9-12.7 47 39-59 6.5 6.2-6.7 

D Yedoma 

uplands 

(soil 

water) 

23 11.9 8.9-52.5 61 35-

138 

5.9 5.3-6.5 

         

 total 79 5.5 3.5-52.5 110.5 35-

151 

6.9 5.3-8 

          

First terrace E relict lake 4 13.1 11.1-

15.6 

65 54-91 6.4 5.7-6.6 

F thermo-

karst lakes 

12 3.3 2.9-10.1 80.5 64-92 7.2 6.2-7.5 

G streams 44 4.8 2.8-9.8 95 54-

140 

7.2 6.7-7.9 

         

 total 60 4.7 2.8-15.6 89 54-

140 

7.14 5.7-7.9 

          

Olenyokskaya 

Channel 

H total 59 10.5 4.5-15.7 140 98-

542 

7.5 6.9-7.8 
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Figure 16:  Boxplots of DOC concentration, electrical conductivity and pH value in different landscape units of the 

study site for 2013 and 2014. A – Yedoma Ice Complex thermokarst lakes, B – Yedoma Ice Complex streams, C – 

Yedoma Ice Complex streams fed by Ice Complex, D – Yedoma Ice Complex uplands (soil water), E – first terrace relict 

lake, F – first terrace thermokarst lakes, G – first terrace streams, H – Olenyokskaya Channel. Plots show minimum, 

maximum, median, 25th and 75th percentile. Numbers above boxplots indicates amount of samples for each landscape 

unit. 
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5.4.1 pH 

Samples of thermokarst lakes of the Yedoma Ice Complex and the Olenyokskaya Channel 

have a median pH value of 7.5 (Table 3), which is the highest value of the different 

landscape units. It has to be noticed that there is a high range in the 25
th

 percentile for 

thermokarst lakes on both terraces (Figure 16c, “A”, “F”). With a median pH value of 

5.9, soil water samples of the Yedoma uplands have the lowest value (Table 3). Figure 

16c (“C”, “D”, “E”) shows that these samples are slightly acidic, as well as samples of 

the relict lake of the first terrace and of streams which are fed by the Ice Complex. 

Samples of streams on both terraces are almost neutral but their values range widely in 

the 75
th

 percentile (Figure 16c, “B”, “G”). 

5.4.2 Electrical conductivity 

Samples of the Olenyokskaya Channel have the highest median electrical conductivity 

(140 µS cm
-1

) and range widely in the 75
th

 percentile (Figure 16b, “H”). Comparing 

thermokarst lakes on both terraces, on the Yedoma Ice Complex they have a higher 

median electrical conductivity (131 µS cm
-1

) than thermokarst lakes on the first terrace 

(80.5 µS cm
-1

). Streams of the Yedoma Ice Complex have a higher median electrical 

conductivity (126 µS cm
-1

) than streams of the first terrace (95 µS cm
-1

). Streams, which 

are fed by the Ice Complex, have the lowest median electrical conductivity (47 µS cm
-1

). 

Samples of the relict lake of the first terrace and soil water samples of the Yedoma upland 

have almost similar values (Table 3).  

5.4.3 Stable hydrogen and oxygen isotopes 

δ
18

O, as expression of the ratio of the stable oxygen 
18

O and 
16

O isotopes, and electrical 

conductivity were plotted (Figure 17). It shows a large range in δ
18

O values from about -

15 ‰ to about -22.5 ‰. The electrical conductivity of the plotted samples ranges from 35 

µS cm
-1

 to 151 µS cm
-1

. A relation between δ
18

O values and electrical conductivity is 

shown for thermokarst lakes (A and F) and streams (B and G) on both terraces, which is 

the drainage flow path (Chapter 5.1). Mainly, for these landscape units lower δ
18

O values 

accompanied by higher electrical conductivity. Vice versa, higher δ
18

O values 

accompanied by lower electrical conductivity (Figure 17, “A”, “B”, “F”, “G”). In 

samples of the remaining landscape units no connection can be determined.   
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Figure 17: Conductivity and δ 18O for both years. The grey border marks the drainage flow path with landscape unit A, 

B, F and G. A – Yedoma Ice Complex thermokarst lakes, B – Yedoma Ice Complex streams, C – Yedoma Ice Complex 

streams fed by Ice Complex, D – Yedoma Ice Complex uplands (soil water), E –first terrace relict lake, F – first terrace 

thermokarst lakes, G – first terrace streams. 

 

δ
18

O and δD for stable isotopes of hydrogen (D and H) were plotted and the Global 

Meteoric Water Line (GMWL) was inserted as reference (Figure 18). The isotopic 

composition of thermokarst lake samples on the Yedoma Ice Complex range between -17 

and -19.2 ‰ for δ
18

O and between -135.4 and -138.3 ‰ for δD (Figure 18, “A”). In 

contrast, thermokarst lakes on the first terrace have higher δ
18

O and δD values (-15.3 to -

16.4 ‰ for δ
18

O and -123.2 to -131 ‰ for δD) (Figure 18, “F”). Streams on the Yedoma 

Ice Complex have δ values ranging between -16.4 and -21.9 ‰ (in 
18

O) and between -

130.1 and -160.8 ‰ (in D) (Figure 18, “B”). Mainly δ values of streams on the first 

terrace are higher than δ values of Yedoma Ice Complex streams but with a larger range 

between -14.7 and -20.7 ‰ (in 
18

O) and between -119.4 and -160.8 ‰ (in D) (Figure 18, 

“G”). In contrast, Figure 18 (“C”) shows that δ values of streams, fed by the Ice 

Complex, lie closely to the GMWL, partially above the GMWL, and range between -16.7 

and -19.6 ‰ (in 
18

O) and between -125.5 and -141.8 ‰ (in D). 
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Figure 18: δD and δ 18O for all samples and both years and with clusters. A – Yedoma Ice Complex thermokarst lakes, 

B – Yedoma Ice Complex streams, C – Yedoma Ice Complex streams fed by Ice Complex, D – Yedoma Ice Complex 

uplands (soil water), E –first terrace relict lake, F – first terrace thermokarst lakes, G – first terrace streams, H – 

Olenyokskaya Channel. 

 

Also a large part of soil water samples of Yedoma uplands lie above the GMWL and δ 

values range between -16.7 and -22.4 ‰ (in 
18

O) and -127.6 and -165.6 ‰ (in D) (Figure 

18, “D”). Relict lake samples plot closely together and have lower δ values than 

thermokarst lakes on the first terrace, ranging between -16.6 and -17.9 ‰ (in 
18

O) and 

between -129.35 and -138.9 ‰ (in D) (Figure 18, “E”). In contrast, δ values of the 

Olenyokskaya Channel samples are widely scattered (-15.8 to -23.7 ‰ for δ
18

O and -126 

to -181.4 ‰ for δD) (Figure 18, “H”). In summary, the drainage flow path is 

characterized by increasing δ
18

O and δD values downstream. In contrast, samples of 

source water mostly lie above the GMWL. 

Almost each landscape unit range widely in its isotopic composition and several clusters 

in each unit can be noticed (Figure 18, “clusters”). For further analysis the existing 

landscape units were subdivided, wherever possible. Thereby thermokarst lakes on 

Yedoma Ice Complex are subdivided into Lucky Lake and Oval Lake, streams on 

Yedoma Ice Complex were subdivided into main stream and inflows and soil water 
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samples of Yedoma uplands were subdivided by their distribution in the field (sampling 

point A, B and C). Also thermokarst lakes on the first terrace were subdivided into Lake 1 

and Lake 2, and streams on the first terrace were subdivided into main stream, inflows 

and outlet. For each subdivided landscape unit minimum, maximum and mean values of 

δ
18

O and δD were calculated and summarized in Table 4. Mean values of δ
18

O and δD 

were plotted in the co-isotope plot (Figure 19). This figure shows that the isotopic 

composition of thermokarst lakes differs between the terraces. Thermokarst lakes on the 

first terrace have higher mean δ
18

O and δD values than thermokarst lakes on Yedoma Ice 

Complex. Additionally thermokarst lakes differ on each terrace (Table 4). The mean δ
18

O 

value of Lucky Lake samples is higher than the mean δ
18

O value of Oval Lake samples 

and samples of Lake 1 on the first terrace has a higher mean δ
18

O and δD value than Lake 

2 on the first terrace (Figure 19, “A – Lucky Lake”, “A – Oval Lake”, “F – Lake 1”, “F – 

Lake 2”). 

 

 

Figure 19: Mean δ18O and δD for subdivided landscape units and both years. A – Yedoma Ice Complex thermokarst 

lakes, B – Yedoma Ice Complex streams, C – Yedoma Ice Complex streams fed by Ice Complex, D – Yedoma Ice 

Complex uplands (soil water), E – first terrace relict lake, F – first terrace thermokarst lakes, G – first terrace streams, 

H – Olenyokskaya Channel. Mean δ values of rain were available for Tiksi from KLOSS (2008) 
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Mean δ
18

O and δD values of main stream and inflows on Yedoma Ice Complex plot 

closely and closely to samples of Yedoma Ice Complex thermokarst lakes (Figure 19, “B 

– main stream”, “B - inflows”). In contrast, samples of main stream, inflows and outlet 

on the first terrace differ in their isotope composition (Figure 19, “G – main stream”, “G 

- inflows”, “G - outlet”). Whereas the outlet has mean δ values of -18 ‰ (in 
18

O) and -

140.8 ‰ (in D), mean δ values of inflow samples are higher (Table 4). Samples of the 

main stream on the first terrace have mean δ values of -17.2 ‰ (in 
18

O) and -136.1 ‰ (in 

D) and plot closely to samples of the Lucky Lake (Figure 19, “G – main stream”). Mean 

δ values of rain water samples from Tiksi (-16.5 ‰ in 
18

O and -129.3 ‰ in D) are similar 

to mean δ values of first terrace inflows. Mean δ values of soil water samples of Yedoma 

uplands range widely (Table 4). Whereas samples of soil water sampling point B and C 

have low mean δ
18

O and δD values and plot above the GMWL, samples of sampling 

point A have high mean δ
18

O and δD values and plot below the GMWL (Figure 19, “D - 

A”, “D - B”, “D - C”). Also samples of streams, which are fed by the Ice Complex, with 

mean δ values of -18.1 ‰ (in 
18

O) and -134 ‰ (in D) are plot above and closely to the 

GMWL. Of all mean δ values, the mean δ value of samples of Olenyokskaya Channel are 

the lowest (-21.2 ‰ for δ
18

O and -162 for δD) (Table 4). 

 

Table 4: Minimum, maximum and mean of stable isotopes (δ18O and δD). 

Landscape unit no. δ18O [‰] δD [‰] 

min. max. mean min. max. mean 

Yedoma Ice 

Complex 

A Lucky Lake 11 -17.4 -17 -17.2 -138 -135.4 -137.1 

Oval Lake 5 -19.2 -17.2 -17.8 -138.3 -136.2 -137.3 

B main stream 22 -18.2 -16.8 -17.4 -143.7 -133 -138.1 

inflows 12 -21.9 -16.4 -17.7 -160.8 -130.1 -138.5 

C 5 -19.6 -16.7 -18.1 -141.8 -125.5 -134 

D A 9 -17.7 -16.7 -17 -131.8 -127.6 -129 

B 6 -19.6 -19.1 -19.4 -142 -138.7 -140.6 

C 8 -22.4 -18.5 -20.7 -165.6 -133.3 -151.6 

First terrace E 4 -17.9 -16.6 -17.2 -138.9 -129.4 -133.1 

F Lake 1 5 -16.4 -15.8 -16.1 -131 -127.2 -129.1 

Lake 2 7 -16.2 -15.3 -15.7 -128.5 -123.2 -125.9 

G main stream 25 -20.4 -16.9 -17.2 -158.4 -132.7 -136.4 

inflows 13 -20.1 -14.7 -16.5 -149.5 -119.4 -128.9 

outlet 5 -20.7 -17.1 -18.1 -160.8 -134.4 -140.8 

Olenyokskaya 

Channel 

H 58 -23.7 -15.8 -21.2 -181.4 -126 -162 
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5.4.4 DOC concentration 

Samples of the first terrace relict lake have the highest median DOC concentration (13.1 

mg L
-1

). Comparing thermokarst lakes on both terraces, on the Yedoma Ice Complex they 

have a higher median DOC concentration (5.2 mg L
-1

) than thermokarst lakes on the first 

terrace (3.3 mg L
-1

). Streams on both terraces show similar median DOC concentrations 

(Table 3). Streams, which are fed by the Ice Complex, have a median DOC concentration 

of 10.9 mg L
-1

. This value is almost similar to the median DOC concentration of 

Olenyokskaya Channel (10.5 mg L
-1

). Soil water samples of the Yedoma uplands have a 

median DOC concentration of 11.9 mg L
-1

 and values range widely in the 75
th

 percentile 

(Figure 16, “D”). Comparing the two major geomorphological units, Yedoma Ice 

Complex and first terrace, the summarized median DOC concentration of landscape units 

in each geomorphological unit is a little higher for the Yedoma Ice Complex (5.5 mg L
-1

) 

than for the first terrace (4.8 mg L
-1

). Notice that samples of streams which are fed by the 

Ice Complex and soil water samples of Yedoma uplands only exists for 2013 (Table 1).  

5.4.4.1 Spatial variability 

Figure 20 shows the connections between DOC concentration and electrical conductivity 

of the landscape units. Generally, two major groups can be determined in the plot. The 

drainage flow path, which is highlighted by a border, is characterized by DOC 

concentrations < 6.5 mg L
-1

 and shows a low range in DOC concentration and a high 

range in electrical conductivity. Samples of lower DOC concentrations exhibit lower 

electrical conductivity. This figure shows a decrease of DOC concentration and electrical 

conductivity from Yedoma Ice Complex thermokarst lakes downstream to first terrace 

thermokarst lakes. In contrast, samples with DOC concentrations > 6.5 mg L
-1

 show no 

connection of the two parameters and demonstrate the source signal. 

The spatial variability of median DOC concentration in the study site was summarized for 

both years, 2013 and 2014, and visualized in Figure 21. The transport of DOC starts at 

streams, which are fed by the Ice Complex, in the northeast of Lucky Lake. They develop 

during snowmelt in spring, drain into the Lucky Lake and enrich the thermokarst lake 

with meltwater. These streams have a high median DOC concentration between 10 mg L
-1

 

and 10.9 mg L
-1

. Additionally soil water of Yedoma uplands with high median DOC 

concentrations between 10 mg L
-1

 and 12.9 mg L
-1

 enters the system. Streams, fed by the 

Ice Complex, and Yedoma uplands act as source signal of DOC.  



 
32 Results 

 

Figure 20: DOC concentration and electrical conductivity for 2013 and 2014. The grey border marks the drainage flow 

path with landscape unit A, B, F and G. A - Yedoma Ice Complex thermokarst lakes, B - Yedoma Ice Complex streams, 

C - Yedoma Ice Complex streams fed by the Ice Complex, D - Yedoma Ice Complex uplands (soil water), E - first 

terrace relict lake, F – first terrace thermokarst lakes, G – first terrace streams. 

 

Connected with the Lucky Lake the adjacent Oval Lake has an almost similar median 

DOC concentration, comparing with DOC concentration of Lucky Lake. The figure 

nicely shows that median DOC concentration of Lucky Lake and main stream on the 

Yedoma Ice Complex are almost similar and that median DOC concentration of main 

stream inflows are lower. Median DOC concentration of the main stream on the first 

terrace is little lower, comparing with the main stream on the Yedoma Ice Complex. 

Inflows and thermokarst lakes on the first terrace have a lower median DOC 

concentration than main stream. The outlet of the main stream, where it drains into the 

Olenyokskaya Channel, has a median DOC concentration which is a little higher than the 

concentration of the first terrace main stream. Figure 22-24 show a higher DOC 

concentration of inflows on Yedoma Ice Complex comparing with inflows on the first 

terrace, except of the last inflow before the outlet.  
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Figure 21: Median DOC concentration [mg L-1] in landscape units for 2013 and 2014. The yellow line divides the 

study area in Yedoma Ice Complex (above) and first terrace (bellow). Background image: GeoEye-1, band combination 

3,3,3 (r, g, b) projection UTM  Zone 52N within WGS 84 datum. 

 

Using the discharge data with a record period of 29 days a DOC flux of 92.5 kg was 

estimated for weir 1 and a DOC flux of 220.5 kg was estimated for weir 2. The higher 

DOC flux at weir 2 is due to the higher discharge at this weir. 

5.4.4.2 Temporal variability  

Figure 22-24 show pathways of DOC in the study site. Figure 22 demonstrates the 

pathway of median DOC concentration of each samples site for a whole field period in 

2013 and 2014, whereas Figure 23 and 24 demonstrate DOC concentration of each 

sampling site for several sampling days in a year. Figure 22 starts at source water sample 

sites draining into the Lucky Lake up to the main stream outlet. It shows higher median 

DOC concentrations in thermokarst lakes on Yedoma Ice Complex, in the main stream on 

both terraces and in all inflows. Additionally higher median DOC concentrations at each 

sample site in 2014 comparing with 2013 can be determined. Figure 23 and 24 

demonstrate the pathways of DOC for several sampling dates in 2013 and 2014. In 2013 

the Lucky Lake main stream and its inflows was sampled at three days during summer 

(15.07.2013, 26.07.2013 and 10.08.2013). 
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Figure 22: Flow path of median DOC concentration [mg L-1] for 2013 and 2014 (n.s. indicates location was not 

sampled). 

 

Samples of 26.07.2013 have the highest DOC concentrations in the main stream and the 

outlet has the highest DOC concentration at 10.08.2013. A slight increase in DOC 

concentration from 15.07.2013 to 26.07.2013 and a decrease to 10.08 2013 can be 

observed. In 2014 Lucky Lake main stream and its inflows was sampled at four days 

(16.06.2014, 17.07.2014, 30.07.2014 and 10.09.2014).  
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Figure 23: Flow path of DOC [mg L-1] for three sampling dates in 2013 starting at Lucky Lake outflow (n.s. indicates 

location was not sampled at this day) 

 

At 16.06.2014 several sampling points were not sampled, including inflows on the first 

terrace. These were still frozen and sample collection of fresh water was impossible. 

There is an increase in DOC concentration from 16.06.2014 to 30.07.2014, like in 2013. 

To 10.09.2014 a tendency of DOC concentration decrease can be observed. 
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Figure 24: Flow path of DOC [mg L-1] for three sampling dates in 2014 starting at Lucky Lake outflow (n.s. indicates 

location was not sampled at this day, s.n.p. indicates that sampling was not possible because inflows were still frozen) 
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Figure 25 and Figure 26 show DOC concentration of each landscape unit and the 

meteorological situations for measuring periods in 2013 and 2014. Generally, for 2013 no 

major changes in DOC concentration during the measuring period can be noticed. DOC 

concentrations of Yedoma Ice Complex streams range between 3.6 mg L
-1

 and 5.4 mg L
-1

 

but show no tendency of an increase or decrease during the period of sampling (Figure 

25, “B”). DOC concentration of streams, which are fed by the Ice Complex, ranges from 

9.3 mg L
-1

 to 13.5 mg L
-1

 after a precipitation event (Figure 25, “C”). Soil water samples 

of Yedoma uplands show two higher values > 14 mg L
-1

 but no changes in the remaining 

samples (Figure 25, “D”). First terrace relict lake and thermokarst lakes were sampled 

once during measuring period in 2013, so no temporal variability for these landscape 

units for 2013 can be determined. 

 

 

Figure 25: DOC concentration, air temperature and precipitation for the field work period in 2013 (01.07.2013 – 

31.08.2013). A – Yedoma Ice Complex thermokarst lakes, B – Yedoma Ice Complex streams, C – Yedoma Ice   Complex 

streams fed by Ice Complex, D – Yedoma Ice Complex uplands (soil water), E – first terrace relict lake, F – first terrace 

thermokarst lakes, G – first terrace streams, H – Olenyokskaya Channel. 
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Figure 26: DOC concentration, air temperature and precipitation for the field work period in 2014 (01.05.2014 to 

10.09.2014). A – Yedoma Ice Complex thermokarst lakes, B – Yedoma Ice Complex streams, C – Yedoma Ice   Complex 

streams fed by Ice Complex, D – Yedoma Ice Complex uplands (soil water), E – first terrace relict lake, F – first terrace 

thermokarst lakes, G – first terrace streams, H – Olenyokskaya Channel. 

 

Samples of Olenyokskaya Channel increased in DOC concentration from 4.5 mg L
-1

 at 

24.05.2014 to 15.7 mg L
-1

 at 31.05.2015. Afterwards DOC concentration decreased to 6.3 

mg L
-1

 at 04.09.2014 and finally increased (Figure 26, “H”). Thermokarst lakes and 

streams on both terraces show no changes in DOC concentration during the measuring 

period (Figure 26, “A”, “B”, “F”, “G”). The DOC concentration of first terrace relict 

lake samples decreased from 17.07.2014 (13.5 mg L
-1

) to 10.09.2014 (11.1 mg L
-1

) 

(Figure 26, “E”).  

 

 

 

 

-15

-10

-5

0

5

10

15

20

0

20

40

60

80

100

120

140

160

01.05.2014 01.06.2014 01.07.2014 01.08.2014 01.09.2014

te
m

p
e
ra

tu
re

 [°C
] 

D
O

C
 c

o
n
c
e
n
tra

tio
n
 [m

g
 L

-1
] 

p
re

c
ip

it
a
ti
o
n
 [

m
m

] 

Precipitation Temperature A B E F G H



 
39 Discussion 

6 Discussion 

6.1 Spatial variability of hydrochemical parameters 

Figure 17-20 show that drainage flow path and source water differ in values of the 

analyzed hydrochemical parameters. Additionally Figure 27 demonstrates a division of 

the study site in Yedoma Ice Complex and first terrace. This figure shows general lateral 

transport down the drainage flow path from Yedoma Ice Complex to the first terrace and 

lateral transport from adjacent areas.  

 

 

Figure 27: Scheme of landscape units, influencing processes and changes of hydrochemical parameters. A – Yedoma 

Ice Complex thermokarst lakes, B – Yedoma Ice Complex streams, C – Yedoma Ice   Complex streams fed by Ice 

Complex, D – Yedoma Ice Complex uplands (soil water), E – first terrace relict lake, F – first terrace thermokarst 

lakes, G – first terrace streams, H – Olenyokskaya Channel. 
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The ultimate sources for drained water are rain and spring snow melt, and water deriving 

from soil thawing, either in the active layer, or from the underlying ice-rich Yedoma Ice 

Complex. The drainage flow path is dominated by relatively rapid fluvial processes, 

leading to transport of sediments and dissolved material. Thermokarst lakes on both 

terraces are characterized by lacustrine processes, such as water exchange with the 

atmosphere, potential exchange with deeper sediment in the unfrozen talik beneath the 

lake, and microbial and chemical reactions in the lake water column.  

Chapter 5.4.3 describes decreasing electrical conductivity of the drainage flow path with 

highest electrical conductivity in thermokarst lakes on the Yedoma Ice Complex (Figure 

27). The Lucky Lake is influenced by soil water of Yedoma uplands, streams, which are 

fed by the Ice Complex, and by the Oval Lake (Figure 27). These source waters 

contribute dissolved material to Lucky Lake, which becomes even more concentrated. 

The observed higher median electrical conductivity of landscape units on Yedoma Ice 

Complex than on first terrace (Table 3) are the result of ion-rich load from the third 

terrace. From Lucky Lake on Yedoma Ice Complex to the outlet on the first terrace, 

several inflows contribute to the stream. This causes an increase of discharge from weir 1 

to weir 2 (Figure 15). These inflows are less concentrated then the stream itself and 

therefore do not lead to a concentration of stream water, but rather dilute the stream. 

Since contributing to the drainage flow path on the Yedoma Ice Complex is higher in 

DOC concentration and electrical conductivity in summer, this suggest that precipitation 

there infiltrates and reacts with soil substances more effectively than on the first terrace, 

where contributing waters have a dilution effect. This may be the result of deeper and/or 

longer flow pathways on the Yedoma Ice Complex. The electrical conductivity of the 

Olenyokskaya Channel is much higher than any of the waters along the drainage flow 

path. Backflow occurs and affect only the lower reaches of the drainage flow path. But 

compared with the small stream in the study site, the Lena River has a huge watershed 

with different discharge and temperatures, draining very diverse landscapes much further 

southward, including landscapes less affected by permafrost. Thereby a direct comparison 

of those two systems here is not useful.  

The observed increase in isotopic composition moving downstream along the drainage 

flow path (Figure 18, 19 and 27) could be a result of fractionation or of dilution by 

inflowing water with different isotopic composition than in the drainage flow path. 

Because fractionation (e.g. evaporation) would cause an increase in the electrical 
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conductivity and probably also in DOC concentration, neither of which were observed, 

this reason for increasing δ
18

O and δD values might be excluded. Therefore increasing 

inflows, consisting of a mix of soil water, rain, surface runoff, lake water (thermokarst 

lakes and relict lake) and stream inflows, change the isotopic composition of the main 

stream. Due to disequilibrium processes (e.g. thawing/freezing) source waters (soil water 

samples of Yedoma uplands and streams, which are fed by the Ice Complex) result in δ 

values, which lie above the GMWL. This is caused by thawing in spring and freezing in 

fall of the active layer, where the soil water samples were collected. Higher δ
18

O and δD 

of thermokarst lakes on the first terrace compared with thermokarst lakes on Yedoma Ice 

Complex might be a result of warmer temperatures during the Holocene, when the first 

terrace was formed. Similar δ values of rain and first terrace inflows suggest that rain has 

a stronger effect on the first terrace. Due to more water surface adventitious rain leads to 

run off, whereas rain on Yedoma Ice Complex can infiltrate and react with soil 

substances. 

Table 3 shows median DOC concentration of 5.3 mg L
-1

 for thermokarst lakes on 

Yedoma Ice Complex ranging between with DOC values ranging between 4.9 – 11.3 mg 

L
-1

. A median DOC concentration of 3.3 mg L
-1

 was determined for thermokarst lakes on 

the first terrace with DOC values ranging between 2.8 – 9.8 mg L
-1

. The DOC 

concentration of the relict lake on the first terrace ranges between 11.1 – 15.6 mg L
-1

. For 

tundra lakes and ponds in northeastern Canada, BRETON et al. (2011) found a higher DOC 

range of 1.3 mg L
-1

 to 26 mg L
-1

 compared with the analyzed thermokarst lakes in this 

thesis, as well as LAURION et al. (2010), who found a DOC range of 1.5 mg L
-1

 to 20.8 mg 

L
-1

 and ABNIZOVA et al. (2014) with a DOC range from 1.5 mg L
-1 

to 41.6 mg L
-1 

and a 

median DOC concentration of 10 mg L
-1

. ABNIZOVA et al. (2014) collected samples from 

spring to fall, whereas BRETON et al. (2011) and LAURION et al. (2010) collected samples 

several times over a period of two months, which is more comparable with this thesis.  

In Chapter 5.4.4 a decreasing DOC concentration along the drainage flow path is 

described. Whereas samples of the drainage flow path have DOC concentrations < 6.5 mg 

L
-1

 source water samples have higher and more scattered DOC concentrations (Figure 

20). Inflows of lower DOC concentration, especially on the first terrace, dilute the main 

stream and cause a decrease in main stream DOC concentration. Figure 27 shows sources 

of DOC for each landscape unit along the drainage flow path. Sources of Lucky Lake 

DOC on Yedoma Ice Complex are Yedoma uplands (Figure 27, “D”), streams, which are 
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fed by the Ice Complex (Figure 27, “C”), and the Oval Lake, which drains into the Lucky 

Lake (Figure 27, “A”). The DOC concentration of the stream, which drains the Lucky 

Lake, is influenced by Lucky Lake DOC concentration. The stream on the first terrace is 

influenced by DOC concentration of the relict lake and of a thermokarst lake, draining 

into the stream. Additionally, the soil and permafrost can be described as DOC source for 

the whole drainage flow path. 

Yedoma Ice Complex is rich in fossil organic carbon, but also Holocene deposits, which 

are characteristic for the first terrace, are rich in organic carbon (SCHIRRMEISTER et al., 

2011a). This Holocene surface layer also overlies Yedoma Ice Complex (Figure 8). 

However, carbon in Yedoma Ice Complex is more labile (VONK et al., 2013; STRAUSS, 

2014) and more decomposable than in other thawed mineral soils (WALTER ANTHONY et 

al., 2014). Comparisons of DOC concentrations in different landscape units show that 

DOC concentrations of source waters on Yedoma Ice Complex (soil water of Yedoma 

uplands and streams, which are fed by the Ice Complex) are higher than Lucky Lake 

DOC concentration. This might be a result of thorough mixing of the lake, the quality of 

carbon, snowmelt dilution or DOC mineralization. The observation that DOC 

concentrations of Lucky Lake do not increase due to the inflow of DOC rich water 

suggest that these inflows are rich in old and labile organic carbon from Yedoma Ice 

Complex. Further, this suggests that Yedoma Ice Complex is degraded at the sampling 

sites. 

The heavier isotopic signatures and higher electrical conductivity suggest that some 

evaporation occurs, but the DOC concentration in Lucky Lake is nevertheless about half 

as much as the input of the lake. This suggests that DOC in the lake gets mineralized. 

Mineralization of DOC is due to microbial activities and photochemical reactions and was 

also observed by SCHUUR et al. (2009) and BAUER & BIANCHI (2011). After the outflow 

of Lucky Lake DOC concentration slightly decrease due to short residence time from 

Lucky Lake downstream to the Olenyokskaya Channel. Figure 15 shows no changes in 

DOC concentration despite of changes in discharge. This suggests that any process of 

changing DOC concentration occurs in the Lucky Lake. Nevertheless DOC fluxes for 

weir 1 and weir 2 were calculated for the measurement period of 29 days in 2013. A DOC 

flux of 92.5 kg for weir 1 and a DOC flux of 220.5 kg for weir 2 is presented in Chapter 

5.4.4.1. Because no high-resolution digital elevation model for the study site was 

available an exactly calculation of watershed areas was not possible, but was estimated 
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for the entire study site above weir 2, covering an area of 6.45 km
2
. This suggests that the 

DOC flux of the watershed is about 34.2 kg km
-2

 for 29 days and about 1.18 kg per day. 

FINLAY et al. (2006) published a Lena River DOC flux of 1811 kg km
-2

 y
-1

. Scaled down 

to one day this results in a DOC flux of 4.96 kg. LEWIS et al. (2012) studied DOC fluxes 

of a watershed with almost similar size (8 km
2
) in the Canadian Arctic. From 2006 to 

2009 they calculated a mean DOC flux of about 350 kg km
-2

 y
-1

. Scaled down to one day 

this results in a mean DOC flux of 0.96 kg, which is a little lower than for the watershed 

in this thesis. These estimations are benchmarks, which do not include spring floods, 

snow melt, rain events or the frozen period. 

Figure 21 shows a higher DOC concentration in the outlet of the main stream on the first 

terrace. This outlet is influenced by Olenyokskaya Channel water, which has a median 

DOC concentration of 10.9 mg L
-1

. Backwater of the Olenyokskaya Channel enriches the 

stream outlet with DOC and causes an increase of DOC concentration in the outlet. 

6.2 Temporal variability of DOC 

In Figure 22 a higher median DOC concentration in 2014 is observed for the entire 

system, except for Olenyokskaya Channel. Figure 23 and 24 show slightly increasing 

DOC concentrations in the main stream till the end of July and slightly decreasing DOC 

concentrations afterwards. BAUER & BIANCHI (2011) described that temporal variability 

of carbon in estuaries is attributable to the variability in insolation, precipitation, 

temperature and snowmelt up to extreme events like floods. But such a relation between 

the enumerated factors and DOC concentration was not determined and could not be 

analyzed due to insufficient data density in this thesis. Figure 25 and 26 show no 

significant changes in DOC concentration due to temperature or precipitation. Figure 26 

shows that there is a significant increase in DOC concentration of the Olenyokskaya 

Channel when temperature rose above 0 °C and ice break-up and snow melt started, 

which also means an increased discharge. But this is not comparable with the Lucky Lake 

stream system. In summary, no significant temporal variability of DOC concentration 

during summer could be determined by using the analyzed data. This might be a result of 

too large sampling intervals, but may also reflect the influence of lakes in the drainage 

flow path on DOC concentration. 
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6.3 Outlook 

For further studies an end member analysis of stable isotopes would be advantageous to 

determine the waters’ origin in the studied landscape units. A longer sampling period with 

shorter sampling intervals could be used to determine a temporal variability of DOC 

concentration. Additionally extra sampling after big rain events or extreme changes in air 

temperature would be interesting as well as a high resolution digital elevation model for 

exact analyzes of the watershed in the study site. This approach to characterize 

differences in DOC concentration in several landscape forms could be used to compare 

watersheds in arctic regions, e.g. where Yedoma Ice Complex is located. Future studies 

should compare drainage from Yedoma Ice Complex with and without lakes in order to 

assess the importance of lacustrine processes in changing land-to-ocean transport 

processes. During this thesis, it became clear that the spatial variability of DOC 

concentration in a permafrost affected landscape is very complex and that the utilized data 

set still contains a high potential for further studies.  
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7 Conclusion 

The aim of this thesis was to identify different landscape units of a permafrost influenced 

catchment in the Lena River Delta and to analyze their influence on the amount of DOC 

and other water chemistry parameters. Overall 175 summer surface water samples of 

2013 and 2014 plus 23 soil water samples of 2013 were allocated to the determined 

landscape units: Yedoma Ice Complex thermokarst lakes (A), Yedoma Ice Complex 

streams (B), Yedoma Ice Complex streams, which are fed by the Ice Complex (C), 

Yedoma Ice Complex uplands (D), first terrace relict lake (E), first terrace thermokarst 

lakes (F), first terrace streams (G) and Olenyokskaya Channel (H). Analyzes of electrical 

conductivity, isotopic composition and DOC concentration revealed that the drainage 

flow path is divided by landscape units, from the Yedoma Ice Complex thermokarst lake 

Lucky Lake downstream to the first terrace stream outlet, and source waters, located on 

Yedoma Ice Complex. The results of this work show that source waters have significantly 

higher DOC concentrations, lower electrical conductivity and δ values, which lie above 

the GMWL. It can be observed that high DOC concentrations of source waters do not 

result in increasing DOC concentration in the Lucky Lake. This suggests that the 

inflowing organic carbon is labile and that mineralization occurs rapidly. Accordingly the 

labile organic carbon is of degrading Yedoma Ice Complex origin. Downstream the 

drainage flow path DOC concentration does not change significantly. In short, in summer 

waters from the Yedoma Ice Complex provide more DOC than those from the first 

terrace, as a result of differences in either organic carbon quality and/or in flow pathways. 

Yedoma Ice Complex lake processes, despite evaporation, further reduce DOC 

concentration, probably through mineralization. Streams draining Yedoma Ice Complex 

directly, without intermediary lakes, thus probably have higher DOC concentrations. A 

temporal variability of DOC concentration was not observed in this thesis. Discharge data 

of a 29 days measuring period enabled the calculation of a DOC flux of about 220 kg for 

29 days for the entire system. 
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