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Background

Global CH4 budget for the past three decades [Tg(CH
4
) yr-1]

[IPCC, The Fifth Assessment Report AR5]

● Wetlands are the dominant natural source of CH
4
 over the globe

● Still large range of wetland emission estimates

● Permafrost wetlands not separately assessed

● Process‐based models tend to be calibrated at individual 
wetland sites and then applied across the globe

● Spread in top -down approach is due to a lack of observations

Tg(CH
4
)yr-1

1980 - 1989 1990 - 1999 2000 - 2009

Top-Down Bottom-Up Top-Down Bottom-Up Top-Down Bottom-Up

Natural Sources 203 [150 - 267] 355 [244 - 466] 182 [167 - 197] 336 [230 - 465] 218 [179 - 273] 347 [238 - 484]

Natural Wetlands 167 [115 - 231] 225 [183 - 266] 150 [144 - 160] 206 [169 - 265] 175 [142 - 208] 217 [177 - 284]

Other Sources 36 [35 - 36] 130 [61 - 200] 32 [23 - 37] 130 [61 - 200] 43 [37 - 65] 130 [61 - 200]
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Eddy Covariance & Chamber measurements 

● Continuous in-situ observations of the surface-
atmosphere exchange

● Well suited for local process studies and for 
investigating the temporal variability of fluxes

But:
● Rare in the Arctic permafrost zone

● Site selection is bound by logistical constraints among others

● These observations cover only small areas that are not 
necessarily representative of the region of interest
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Airborne Flux Measurements

Blue → red: ≤ 1.85 → ≥ 2.00 ppm CH
4

AIRMETH 2012, North Slope of Alaska, 28 June -  2 July 2012
24 flight hours out of Barrow / 3500 km / 40 vertical profiles

● Closing the gap between tower and sattelite measurements

● Assessing heterogeneity of sources and sinks

But:
● Expensive and provide a snapshot at a particular time

Barrow

Atqasuk

Prudhoe-Bay
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Research Aircraft POLAR5

Los Gatos RMT-200
CH

4
, precision: 3 ppb @ 10 Hz

messWERK GmbH
3D wind, precision: 0.1 m/s @ 100Hz
Temperature, precision: 0.01 K @ 100 Hz

● Inertial Navigation System

● GPS

● Radar altimeter

● Laser altimeter

● Radiation thermometer

● Pyranometer

● Pyrgeometer

● Total Temperature Sensor

● Humidity / Temperature sensors

● Photo / Video cameras
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Workflow

Aims
● Link the measurement to surface properties
● Land cover specific CH

4
 flux

● Maps of the predicted CH
4 
fluxes

● CH
4
 budget and budget uncertainty
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Atmospheric Scales

Excluded 20 runs (~1600 km) of 44 (~3500 km)

● above surface layer (> 10% boundary layer height) measured flux not representative of surface flux

● below mechanical blending height z
blend

 turbulence not representative of mechanical setting in entire source area

29.06.12 17:45 – 18:00 UTC

[Mahrt 2000, Bange 2007]zblend=
u∗

U

Lhetero

Cblend
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Atmospheric Scales

Excluded 20 runs (~1600 km) of 44 (~3500 km)

● above surface layer (> 10% boundary layer height) measured flux not representative of surface flux

● below mechanical blending height z
blend

 turbulence not representative of mechanical setting in entire source area

29.06.12 17:45 – 18:00 UTC 28.06.12 29.06.12

[Mahrt 2000, Bange 2007]zblend=
u∗

U
Lhetero

Cblend

boundary
layer height

flight
altitude
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Wavelet Analysis

● Spatially resolved turbulence statistics and LE, H, CH
4

● Large contribution from structures >1 km
● Mesoscale transport is not “visible” in flux tower measurements
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Footprint Analysis

Footprint model of Kljun et al. (2004)

80% cum. footprint distance:

● 250–8400 m, median 800 m

● Spatially resolved contribution of land cover, LST, NDVI, EVI etc to each flux observation
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Turbulent CH
4
 Fluxes

● Purple: 95% confidence interval, grey: 1 σ random sampling error

● Color scale: dominant LST and NDVI in each 100 m slice

QA / QC tests:
● Steady state tests [Foken and Wichura, 1996; Vickers and Mahrt, 1997]

● ITC test [Foken, 2008]

● Rejection of fluxes below 95% detection limit
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Machine Learning

Boosted Regression Trees

Airborne measurements & Remote sensing data

● ML approach tries to learn the response by 
observing inputs and responses and finding 
dominant patterns (regression tree)

● Boosting combine large numbers of relatively 
simple tree models adaptively, to optimize 
predictive performance

17983 CH
4
 flux values



18AGU Fall Meeting, San Francisco, CA09 – 13 December 2013

Boosted Regression Trees
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Environmental Mean Response Functions
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Map of predicted CH
4
 Flux

Median measured CH
4
 flux along transects:    13.1 mg/m2/day 

Median predicted CH
4
 flux across the area:     18.9 mg/m2/day
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NASA-MODIS image
June 14, 2008

Anaktuvuk River Fire

Credit: Bureau of Land Management, Alaska Fire Service

Credit: Courtesy of Jim Laundre, Marine Biological Laboratory

July – September 2007
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Future Plans

Seasonality of drivers
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Temporal maps of predicted CH
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 flux
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Future Plans

Land cover & soil type specific
CH

4
 budget and budget uncertainty 

Seasonality of drivers

Temporal maps of predicted CH
4
 flux

Land cover CH
4
 [mg/m2/hr]

Wetlands 0.8

Shurb 0.3

Sedge 0.6

... 0.4
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Summary

● Airborne flux data covering extensive areas of terrestrial permafrost

● Wavelet decomposition yields high spatial resolution of the flux observations

● Footprint modelling to map spatially resolved contribution of environmental drivers

● Boosted regression trees to link the methane exchange to meteorological and 
biophysical drivers in a high latitude permafrost areas

● Environmental response functions assist bridging observational scales:

● isolate and quantify relevant land-atmosphere exchange processes
● extend airborne flux measurements to regional scale
● estimate land cover specific emission factors
● assess the spatial representativeness of flux tower measurements
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