



POTSDAM

# **The Airborne Measurements** of Methane Fluxes (AIRMETH) Arctic Campaign

Andrei Serafimovich<sup>\*1</sup>, Stefan Metzger<sup>2,3</sup>, Jörg Hartmann<sup>4</sup> Katrin Kohnert<sup>1</sup>, Sebastian Wieneke<sup>5</sup>, Torsten Sachs<sup>1</sup>

<sup>1</sup> GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany <sup>2</sup> National Ecological Observatory Network, 1685 38th Street, Boulder, CO 80301, USA <sup>3</sup> University of Colorado, 1560 30th Street, Boulder, CO 80303, USA <sup>4</sup> Alfred Wegener Institut – Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany <sup>5</sup> Institute of Geophysics and Meteorology, Cologne University, 50969 Cologne, Germany

Helmholtz Young Investigators Group

Global CH4 budget for the past three decades [Tg(CH<sub>2</sub>) yr<sup>1</sup>]

| Tg(CH <sub>4</sub> )yr <sup>-1</sup> | <b>1980 - 1989</b> |                 | 1990 - 1999     |                 | 2000 - 2009     |                 |
|--------------------------------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                                      | Top-Down           | Bottom-Up       | Top-Down        | Bottom-Up       | Top-Down        | Bottom-Up       |
| Natural Sources                      | 203 [150 - 267]    | 355 [244 - 466] | 182 [167 - 197] | 336 [230 - 465] | 218 [179 - 273] | 347 [238 - 484] |
| Natural Wetlands                     | 167 [115 - 231]    | 225 [183 - 266] | 150 [144 - 160] | 206 [169 - 265] | 175 [142 - 208] | 217 [177 - 284] |
| Other Sources                        | 36 [35 - 36]       | 130 [61 - 200]  | 32 [23 - 37]    | 130 [61 - 200]  | 43 [37 - 65]    | 130 [61 - 200]  |

[IPCC, The Fifth Assessment Report AR5]

- Wetlands are the dominant natural source of CH<sub>4</sub> over the globe
- Still large range of wetland emission estimates
- Permafrost wetlands not separately assessed
- Process-based models tend to be calibrated at individual wetland sites and then applied across the globe
- Spread in top -down approach is due to a lack of observations



GFZ

Helmholtz Centre Potsdam

# Background

Helmholtz Young Investigators Group

Global CH4 budget for the past three decades [Tg(CH\_) yr<sup>1</sup>]

|                  | 1980 - 1989     |                 | 1990 - 1999     |                 | 2000 - 2009     |                 |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Ig(CH₄)yr⁻       | Top-Down        | Bottom-Up       | Top-Down        | Bottom-Up       | Top-Down        | Bottom-Up       |
| Natural Sources  | 203 [150 - 267] | 355 [244 - 466] | 182 [167 - 197] | 336 [230 - 465] | 218 [179 - 273] | 347 [238 - 484] |
| Natural Wetlands | 167 [115 - 231] | 225 [183 - 266] | 150 [144 - 160] | 206 [169 - 265] | 175 [142 - 208] | 217 [177 - 284] |
| Other Sources    | 36 [35 - 36]    | 130 [61 - 200]  | 32 [23 - 37]    | 130 [61 - 200]  | 43 [37 - 65]    | 130 [61 - 200]  |



Photo: Konstanze Piel

Eddy Covariance & Chamber measurements

- Continuous in-situ observations of the surfaceatmosphere exchange
- Well suited for local process studies and for investigating the temporal variability of fluxes

[IPCC, The Fifth Assessment Report AR5]

- Wetlands are the dominant natural source of CH<sub>4</sub> over the globe
- Still large range of wetland emission estimates
- Permafrost wetlands not separately assessed
- Process-based models tend to be calibrated at individual wetland sites and then applied across the globe
- Spread in top -down approach is due to a lack of observations

#### **But:**

- Rare in the Arctic permafrost zone
- Site selection is bound by logistical constraints among others
- These observations cover only small areas that are not necessarily representative of the region of interest





POTSDAM

# **Airborne Flux Measurements**

### TEAM Trace Gas Exchange in the Earth-

Helmholtz Young Investigators Group

HELMHOLTZ

ASSOCIATION



• Assessing heterogeneity of sources and sinks

#### But:

• Expensive and provide a snapshot at a particular time



### **Research Aircraft POLAR5**

### Heimholtz Young Investigators Group

e Gas Exchange in the Earth-Atmosphere System on Multiple Scales

#### Los Gatos RMT-200 CH, precision: 3 ppb @ 10 Hz





messWERK GmbH 3D wind, precision: 0.1 m/s @ 100Hz Temperature, precision: 0.01 K @ 100 Hz

- **Inertial Navigation System**
- GPS
- **Radar altimeter**
- Laser altimeter •
- **Radiation thermometer**
- **Pyranometer**
- Pyrgeometer
- **Total Temperature Sensor** •
- Humidity / Temperature sensors

5

Photo / Video cameras

ELMHOLTZ ASSOCIATION



09 - 13 December 2013

GFZ

Helmholtz Centre POTSDAM

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

- Link the measurement to surface properties
- Land cover specific  $CH_4$  flux
- Maps of the predicted  $CH_4$  fluxes
- CH<sub>4</sub> budget and budget uncertainty





Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

### Low-level flights

- 3D location
- 3D wind vector
- CH<sub>4</sub> concentration
- Humidity
- Air pressure & temperature



- Link the measurement to surface properties
- Land cover specific  $CH_{_{4}}$  flux
- Maps of the predicted  $CH_4$  fluxes
- CH<sub>4</sub> budget and budget uncertainty





Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

#### Low-level flights

- 3D location
- 3D wind vector
- CH<sub>4</sub> concentration
- Humidity
- Air pressure & temperature

#### **Time-frequency wavelet analysis**

- Spatially resolved turbulence statistics
- Spatially resolved turbulent fluxes

- Link the measurement to surface properties
- Land cover specific  $CH_{_{4}}$  flux
- Maps of the predicted  $CH_4$  fluxes
- CH<sub>4</sub> budget and budget uncertainty





Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

#### Low-level flights

- 3D location
- 3D wind vector
- CH<sub>4</sub> concentration
- Humidity
- Air pressure & temperature

#### **Time-frequency wavelet analysis**

- Spatially resolved turbulence statistics
- Spatially resolved turbulent fluxes

**Footprint modelling** 

 Spatially resolved contributions of land cover, LST, EVI, NDVI, albedo to each observation of CH<sub>4</sub> flux

#### Aims

GFZ

Helmholtz Centre

- Link the measurement to surface properties
- Land cover specific CH<sub>4</sub> flux
- Maps of the predicted  $CH_{A}$  fluxes
- CH<sub>4</sub> budget and budget uncertainty



Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

#### Low-level flights

- 3D location
- 3D wind vector
- CH, concentration
- Humidity
- Air pressure & temperature

#### **Time-frequency wavelet analysis**

- Spatially resolved turbulence statistics
- Spatially resolved turbulent fluxes

**Footprint modelling** 

 Spatially resolved contributions of land cover, LST, EVI, NDVI, albedo to each observation of CH<sub>4</sub> flux

**Machine learning** 

• Environmental response functions



#### **ns** Link the measurement to surface properties

- Land cover specific CH<sub>4</sub> flux
- Maps of the predicted CH, fluxes
- CH<sub>4</sub> budget and budget uncertainty



### **Atmospheric Scales**

Excluded 20 runs (~1600 km) of 44 (~3500 km)

- above surface layer (> 10% boundary layer height) measured flux not representative of surface flux
- below mechanical blending height  $z_{blend}$  turbulence not representative of mechanical setting in entire source area



 $z_{blend} = \frac{u_*}{U} \frac{L_{hetero}}{C_{hetero}}$ [Mahrt 2000, Bange 2007]



Helmholtz Young Investigators Group

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

### **Atmospheric Scales**

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

Helmholtz Young Investigators Group

Excluded 20 runs (~1600 km) of 44 (~3500 km)

- above surface layer (> 10% boundary layer height) measured flux not representative of surface flux
- below mechanical blending height  $z_{blend}$  turbulence not representative of mechanical setting in entire source area



### Wavelet Analysis

HELMHOLTZ

ASSOCIATION

13

e Gas Exchange in the Earth-Atmosphere System on Multiple Scales



Helmholtz Centre POTSDAM

### Wavelet Analysis

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales



# **Footprint Analysis**

Heimholtz Young Investigators Group

ELMHOLTZ

ASSOCIATION

15

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales



### 80% cum. footprint distance:

- 250-8400 m, median 800 m
- Spatially resolved contribution of land cover, LST, NDVI, EVI etc to each flux observation



# Turbulent CH<sub>4</sub> Fluxes

Investigators Group TEAM

Heimholtz Young

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

16

ASSOCIATION



291.92 285.83



- Purple: 95% confidence interval, grey: 1  $\sigma$  random sampling error
- Color scale: dominant LST and NDVI in each 100 m slice

### QA / QC tests:

- Steady state tests [Foken and Wichura, 1996; Vickers and Mahrt, 1997]
- ITC test [Foken, 2008]
- Rejection of fluxes below 95% detection limit



# Machine Learning

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

Airborne measurements & Remote sensing data



### **Boosted Regression Trees**

Helmholtz Young Investigators Group

HELMHOLTZ

ASSOCIATION

18

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales





### **Environmental Mean Response Functions**

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

Helmholtz Young Investigators Group

HELMHOLTZ

ASSOCIATION

19







Helmholtz Young Investigators Group

20

ASSOCIATION

Helmholtz Centre

# Anaktuvuk River Fire

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

Helmholtz Young Investigators Group



Credit: Bureau of Land Management, Alaska Fire Service

Credit: Courtesy of Jim Laundre, Marine Biological Laboratory



June 14, 2008

GFZ

Helmholtz Centre

### **Future Plans**

Helmholtz Young Investigators Group

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

### **Seasonality of drivers**







GFZ

Helmholtz Centre

### **Future Plans**

HELMHOLTZ

ASSOCIATION

23

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales







### **Future Plans**

HELMHOLTZ

ASSOCIATION

24

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales



### Temporal maps of predicted $CH_a$ flux





# Land cover & soil type specific CH<sub>4</sub> budget and budget uncertainty

land\_cover\_NLCD



| Land cover | CH <sub>4</sub> [mg/m <sup>2</sup> /hr] |  |  |
|------------|-----------------------------------------|--|--|
| Wetlands   | 0.8                                     |  |  |
| Shurb      | 0.3                                     |  |  |
| Sedge      | 0.6                                     |  |  |
|            | 0.4                                     |  |  |



Helmholtz Young

- Airborne flux data covering extensive areas of terrestrial permafrost
- Wavelet decomposition yields high spatial resolution of the flux observations
- Footprint modelling to map spatially resolved contribution of environmental drivers
- Boosted regression trees to link the methane exchange to meteorological and biophysical drivers in a high latitude permafrost areas
- Environmental response functions assist bridging observational scales:
  - isolate and quantify relevant land-atmosphere exchange processes
  - extend airborne flux measurements to regional scale
  - estimate land cover specific emission factors
  - assess the spatial representativeness of flux tower measurements



### Acknowledgments

Trace Gas Exchange in the Earth-Atmosphere System on Multiple Scales

26

SSOCIATION

• Engineers and flight crew: Christian Müller, Christian Konrad, PIC Jon Sipko, FO Dereck Peterson, AME Luke Cirtwill

• Additional funding and support: EU Cost Action PERGAMON, Helmholtz Climate Initiative "Regional Climate Changes" (REKLIM)

• Logistical support: Barrow Arctic Science Consortium (BASC), Aurora Research Institute (ARI)

• Scott Dallimore et al., Jens Greinert, Matthias Mauder, and many more



