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Abstract. Data assimilation experiments that aim at improv-

ing summer ice concentration and thickness forecasts in the

Arctic are carried out. The data assimilation system used is

based on the MIT general circulation model (MITgcm) and a

local singular evolutive interpolated Kalman (LSEIK) filter.

The effect of using sea ice concentration satellite data prod-

ucts with appropriate uncertainty estimates is assessed by

three different experiments using sea ice concentration data

of the European Space Agency Sea Ice Climate Change Ini-

tiative (ESA SICCI) which are provided with a per-grid-cell

physically based sea ice concentration uncertainty estimate.

The first experiment uses the constant uncertainty, the sec-

ond one imposes the provided SICCI uncertainty estimate,

while the third experiment employs an elevated minimum

uncertainty to account for a representation error. Using the

observation uncertainties that are provided with the data im-

proves the ensemble mean forecast of ice concentration com-

pared to using constant data errors, but the thickness forecast,

based on the sparsely available data, appears to be degraded.

Further investigating this lack of positive impact on the sea

ice thicknesses leads us to a fundamental mismatch between

the satellite-based radiometric concentration and the mod-

eled physical ice concentration in summer: the passive mi-

crowave sensors used for deriving the vast majority of the sea

ice concentration satellite-based observations cannot distin-

guish ocean water (in leads) from melt water (in ponds). New

data assimilation methodologies that fully account or miti-

gate this mismatch must be designed for successful assimi-

lation of sea ice concentration satellite data in summer melt

conditions. In our study, thickness forecasts can be slightly

improved by adopting the pragmatic solution of raising the

minimum observation uncertainty to inflate the data error and

ensemble spread.

1 Introduction

For the past 30 years, the Arctic sea ice extent and volume

consistently decreased in all seasons with a maximum de-

cline in summer (Vaughan et al., 2013). This retreat has large

effects on the climate system. For example, the strong con-

trast between the albedo of sea ice and open water has a

profound effect on the Arctic surface heat budget. This re-

treat also influences the lower-latitude weather and climate

and has been linked to extreme events at midlatitudes, for

example, unusually cold and snowy winters in Europe, the

USA, and eastern Asia (Liu et al., 2012; Cohen et al., 2012),

heat waves and droughts in the USA and in Europe (Tang et

al., 2014), and anomalous anticyclone circulation over East-

ern Europe and Russia (e.g., Semmler et al., 2012; Yang and

Christensen, 2012). Apart from its relevance to regional and

global climate, Arctic sea ice decline opens new economic

opportunities. Accurate summer sea ice forecasts are there-
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fore urgently required to thoroughly manage the opportuni-

ties (e.g., shipping, tourism) and risks (e.g., oil spill, marine

emergencies) associated with Arctic opening (Eicken, 2013).

Sea ice data assimilation plays a pivotal role in sea ice

forecasting, as it can provide realistic initial model states

and continuously constrain the model state closer to reality.

Data assimilation requires both reliable observed quantities

and realistic uncertainty estimates. These requirements, es-

pecially regarding data uncertainties, are now also increas-

ingly recognized by the sea ice remote-sensing community.

Previous studies have shown that the assimilation of sea ice

concentration (SIC) data can improve SIC estimates (e.g.,

Lisæter et al., 2003; Lindsay and Zhang, 2006; Stark et al.,

2008; Tietsche et al., 2013; Buehner et al., 2014) and also

constrain the ice thickness and volume (Schweiger et al.,

2011; Yang et al., 2015a). Given that error estimates in the

studies mentioned above were assumed to be constant, there

is scope for further improvement through the use of more re-

alistic uncertainty estimates.

In 2010, the European Meteorological Satellite Agency

(EUMETSAT) Ocean and Sea Ice Satellite Application Fa-

cility (OSISAF, http://www.osi-saf.org) released a climate

data record of SIC based on SMMR and SSM/I data (East-

wood et al., 2011; product OSI-409). This data set features an

explicit correction of the satellite signal due to weather con-

tamination, dynamic adaptation of algorithm tie points, and

spatiotemporally varying maps of uncertainties. In fact, this

OSI-409 data set and its uncertainties were already success-

fully used for data assimilation purposes (e.g., Massonnet et

al., 2013).

In May 2014, the European Space Agency (ESA) Sea Ice

Climate Change Initiative (SICCI) released a SIC data set

with associated uncertainty estimates (Version 1.11) to the

public. In many respects, the SICCI SIC data set features

an update of the algorithms and processing methodologies

used for the OSISAF OSI-409 data set and, importantly, re-

vised uncertainty estimates (Lavergne and Rinne, 2014). At

the time of writing these two data sets, SICCI and OSISAF

OSI-409, are the only algorithms or products that come with

a physically based sea ice retrieval uncertainty information

– as opposed to an estimate of the spatiotemporal variation

of the ice concentration within a certain grid area and time

window (e.g., NOAA SIC CDR; Peng et al., 2013). This new

data set SICCI (v1.11) provides an opportunity to study the

effect of the revised local (i.e., spatially varying) uncertain-

ties on the assimilation of SIC data and hence sea ice predic-

tion skill.

In this study, we follow the approach of Yang et al. (2015a)

and Yang et al. (2015b) by focusing on the summer of 2010

and using the same ensemble-based singular evolutive in-

terpolated Kalman (SEIK) filter (Pham et al., 1998; Pham,

2001) in its local form (LSEIK, Nerger et al., 2006). The

SEIK filter algorithm for assimilating the SIC is selected be-

cause it is computationally efficient when applied to nonlin-

ear models (Nerger et al., 2005), and a localized implemen-

tation of such a filter allows for detailed sampling of forecast

uncertainties (Nerger et al., 2006). The LSEIK filter has al-

ready been used successfully for SIC data assimilation (Yang

et al., 2015a). The purpose of the study is to quantify the im-

pact of different observational uncertainty approximations on

sea ice data assimilation through a comparison with indepen-

dent ice concentration and ice thickness observations.

2 Forecasting experiment design

We use the MIT general circulation model (MITgcm) sea

ice–ocean model (Marshall et al., 1997; Losch et al., 2010).

Following Yang et al. (2015a) and Yang et al. (2015b), this

study employs an Arctic regional configuration with a hori-

zontal resolution of about 18 km and open boundaries in the

North Atlantic and North Pacific (Nguyen et al., 2011). To

explicitly include flow-dependent uncertainty in atmospheric

forcing, the approach by Yang et al. (2015a) was used in

which UK Met Office (UKMO) ensemble forecasts from the

TIGGE archive (THORPEX Interactive Grand Global En-

semble) drive the ensemble of sea ice–ocean models. Each

of the selected UKMO ensemble forecasts consists of one

unperturbed “control” forecast and an ensemble of 23 fore-

casts with perturbed initial conditions. For further details

the reader is referred to Bowler et al. (2008) and Yang et

al. (2015a).

Following Yang et al. (2015a) and Yang et al. (2015b),

the system’s forecasting skills are evaluated with a series

of 24 h forecasts over the period of 1 June to 30 August

2010 during which the LSEIK filter is applied every day.

This particular period is chosen as it was the first time that

the open water was found in the interior pack ice near the

North Pole as early as 12 July 2010 (NSIDC, http://nsidc.

org/arcticseaicenews/2010/07/). During this summer melting

period the Arctic sea ice extent (area with at least 15 % SIC)

shrank from 11.8 million km2 on 1 June to 5.2 million km2 on

30 August 2010 (Sea ice Index (Version 1.0), Fetterer et al.,

2002, NSIDC), which shows a clear picture of sea ice melting

in Arctic summer: on 1 June most of the Arctic Ocean was

covered with closed pack ice, while on 30 August the sea ice

area had shrunk to the central Arctic and the concentration

was drastically reduced (Fig. 1).

The simulated and satellite-observed SIC are combined

using a sequential SEIK filter with second-order exact sam-

pling (Pham et al., 1998; Pham, 2001) coded within the

Parallel Data Assimilation Framework (PDAF, Nerger and

Hiller, 2013; http://pdaf.awi.de). The filter algorithm in-

cludes the following phases: initialization, forecast, analy-

sis, and ensemble transformation. The sequence of forecast,

analysis, and ensemble transformation is repeated.

The required initial ensemble approximates the uncer-

tainty in the initial state of the physical phenomena. Follow-

ing Losa et al. (2012) and Yang et al. (2015a), we used a

model integration driven by the 24 h UKMO control fore-
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Figure 1. The NSIDC (a, b) and SICCI (c, d) sea ice concentration on 1 June (a, c) and 30 August 2010 (b, d). The locations of BGEP_2009A,

BGEP_2009D, and IMB_2010B are shown as a white triangle, a white square, and a white line in image (a). Data-void areas along the coasts

are white, and these areas are larger in NSIDC than in SICCI.

casts over the period of 1 June to 31 August 2010 to estimate

the initial state error covariance matrix of SIC and thick-

ness. The leading empirical orthogonal functions (EOFs) of

this covariance matrix representing the model variability are

transformed by the second-order exact sampling to generate

the initial ensemble of ice concentration and thickness. An

ensemble size of 23 states is chosen to match with the ensem-

ble size of UKMO perturbed forcing. In the forecast phase,

all ensemble states are dynamically evolved in time with the

fully nonlinear sea ice model driven by the UKMO ensemble

atmospheric forcing. The analysis step k combines the pre-

dicted model state x
f
k with the observational information yk

and computes a corrected state xa
k every 24 h as follows.

xa
k = x

f
k +Kk

(
yk −Hkx

f
k

)
(1)

Kk = P
f
k H T

k (HkP
f
k H T

k +Rk)
−1 (2)

Here K is the so-called Kalman gain that weights the ob-

servational information based on the model and data error

covariance, P
f
k and Rk , respectively. Hk is the observational

operator that project the model variable to the observational

space. In the analysis step the error covariance matrix and

ensemble of model state approximating the P a
k are updated.

With the SEIK filter as a reduced-rank square-root approach,

the updated ensemble of model states samples the analyzed

model uncertainties according to the leading EOFs. As seen

from the formulas the quality of the analysis and, there-

fore, the system’s prediction skills depend on the assumed

prior error statistics Pk and Rk . In this respect it is worth

stressing the importance of accounting for representative-

ness/representation errors. Such errors relate to uncertain-

ties in the projection of model variables to the observational

space. For example, the model may represent the observed

data on different temporal and spatial scales (grid box aver-

ages vs. point measurements) or the model variable may not

be directly related to the observation. There are also deficien-

cies in approximating and sampling the model uncertainties.

In practice, it is rather difficult to estimate the representa-

tion error a priori, also due to the conditional nature of error

statistics specified in data assimilation algorithms. Hence, it

may become necessary to enlarge observational uncertainties

to account for representation errors.

In Nerger et al. (2006) it was shown that implementing the

SEIK analysis in a local context (LSEIK) allows for a more

accurate approximation of the forecast error covariance even

with a relatively small ensemble size. In our study the LSEIK

analysis is performed for each model surface grid point by

assimilating the observational information only within a ra-

dius of 126 km (∼ 7 model grid points). Within the radius, we

weighted the observations assuming quasi-Gaussian (Gas-
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pari and Cohn, 1999) dependence of the weights on the dis-

tance from the analyzed grid point (see Janjić et al., 2011;

Losa et al., 2012). As the atmospheric errors are already ex-

plicitly accounted for by the ensemble forcing, an ensemble

inflation simulating model errors is not needed in this LSEIK

configuration (Yang et al., 2015a).

Three daily SIC data sets are used in this study. The SICCI

fields from AMSR-E (Lavergne and Rinne, 2014) are used

in the data assimilation. This product consists of daily fields

provided on a 25 km polar-centered EASE2 grid (Brodzick

et al., 2012). In the SICCI data set, the North Pole data gap is

filled by interpolation, and daily maps of total standard error

(the sum of algorithm uncertainties and smear uncertainties

that refers to the representation error on a different grid reso-

lution) are provided. If the uncertainties contain the smearing

error the data assimilative system will account for this. The

ice concentration data used for comparison are from the Na-

tional Snow and Ice Data Center (NSIDC; Cavalieri et al.,

1984). This product also consists of daily fields with 25 km

grid spacing on a polar stereographic projection. For sum-

mer 2010, the NSIDC ice concentration fields are derived

from a different passive microwave instrument (SSMI/S on-

board DMSP F-17) and with a different algorithm (NASA-

Team). AMSR-E has a finer native spatial resolution than

SSMI/S so that, although both products are provided on a

25 km grid, the SICCI (AMSR-E-based) fields have more

details and appear less smoothed than the NSIDC (SSMI/S-

based) fields, especially in the sea ice edge area (Fig. 1).

Strictly speaking, the differences between the SICCI and

NSIDC products – different Earth grids (polar stereographic

vs. EASE2) and finer native spatial resolution of AMSR-E

– do not make them independent data, because both are de-

rived from passive microwave instruments, but we may as-

sume that they are sufficiently different for to be treated as

independent. As a third data set for comparison and discus-

sion, we use the MODIS-based SIC and melt pond fraction

(MPF) data from University of Hamburg. These data are ob-

tained from surface reflectance in several MODIS frequency

bands and a method that is based on the fact that different sur-

face types (melt ponds, sea ice, snow, and open water) have

different reflectance spectra (Rösel et al., 2012, and Rösel

and Kaleschke, 2012). Thus, the MODIS-derived melt pond

and open water fractions (OWFs), which are related to SIC

by 1−OWF, are completely independent observations and

as such we can use them for the forecasting system’s as-

sessment. Because of the strong influence of cloud cover on

MODIS, these data are provided as composites over 8 days

on a 12.5 km resolution grid. The absolute MPF that has not

been weighed over the SIC is used in this study. In order

to account for a possible bias in MODIS-derived MPF and

SIC data product (Mäkynen et al., 2014) and other uncertain-

ties (Rösel et al., 2012), we followed Kern et al. (2016) and

decreased the MPF estimates by 0.08 and replaced negative

values of the MPF by 0. MODIS SIC was increased by 0.03

and limited to a maximum of 1.0.

In spite of available satellite-based observations of ice

thickness such as ICESat (Kwok and Rothrock, 2009),

CryoSat-2 (Laxon et al., 2013; Zygmuntowska et al., 2014),

and SMOS (Tian-Kunze et al., 2014), it is currently gener-

ally impossible to retrieve reliable sea ice thickness from

either laser/radar altimetry or brightness temperature dur-

ing summer melt conditions due to wet snow conditions or

clouds. There are also no airborne summer sea ice thickness

data available from Operation Ice Bridge (OIB) campaign

flights because these are usually carried out in spring (Kurtz

et al., 2013). Instead of satellite-based and air-borne remote-

sensing data we compare our simulation results to measure-

ments of sea ice draft from the Beaufort Gyre Exploration

Project (BGEP) upward-looking sonar (ULS) moorings lo-

cated in the Beaufort Sea (BGEP_2009A, BGEP_2009D; see

Fig. 1a for the locations) and sea ice thickness data obtained

from autonomous ice mass balance buoys (IMBs; Perovich

et al., 2013). The error in ULS measurements of ice draft is

estimated as 0.1 m (Krishfield and Proshutinsky, 2006). To

facilitate a direct comparison with the model ice thickness,

following Vinje et al. (1998) and Hansen et al. (2013), the

drafts are converted to thickness by multiplying by a fac-

tor of 1.136. This constant ratio between thickness and draft

was derived by Vinje and Finnekåsa (1986) through hand

drillings. Different ice types and ice densities have different

effects on the draft-thickness conversion by introducing un-

certainties and nonlinear relationships between thickness and

the original drafts (Forsström et al., 2011), but the seasonal

evolution of the ice thickness is more important than the ab-

solute thickness values in this study, so these effects are ig-

nored in this study. The IMBs use two acoustic rangefinders

to monitor the position of the ice bottom and the snow/ice

surface and estimate the sea ice thickness. The accuracy of

both sounders is 5 mm (Richter-Menge et al., 2006). In this

study, the IMB_2010B was used; its trajectory during sum-

mer 2010 is shown in Fig. 1.

Three experiments, which mainly differ in the way obser-

vational uncertainties are represented, form the backbone of

this study:

1. LSEIK-1: following Yang et al. (2015a), SICCI SIC

data are assimilated with a constant uncertainty value

of 0.25, i.e., the observation errors are assumed to be

Gaussian distributed with standard deviations (SDs) of

0.25, including representation errors.

2. LSEIK-2: same as LSEIK-1 but the uncertainty fields

provided with the SICCI product are used (see Fig. 2). A

minimum uncertainty of 0.01 is imposed to avoid com-

plications due to divisions by very small numbers.

3. LSEIK-3: same as LSEIK-2 but with a minimum uncer-

tainty of 0.10 to account for a possible representation

error. This representation error is difficult to estimate

a priori. In order to find an appropriate values, we also

tested other values (0.05, 0.15, 0.20) as case studies. The

The Cryosphere, 10, 761–774, 2016 www.the-cryosphere.net/10/761/2016/



Q. Yang et al.: The challenge and benefit of assimilating sea ice concentration with uncertainty estimates 765

Figure 2. The uncertainty provided with SICCI sea ice concentration data on 12 July (a), 20 July (b), 13 August (c), and 21 August (d) 2010.

Data-void areas along the coasts are white.

results for 0.05 are very close to the results for the 0.01

value of LSEIK-2, the results for 0.20 are very close to

the 0.25 constant uncertainties, while the results of 0.10

fall between the results of 0.05 and 0.20. So the value

of 0.10 is chosen here to show the comparison with the

experiment using the provided uncertainty.

To reflect the increased uncertainty in the extrapolation of

the SICCI data into the data-void North Pole region, a con-

stant uncertainty of 0.30 is assigned in this region for all ex-

periments.

The original observational data uncertainties of ice con-

centrations that are provided with the SICCI data set and used

in LSEIK-2 and LSEIK-3 are displayed in Fig. 2. In Fig. 2,

we show the provided observation uncertainties on 12 July,

20 July, and 13 and 21 August 2010. The uncertainties are

about 0.05 over packed ice and open water, but larger uncer-

tainties up to and beyond 0.3 are present at the ice edge and

regions of intermediate ice concentration values. The SICCI

total uncertainties are indeed the sum of two components,

one characterizing the algorithm uncertainties and the other

measuring the uncertainties due to representativity of 25 km

daily averages, geo-location, and instrument footprint mis-

match (Lavergne and Rinne, 2014). The second component

to the total uncertainties is only pronounced in areas of gra-

dients in the SIC observations – typically at the ice edge –

and amount for the inability of such coarse resolution satel-

lite observations to accurately locate sea ice edge. Should the

SICCI SICs be assimilated in models with significantly better

spatial resolution, the enlarged uncertainties allow the model

to freely locate its ice edge within the 25× 25 km grid cells

showing intermediate ice concentration values in the data.

3 Results

Figure 3 shows the effect of assimilating SICCI concentra-

tion data on the simulated SIC averaged over August 2010

(Fig. 3b, c and d). Compared to the SICCI data, the unas-

similated model (Fig. 3a) has considerably lower SICs in the

pack ice of the Arctic Ocean and considerably higher SICs

in the marginal ice zones and the adjacent open water areas.

As expected, the three LSEIK experiments correct the model

bias towards observed (and assimilated) values. Of these as-

similation experiments, LSEIK-2, which uses the originally

SICCI-provided uncertainties, gives the best agreement with

the SICCI observations (Fig. 3c).

We also compare the predicted SIC against the MODIS-

based SIC data (Fig. 4). The reader is reminded that these

data are 8-day composites and just 10 such composites are

available over the period of interest. Only the grid cells with

a cloud cover fraction smaller than 0.10 were considered in

order to minimize the influence of clouds. As before, the

free run overestimates the SICs over the marginal ice zones

(Fig. 4a), the three LSEIK experiments improve the forecasts

(Fig. 4b, c, and d). The differences between the three assimi-
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Figure 3. The forecast skill improvement of sea ice concentration: “24 h forecast minus observations” averaged over August 2010. MITgcm

only (a), LSEIK-1 (b), LSEIK-2 (c), and LSEIK-3 (d) 24 h forecast minus SICCI ice concentration.

lated solutions are ambiguous. In some regions, for example,

Fram Strait, the LSEIK-1 (Fig. 4b) and 3 (Fig. 4d) solutions

have a strong bias that is corrected in LSEIK-2 (Fig. 4c), but

in the western Beaufort Sea LSEIK-2 (Fig. 4c) appears to

have larger differences to MODIS SIC than the other solu-

tions. Averaged over the 10 composites and all the available

data points, the root mean square error (RMSE) of the three

LSEIK forecasts with respect to the MODIS SIC have a same

value of 0.10.

Figure 5 compares the RMSE for ensemble mean ice

concentration forecasts with and without data assimilation

with respect to the assimilated SICCI (Fig. 5a) and the non-

assimilated NSIDC (Fig. 5b) ice concentration for the period

1 June to 30 August 2010. Note that Fig. 5 shows only the

RMSE for grid locations where the satellite products report

ice concentrations below 0.35, that is, mostly locations along

the ice edge. This threshold of 0.35 is somewhat arbitrary

but other values, for example, 0.25 or 0.50 lead to similar

results. Figure 5 thus mostly assesses how the data assimi-

lation experiments constrain the envelope of Arctic sea ice

(cyan color around concentrations of 0.35 in Fig. 1), not the

interior. The reason for choosing this range is that all SIC

products from passive microwave instruments are inaccurate

for high summer concentrations because of the presence of

melt ponds (Ivanova et al., 2015). In such a case, document-

ing that the assimilated state is closer to the NSIDC prod-

uct is not very conclusive, since NSIDC and SICCI products

are probably similarly affected at high concentration values.

Therefore, focusing on regions with lower SICs and a po-

tentially lower influence by melt ponds is likely enhancing

the robustness of our results. In addition, the two data sets

treat the open water area adjacent to the ice cover differently.

For example, the explicit weather correction method used in

the SICCI product does not correct for cloud liquid water

and cannot eliminate all weather influences on the ice con-

centration. In contrast the weather filter used for the NSIDC

data cuts off SIC at various values (Ivanova et al., 2015). It

should be also noted that for this comparison, the observa-

tions are linearly interpolated to the model grid. Such inter-

polation could lead to small local changes in SIC, and the

related biases are not discussed in this study.

All the data assimilation experiments reduce deviations of

the forecasted ice concentration from the satellite-based data

sets. The RMSE temporal evolutions are associated with the

number of available data points that can be used for compari-

son or with surface forcing. The curves of MITgcm free-runs

differ between Fig. 5a and b because the RMSE is calculated

with different SIC data sets. Compared to the free run with-

out data assimilation, mean RMSEs of LSEIK-1, LSEIK-2,

and LSEIK-3 ensemble mean forecasts with respect to the

SICCI data are reduced from an average of 0.56 to 0.18, 0.07,

and 0.16, respectively. Similarly, the RMSEs with respect to

the NSIDC data are reduced from 0.55 to 0.20, 0.13, and

0.19. At all times, LSEIK-2 and LSEIK-3, using the SICCI-

provided uncertainty estimates and adjusted minimum un-

certainties, agree better with both the assimilated SICCI and

The Cryosphere, 10, 761–774, 2016 www.the-cryosphere.net/10/761/2016/
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Figure 4. Same as Fig. 3, but “24 h forecasts minus MODIS composites” averaged over the period from 3 June to 21 August 2010. The 24 h

forecasts used in the comparisons start on day 5 of the 8-day-composite time period.

Figure 5. Temporal evolution of RMSE differences between sea

ice concentration forecasts and the SICCI (a) and NSIDC (b) ice

concentration data. The RMSE only includes grid points for which

the satellite data have ice concentrations below 0.35 (i.e., mostly in

the marginal ice zone). The RMSE of the MITgcm free-run, LSEIK-

1, LSEIK-2, and LSEIK-3 24 h forecasts are shown as gray, green,

blue, and red solid lines.

non-assimilated NSIDC observations than LSEIK-1, which

employs a constant uncertainty of 0.25. LSEIK-2, with the

original SICCI uncertainties, agrees best with both SICCI

and NSIDC observations. This shows that for this summer,

the forecasting system produces an ensemble mean state for

SIC that agrees better with the two ice concentration data sets

when the full range of uncertainties provided by the SICCI

satellite observation is used.

The corresponding forecasts of sea ice thickness in

LSEIK-2, however, are hardly plausible. Figure 5c shows an

unrealistically noisy sea ice thickness forecast for experiment

LSEIK-2 on 30 August, while the free run (Fig. 6a), LSEIK-

1 (Fig. 6b), and LSEIK-3 (Fig. 6d) have much smoother sea

ice thickness distributions.

The time series of daily 24 h forecast of sea ice thick-

ness are compared to in situ ULS observations BGEP_2009A

(Fig. 7a) and BGEP_2009D (Fig. 7b). Note that the numer-

ical model carries mean thickness (volume over area) as a

variable. The observed thickness is multiplied by SICCI or

NSIDC local ice concentration to arrive at the observed ULS-

SICCI or ULS-NSIDC grid-cell mean thicknesses shown

in Fig. 7. In spite of some small differences, ULS-SICCI

and ULS-NSIDC both reveal a very similar variation: at

BGEP_2009A, the grid-cell mean thickness on 1 June was

about 2.5 m. The thickness rapidly reduced under melt-

ing conditions in July and reached about 0.2 m on 30 Au-

gust (Fig. 7a). Similarly, the grid-cell mean thickness at

BGEP_2009D was about 3.5 m on 1 June and decreased

to less than 0.1 m on 30 August (Fig. 7b). All forecasts
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Figure 6. Sea ice thickness 24 h forecast on 30 August 2010. MITgcm only (a), LSEIK-1 (b), LSEIK-2 (c), and LSEIK-3 (d).

with data assimilation show improvements over the free-

running MITgcm after late July when the misfit between

the observed and modeled SICs becomes significant (Fig-

ure not shown). This is because the ice thickness is influ-

enced by the data assimilation only through the covariances

between the ice concentration and thickness (Yang et al.,

2015a). The ice thickness RMSE with respect to ULS-SICCI

at BGEP_2009A is reduced from 0.86 m in the free model

run to 0.43 m in LSEIK-1, 0.61 m in LSEIK-2, and 0.43 m

in LSEIK-3 (Table 1). Similarly, the RMSE with respect to

ULS-SICCI at BGEP_2009D is reduced from 0.93 m in the

free model run to 0.55 m in LSEIK-1, 0.51 m in LSEIK-2,

and 0.59 m in LSEIK-3 (Table 1). The LSEIK-2 solution

(with the original SICCI uncertainty) agrees with the in situ

observations at BGEP_2009D (Fig. 7b) but overestimates

the mean sea ice thickness at BGEP_2009A (Fig. 7a), espe-

cially from mid-July to mid-August. The LSEIK-3 thickness

(with the modified SICCI uncertainties) agrees better with

the BGEP_2009A data and is basically equivalent to LSEIK-

1.

The ice thickness at IMB 2010B (Fig. 7d) has only 10

data points in the period 6 June to 8 August, because its

snow sounder failed on 7 May, so that ice thickness can

only be computed from ice profile data that were available

once a week. Similarly, the observed thickness is multiplied

by SICCI or NSIDC local ice concentration to arrive at the

observed IMB-SICCI or IMB-NSIDC grid-cell mean thick-

nesses shown in Fig. 7. All 24 h forecasts have a positive

Table 1. RMSE of the four forecasting experiments from grid-cell

mean ice thickness calculated by the ULS moorings BGEP_2009A,

BGEP_2009D, IMB-2010B, and the satellite ice concentration ob-

servations. The two values refer to the calculation using two differ-

ent data sets SICCI-NSIDC.

BGEP_2009A BGEP_2009D IMB-2010B

1 MITgcm 0.87–0.90 m 0.94–0.98 m 0.91–0.91 m

2 LSEIK-1 0.45–0.49 m 0.57–0.60 m 0.54–0.52 m

3 LSEIK-2 0.61–0.64 m 0.52–0.56 m 0.73–0.70 m

4 LSEIK-3 0.45–0.48 m 0.61–0.64 m 0.51–0.47 m

bias of about 1.0 m on 6 June, but all LSEIK forecasts cap-

ture the downward trend after 11 July better than the free-

running model. The LSEIK-3 solution gives the best agree-

ment with the observations. The RMSEs from the IMB-

SICCI at IMB 2010B are reduced from 0.91 to 0.54 m with

LSEIK-1, 0.73 m with LSEIK-2 and to 0.51 m with LSEIK-

3. The reason is discussed in the following section.

4 Discussion

Based on the recently released SICCI SIC data that provide

uncertainty estimates, a series of sensitivity experiments with

different data error statistics has been carried out to test the

impact of SIC uncertainties in data assimilation. Compared

to a data assimilation configuration with constant uncertainty
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Figure 7. Evolution of grid-cell mean sea ice thickness (m) at

BGEP_2009A (a), BGEP_2009D (b), and IMB_2010B (c) from 1

June to 30 August 2010. The black solid and dashed lines show the

grid-cell mean ice thickness using SICCI and NSIDC sea ice con-

centrations, respectively. The MITgcm free-run, LSEIK-1, LSEIK-

2, and LSEIK-3 24 h ice thickness forecasts are shown as gray,

green, blue, and red solid lines.

of 0.25, the data assimilation of SICCI data with provided un-

certainties can give a better short-range ensemble mean fore-

casts for SIC in summer. However, the ice thickness fore-

casts are probably not improved with the observational un-

certainties. As there is still no available satellite-based sea

ice thickness data in summer, the ice thickness evaluation in

this study can only be based on two local ULS observations

and one IMB-based observation. Also, estimating the grid-

cell mean sea ice thickness using the local SICCI or NSIDC

SIC data introduces further uncertainties into the thickness

calculations. For more robust results for sea ice thickness

forecasts, more thickness observations for ground truth eval-

uation are absolutely necessary, for example, from ice floats

and other in situ data sources.

The main message from Figs. 3, 4, and 5 is in fact that the

high sensitivity of the data assimilation to the observation un-

certainties can be explained by the employed (atmospheric)

model and observational error statistics in the LSEIK assimi-

lation system. The spread of the ensemble representing fore-

cast uncertainties in SIC for LSEIK-2 turns out to be rela-

tively small. For example, on 30 August 2010 most of the

ensemble-represented SDs in the Arctic central area and the

sea ice edge area are less than 0.01 and 0.03, respectively

(Fig. 8b). This means that all members are very close to the

ensemble mean and the data assimilation will have only little

effect. Compared to LSEIK-2, LSEIK-3 has a similar spa-

tial distribution of the ensemble spread with higher SDs in

the sea ice edge area and lower SDs in the concentrated cen-

tral ice area but overall higher SDs. Together with the fact

that LSEIK-2 does not fit the thickness observations as well

as LSEIK-3, this suggests that the ensemble forecast spread

for SIC is too low and cannot reflect the true uncertainty. As

only observations of SIC are assimilated, sea ice thickness

is influenced indirectly during the data assimilation through

the point-wise covariance between the ice concentration and

thickness, thus through a linear update. Here, the very small

SIC ensemble variance leads to a very small sea ice thickness

spread (Fig. 9b). This probably explains why the LSEIK-2

system is not very effective at improving the sea ice thick-

ness estimates while LSEIK-3 does somewhat better. The

increased ensemble spread in the SIC allows the system to

better represent the uncertainties and leads to a larger ice

thickness spread (Fig. 9c). The sea ice thickness forecasts

are improved accordingly.

The relative enhanced skill of sea ice thickness forecasts

by LSEIK-3 with respect to LSEIK-2 does thus point to a

possible issue with assimilating the summer SICCI ice con-

centration with the provided uncertainties. At first sight, the

data uncertainties in summer sea ice pack seem to be too low

(Fig. 2). For example, on 12 July 2010 when surface ice melt-

ing prevails and the microwave-radiometry-based ice con-

centration estimates are known to underestimate the physical

sea ice cover (Ivanova et al., 2015), the provided uncertain-

ties at the sea ice pack area are still lower than 0.06 with few

regions exhibiting values around 0.10 (Fig. 2d).

In fact, Ivanova et al. (2015, Sect. 5.3 “Melt ponds”) report

that AMSR-E and SSM/I, like all other passive microwave

sensors, cannot distinguish ocean water (in leads) from melt

water (in ponds) because of the very shallow penetration

depths of the microwave signal in water. Therefore, these

radiometric SICs are closer to one minus MPF, than to the

physical SIC in our models. This mismatch between the ob-

served and modeled ice concentration (radiometric vs. physi-

cal) does not exist in winter when there is no surface melting

(Ivanova et al., 2015). However, in summer melt conditions,

the observed ice concentration includes an unknown area of

pond water. For example, the MODIS-based melt pond distri-

bution data show the distribution of melt ponds over the Arc-

tic sea ice in the summer of 2010 (middle panels in Fig. 10).

It was illustrated that the passive microwave-based SIC are

underestimated in the pond-covered area and overestimated

between the melt ponds (Kern et al., 2016). The provided un-
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Figure 8. The ensemble spread: standard deviation of sea ice-concentration for the individual grid cells as calculated from the 24 h ensemble

forecasts on 30 August 2010. LSEIK-1 (a), LSEIK-2 (b), and LSEIK-3 (c).

Figure 9. The ensemble spread: standard deviation of sea ice thickness for the individual grid cells as calculated from the 24 h ensemble

forecasts on 30 August 2010. LSEIK-1 (a), LSEIK-2 (b), and LSEIK-3 (c).
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Figure 10. The SICCI sea ice concentration (left panels), the melt pond fraction (middle panels), and the LSEIK-3 forecast skill improvement

of sea ice concentration (LSEIK-3 minus SICCI; right panels), the figures from top to bottom are 12 July, 20 July, and 13 and 21 August

2010. Note that the melt pond fraction maps are composites of 8 days before the given date.

certainties are not larger since the radiometric concentration

is not more uncertain. This mismatch results in a systematic

difference between the two quantities (the physical concen-

tration is larger than the radiometric concentration) that can-

not be fully mitigated by enlarged standard deviations of a

Gaussian uncertainty model in Ivanova et al. (2015). The in-

fluence of melt ponds on the accuracy of the SICCI data set

is documented in Lavergne and Rinne (2014, Sect. 2.2.1.1

“summer melt ponding”) and Kern et al. (2016).

The right panels of Fig. 10 show the bias in the SIC model

prediction relative to the observation on 12 July, 20 July, and

13 and 21 August 2010. The spatial distribution of the MPF
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(middle panels in Fig. 10) further supports the conclusion

that the data assimilative system performs better when the

prior observational error statistics account for some repre-

sentativeness errors as in experiment LSEIK-3.

This mismatch between the measured and modeled quan-

tities calls for adopting more advanced data assimilation

methodologies, for example, embedding a matching relation

in form of an observation operator for successful assimila-

tion of SIC satellite observations (from passive microwave

instruments). Given the scope of this study and the compar-

isons with the in situ BGEP and IMB ice thickness, the solu-

tion implemented in LSEIK-3, that is to enlarge the observa-

tion uncertainties using a minimum value of 0.10, is a prag-

matic and effective approach. This simple approach reflects

the larger uncertainties in the sea ice edge area and leads to

a more reasonable spread in the model ensemble, which in

turn leads to a better agreement with the observations and

the information about the MPFs.

5 Conclusions

In this study, we assimilate the summer SICCI SIC data tak-

ing into account the data uncertainties provided by the dis-

tributors. Even with a constant data uncertainty for the SICCI

data, comparing the assimilated SICCI, non-assimilated

NSIDC, and MODIS ice concentration and BGEP/IMB in

situ thickness data, its assimilation results in better estimates

of the SIC and thickness. The SIC estimates are further im-

proved when the SICCI-provided uncertainty estimates are

taken into account, but the sea ice thickness cannot be im-

proved.

Moreover, it was found that our data assimilation system

cannot give a reasonable ensemble spread of SIC and thick-

ness when we use the provided uncertainty directly. This is

because (1) there is a mismatch between the summer SIC

as observed by the passive microwave sensors (radiometric

concentration) and that simulated by our model (physical

concentration), and (2) the provided observation uncertain-

ties do not account for this mismatch. A simple and prag-

matic approach appears to bypass this by imposing a mini-

mum threshold value on the provided uncertainties in sum-

mer. Fully resolving the mismatch calls for more research,

for example by considering melt pond cover and evolution in

the models or observation operators in the data assimilation

schemes. That would allow one to reduce the representation

error. Nevertheless, the part of error related to possible un-

certainties in the approximation of the forecast error statistics

and discrepancies in model and data up- or downscaling may

still exist and has to be considered in any data assimilation

algorithm.

Data availability

The SICCI SIC data are available online at

http://icdc.zmaw.de/projekte/esa-cci-sea-ice-ecv0.html,

the NSIDC SIC data are available online at http:

//nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html,

the NSIDC sea ice index data are available online at http:

//nsidc.org/data/g02135, the ULS sea ice draft data are avail-

able online at http://www.whoi.edu/beaufortgyre, the IMB

data area are available online at http://imb.erdc.dren.mil,

the MODIS-based melt pond and open water fraction

data are available online at http://icdc.zmaw.de, and the

UKMO ensemble forecasting data are available online at

http://tigge.ecmwf.int.
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