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 Simplified scheme of fast-ice evolution
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Seasonal evolution of an ice-shelf influenced fast-ice regime, 

derived from an autonomous thermistor chain

•  Sub-ice platelet layers are a main contributor to sea-ice mass near ice shelves, 
 especially in slowly growing sea-ice regimes.
• A thermistor chain capable of heating its thermistors is currently the only method to 
 autonomously monitor platelet-layer thickness evolution.
•  The heating mode is also able to compensate the lack of acoustic sounders on standard   
 ice mass balance buoys, making the instrument more flexible and easier to deploy.
•  The heating mode is potentially able to determine the thermal conductivity of the    
 medium the thermistor is embedded in
• The same instrument was recently deployed again on first-year fast ice, complementing   
 the second-year ice dataset shown here.
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a) Thermistor chain daily temperature profiles, b) temperature rise after 30 s of heating, c) tempera-
ture rise after 120 s of heating, d) selected characteristic temperature profiles for times in a), e) basal 
energy budget (Fc: conductive, Fl: latent, Fs: sensible, Fw: residual heat flux. The shaded areas represent the cumulative indivi-
dual measurement uncertainties. Upward heat fluxes and warming are positive.)   

Temperature profiles
• suitable to detect snow surface
• fail to detect sea-ice bottom under isothermal conditions
• enable calculation of basal energy budget (conductive, latent, 
 sensible, residual heat fluxes) 
Heating profiles
• provide accurate information about evolution of  sea-ice surface and bottom,  
 even  under isothermal conditions. 
• work similar to „needle-probe“ measurement to determine thermal  
 conductvity of a  medium, e.g. snow. Currently only qualitative statements are  
 possible due to the  complex sensor geometry.
• resolve internal structures 
• only method to reveal temporal evolution of platelet-layer thickness   
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(Hoppmann et al. 2014, submitted to Annals of Glaciology)
(this study, manuscript in preparation)

Surface unit: controller, 
GPS, Iridium, SD card

Thermistor chain: 4.8 m, 
240 sensors at 2 cm spacing

18 % of sea-ice growth in 2013 from ocean/ice-shelf interaction

b)

a) TerraSAR-X image of the study area, a  few days after deployment of the thermistor chain. The presence of 
second-year ice during in 2013 is attributed to the temporary grounding of a large iceberg in front of Atka Bay.
b) Air, snow, sea-ice and seawater temperatures  were recorded daily between 21 November 2012 and 09 Fe-
bruary 2014 (temperature profiles). 
Additionally, thermistor elements were heated and the temperature rise after 30 s and 120 s was recorded 
(heating profiles). 

Main site

Background: The formation of ice crystals in supercooled water at depth is a manifestation of basal melt pro-
cesses in the ice-shelf cavity. These ice platelets accumulate in large amounts below sea ice to form a porous 
layer. This phenomenon is of crucial importance for fast-ice properties and ecosystems in coastal Antarctica, but 
information about its formation and spatio-temporal variability is still sparse. This is at least partly attributed to 
the lack of suitable methodology.

Method: We obtained a 15 month long time-series of sea-ice temperature profiles on the fast ice of Atka Bay, 
a coastal sea-ice regime in the eastern Weddell Sea. We used a thermistor chain with the additional capability of 
actively heating its thermistor elements, taking advantage of the different thermal characteristics of the sur-
rounding meda. Despite the rising interest in this kind of instrument, its full potential has not been assessed yet. 

Results: Calculating the basal energy budget, we find a heat flux into the ocean which accounts for 18 % of solid 
sea-ice growth. This corresponds to a platelet layer ice-volume fraction of 18 %, which is also confirmed by model 
simulations and agrees well with a previous study at the same location. In addition, this study confirmed the 
seasonal evolution of the platelet layer found in the previous year (Hoppmann et al. 2014). Ocean/ice-shelf inter-
action dominated the overall (solid+loose) sea-ice thickness gain by effectively contributing 1.28 m, or 61 %, of 
the total sea-ice growth. Finally we use this unique dataset to assess the potential of this relatively new instru-
ment design (Jackson 2013), highlighting its advantages and pointing out its caveats. 

The overall goal of this study is to characterize the seasonal evolution of an Antarctic coa-
stal, ice-shelf influenced fast-ice regime with an autonomous thermistor chain.
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