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I. Introduction 

The Western Antarctic Peninsula (WAP) has been described as an area highly vulnerable 

to the effects of climate change (Clarke et al. 2007, IPCC 2013, Ducklow et al. 2013, Turley 

2013). This region is experiencing one of the fastest warming rates in the world (Turner et al. 

2009b), with an increasing average of air temperature of 0.5 °C per decade (Turner et al. 

2009a). At Potter Cove (King George Island, WAP) average water temperatures increased by 

0.32 °C per decade and winter sea surface temperatures even increased by more than 2 °C 

between 1991 and 2006 (Schloss et al. 2012). Therefore, the glacial systems is showing a 

direct response to the higher temperatures with a marked melting which contributes to 

reduce the light availability due to increasing sediment input (Schloss et al. 2012) causing 

strong impacts on local ecosystem communities.  

The sublittoral rocky shores at the WAP are colonized by dense populations of seaweeds, 

which build highly complex and productive underwater forests (Wiencke et al. 2014). The 

order Desmarestiales (Phaeophyceae) is the dominant taxonomic group (Amsler et al. 1995, 

Quartino & Boraso de Zaixso 2008). These seaweed communities play a key role in the 

Antarctic coastal system, similar to Laminariales (kelp) communities along temperate to 

Polar rocky coasts of the Atlantic and Pacific Ocean (Clayton 1994). The cold-temperate 

Antarctic Desmarestia menziesii J. Agardh 1848 and the Antarctic endemic Desmarestia 

anceps Montagne 1842 form the highest macroalgal biomass in Antarctic coastal areas 

(together with Himantothallus grandifolius; Amsler et al. 1995, Brouwer 1996) with maxima 

of 10 kg fresh weight m-2 at some sites (Quartino & Boraso de Zaixso 2008, Gómez et al. 

2009). The cold-temperate Antarctic Iridaea cordata (Turner) Bory de Saint-Vincent 1826 as 

the rest of red algae are unlikely to be dominant in terms of biomass, with the exception of 

the Antarctic endemic Palmaria decipiens (Reinsch) R. W. Ricker 1987 which can be a 

dominant or co-dominant species in shallow waters (Amsler personal observations, DeLaca 

& Lipps 1976, Chung et al. 1994, Klöser et al. 1996). It is speculated that seaweeds may be a 

much more important – year round – carbon source for the Antarctic benthos than in 

temperate seas (Reichardt 1987, Schloss et al. 2002). Furthermore, as ecosystem engineers 

they provide habitat and structural refuges for a vast amount of organisms such as 

amphipods, epi- and endophytes (Huang et al. 2007). The general zonation pattern of these 

large brown algae is relatively consistent over various sites in Antarctica with D. menziesii 
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dominating the shallow sublittoral between 3 and 5 meter followed by D. anceps, dominant 

at deeper sites around 10 m with both species co-occurring at all depths (Quartino 2001, 

Wiencke et al. 2014). At some sites, however, only one of these species is present (Wiencke 

et al. 2014). On King George Island the upper sublittoral is dominated by D. menziesii and P. 

decipiens is commonly competing with I. cordata (Becker et al. 2011). It is not clear what the 

structuring forces for this zonation are although the wide specific depth zonation ranges of 

the dominant brown macroalgae can be explained by the available irradiance constraint, 

with the range extending deeper in relatively exposed areas with clearer open ocean water 

compared to relatively protected areas with greater turbidity due to glacial melt and/or with 

more frequent ice cover (Amsler personal observations, DeLaca & Lipps 1976, Brouwer et al. 

1995). Wave exposure, substrate type and bottom topography also influence macroalgal 

zonation and species occurrence (Klöser et al. 1996) but surely others, still unknown factors 

shape the local algal distribution (Wiencke et al. 2014). 

Besides the regulatory role of abiotic factors, interspecific competition is often 

considered to be the major selective force in algal communities determining diversity, 

species distribution and the biomass of algal communities (Nabivailo & Titlyanov 2006). 

Competition has emerged as one of the dominant processes dictating assemblage structure 

(Barnes & DeGrave 2002) and especially in high latitudes is very little studied. Interspecific 

relationships among benthic seaweeds have scarcely been investigated in other world areas 

(see Reed 1990, Nabivailo et al. 2014, Xu et al. 2013) but just recently the question has been 

tackled also to polar seaweeds (Zacher et al. 2016). Even less information is available on the 

interplay of abiotic and biotic conditions which are fundamental for understanding the 

succession of macrophytobenthic communities (Nabivailo et al. 2014). Interspecific 

competition may result from “resource” and “interference competition”. While resource 

competition is considered to occur mainly for space, light and nutrients (Bartsch et al. 2008), 

interference competition is a consequence of chemical interactions between species, 

influencing the performance of competitors via allelopathy (Olson & Lubchenco 1990). 

The Antarctic endemic members of the order Desmarestiales are characterized by very 

low light and temperature demand for growth, photosynthesis and reproduction, and their 

diverse regulative physiological characteristic allow them to complete their life cycle in situ 

at temperatures close to 0 °C and under very fluctuating irradiance intensities (Wiencke et 

al. 2007, Gómez et al. 2009 and references therein). However, the upper survival 
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temperature (UST) can be much higher for these species, normally according to their 

distribution (Wiencke & tom Dieck 1989; Wiencke 1994). Much of the available information 

on optimal irradiance conditions for polar seaweeds comes from photosynthesis-irradiance 

(P-I) curves. In general, polar seaweeds have high photosynthetic efficiency and hence low 

light requirement for photosynthesis, as determined by low Ek and high α values, which is an 

indicator of the photosynthetic efficiency at low irradiances (Henley 1993). Since growth, 

photosynthesis, reproduction and survival of all seaweeds are strongly affected by 

temperature and light (Lüning 1990, Wiencke et al. 1993, Gomez 1997), it is expected that 

further global warming will change the community composition and species distribution 

ranges of seaweed communities (e.g. Müller et al. 2009, Deregibus et al. 2016) with 

subsequent cascading effects through the food webs (Clarke et al. 2007, Ducklow et al. 

2013). For the Arctic recent evidence supports these assumptions (Paar et al. 2015, Bartsch 

et al. 2016). 

Polar regions are characterized by strong seasonal variations on light conditions. Around 

the Antarctic Peninsula, sea ice breaks up between early September and late November with 

increasing daylenghts and irradiance due to very high transparency of waters during spring. 

In early summer, however, light penetration through the water is reduced due to shading by 

phytoplankton blooms and suspended sediments (Drew & Hastings 1992; Klöser et al. 1993). 

Therefore, many polar seaweed species synchronize their growth phases and photosynthetic 

performances with the annual course of photoperiod (Wiencke 1990a, b, Gómez and 

Wiencke 1997). Both, D. anceps and D. menziesii are so called “season anticipators”, 

reproducing in winter, initiating growth under short day conditions in late winter-early spring 

and reducing growth during late summer (Wiencke 1990a, Gómez & Wiencke 1997). Because 

of the strong seasonal pattern, photosynthesis is mainly restricted to the spring-autumn 

period in these regions (Wiencke et al. 2009). Major seasonal adjustments of photosynthesis 

include species-specific changes of photosynthetical efficiency (α versus irradiance function) 

and particularly the light requirements for saturation (Ek) and compensation (Ec) of 

photosynthesis (Wiencke et al. 1993).  

Former investigations indicated the lack of multifactorial studies when evaluating the 

fate of the unique Polar ecosystem (Wiencke et al. 2006). Although temperature alone is not 

likely to endanger the performance of important Antarctic seaweeds (Müller et al. 2009), 

interaction with other factors such as irradiance and competition may modify algal 
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responses, and are not yet understood at all. Therefore, the major aim of this investigation 

was to investigate for the first time the interaction of temperature combined with irradiance 

intensity and interspecific competition on growth and photosynthetic efficiency of the two 

endemic Antarctic macroalgae D. menziesii and D. anceps, either cultivated alone or co-

cultivated. 

II. Material and Methods 

Sampling site. Three experiments were carried out at the German-Argentinean Dallmann 

Laboratory, Carlini Base, Potter Cove, King George Island, South Shetlands Islands, Antarctica 

(62°14’S-58°38’W; Deregibus et al. 2015, http://dx.doi.org/10.1594/PANGAEA.853859). An 

overview of the abiotic and biotic conditions of the Potter Cove ecosystem is given in e.g. 

Zacher (2007) and Schloss et al. (2002). Field material of the investigated algae was collected 

a few days before each experiment from Area A1 (“Peñón de Pesca”, 62°23’S, 58°72’W; 

Deregibus et al. 2015) by scuba divers at 5 m during the Antarctic summer January-February 

2016.   

Algal material. Sporophytes of Desmarestia menziesii, D. anceps (experiments 1, 2 and 

3), Iridaea cordata and Palmaria decipiens (only experiment 1), were collected with the 

holdfast and brought to the laboratory in dark boxes filled with seawater in order to avoid 

stress during transport. Prior to the start of the experiments, the individuals were kept in 

constantly aerated seawater containers under low irradiance conditions (~ 10 µmol photons 

m-2 s-1) at 3 ± 1 °C. A day:night cycle of 16:8 hours was maintained prior and during each 

experiment, simulating long-day conditions. Individuals from each species were maintained 

separately. The seawater acquired from Potter Cove was changed daily. After a few days, 

algal individuals were cleaned from epiphytes and 10-20 cm of the apical parts of 

Desmarestia sporophytes were cut off with a sterile razor blade in order to have individuals 

of similar initial wet weight and size. Small individuals of similar sizes of P. decipiens and I. 

cordata were selected for the first experiment. Prior and after each experiment, pictures and 

lengths were taken to monitor the development of every specimen. 

Experiment 1. Impact of interspecific competition and temperature on D. menziesii  

Experimental set-up. Four days after the collection, algal material was transferred into 32 

aerated 2L transparent plastic beakers filled with filtered (Durapore® Cartridge Filter, 0.22 

µm) seawater of a salinity of ~ 32 PSU enriched with Provasoli medium (50 mL per 10 L of 
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seawater; Provasoli 1968). Seawater was exchanged every week in order to avoid nutrient 

depletion. In a two-factorial design (Table 1) the effect of (1) temperature (2 °C = ambient 

summer temperature vs. 7 °C= global warming scenario) and (2) culture treatment (D. 

menziesii mono- vs. co-cultured) over a period of 14 days (from day 0 to day 14) was tested. 

Algal material was previously acclimated to the experimental conditions for three days (from 

day -3 to day 0). Desmarestia menziesii was co-cultured with the three different species D. 

anceps, P. decipiens and I. cordata. Each experimental condition was replicated in four 

beakers (n = 4), containing 2 sporophytes each (of the same species for the mono-cultured 

and of two species for the co-cultured treatments). The beakers were placed in 

temperature-controlled water baths (Variostat® CC, Huber, Germany) on day -3, providing 

temperatures of 2 and 7 °C (two bathes per temperature; 8 beakers in each tank; 16 beakers 

per temperature). Temperature was monitored via data loggers (Hobo Pendant® 

Temperature/Light Data Logger, USA). Due to technical problems, short time peaks of 

increased temperatures occurred during the experiment (on day -1 an increase of 2 °C was 

measured in one of the 2 °C bathes and on days 9 and 11 an increase of 3 °C was registered 

in one of the 7 °C bathes). Photosynthetically active radiation (PAR, 400-700 nm) was applied 

by 4 halogen OSRAM L36W/965 lamps (Bioloux, München, Germany), one over each bath, 

and was measured using a LI-COR LI-250A Light Meter (LI-COR, Inc., Lincoln, USA). The 

irradiance was set on day -3 to 100 µmol photons m-2 s-1 according to field measurements in 

Antarctica, representing the light at 5 m depth, where the biomass maximum of D. menziesii 

occurs (Quartino et al. 2001).  

Table 1. Experimental set-up and treatment conditions of experiment 1-3.  

Exp Species 
Temp 
(°C) 

Day 
lenght 

Irradiance 
(µmol m-2 s-1) 

Experimental 
period  

Acclimation 
time 

Measured  
Variables 

1 

D. menziesii, 
D. anceps,    
I. cordata,   
P. decipiens 

2 7 16:8 100 
14 (day 0 to 
day 14) 

3 (day -3 to 
day 0) 

 WW (mg) 

 Fv/Fm 
 

2 
D. menziesii, 
D. anceps 

2 16:8 10 100* 
16 (day 0 to 
day 16) 

4 (day -4 to 
day 0) 

 WW (mg) 

 Fv/Fm 

 P-I curves 

 Pigments 

3 
D. menziesii, 
D. anceps 

2 7 16:8 50 
11 (day 0 to 
day 11) 

3 (day -3 to 
day 0) 

 WW (mg) 

 Fv/Fm 

 P-I curves 

 Pigments 
*High irradiance for the 2

nd
 experiment was set from day 0, after 3 days of acclimation days to low irradiance. 
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Growth measurements. Pre-experimental wet weight (WW, mg) was measured the 

day the algal material was transferred into the beakers (day -3). Later on, wet weight was 

measured one day before starting the experiment (day -1; initial) and then on day 6 and 14 

by carefully blotting each sporophytes one by one with tissue paper before weighing 

(Sartorius CPA323S-0CE, Germany). Overall growth rate were calculated as:  

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (% 𝑑−1) = 100 
𝑙𝑛𝑁𝑡 𝑁0

−1

𝑡
 

Where N0 = initial WW, Nt = WW on day t, and t = time period expressed in day (see 

also Wiencke and tom Dieck 1989). Overall growth rate was measured from day -1 (initial) to 

day 14.  

Photosynthetic efficiency. Photosynthetic efficiency of each sporophyte was 

measured as a maximum quantum yield of photosystem II (PSII) using a PAM 2100 

chlorophyll a fluorometer (Walz GmbH, Effeltrich, Germany) connected to a PC running 

PamWin™ software. Maximum quantum yield of PSII after 3 minutes of dark adaptation was 

calculated by the PAM software as: 

𝐹𝑣/𝐹𝑚  = (𝐹𝑚 −  𝐹0)/ 𝐹𝑚 

Three minutes of dark incubation were chosen because no differences were 

encountered in experimental testing measurements of Fv/Fm after 3, 5, 7, 10 and 15 min dark 

adaption. 

Prior to the beginning of the experiment (day -3), pre-experimental measurements of 

the maximum quantum yield (Fv/Fm) took place. Later on, Fv/Fm was measured on day 1 

(Initials), 4, 7, 10 and 14. For the measurement, the fiber optic was placed at ~ 1 cm from the 

algae during each measurement. After a saturating light pulse (0.8 s; 600 ms completely 

saturating white light pulse) macroalgal specimens were dark adapted for 3 min, minimal (F0) 

and maximal (Fm) fluorescence allowed calculating Fv/Fm, as described above.  

Statistical analysis. Pre-experimental measurements of wet weight and maximum 

quantum yield were tested with a one-way ANOVA within each species to check for 

differences on algal material. Overall growth rate was tested with a two-way ANOVA in order 

to assess the effect of temperature and culture treatments on D. menziesii. Later on a one-

way ANOVA was separately performed on overall growth rate of D. menziesii, D. anceps, I. 

cordata and P. decipiens to check differences due to the temperature effect. Repeated 
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measures (RM) ANOVA was performed for Fv/Fm of each species during the experimental 

duration (5 measurements in 14 days). Homogeneity of variances was tested using Levene’s 

Test and heteroscedastic data were log transformed. If no homogeneity of variance could 

not be achieved it is marked in the tables. Where Mauchleys test of sphericity was violated 

(RM ANOVA), a Greenhouse-Geisser (G-G) correction was applied. Post-hoc multiple means 

comparisons were performed with a Tukey’s Test. All tests were run using Statistica™ 6.0 

(StatSoft) software package. 

Experiment 2. Impact of interspecific competition and irradiance on D. menziesii 

and D. anceps 

Experimental set-up. Five days after the collection, algal material was transferred into 

30 aerated 2L transparent plastic beakers filled with filtered (Durapore® Cartridge Filter, 0.22 

µm) seawater of a salinity of ~ 32 PSU enriched with Provasoli medium (50 mL per 10 L of 

seawater; Provasoli 1968) and germanium dioxide (0.5 mL of GeO2 per liter of seawater as 

described by Shea and Chopin 2007), in order to avoid nutrient depletion and to inhibit 

diatom growth. Seawater was renewed every week. In a two-factorial design (Table 1) the 

effect of (1) irradiance intensity (low, LI = 10 µmol m-2 s-1 vs. high, HI = 100 µmol m-2 s-1) and 

(2) culture treatment (D. menziesii and D. anceps mono- vs. co-cultured) over a period of 16 

days (from day 0 to day 16) was tested. Each experimental condition was replicated in five 

beakers (n = 5), containing 2 sporophytes each (of the same species for the mono-cultured 

and of two species for the co-cultured treatments). The beakers were placed in 

temperature-controlled water tanks, providing a permanent temperature of 2 °C.  Algal 

material was acclimated to 10 µmol photons m-2 s-1 and 2°C for four days (from day -4 to day 

0) and raised to 100 µmol photons m-2 s-1 on day 0 in half of the beakers (two bathes per 

light; 7 or 8 beakers in each tank; 15 beakers per light). Temperature and photosynthetically 

active radiation were maintained and measured as previously described for the first 

experiment, but short term peaks of temperature were registered on day 6 due to technical 

problems (increasing up to 6.8 °C in one of the two LI treatments and up to 5 °C in one of the 

two HI treatments).  

Growth measurements. Pre-experimental wet weight (WW, mg) was estimated on 

the first day of the acclimation period (day -4). Initial wet weight was measured on day -2 

and then measurements took place on day 6, 13 and 16 as described for the first 
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experiment. Later on, overall growth rate was calculated as described for the first 

experiment.  

Photosynthetic efficiency. Prior to the beginning of the experiment (day -4), 

measurements of the maximum quantum yield (Fv/Fm) on pre-experimental material under 

low irradiance took place as described for the first experiment. Later on, Fv/Fm was measured 

on day 0 (initials), 2, 7, 10 and 15. After the strong temperature increase (day 6), an extra 

measurement of Fv/Fm was performed and a stressed response was detected. 

Additionally, three days prior to the experiment (day -3) and on day 15, rapid light curves 

were determined (PAM 2100). The effective PSII quantum yield for the illuminated samples 

was calculated during a stepwise increasing actinic light intensity (from 0 to 402 µmol 

photons m-2 s-1, every 20 s). The light intensities applied by the PAM were corrected with a 

LI-COR LI-250A Light Meter. From these measurements, the relative electron transport rates 

of PSII (rETR) were calculated by multiplying the effective quantum yield of PSII (yield = 

∆F/F’m) with the corresponding light intensity (EPAR = irradiance in the PAR region; 400-700 

nm) as following: 

𝑟𝐸𝑇𝑅 =  ∆𝐹/𝐹′𝑚 ∗ 𝐸𝑃𝐴𝑅 

To estimate photosynthesis irradiance (P-E) curve parameters, the hyperbolic tangent 

model (Jassby & Platt 1976) was applied to the low and high irradiance treatments for all the 

replicates, calculating α, as a measure for the electron transport efficiency, rETRmax (rel. 

units), the maximum relative electron transport rate, and Ek (µmol photons m-2 s-1), the 

saturation irradiance for electron transport (calculated as the intercept between α and the 

rETRmax values). These parameters show the photosynthetic performance of the algae under 

the different treatments and may be used to interpret photo-acclimation.  

Pigment composition. At the beginning and at the end of the experiment, pieces of ~ 

200 mg (WW) from 10 individuals (5 for each species) were transferred in Eppendorf® tubes 

and fixed in liquid nitrogen. Ten extra samples were taken from the field and the same 

procedure was applied in order to calibrate the HPLC. Algae were stored at -20°C, freeze 

dried and stored at 5°C until leaving Antarctica. Pigment analysis took place in April 2016 at 

the University of Bremen, Germany. Each dried sample (~ 0,02 g) was weighted and 

transferred into 15 mL Falcon®  round-bottom polypropylene tube (BD Biosciences, Sand 

Diego, CA, USA). Then, each tube was vortexed and centrifuged for 40 s (5m/s) in order to 
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pulverize into powder the algae before extraction. The pigments were extracted with 1000 

µL of 90% acetone for 24 hours at 5 °C in the dark. The samples were then centrifuged for 5 

minutes at 3000 rpm then. The supernatant was transferred to tubes by filtration with 

Nalgene® nylon syringe filters of 0.45 µm pore size (Nalge Nunc International, Rochester, NY, 

USA). The assessment of the pigment composition was performed by a reverse phase HPLC 

using LaChromeElite ® system equipped with a chilled autosampler L-2200 and a diode array 

detector L-2450 (VWR-Hitachi International GmbH, Darmstadt, Germany). For separating the 

pigments a Spherisorb® ODS-2 column (25 cm x 4.6 mm, 5 µm particle size; Waters, Milford, 

MA, USA) with a LiChropher® 100-RP-18 guard cartridge was employed snf s gradient 

according to Wright et al. (1991) applied. Peaks were detected at 440nm, identified, and 

quantified via co-chromatography with standards for chlorophyll a, chlorophyll c2, β-

carotene and fucoxanthin (DHI Lab Products, Hørsholm, Denmark) together with the 

software EZChrom Elite ver. 3.1.3. (Agilent Technologies, Santa Clara, CA, USA).  

Statistical analysis. Maximum quantum yield and wet weight were statistically 

analyzed as for the first experiment. Last day data of photosynthetic performance of D. 

anceps and D. menziesii (rETRmax, α and Ek) were tested in a two-way ANOVA for culture and 

irradiance effects for both species separately. Photosynthetic parameters of mono-cultured 

D. menziesii and D. anceps were also analyzed together in a one-way ANOVA for low and 

high irradiance effect in order to detect different behaviors between the two species under 

both irradiance conditions. 

Experiment 3. Impact of interspecific competition and temperature on D. menziesii 

and D. anceps 

Experimental set up. Two days after the collection, algal material was transferred into 

30 aerated 2L transparent plastic beakers filled with filtered (Durapore® Cartridge Filter, 0.22 

µm) seawater of a salinity of ~ 32 PSU enriched with Provasoli medium (100 mL per 10 L of 

seawater; Provasoli 1968) and germanium dioxide (0.5 mL of GeO2 per liter of seawater as 

described by Shea and Chopin 2007), in order to avoid nutrient depletion and to inhibit 

diatom growth. Seawater was renewed every week. In a two-factorial design (Table 1) the 

effect of (1) temperature (2 °C = ambient summer temperature vs. 7 °C= global warming 

scenario) and (2) culture treatment (D. menziesii and D. anceps mono- vs. co-cultured) over a 

period of 11 days (from day 0 to day 11) was tested. Algal material was previously 
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acclimated to the experimental conditions for three days (from day -3 to day 0). Each 

experimental condition was replicated in five beakers (n = 5), containing 2 sporophytes each 

(of the same species for the mono-cultured and of two species for the co-cultured 

treatments). The beakers were placed in temperature-controlled water baths, under 50 

µmol photons m-2 s-1 of irradiance (two baths per light; 7 or 8 beakers in each tank; 15 

beakers per temperature). This irradiance intensity was selected because according to field 

measurements in Antarctica, it represents the mean summer light climate at 10 m depth, 

where both species occur (Deregibus, pers. comm.). Temperature and photosynthetically 

active radiation were maintained and measured as previously described for the first 

experiment. Short term peaks of temperature occurred on day 5 due to technical problems 

(an increase of 7°C was registered in one out of the two 2 °C treatments). 

Growth measurements. Pre-experimental wet weight (WW, mg) was estimated on 

the first day of the acclimation period (day -3). Initial wet weight was measured on day -1 

and then measurements took place on day 6 and 11 as described for the first experiment. 

Later on, growth rates and overall growth rate were estimated as described for the first 

experiment.  

Photosynthetic efficiency. Prior to the beginning of the experiment (day -3), pre-

experimental measurements of the maximum quantum yield (Fv/Fm) took place. Later on, 

Fv/Fm was measured on day 0 (initial), 2, 5 and 10. Additionally, the rapid light curves (P-I 

curves) were measured as described for the second experiment.  

Pigment composition. Pigment content was analyzed with the same protocol used for the 

second experiment. 

Statistical analysis. Maximum quantum yield and wet weight were statistically analyzed 

as for the first two experiments. Last day data of photosynthetic performance of D. anceps 

and D. menziesii (rETRmax, α and Ek) were tested in a two-way ANOVA for culture and 

temperature effects for both species separately. Photosynthetic parameters of mono-

cultured D. menziesii and D. anceps were also analyzed together in a one-way ANOVA for 

low and high temperature in order to detect different behaviors between the two species. 

III. Results 

Experiment 1. Impact of interspecific competition and temperature on D. menziesii 

Measurements of wet weight (WW) from pre-experimental material (day -4) were similar
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at 2 and 7°C within D. menziesii and I. cordata (0.29±0.04 g; one-way ANOVA, F=0.808, 

p=0.36 fr D. menziesii; 0.36±0.1 g; one-way ANOVA, F=0.09, p=0.77 for I. cordata). In 

opposition, both D. anceps and P. decipiens individuals had a significant higher pre-

experimental weight (one-way ANOVA, F=6.14, p=0.048 for D. anceps; F=7.68, p=0.03 for P. 

decipiens) at 2 compared to 7°C (0.35±0.02 g for D. anceps and 0.21±0.07 g for P. decipiens 

at 2°C; 0.3±0.04 g for D. anceps and 0.1±0.04 g for P. decipiens at 7°C). Overall growth rate of 

D. menziesii was not affected by temperature or culture condition (two-way ANOVA, F= 1.77, 

p= 0.19 for temperature; F= 1.9, p= 0.15 for irradiance; F= 1.28, p= 0.3 for interaction 

between temperature and culture; biomass showed in Annex 1; Fig. 1). While overall growth 

rate of D. anecps and I. cordata did not show any temperature effect (One-way ANOVA, F= 

0.34, p= 0.91 for D. anceps; F= 3.6, p= 0.08 for I. cordata; biomass showed in Annex 1; Fig. 1), 

P. decipiens had a significantly higher overall growth rate at 7 compared to 2°C despite the 

fact that pre-experimental weight was higher at 2 than at 7°C (13.06±1.19 % d-1 at 7°C; 

10.66±1.11 % d-1 at 2°C; one-way ANOVA, F= 8.73, p= 0.02; biomass showed in Annex 1; Fig. 

1). 

 

Fig.1 Box-whisker-boxplot of overall growth rate (% day-1) of Desmarestia menziesii mono-cultured 
(DM) and co-cultured with Desmarestia anceps (DM_DA), Iridaea cordata (DM_I), Palmaria decipiens 
(DM_P) and D. anceps (DA), I. cordata (I) and P. decipiens (P) co-cultured with D. menziesii at 2°C and 
7 °C (median ± 95 to 5 percentile, n=4).  
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Measurements of maximum quantum yield (Fv/Fm) from pre-experimental material 

(day -3) were not significantly different at both temperatures within each species. Pre-

experimental Fv/Fm values for D. menziesii were 0.69±0.02, for D. anceps 0.61±0.09, for I. 

cordata 0.56±0.05, and for P. decipiens 0.49±0.03 (Fig.2). Generally, sporophytes of D. 

menziesii had a significantly higher maximum quantum yield at 2 compared to 7°C (RM 

ANOVA; Table2, Fig.2). During the experiment Fv/Fm of D. menziesii, D. anceps and I. cordata 

decreased significantly at both temperatures (day 0 to day 14; Table 2, Fig.2). Final values 

after 14 days of exposure were 0.61±0.06 for D. menziesii, 0.56±0.03 for D. anceps and 

0.44±0.05 for I. cordata (Fig.2). P. decipiens showed the lowest Fv/Fm values compared to the 

other species during the experiment, but values stayed constantly low from day 0 to day 14 

(0.40±0.06 in day 14; Table2, Fig.2).  

 

Fig.2 Box-whisker-plots of maximum quantum yield (Fv/Fm) of Desmarestia menziesii mono-cultured 
(DM) and co-cultured with D. anceps (DM_DA), Iridaea cordata (DM_I) and Palmaria decipiens 
(DM_P) at 2°C (a) and 7°C (b). Box-whisker-plots of maximum quantum yield (Fv/Fm) of D. anceps 
(DA), I. cordata (I) and P. decipiens (P) co-cultured with D. menziesii (c and d) (median ± 95 to 5 
percentile, n=4). 
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Table 2. Repeated Measurements ANOVA of photosynthetic efficiency of Desmarestia menziesii, D. 
anceps, Iridaea cordata and Palmaria decipiens on temperature (2°/7°C) and culture treatments 
(mono/co-cultures, D. menziesii only) over time (n=4, 2 weeks). p-values were set to <0.05. TE = 
temperature, CU = culture treatment, TI = time, ns = not significant. Significant values in italics.  

Species Source of variation 
Fv/Fm 

df F-value p-value 

Desmarestia 
menziesii 

 
TE 

 
1 5.98 0.0222 

 
CU 

 
3 2.46 ns 

 
TE x CU 

 
3 0.12 ns 

 
TI 

 
4 27.89 <0.0001 

 
TI x TE 

 
4 2.45 ns 

 
TI x CU 

 
12 0.54 ns 

 
TI x TE x CU 

 
12 0.39 ns 

Desmarestia anceps  
TE 

 
1 0.0517 ns 

 
TI 

 
4 9.8954 <0.0001 

 
TI x TE 

 
4 0.9593 ns 

Iridaea cordata  
TE 

 
1 1.2015 ns 

 
TI 

 
4 3.2951 0.0275 

 
TI x TE 

 
4 0.1465 ns 

Palmaria decepiens  
TE 

 
1 4.924 ns 

 
TI 

 
4 2.409 ns 

 
TI x TE 

 
4 0.885 ns 

Experiment 2. Impact of interspecific competition and irradiance on D. menziesii 

and D. anceps 

Initial wet weight (WW) measurements from pre-experimental material (day -4) were 

similar for both Desmarestia species and both irradiance treatments (1.80±0.03 g; one-way 

ANOVA, F=2.72, p=0.11). Overall growth rate of D. menziesii and D. anceps was very low 

(0.23±0.31 % d-1 and 0.33±0.11 % d-1 for D. menziesii and D. anceps respectively; biomass 

showed in Annex 2) and not affected by irradiance (two-way ANOVA, F=3.60, p=0.07 for D. 

menziesii; F=0.69, p=0.42 for D. anceps) or culture treatment (two-way ANOVA, F=1.00, 

p=0.33 for D. menziesii; F=1.65, p=0.22 for D. anceps; Fig. 3). 
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Fig.3 Box-whisker-plots of overall growth rate (% day-1) of Desmarestia menziesii mono-cultured (DM) 
and co-cultured with D. anceps (DM_DA), D. anceps mono-cultured (DA) and D. anceps co-cultured 
with D. menziesii (DA_DM) under 10 and 100 µmol m-2 s-1 (median ± 95 to 5 percentile, n=5). 

Measurements of maximum quantum yield (Fv/Fm) from pre-experimental material 

(still under low irradiance, day -3) were similar between both Desmarestia species and all 

treatments (0.74±0.03; one-way ANOVA, F=0.73, p=0.40; Fig. 4). In general, the maximum 

quantum yield of both species was significantly higher at low irradiance (10 µmol photons m-

2 s-1) compared to high irradiance (100 µmol photons m-2 s-1) while no culture treatment 

effects were observed (Table 3). Although Fv/Fm values decreased over time in the high 

irradiance treatment to 0.61±0.07 in D. menziesii and 0.56±0.06 in D. anceps (day 15), they 

remained constant at low irradiances (0.71±0.03 and 0.72±0.02 for D. menziesii and D. 

anceps respectively on day 15), resulting in a significant time and irradiance interaction 

(Table 3, Fig. 4). Because both Desmarestia species initially showed similar Fv/Fm values, a 

comparison of both species after 15 days was possible (comparing mono-cultured 

treatments). At high irradiances the decrease of the Fv/Fm values in D. menziesii seem to be 

less pronounced than in D. anceps, however variances for some experimental days were still 

heterogeneous after transformation leading to consider this significant difference only as a 

trend (Table 3, Fig. 4). 
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Fig.4 Box-whisker-plots of maximum quantum yield (Fv/Fm) of Desmarestia menziesii mono-cultured 
(DM) and co-cultured with D. anceps (DM_DA) (a and b), D. anceps mono-cultured (DA) and D. 
anceps co-cultured with D. menziesii (DA_DM) (c and d) under 10 and 100 µmol m-2 s-1 (median ± 95 
to 5 percentile, n=5). 

Comparing the photosynthetic efficiency between treatments on the last sampling 

day it was shown that rETRmax of D. menziesii was significantly higher under high irradiance 

compared to the low irradiance treatment, while no culture effect was detected (two-way 

ANOVA, F= 6.11, p=0.02 for irradiance, Annex 4 for details; values in Annex 3; Fig. 5). α and 

Ek parameters D. menziesii were not affected by irradiance or culture treatments (two-way 

ANOVA, Annex 4 for details; values in Annex 3; Fig. 5). Similarly, rETRmax and Ek parameters of 

D. anceps did not show any significant differences between the irradiance and the culture 

effects while α parameter showed higher values for the mono-cultures compared to the co-

cultures under both irradiance intensities (two-way ANOVA, F= 9.28, p= 0.007; Annex 4 for 

details; values in Annex 3; Fig. 5). Comparing both species (mono-cultured) with each other it 

became evident that rETRmax (only LL treatment) and Ek (both LL and HL treatments) were 

higher in D. menziesii compared to D. anceps (one-way ANOVA, Table 4; values in Annex 3; 

Fig. 5).  
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Table 3. a) Repeated Measurements ANOVA of maximum quantum yield (Fv/Fm) of Desmarestia 
menziesii and D. anceps mono- and co-cultured on irradiance (10/100µmol) and culture treatment 
(mono/co-cultures) effects over time (n=5, 2 weeks). b) Repeated Measurements ANOVA of 
maximum quantum yield (Fv/Fm) of D. menziesii and D. anceps mono-cultured on species effect (D. 
menziesii/D. anceps) over time (n=5, 2 weeks). LI = irradiance intensity, CU = culture treatment, SP = 
species, TI = time, ns = not significant, a = variances still heterogeneous after transformation. 
Significant values in italics.  

 
Species Source of variation 

Fv/Fm 

 

df F-value p-value 

a) 

Desmarestia menziesii    

LI 1 22.94 0.0002a 

 

CU 1 0.14 ns 

 

LI x CU 1 0.84 ns 

 

TI 4 12.57 0.0001 

 

TI x LI 4 9.04 0.0005 

 

TI x CU 4 0.30 ns 

 

TI x LI x CU 4 2.15 ns 

 

Desmarestia anceps    

LI 1 51.12 <0.0001a 

 

CU 1 0.09 ns 

 

LI x CU 1 0.27 ns 

 

TI 4 9.68 <0.0001 

 

TI x LI 4 14.58 <0.0001 

 

TI x CU 4 1.49 ns 

 

TI x LI x CU 4 1.72 ns 
 

          

b) 

Desmarestia menziesii  
+ Desmarestia anceps    

LI 1 56.702 <0.0001a 

 

SP 1 4.860 0.0425a 

 

LI x SP 1 1.899 ns 

 

TI 4 8.204 0.0008 

 

TI x LI 4 13.328 <0.0001 

 

TI x SP 4 0.845 ns 

 

TI x LI x SP 4 1.209 ns 

Sporophytes of D. menziesii and D. anceps used for pigment concentration analysis 

were not numerically enough to be statistically analyzed. However, Fig. 6 shows that after 15 

days of exposure to high irradiance, pigment content (both chlorophyll a and fucoxanthin) 

increased in D. menziesii in contrast to the low irradiance treatment where the 

concentration remains stable compared to initial values.  In D. anceps, on the other hand, 

pigment concentrations decreased under both treatments compared to initial values, 

especially under high irradiance (chl a concentrations near to 0 µg/100 µL; Fig. 6). 



  Results 
 

17 

 

 

Fig.5 Maximum relative electron transport rate (rETRmax), electron transport efficiency (α), and 
saturation irradiance for electron transport (Ek) of mono- and co-cultured Desmarestia menziesii (a 
and c) and mono- and co-cultured D. anceps (b and d) under low (LL, 10 µmol m-2 s-1) and high 
irradiance (HL, 100 µmol m-2 s-1) in black and blue respectively. Curves fitted with the hyperbolic 
tangent model (Jassby and Platt 1976). 

 

Table 4. One-way ANOVA of the photosynthetic efficiency parameters (rETRmax, α and Ek) of 
Desmarestia menziesii and D. anceps mono-cultured on culture effect (mono/co-cultures). n=4. p-
values were set to <0.05. LI=low irradiance, HI=high irradiance, SP=species, ns = not significant. 
Significant values in italics. 

Species Treatment Parameter Source of variation 
Photosynthetic efficiency 

df F-value p-value 

D. menziesii 
+ D. anceps 

LI 

rETRmax  
SP 

 
1 37.5243 0.0003 

α 
  

1 0.9908 ns 

Ek   
1 8.7186 0.0183 

HI 

rETRmax  
SP 

 
1 9.4480 0.0153 

α 
  

1 2.9470 ns 

Ek   
1 3.1112 ns 
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Fig.6 Chlorophyll a (a and b) and fucoxanthin (c and d) concentration (µg/100 µl) in Desmarestia 
menziesii and D. anceps specimens before and after 15 days of treatment under low irradiance (LL, 
10 µmol m-2 s-1) and high irradiance (HL, 100 µmol m-2 s-1). Initial values refer to day 0, from 
specimens exposed to low irradiance. Each empty dot represent one value (Initials n=5, day 15 n=2 or 
3). The red line represents the mean of the data points for each treatment. 

Experiment 3. Impact of interspecific competition and temperature on D. menziesii 

and D. anceps 

Measurements of wet weight (WW) of pre-experimental material (day -2) of both 

Desmarestia species were similar (1.14±0.06 g; one-way ANOVA, F=0.19, p=0.67). Biomass 

and overall growth rate was very low for both D. menziesii and D. anceps (0.44±0.22 % d-1 

and 0.59±0.55 % d-1 for mono- and co-cultured D. menziesii; 0.58±0.45 % d-1 and 0.46±0.29% 

d-1 for mono- and co-cultured D. anceps; biomass showed in Annex 5; Fig.7) and was not 

significantly altered by temperature (two-way ANOVA, F=1.81, p=0.20 for D. menziesii; 

F=0.87, p=0.36 for D. anceps) or culture treatment (two-way ANOVA, F=0.72, p=0.41 for D. 

menziesii; F=0.93, p=0.76 for D. anceps). 
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Fig.7 Box-whisker-plots of overall growth rate (% day-1) of of Desmarestia menziesii mono-cultured 
(DM) and co-cultured with D. anceps (DM_DA), D. anceps mono-cultured (DA) and D. anceps co-
cultured with D. menziesii (DA_DM) at 2 and 7 °C (median ± 95 to 5 percentile, n=5). 

Measurements of maximum quantum yield (Fv/Fm) from pre-experimental material 

(day -3) were similar between both Desmarestia species and both temperature treatments 

(0.75±0.02; one-way ANOVA, F=0.71, p=0.40; Fig. 8). Generally, sporophytes of D. menziesii 

and D. anceps had higher maximum quantum yield at 2 compared to 7 °C (Fig. 8), but 

statistically significant differences were only observed for D. anceps (RM ANOVA, Table 5). 

Fv/Fm values of both D. menziesii and D. anceps showed a significant interactive effect of 

time and temperature treatment due to a stronger decrease in Fv/Fm at 7 °C over time 

compared to 2 °C (0.71±0.02 and 0.70±0.03 for D. menziesii and D. anceps at 2 °C; 0.66±0.03 

and 0.65±0.03 for D. menziesii and D. anceps at 7 °C during day 10; Fig. 8; Table 5). Because 

both Desmarestia species initially showed similar Fv/Fm values, a comparison of both species 

after 10 days was possible (comparing mono-cultured treatments) but no difference 

between the two species under the two temperature treatments was detected (Table 5). 
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Fig.8 Box-whisker-plots of maximum quantum yield (Fv/Fm) of Desmarestia menziesii mono-cultured 
(DM) and co-cultured with D. anceps (DM_DA) (a and b), D. anceps mono-cultured (DA) and D. 
anceps co-cultured with D. menziesii (c and d) at 2°C and 7°C (median ± 95 to 5 percentile, n=5). 

Almost no significant effect on the photosynthetic efficiency was detected comparing 

treatment effects (temperature and culture treatment) on the last sampling day. A slight 

interaction between temperature and culture treatment for α in D. menziesii was observed 

testing for both effects with a two-way ANOVA (F= 6.50, p= 0.02; details in Annex 7; values in 

Annex 6; Fig. 9). Unlike, the rETRmax and Ek parameter of D. menziesii and D. anceps did not 

show any temperature or culture effects (details in Annex 7; values in Annex 6; Fig. 9). 

Comparing both species (mono-cultured) with each other, it became evident that only at 7 

°C α parameter was lower in D. anceps compared to D. menziesii (one-way ANOVA, F= 7.9, 

p= 0.03; Table 6; values in Annex 6; Fig. 9).  
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Table 5. a) Repeated Measurements ANOVA of photosynthetic efficiency of Desmarestia menziesii 
and D. anceps mono- and co-cultured on temperature (2/7°C) and culture treatments (mono/co-
cultures) over time (n=5, 10 days). b) Repeated Measurements ANOVA of maximum quantum yield 
(Fv/Fm) of D. menziesii and D. anceps mono-cultured on species effect (D. menziesii/D. anceps) over 
time (n=5, 10 days). TE = temperature, CU = culture treatment, TI = time, ns = not significant, a = 
variances still heterogeneous after transformation. Significant values in italics.  

 Species Source of variation 
Fv/Fm 

 
df F-value p-value 

a) 

Desmarestia menziesii 

TE 1 3.74 ns 

 
CU 1 0.35 ns 

 
TE x CU 1 0.01 ns 

 
TI 3 21.31 <0.0001 

 
TI x TE 3 11.63 <0.0001 

 
TI x CU 3 0.57 ns 

 
TI x TE x CU 3 2.47 ns 

 

Desmarestia anceps 

TE 1 12.29 0.0029 

 
CU 1 2.98 ns 

 
TE x CU 1 1.50 ns 

 
TI 3 12.40 <0.0001 

 
TI x TE 3 5.66 0.0021 

 
TI x CU 3 0.25 ns 

 
TI x TE x CU 3 0.57 ns 

      b) 

Desmarestia menziesii + 
Desmarestia anceps 

TE 1 12.24 0.0030
a
 

 
SP 1 4.23 ns 

 
TE x SP 1 1.03 ns 

 
TI 3 10.63 0.0003 

 
TI x TE 3 3.33 0.0496 

 
TI x SP 3 0.27 ns 

 
TI x TE x SP 3 0.25 ns 

Initial pigment concentrations were higher for this experiment than for experiment 2 

and increases or decreases were less pronounced than for experiment 2 (low vs high 

irradiance). Again, sporophytes of D. menziesii and D. anceps used for pigment concentration 

analysis were not numerically enough to be statistically analyzed. However, Fig. 10 shows a 

slight increase in chl a concentrations in D. menziesii after 10 days of exposure to 2 

compared to 7°C were concentrations remained stable. In contrast, chl a concentrations in 

D. anceps decreased after 10 days under both temperatures compared to initial values, but 

more at 7 than at 2°C. Fucoxanthin concentrations in D. menziesii remained more or less 

stable under both temperatures compared to initial values, but they increased in D. anceps 

exposed to 2°C and decreased exposed to 7°C compared to initial values (Fig. 10).  
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Fig.9 Maximum relative electron transport rate (rETRmax), electron transport efficiency (α), and 
saturation irradiance for electron transport (Ek) of mono- and co-cultured Desmarestia menziesii (a 
and c) and mono- and co-cultured D. anceps (b and d) under 2 °C and 7 °C in black and grey 
respectively. 
 

Table 6. One-way ANOVA of the photosynthetic efficiency parameters (rETRmax, α and Ek) of 
Desmarestia menziesii and D. anceps mono-cultured on culture effect (mono/co-cultures). n=4. p-
values were set to <0.05. SP=species, ns = not significant. Significant values in italics. 

Species Treatment Parameter Source of variation 
Photosynthetic efficiency 

df F-value p-value 

D. menziesii  
+ D. anceps 

2 °C 

rETRmax  
SP 

 
1 0.0138 ns 

α 
  

1 0.728 ns 

Ek   
1 0.1622 ns 

7 °C 

rETRmax  
SP 

 
1 3.5324 ns 

α 
  

1 7.9 0.0228 

Ek   
1 1.1116 ns 

2°C 
7 °C 
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Fig.10 Chlorophyll a (a and b) and fucoxanthin (c and d) concentration (µg/100 µl) in Desmarestia 
menziesii and D. anceps specimens before and after 10 days of treatment at low temperature (LT, 
2°C) and high temperature (HT, 7°C). Initial samples were taken after 2 days of exposure to the 
respective temperatures. Each dot represent one data (n=2 or 3). The red line represents the mean 
of the data points for each treatment. 

IV. Discussion 

This study investigated whether effects of climate change such as temperature increase 

and irradiance variations in the water column (due to glacier melting and therefore sediment 

run-off) in combination with interspecific competition may alter growth and photosynthetic 

performance of Desmarestia menziesii and D. anceps. These two co-occurring Antarctic 

brown algae did not show almost any interspecific competition effect when co-cultivated 

together nor when D. menziesii was co-cultivated with other two Antarctic red algae (Iridaea 

cordata and Palmaria decipiens). However, increased temperature and irradiance induced a 

significant stress response in both species, mostly evident on the performance of 

photosystem II. At 7 °C photosynthetic efficiency (Fv/Fm) decreased over time similarly in 

both species compared to 2 °C. Low irradiance (10 µmol m-2 s-1) did not induce an effect on 

photosynthesis, but higher irradiances (50 or 100 µmol m-2 s-1) led to a reduction of Fv/Fm at 
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2 °C but even more pronounced at 7 °C. The present study highlighted the key role of 

irradiance on the vertical distribution of these species possibly influenced by temperature. 

During the current experiments, the two red algal species were growing more than the 

two Desmarestia species, and among them notably P. decipiens showed a very high relative 

growth rate (1st experiment). Desmarestia species grew very little at both temperatures and 

under both irradiance treatments, most likely because of their internal dormancy state 

during the summer period. D. menziesii and D. anceps are season anticipators (Kain 1989; 

(Wiencke 1990a; Gómez & Wiencke 1997) meaning that they start to grow under short day 

conditions in late winter-spring, reaching maximal growth during spring (September for D. 

anceps and December for D. menziesii; Wiencke 1990; Gómez & Wiencke 1997) and 

minimum growth activity from January to May (Wiencke 1990a). This life strategy is mainly 

found among the endemic Antarctic species (Lüning & tom Dieck 1989). The present 

experiments were carried out during the Antarctic summer (January to March), when growth 

of these species is minimal, which explains why no temperature or irradiance effects on the 

relative growth rate of Desmarestia spp. could be observed. In opposition, the seasonal 

responder I. cordata (Kain 1989; Weykam et al. 1997) showed a higher relative growth rate 

than the two brown algal species. This opportunistic life strategy is typical of the Antarctic-

cold temperate species (Lüning & tom Dieck 1989) which react directly to changing 

environmental conditions. Palmaria decipiens is considered as a seasonal anticipator 

(Weykam et al. 1997; Lüder et al. 2002), but showed the highest relative growth rate of all 

tested species. However, not just season but also other factors such as age and size of the 

algae may influence growth rates, as has been found in other studies using temperate 

macroalgae (e.g. Khailov 1976). The higher relative growth rate of P. decipiens at 7 compared 

to 2 °C in this study is consistent with Wiencke & tom Dieck (1989) who observed a higher 

growth rate around 5 compared to 0 °C. In contrast to P. decipiens no temperature effects 

on growth were found for both Desmarestia species and I. cordata.  Wiencke & tom Dieck 

(1989; 1990) showed optima growth rates for these species at temperatures ≤ 5 °C which 

could not be confirmed in this study probably due to the very low growth rates of the 

Desmarestia species in general. It is published, however, that temperatures of 10 °C can 

either completely stop (D. anceps; Wiencke & tom Dieck 1989) or reduce (D. menziesii, 

Matula & Zacher pers. comm.) their growth. The UST range of D. anceps is 11-12 °C (Wiencke 

& tom Dieck 1989) whereas the UST of I. cordata and P. decipiens is higher being between 



  Discussion 
 

25 

 

15-16 °C and 16 – 17 °C respectively (Wiencke et al. 1994). UST of D. menziesii sporophytes 

have not been published yet, but there is evidence that it is higher than the UST of D. anceps 

(Matula & Zacher pers. comm.). This would be consistent with the biogeographic distribution 

of these species, with D. menziesii found further north up to the South Georgia Islands (54° 

19’ S, 36° 39’ W), and of I. cordata found up to the southern part of Chile (Miller & Pears 

1991) compared to D. anceps and P. decipiens, which only occur around the WAP up to 60° S 

showing lowest UST of all 4 species (Wiencke & Clayton 2002, Wiencke et al. 2014, Ricker 

1987).  

Under 10 µmol m-2 s-1 maximum quantum yield from D. menziesii and D. anceps 

remained stable over time (2nd experiment); in contrast, under 50 and 100 µmol m-2 s-1 (3rd 

and 2nd experiment) Fv/Fm values decreased for both species at 2 °C but even more at 7 °C 

(1st and 3rd experiment). Under 100 µmol m-2 s-1, D. menziesii showed higher rETRmax than 

under 10 µmol m-2 s-1, meaning that after 15 days of exposure D. menziesii adapted to high 

irradiance conditions (2nd experiment). However, after 10 days of exposure to 50 µmol m-2 s-

1, the photosynthetic performance parameters of D. menziesii did not change at 2 and 7 °C 

(3rd experiment). D. anceps seemed to be more stressed (Maxwell and Johnson 2000) to high 

irradiance and high temperature conditions showing lower Fv/Fm under 50 and 100 µmol m-2 

s-1 (3rd and 2nd experiments) and lower rETRmax at 7 compared to 2 °C (3rd experiment) 

compared to D. menziesii. These results are in opposition to the outcome of Zacher et al. 

(2016, accepted) study, where an experiment under similar conditions (50 µmol m-2 s-1 and a 

day:night regime of 16:8 hours) but on cultured sporophytes of D. menziesii and D. anceps 

was performed. Zacher et al. (2016, accepted) showed that photosynthetic efficiency of both 

Desmarestia sp. decreased more at 0 compared to 5 °C and similarly rETRmax of D. menziesii 

was significantly lower at 0 compared to 5 °C, indicating a sub-optimal acclimation of 

photosynthesis under low temperatures in combination with this irradiance conditions. 

Another study performed by Rautenberger et al. 2015 showed an unchanged photosynthesis 

of both Desmarestia species at 2 and 7 °C under only PAR. They could show that higher 

seawater temperatures decreased the UV sensitivity of D.  menziesii whereas photosynthetic 

efficiency of D. anceps remained unaffected by combinations of temperature and UV 

radiation. Generally, D. anceps was more UV susceptible than D. menziesii, but it has to be 

considered that the experiment was performed under low irradiance conditions (18 µmol m-

2 s-1) and no consideration under enhanced irradiance intensities are taken into account. 
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However, they found a reduction of maximum quantum yield after UV exposure in D. anceps 

but not in D. menziesii, possibly a hint for the different depth zonation of both species. 

Generally, Antarctic endemic seaweeds are strong cold water adapted and able to perform 

photosynthesis at 0 °C with values as high as temperate species, but their temperature 

optimum for photosynthesis is above the temperature of the natural environment ranging 

between 5 and 15 °C (Wiencke et al. 1993, Gómez et al. 2009), which could not be confirmed 

with our experiments with values as high or even higher at 2 °C compared to 7 °C. However, 

it is known that not only sporophytes of different ages react differently to temperature but 

also different algal stages may react differently to environmental stressors (Coelho et al. 

2000) and may have different temperature optima and USTs (reviewed in Wiencke et al. 

1994). The UST of the gametophyte for example is usually higher compared to its 

sporophyte. The UST of the female gametophyte of D. anceps is with 13 °C two °C higher 

than of its sporophyte (Wiencke & tom Dieck 1989) and gametophytes of D. menziesii 

survive temperatures until 16-17 °C (Wiencke & tom Dieck 1990). Whether differences in 

algal stage or field vs. culture material are responsible for the different outcomes remains to 

be studied but one important fact is that most former studies were performed under low 

irradiance condition and high irradiance (such as used in our studies) may exert an additional 

stress on the algae leading to these results. In this context it is important to state that the 

irradiance applied during the present experiments are revealed from field data – and the 

algae truly experience these kinds of conditions (100 µmol m-2 s-1 at 5 m depth). This is also 

true for the daily PAR doses the algae may experience at 5 m which are e.g. 1130 (±500) kJ 

(measured in January 2014, Deregibus pers. comm.) in comparison to up to 1300 kJ applied 

in the 2nd experiment. Irradiance seems to be a crucial factor for the temperature tolerance 

of the species and it is important to use ecological relevant values. During the current 

experiment it was evident that the photosystem of D. anceps require less irradiance to 

saturate photosynthesis because it showed lower rETRmax under 10 and 100 µmol m-2 s-1 (2nd 

experiment) compared to D. menziesii, highlighting that D. anceps is more shade-adapted 

compared to D. menziesii. The vertical distribution of these two algae explain the 

encountered results and it is again confirmed from the higher pigment content found in D. 

menziesii compared to D. anceps under high irradiance conditions. Indeed, chl a 

concentrations of D. anceps after 15 days of exposure time under 100 µmol m-2 s-1 reached 

values of almost 0 µg/100 µL suggesting the strong photodamage actualized by PSII due to 
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the very high irradiance intensity. D. anceps shows higher biomass peak at 10 m depth, 

where irradiance intensities are around 10 µmol m-2 s-1 once the ice has broken up, unlike D. 

menziesii which presents its higher biomass peak at 5 m depth where light intensities are 

normally of 100 µmol m-2 s-1. Although D. menziesii shows better performance even under 

such high irradiance intensity, its photosynthetical activity under low irradiance did not 

decreased over 15 days, unlike under high irradiance. Both algae were collected where they 

overlap (5 m) but where a major abundance of D. menziesii is normally encountered 

(Quartino et al. 2001). Studies on photosynthetic characteristics of Antarctic macroalgae 

have shown that members of the Desmarestiales exhibit very low light requirements for 

saturation of photosynthesis and reach significantly higher α values than, for example, the 

endemic Arctic kelp Laminaria solidungula (Dunton and Kodwalis 1988; Wiencke et al. 1993; 

Kirst and Wiencke, 1995). Nevertheless, the photosynthetic efficiency (α) can be very 

variable according to the season. Every macroalgae species has a proper life strategy and 

photosynthetic parameters are life strategy – dependent. During the current experiment, the 

photosynthetic efficiency α shown by D. menziesii and D. anceps were particularly low (~ 0.3) 

which could be a consequence of the time of the year. As shown by Gomez and Wiencke 

(1997), α parameter of D. menziesii presents highest values in winter-spring and minima in 

summer and the photosynthesis is optimized under lower light conditions (Gomez and 

Wiencke, 1997). As for growth, a strong seasonal pattern of photosynthetic performance of 

macroalgae has been found in long-term studies (Weykam & Wiencke 1996; Weykam et al. 

1997; Gómez & Wiencke 1997; Lüder et al. 2001, 2002, 2003) and in field experiments 

(Gutkowski & Maleszewski 1989; Drew & Hastings 1992; Gómez et al. 1995, 1997). In the 

brown algal season anticipators, optimal photosynthetic rates are highest in late winter 

(Gómez et al. 1995) or in spring as for D. menziesii (Gómez et al. 1997). But still there are 

only few studies investigating the impact of season on the temperature performance of 

seaweed species and none dealing with Polar species. Temperate brown algae of the order 

Laminariales and Desmarestiales, for example, were more susceptible to high temperatures 

during late winter compared to summer or in actively growing tissue compared to old tissue 

(Lüning 1984). In a recent seasonal benthocosm study on the temperate brown alga Fucus 

vesiculosus ‘major effects of temperature mostly became evident during the active growth 

phase’ (Graiff et al. 2015). These observations imply that brown algae with intermittent 

growth phases such as Laminariales, Fucales or Antarctic Desmarestiales (Wiencke 1990, 
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Gómez & Wiencke 1997) where periods of growth are followed by periods of rest over one 

year (Lüning & tom Dieck 1989) may exhibit seasonally different temperature affinities. This 

is of special interest in Antarctica where winter temperatures have been rising more than 

summer temperatures (Schloss et al. 2012) and the large brown Desmarestiales species have 

to endure a long dark winter period initiating growth during late winter by using the storage 

compounds build-up during spring-autumn. 

No interspecific competition between D. menziesii and D. anceps (1st, 2nd and 3rd 

experiments) as well as between D. menziesii and the red algae I. cordata and P. decipiens 

(1st experiment) on growth was detected. Possible effects may have been masked due to the 

general low growth rate of the Desmarestia species discussed above. Interspecific 

competition was detected only in D. anceps where α was lower in co-cultured than in mono-

cultured treatments under both high and low irradiance intensities (2nd experiment). Similar 

results were shown for D. menziesii with lower α values in the co-cultured compared to the 

mono-cultured treatments at 7 °C (3rd experiment). These results, however, were not concise 

over all experiments and may be an artefact. The α values give a hint on the shade adaption 

of a species and it is not explicable why algae co-cultured should be less shade adapted than 

mono-cultured. Further studies are necessary to tackle this question. The outcomes of the 

experiments show a general low interspecific competition between these two species. 

However, competition may occur in different life-cycle stages or under different 

environmental conditions as was pointed out by Carpenter et al. (1990). Nabivalio et al. 

(2014) and Xu et al. (2013), conducted experiments with different life-cycle stage 

(gametophytes, adult thalli) and showed both negative and positive interactions. Some 

species reduced the availability of resources for their competitors (resource competition; 

e.g. Nabivailo et al. 2014) while others influenced physiological processes of competitors via 

allelopathy (interference competition; Xu et al. 2013). Further studies with different 

developmental stages are required to find out whether in more sensitive developmental 

stages (e.g. spores) competition may occur and how it affects the successful colonization of 

both Desmarestia species. Competition has emerged as one of the dominant processes 

dictating assemblage structure (Barnes & DeGrave 2002) and especially in high latitudes is 

very little studied. In polar environments, glacial run-off deteriorates the underwater light 

climate with the potential shrink of the seasonal euphotic zone (Weslawski et al. 2011) 

which may lead to an increase of overlapping habitats of both species and competition in 
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shallower depth between species. Other factors potentially affect competition outcome and 

have to be known to predict the impact of climate change in such sensitive and complex 

environments and to understand the successful colonization of algal assemblages. Due to 

the decreased landfast sea-ice and increased sedimentation rates, in Arctic Kongsfjorden an 

altered community pattern had already been observed between 1998 and 2014 (Bartsch et 

al. 2016). Indeed, strong correlation between the underwater light climate and the depth 

distribution has been shown for both temperate and polar rocky shores (e.g. Pedersen & 

Snoeijs 2001, Pehlke & Bartsch 2008, Derrien-Courtel et al. 2013, Clark et al. 2015). One of 

the most biologically significant trends in competition was recently reported by Barnes & 

Neutel (2016) who revealed that the severity of competition between bryozoans 

(percentage of competition between colonies involved in a win/loss outcome, leading to 

death of the loser) was three times lower at the poles than in the tropics. Moreover, the 

most frequent spatial competition at the poles was found to be intraspecific unlike the non-

polar regions where competition is dominated by species of different families (shift of the 

relatedness of competitors towards the poles). Such situation, which is not just a scenario 

but already evidence, leads to a simplification of the fauna and flora communities, where 

just few organisms outcompete the others. Therefore, it is necessary to further investigate 

which are the key factors which regulate competition within assemblages of Polar 

macroalgae as no other studies on this topic exist. 

Although a temperature increase to 7 °C in summer does not seem to be mortal for D. 

menziesii and D. anceps sporophytes, the higher temperature exerted a stress response on 

their photosynthetic efficiency in combination with irradiance intensities encountered under 

field conditions. However, experiments should take into consideration the combined effects 

with other factors, which may act in a synergistic or antagonistic way. Further investigations 

on all life cycle stages (spores, gametophytes, young and adult sporophytes), reproduction 

(e.g. gametogenesis) and subsequent recruitment in different seasons would be important 

to generate a more complete picture and to better understand the effects of increasing 

temperatures on species and macroalgal assemblages. The current experiments were 

relatively short in duration and there is a need to look at the effects of climate change 

parameters over both, short- and long-term exposures. However, opposite results have been 

detected between laboratory and field material experiments, suggesting that laboratory 

experiments may still be improved and care must be taken in extrapolating small scale 
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laboratory experiments of one developmental stage to the whole algal organism developing 

under field conditions. As shown by Zacher (2014) spores exposed to field and laboratory 

conditions germinated at significantly higher rates in the laboratory due to a lower PAR to 

UVR ratio applied compared to field conditions. Especially the high PAR irradiance in the field 

impeded germination of spores from the endemic algal species Himantothallus grandifolius 

at lower depths and seems – at least partly – responsible for the depth zonation of this 

species. All this shows that it is essential to take seasonal patterns into account and that 

working with field material in situ is of great importance to investigate community responses 

under global climate change. 
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ANNEX 

Experiment 1. Impact of interspecific competition and temperature on D. menziesii  

 

Annex 1. Box-whisker-boxplot of biomass (weight, mg) of Desmarestia menziesii mono-cultured (DM) 

and co-cultured with D. anceps (DM_DA), I. cordata (DM_I), P. decipiens (DM_P) and D. anceps (DA), 

I. cordata (I) and P. decipiens (P) co-cultured with D. menziesii at 2°C and 7 °C (median ± 95 to 5 

percentile, n=4).  
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Experiment 2. Impact of interspecific competition and irradiance on D. menziesii and D. 

anceps 

 

Annex 2. Box-whisker-boxplot of biomass (weight, mg) of Desmarestia menziesii mono-cultured (DM) 

and co-cultured with D. anceps (DM_DA) (a and b), D. anceps mono-cultured (DA) and D. anceps co-

cultured with D. menziesii (DA_DM) (c and d) under 10 and 100 µmol m-2 s-1 (median ± 95 to 5 

percentile, n=5).
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Annex 3. Maximum relative electron transport rate (rETRmax), electron transport efficiency (α), and 
saturation irradiance for electron transport (Ek) derived from rapid light curves and calculated by the 
hyperbolic tangent model (Jassby & Platt 1976) of Desmarestia menziesii and D. anceps during the 
first experimental day (initial, day 0) and after 15 days of exposure to low (LI, 10 µmol m-2 s-1) and 
high irradiance (HI, 100 µmol m-2 s-1) (means ± SD, n=5). 

  mono-cultured co-cultured 

  
LI 

 
HI 

 
LI 

 
HI 

 
Initial Day 15 Initial Day 15 Initial Day 15 Initial Day 15 

                  

Desmarestia 
menziesii         

        
rETRmax 

16.81 ± 
2.345 

16.99 
±2.15 

19.35 ± 
2.15 

18.978 ± 
1.4 

14.56 ± 
3.52 

13.81 ± 
4.80 

16.99 ± 
2.15 

20.58 ± 
2.89 

         
alpha 

0.36 ± 
0.08 

0.30 
±0.04 

0.31 ± 
0.00 

0.31 ± 
0.02 

0.32 ± 
0.06 

0.25 ± 
0.05 

0.30 ± 
0.04 

0.30 ± 
0.03 

         
Ek 

47.65 ± 
9.99 

56.36 ± 
7.76 

62.31 ± 
7.01 

60.52 ± 
6.22 

48.00 ± 
17.63 

53.44 ± 
10.36 

56.36 ± 
7.76 

68.36 ± 
4.91 

         Desmarestia 
anceps         

        
rETRmax 

11.74 ± 
3.69 

7.83 
±1.14 

14.26 ± 
3.59 

11.89 ± 
4.30 

11.16 
±4.28 

8.47± 
1.88 

12.61± 
5.26 

9.53 ± 
4.33 

         
α 

0.31 ± 
0.05 

0.30 ± 
0.03 

0.30 ± 
0.06 

0.28 ± 
0.03 

0.33 ± 
0.08 

0.28 ± 
0.03 

0.28 ± 
0.06 

0.24 ± 
0.05 

         
Ek 

39.12 ± 
14.64 

 26.31± 
3.08 

49.29 ± 
14.69 

42.85 ± 
15.64 

36.23 ± 
18.04 

35.40± 
6.75 

46.97 ± 
26.05 

35.56 ± 
13.59 
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Annex 4. Two-way ANOVA of the photosynthetic efficiency parameters (rETRmax, α and Ek) of 

Desmarestia menziesii and D. anceps on irradiance (10/100 µmol m-2 s-1) and culture treatments 

(mono/co-cultures). n=4. p-values were set to <0.05. IR = irradiance, CU = culture treatment, ns = not 

significant. Significant values in italics. 

Species Parameter Source of variation 
Photosynthetic efficiency 

df F-value p-value 

Desmarestia 
menziesii 

rETRmax  
IR 

 
1 6.1105 0.0250 

  
CU 

 
1 0.2365 ns 

  
IR x CU 

 
1 0.0375 ns 

α 
 

IR 
 

1 0.0571 ns 

  
CU 

 
1 1.0835 ns 

  
IR x CU 

 
1 0.0007 ns 

Ek  
IR 

 
1 2.6297 ns 

  
CU 

 
1 0.0871 ns 

  
IR x CU 

 
1 0.0198 ns 

Desmarestia 
anceps 

rETRmax  
IR 

 
1 3.1152 ns 

  
CU 

 
1 0.3501 ns 

  
IR x CU 

 
1 1.0663 ns 

α 
 

IR 
 

1 0.2340 ns 

  
CU 

 
1 9.2820 0.0077 

  
IR x CU 

 
1 0.2600 ns 

Ek  
IR 

 
1 2.8836 ns 

  
CU 

 
1 0.0340 ns 

  
IR x CU 

 
1 2.7677 ns 
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Experiment 3. Impact of interspecific competition and temperature on D. menziesii and D. 

anceps 

 

Annex 5. Box-whisker-plots of biomass (weight, mg) of Desmaresti menziesii mono-cultured (DM) and 

co-cultured with D. anceps (DM_DA), D. anceps mono-cultured (DA) and D. anceps co-cultured with 

D. menziesii at 2 (a) and 7 °C (b) (median ± 95 to 5 percentile, n=5). 
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Annex 6. Maximum relative electron transport rate (rETRmax), electron transport efficiency (α), and 
saturation irradiance for electron transport (Ek) derived from rapid light curves and calculated by the 
hyperbolic tangent model (Jassby & Platt 1976) of Desmarestia menziesii and D. anceps during the 
first experimental day (initial, day 0) and after 10 days of exposure to low (2°C) and high temperature 
(7°C) (means ± SD, n=5). 

  mono-cultured co-cultured 

 
2 °C 2 °C 7 °C 7 °C 2 °C 2 °C 7 °C 7 °C 

Mean ± SD Initial Day 10 Initial Day 10 Initial Day 10 Initial Day 10 
          

 
      

Desmarestia 
menziesii         

        

rETRmax 
26.5 ± 
2.76 

23.8 ± 
0.92 

28.1 ± 
4.79 

25.6 ± 
5.49 

20.9 ± 
7.80 

24.0 ± 
7.69 

20.1 ± 
2.94 

21.7 ± 
2.60 

         

α 
0.37 ± 
0.02 

0.33 ± 
0.03 

0.35 ± 
0.01 

0.38 ± 
0.03 

0.32 ± 
0.01 

0.35 ± 
0.03 

0.34 ± 
0.03 

0.31 ± 
0.02 

         

Ek 
71.9 ± 
9.16 

71.5 ± 
6.08 

64.5 ± 
23.7 

68.4 ± 
17.5 

64.5 ± 
23.7 

67.9 ± 
22.3 

59.2 ± 
10.3 

69.4 ± 
3.91 

         Desmarestia 
anceps         

        

rETRmax 
23.1 ± 
4.94 

24.0 ± 
1.60 

14.1 ± 
1.62 

15.6 ± 
3.42 

18.8 ± 
3.41 

22.9 ± 
4.45 

17.7 ± 
3.59 

20.0 ± 
5.63 

         

α 
0.37 ± 
0.04 

0.35 
±0.04 

0.36 ± 
0.02 

0.30 ± 
0.03 

0.34 ± 
0.04 

0.33 ± 
0.04 

0.34 ± 
0.02 

0.32 ± 
0.05 

         

Ek 
62.2 ± 
9.35 

69.3 ± 
9.44 

49.8 ± 
3.46 

52.0 ± 
10.5 

62.8 ± 
9.41 

59.7 ± 
9.63 

53.0 ± 
12.7 

61.9 ± 
10.9 
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Annex 7. Two-way ANOVA of the photosynthetic efficiency parameters (rETRmax, α and Ek) of 

Desmarestia menziesii and D. anceps on temperature (2 °C/ 7°C) and culture treatments (mono/co-

cultures). n=5. p-values were set to <0.05. TE = temperature, CU = culture treatment, ns = not 

significant. Significant values in italics. 

Species Parameter 
Source of variation Photosynthetic efficiency 

   
df F-value p-value 

D. 
menziesii 

rETRmax  
TE 

 
1 0.1479 ns 

  
CU 

 
1 0.0394 ns 

  
TE x CU 

 
1 0.4863 ns 

α 
 

TE 
 

1 1.186 ns 

  
CU 

 
1 3.235 ns 

  
TE x CU 

 
1 6.505 0.0214 

Ek 
 

TE 
 

1 0.003 ns 

  
CU 

 
1 0.4718 ns 

  
TE x CU 

 
1 0.0226 ns 

D. 
anceps 

rETRmax  
TE 

 
1 2.0579 ns 

  
CU 

 
1 0.5028 ns 

  
TE x CU 

 
1 2.0178 ns 

α 
 

TE 
 

1 4.482 ns 

  
CU 

 
1 0.022 ns 

  
TE x CU 

 
1 1.311 ns 

Ek 
 

TE 
 

1 0.4051 ns 

  
CU 

 
1 0.6997 ns 

  
TE x CU 

 
1 1.1055 ns 

 
 
 
 
 
 
 



   
   

 

Effets de la compétition interspécifique et du réchauffement global sur des espèces de 
Desmarestia endémiques de l’Antarctique  

Résumé La Péninsule Antarctique Occidentale est une des régions avec le plus haut taux de 
réchauffement de la Planète dû aux changements climatiques, avec pour conséquence une 
diminution de la banquise et une augmentation de la sédimentation dans la colonne d’eau 
causée par la fonte des glaciers. Ces variations de lumière et température peuvent altérer la 
physiologie d’importants constructeurs d’écosystèmes tels que Desmarestia menziesii et D. 
anceps, influençant potentiellement leurs interactions. Cette étude a investigué les effets de 
différentes températures (2 contre 7 °C) et intensités lumineuses (10 contre 100 µmol m-2 s-1) sur 
la réponse photosynthétique, la croissance et la compétition interspécifique de ces macroalgues 
antarctiques. D. menziesii et D. anceps de terrain ont montré un bas taux de croissance, cachant 
l’influence de température et lumière. Cependant, des températures élevées (7 °C) ont causé 
une diminution de l’efficience photosynthétique dans les deux espèces sous basses intensités 
lumineuses et encore plus prononcée sous haute intensité lumineuse, tandis que la combinaison 
2°C et basse lumière n’a pas affecté leur photosynthèse. Aucun effet de compétition ou 
d’interaction entre compétition et température et/ou lumière n'a été détecté. La performance 
photosynthétique (rETRmax, α and Ek) et la concentration de Chlorophyll a en D. anceps ont été 
plus fréquemment affectées par la lumière élevée, révélant un comportement plus adapté à 
l’obscurité. Afin de comprendre quels facteurs contrôlent la zonation et la croissance de ces 
espèces clés de l’Antarctique sous un scénario de changement global, d’autres expériences 
multifactorielles incluant différentes étages de vie et processus reproductifs sont nécessaires. 

Mots-clés : Desmarestia anceps, Demarestia menziesii, changement global, maximum quantum 
yield, macroalgues 

Effects of interspecific competition and global warming on endemic Antarctic Desmarestia 
species 

Abstract The Western Antarctic Peninsula is experiencing one of the fastest warming worldwide 
due to climate change showing decreased sea-ice cover and increased sedimentation in the 
water column due to glacial melt. Irradiance and temperature variations in the water column 
may alter the physiology of important ecosystem builders like the brown algae Desmarestia 
menziesii and D. anceps which form dense underwater forests in the upper to mid subtidal area, 
possibly influencing species interactions. This study examined the effects of different seawater 
temperatures (2 vs. 7 °C) and irradiance intensities (10 vs. 100 µmol m-2 s-1) on the 
photosynthetic response, growth and interspecific competition of these cold-adapted Antarctic 
algae. Field D. menziesii and D. anceps showed very low growth rates, possibly reflecting a 
dormancy state which masked the influence of temperature and irradiance. However, increased 
temperature (7 °C) induced a decrease of optimum quantum yield of photosynthesis in both 
species under low but even more pronounced under high irradiance, whereas 2 °C combined 
with low irradiance did not affect their photosynthesis over two weeks. Neither interspecific 
competition nor interactions between competition and temperature and/or irradiance were 
detected. The photosynthetic performance (rETRmax, α and Ek) and Chlorophyll a concentration 
of D. anceps were more often affected by irradiance increases than of D. menziesii, reflecting an 
enhanced shade-adapted behavior. In order to understand which factors control the zonation 
and growth of these key Antarctic species under global change scenarios, further multifactorial 
experiments are of great importance, including different algal life stages and reproductive 
processes. 

Keywords: Desmarestia anceps, Demarestia menziesii, global change, maximum quantum yield, 
seaweeds 


