

Computertomografie von Schnee und Eis

Johannes Freitag Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Johannes Freitag

Motivation

Polares Eis als Klimaarchiv Monitoring der Eisschilde (Eisvolumen)

Leitfragen für die CT-Anwendung

- Wie lässt sich die **Transformation von Schnee zu Eis** beschreiben? *Metamorphose und isothermale Drucksinterung, Verdichtung*
- Wie funktioniert der **Lufteinschluss**? *Porenstrukturanalyse, Perkolation, Diffusion*

Johannes Freitag

Gliederung

- 1. Methode (Probennahme & CT)
- 2. Drei Anwendungsbeispiele für CT
 - Verdichtung von Schnee zu Eis
 - Schneemetamorphose und Signalbildung
 - Lufteinschluss
- 3. Ausblick, aktuelle Fragen

Johannes Freitag

64. Heidelberger Bildverarbeitungsforum, 7. März 2017

- \mathbb{O}^* \mathbb{O}^* -

2001: Erstes CT im Kaltlabor (-15°C)

Johannes Freitag

Johannes Freitag

64. Heidelberger Bildverarbeitungsforum, 7. März 2017

2010: Erstes Kern-CT für Eisanwendungen

X-ray source

Detector

Fraunhofer EZRT

X

Fraunhofer

Johannes Freitag

CT-Komponenten

X-ray source

Detector

Johannes Freitag

64. Heidelberger Bildverarbeitungsforum, 7. März 2017

CT - Spezifikationen

	AWI- ICE-CT (2010)	SKYscan CT (2001)
X-ray source	40-225 kV	40 kV
Detector	8000 x 4000 pix	736 x 512 pix
Min. resolution	2 µm	40 µm
Max. sample size diameter	10 cm (13µm)	2-3 cm
Max. sample size height	100 cm	2-3 cm
Representative volumes		

Johannes Freitag

1. Anwendungsbeispiel

Verdichtung von Schnee zu Eis

Johannes Freitag

AWI-ICE CT – Messvorschrift zur Dichtebestimmung (2D)

- Kontinuierliche Bildaufnahme während synchroner Aufwärtsbewegung von Röntgenquelle und Detektor bei ruhender Probe
- Gesamtbild des Eiskerns besteht aus den Zentralstrahllinien von ca.
 2000 Einzelbildern pro Meter

Dichteprofile von Schnee und Firnsäule

 \mathbb{Q}^{1}

Johannes Freitag

Synchronisation zwischen Dichte und [Ca++] mit der Tiefe

 $(\underline{\Theta} \ \square)$

2. Anwendungsbeispiel

Schneemetamorphose und Signalbildung

Johannes Freitag

AWI-ICE CT – Messvorschrift zur 3D-Volumenrekonstruktion

 Helixmethode: Kontinuierliches, synchrones vertikales Verfahren von Röntgenquelle und Detektor bei gleichzeitiger Rotation der Probe (Vertikales Verfahren um Strahlkegelhöhe nach 180° Drehung), ca. 3000 Projektionen pro Umdrehung

10cm, Horizontalschnitt

X-ray source

Johannes Freitag

Bildverarbeitung von Volumendaten

Herausforderung: Erstellung von Profilen von Struktureigenschaften für große Datenvolumina (Tbyte, 25GByte-Pakete)

Segmentierung Eis/Luft

2-level Otsu-threshold: globaler 2-Level Schwellwert (Otsu) für "sichere" Grauwerte(GW), GW<GWEis; GW>GWLuft Region-based segmentation: lokale Bewertung für kritisches Grauwertintervall GWEis<GW<GWLuft

Bestimmung Struktureigenschaften (MAVI, TOOLIP; Fraunhofer ITWM)

Porosität (Dichte), Interzeptlängen, Spezifische Oberfläche, Eulerzahl, Objekt-labeling (Cluster), Strukturmodellindex, Anisotropie:= (Interzeptlänge x + Interzeptlänge y)/Interzeptlänge Z

Schneestruktur, Schneeschacht KF10, Kohnenstation, Antarktis

Zusammenhang zwischen Struktur- und Signalbildung

Schneeschacht KF10-12, Kohnenstation, Antarktis

3. Anwendungsbeispiel

Lufteinschluss im Eis

Model for sintered firn: network of tetrakaidecahedrons on a BCC-lattice

Johannes Freitag

Gradueller Lufteinschluss: ein Perkolationsproblem

@W/

Model for sintered firn: Network of Tetrakaidecahedrons on a BCC-Lattice

Johannes Freitag

Geschlossene Porosität: Modell versus Daten

Johannes Freitag

64. Heidelberger Bildverarbeitungsforum, 7. März 2017

Euler number
$$E:=B-L+H$$
 (1)
Coordination number $\overline{Z} = \frac{2(B_p - E)}{B_p}$ (2)

B: Isolated objects L: Loops H: Holes Bp: Potential objects

 $\square \Lambda \Lambda$

Johannes Freitag

3D-image processing

Johannes Freitag

Fully occupied lattice (p=1):

Z=4

Lattice at the threshold from permeability to impermeability (percolation threshold pcrit~0.4)

Z≈1.6

Universelle kritische Porosität für polaren Firn

Ausblick, aktuelle Fragen und Probleme

- Bildverarbeitung von großen Datenmengen
- Prozessangepasste Beschreibung der Anisotropie (Diffusion? Permeabilität? Struktur?)
- Blasenverteilungen Rückschlüsse auf Paläobedingungen während Schneemetamorphose und Firnverdichtung
- Erklärungsversuche von Luftinhalt und Gasfraktionierungen

Referenzen:

EPICA, community members, Fischer, H., Freitag, J., Frenzel, A., Fritzsche, D., Fundel, F., Gersonde, R., Hamann, I., Huybrechts, P., Kipfstuhl, S., Lambrecht, A., Meyer, H., Miller, H., Oerter, H., Ruth, U., Rybak, O., Schmitt, J., Valero-Delgado, F., Wegner, A., Wilhelms, F.(2006).
<u>One-to-one coupling of glacial climate variability in Greenland and Antarctica</u>, Nature, 444, 195-198., doi:10.1038/nature05301.
Hörhold, M., Kipfstuhl, S., Wilhelms, F., Freitag, J. and Frenzel, A. (2011): The densification of layered polar firn , J. Geophys. Res., VOL. 116, doi: 10.1029/2009JF001630
Freitag, J., Kipfstuhl, S. and Laepple, T. (2013): Core-scale radioscopic imaging: a new method reveals density-calcium link in Antarctic firn , J. Glaciol., 59 (218), pp. 1009-1014 . doi: 10.3189/2013JoG13J028
Freitag, J., Kipfstuhl, S. , Laepple, T. and Wilhelms, F. (2013): Impurity-controlled densification: a new model for stratified polar firn , J. Glaciol., 59 (218), pp. 1163-1169 . doi: 10.3189/2013JoG13J042

Johannes Freitag