
Confidential manuscript submitted to Paleoceanography

Dynamical reconstruction of the global ocean state during the
Last Glacial Maximum

T. Kurahashi-Nakamura,1, A. Paul,1, and M. Losch2

1MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen,
Germany

2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Key Points:

• LGM ocean reconstruction with a adjoint-based data assimilation technique
• Physics-based three-dimensional interpolation/extrapolation of existing paleoceano-

graphic data
• More stratified LGM ocean with a stronger but shallower AMOC

Corresponding author: Takasumi Kurahashi-Nakamura, tkurahashi@marum.de

–1–



Confidential manuscript submitted to Paleoceanography

Abstract
The global ocean state for the modern age and for the Last Glacial Maximum (LGM) was
dynamically reconstructed with a sophisticated data assimilation technique. A substantial
amount of data including global sea-water temperature, salinity (only for the modern es-
timate), and the isotopic composition of oxygen and carbon (only in the Atlantic for the
LGM) were integrated into an ocean general circulation model with the help of the adjoint
method, thereby the model was optimized to reconstruct plausible continuous fields of
tracers, overturning circulation and water mass distribution. The adjoint-based LGM state
estimation of this study represents the state of the art in terms of the length of forward
model runs, the number of observations assimilated and the model domain. Compared to
the modern state, the reconstructed continuous sea-surface temperature field for the LGM
shows a global-mean cooling of 2.2 K, and the reconstructed LGM ocean has a more vig-
orous Atlantic meridional overturning circulation, shallower North Atlantic Deep Water
(NADW) equivalent, stronger stratification and more saline deep water.

1 Introduction

The Last Glacial Maximum (LGM, 19 000–23 000 years before present; Mix et al.,
2001) was the latest peak of cold climate with a global ice volume and an atmospheric
carbon dioxide (CO2) concentration distinctly different from the present-day values. Al-
though the climatic forcing factors are relatively well known [Solomon et al., 2007], some
aspects of the climate system during the LGM are still open to discussion. For example, it
is uncertain whether the Atlantic meridional overturning circulation (AMOC) was weaker
or stronger in the LGM than in the modern day climate [e.g., McCave et al., 1995; Yu
et al., 1996; McManus et al., 2004; Curry and Oppo, 2005; Rutberg and Peacock, 2006;
Otto-Bliesner et al., 2007; Negre et al., 2010; Muglia and Schmittner, 2015]. Typically,
such a problem has been discussed from the viewpoint of paleoceanographic proxy records,
numerical modeling, or both of them. Paul and Schäfer-Neth [2003] incorporated the sea-
surface temperature reconstruction by the Glacial Atlantic Ocean Mapping (GLAMAP)
project [Sarnthein et al., 2003] into the forcing fields for their ocean general circulation
model (OGCM) and suggested that the AMOC during the LGM had a similar strength and
depth to those of the modern counterpart.

An accurate reconstruction of the LGM ocean circulation is fundamentally important
to understand the LGM climate, not only because the ocean is an important component of
the climate system due to its large storage and transport of heat, but also because a differ-
ent ventilation of the deep ocean presumably led to a reorganization of the marine carbon
cycle, thereby affecting the global climate through changes in the concentration of CO2 in
the atmosphere [e.g., Sigman and Boyle, 2000; Marchitto et al., 2007; Toggweiler, 2008;
Kwon et al., 2011; Tschumi et al., 2011; Ritz et al., 2013; Schmittner and Somes, 2016].

The main goal of this study is an estimate of the circulation and water-mass dis-
tribution in the ocean state during the LGM that is statistically consistent, within errors,
with observations. As a by-product, the ocean state estimate provides an un-biased, that
is, based on model physics, interpolation (or mapping) of the tracer distribution, which
is otherwise based on very few and scattered proxy-observations. We obtained the state
estimate for the LGM ocean by synthesizing a state-of-the-art physical ocean model and
several recent paleoceanographic proxy data compilations with a data assimilation tech-
nique called the adjoint method [e.g., Wunsch, 1996; Errico, 1997]. We also found a state
estimate for the modern ocean with the same method, which served as a first guess for
the LGM state estimation with regard to chemical tracers and as a reference state for the
resulting LGM state estimate.

Most of the previous data assimilation studies used simplified ocean models to re-
construct the paleo-circulation or water-mass distribution during the LGM [e.g., Legrand
and Wunsch, 1995; Gebbie and Huybers, 2006; Huybers et al., 2007; Burke et al., 2011;
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Gebbie, 2014] and only a few state estimates for the LGM ocean were based on a gen-
eral circulation model and the adjoint method [Winguth et al., 2000; Dail, 2012; Dail and
Wunsch, 2014]. Compared to previous studies, our study constitutes a significant extension
in terms of the total number of observations [cf. Winguth et al., 2000], the model domain
[cf. Dail, 2012; Dail and Wunsch, 2014], and the length of model integrations [cf. Winguth
et al., 2000; Dail, 2012; Dail and Wunsch, 2014].

2 Data sets

Table 1 and Figure 1 summarize the data sets we used in this study. In the follow-
ing, we describe the data sets in further detail.

2.1 Modern data

In the context of this study, “the modern ocean" refers to the pre-industrial ocean
state, because we want to discuss natural climate variability in terms of differences be-
tween glacial and interglacial periods. Although the anthropogenic effects should be ex-
cluded for that purpose, the further one goes back into the past, the fewer data are avail-
able. For the temperature and salinity data, therefore, we adopted monthly climatological
data for the entire ocean from 1951 to 1980 from the World Ocean Database (WOD) [Lo-
carnini et al., 2010; Antonov et al., 2010]. However, we excluded several regions from the
domain of model–data comparison for our state estimation for the modern ocean (see Sec-
tion 4.2).

To reinforce the constraints by the temperature and salinity observations and to pro-
vide a basis for the first guess of the LGM state estimation, data for δ18Owater [Schmidt
et al., 1999] and δ13CDIC [Schmittner et al., 2013] were also incorporated. Following Dail
[2012], near surface data of δ18Owater above 150 m depth were not included, because
these data are affected by the seasonal cycle, which is not included in the oxygen isotope
module of our circulation model. Similarly, the δ13CDIC data above a depth of 1000 m
were not used, because this depth range was excluded from the domain of the carbon iso-
tope model (see Section 3). The δ13CDIC data were based on the Global Data Analysis
Project (GLODAP) and the Carbon Dioxide in the Atlantic Ocean (CARINA) data syn-
thesis project [Schmittner et al., 2013]. Note that the estimated anthropogenic δ13C con-
tribution is substantially smaller than the prescribed data uncertainties of this study (see
Section 4.2) in most parts of deep ocean below the depth of 1000 m [Schmittner et al.,
2013].

2.2 LGM data

The temperature of seawater not only is a good indicator of the past ocean state, but
it also contributes to driving the ocean circulation through density differences. To date, the
most comprehensive compilation of sea-surface temperature (SST) estimates for the LGM
ocean including their uncertainties are provided by the MARGO project [MARGO Project
Members et al., 2009]. Because the SST during the LGM cannot be measured directly, it
was obtained from paleoceanographic proxy evidence like the assemblages of planktonic
foraminifera.

It is important to utilize information from the deep ocean as well, especially when
we rely on sparse paleoceanographic proxy data [Kurahashi-Nakamura et al., 2014]. We
used the isotopic compositions of seawater for oxygen and carbon as proxy data for the
LGM deep ocean. The oxygen isotopic composition of seawater, often expressed as δ18Owater,
is an inert passive tracer that reflects the transport by the ocean circulation once set at the
surface. For the LGM, the oxygen isotopic composition of the shells of benthic foraminifera
(δ18Ocalcite) is a proxy for δ18Owater, although it is influenced by the temperature of ambi-
ent seawater at the time of calcification. The most comprehensive published compilation
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of δ18Ocalcite for the LGM consists of 180 records for the Atlantic Ocean [Marchal and
Curry, 2008].

The carbon isotopic composition of the dissolved inorganic carbon of seawater (δ13CDIC)
is a similarly useful indicator of ocean circulation, but it is also affected by a biogeo-
chemical process (i.e., the remineralization of organic soft tissue). As in the case of oxy-
gen isotopes, δ13CDIC for the LGM is recorded in the shells of benthic foraminifera as
δ13Ccalcite. We adopted the database compiled by Hesse et al. [2011].

We used the recent compilations of isotopic composition data for the Indian and Pa-
cific Oceans by Oliver et al. [2010] and Peterson et al. [2014] as an independent source
of information to assess our state estimate (Section 8.1). Although these data sets would
complement the Atlantic data [Marchal and Curry, 2008; Hesse et al., 2011], we did not
include them in the adjoint-based state estimate of this study, because their coverage is
very low in the Pacific and Indian Oceans (0.15% for δ18O and 0.62% for δ13C of the
combined Indian and Pacific Oceans) and because they also would not substantially in-
crease the data coverage in the Atlantic Ocean (from 2.3 to 3.2% for δ18O and 3.2 to
4.0% for δ13C). Very sparse data can lead to artefacts around singular data points in the
solution, even though the adjoint method provides a dynamical state estimate with the aid
of model physics. Further, we designed our experiments as an extension of Dail [2012]
and Gebbie [2014] who both used the data sets by Marchal and Curry [2008] and Hesse
et al. [2011] by different methods. Our choice to use the data of Oliver et al. [2010] and
Peterson et al. [2014] only for independent observations maximizes the comparability with
Dail [2012] and Gebbie [2014].

3 Ocean and tracer models

We employed the Massachusetts Institute of Technology general circulation model
(MITgcm). It was configured to solve the Boussinesq, hydrostatic Navier–Stokes equations
[Marshall et al., 1997]. Subgrid-scale mixing was parameterized [Gent and McWilliams,
1990]. A dynamic–thermodynamic sea-ice model was coupled to the ocean model [Losch
et al., 2010]. We used a cubed-sphere grid system that avoided converging grid lines and
pole singularities [Adcroft et al., 2004] and had six faces with 32 × 32 horizontal grid cells
and 15 vertical layers, respectively. The MITgcm was particularly designed for ocean state
estimation projects [e.g., Stammer et al., 2002; Wunsch and Heimbach, 2006; Köhl and
Stammer, 2008; Forget et al., 2015; Köhl, 2015]. For that purpose, the computer code can
be differentiated by automatic differentiation (AD) using the source-to-source compiler
TAF [Giering and Kaminski, 1998; Heimbach et al., 2005] to generate exact and efficient
“adjoint” model code.

To simulate δ18Owater and δ13CDIC, we adopted highly simplified models similar to
previous data assimilation studies [Marchal and Curry, 2008; Dail, 2012]. The oxygen
isotopic composition of seawater δ18Owater was treated as a passive and conservative tracer
with a fixed boundary condition at a certain depth level (i.e., by prescribing a Dirichlet
boundary condition at a depth of 150 m). The surface ocean shallower than 150 m is not
part of the model domain for δ18Owater (also see Section 2.1).

The carbon isotopic composition of the dissolved inorganic carbon δ13CDIC was
treated in a similar way, but there were two differences due to the additional process of
remineralization of organic carbon. First, the decomposed, isotopically “lighter” organic
carbon affects the isotopic composition of DIC. Accordingly, we added a source term to
the conservation equation for δ13CDIC:

Sδ13CDIC =
α

λ
(δ13Corg − δ13CDIC), (1)

where α is a factor to control the magnitude of the remineralization effect, λ is a stan-
dard relaxation timescale, δ13Corg is the δ13C value of the organic carbon, and δ13CDIC is
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the in-situ δ13C value of DIC. Assuming an uniform amount of decomposed organic car-
bon below a depth of 1000 m, the reference value of λ was determined from the modern
amount of total remineralization in the global ocean deeper than 1000 m [del Giorgio and
Duarte, 2002] and the volume of the corresponding water body, so that 1/λ = 0.6 × 10−4

yr−1 [Marchal and Curry, 2008]. That value corresponded to the central value of the orig-
inal estimate with an uncertainty of ±10% [del Giorgio and Duarte, 2002]. The value of
δ13Corg was assumed to be −20%# [Goericke and Fry, 1994].

The second difference from the treatment of δ18Owater was that we excluded the
depths shallower than 1000 m from the model domain. Accordingly, a Dirichlet boundary
condition was imposed at a depth of 1000 m. The remineralization rate is much higher
and highly depth-dependent at these depths [e.g., Yamanaka and Tajika, 1996], hence the
model was not suitable for this depth range.

4 State estimation procedures

4.1 Common framework

The quality of the model optimization or state estimation was quantified by intro-
ducing an objective function J:

J = Jdata + JSSH + Jctrl, (2)

where Jdata was the model–data misfit, JSSH was a penalty term for the drift of the global-
mean sea-surface height (SSH), and Jctrl imposed penalties for the deviations of control
variables from their first-guess values and hence represents a regularization of the inverse
problem. Here, control variables mean variables that are adjusted to improve the model–
data misfit.

The first term of Equation 2 was formulated as follows:

Jdata =
∑

X

(Xmodel − Xobs)T WX (Xmodel − Xobs), (3)

where X was the index showing the category of data, Xmodel was the model results for
that category, Xobs was the corresponding observation, and WX was the weight matrix that
consisted of the inverse of the error covariances. For simplicity and because estimating
actual covariances is difficult, we followed a common practice in previous applications of
the adjoint method [Stammer et al., 2002; Köhl et al., 2007; Dail and Wunsch, 2014] and
assumed that all errors are uncorrelated.

The second term of Equation 2 became

JSSH = Wssh (SSH1 − SSH0)2, (4)

where Wssh was a weight factor and SSH1 and SSH0 were the final and initial values of
the global-mean sea-surface height, respectively. The term JSSH is an implicit constraint
on the global-mean salinity, because it regulates the total volume of sea water. In partic-
ular, for the LGM state estimation that did not have explicit salinity data, it was the only
constraint on salinity. The weight factor Wssh was the inverse of the square of an assumed
allowed deviation (0.1 m). However, in order to ensure a sufficiently small SSH drift, a
104-times greater weight (i.e., stricter constraint) was given to JSSH if the absolute value
of the drift exceeded two standard deviations.
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The last term of Equation 2 was taken as:

Jctrl =
Ndata

Nctrl
·

[ (T0
adj − T0

1st)T WT0 (T0
adj − T0

1st)
+ (S0

adj − S0
1st)T WS0 (S0

adj − S0
1st)

+
∑

i

(F(i)adj − F(i)1st)T WF(i) (F(i)adj − F(i)1st)

+ (Kadj −K1st)T WK (Kadj −K1st)
+ (O0

adj −O0
1st)T WO0 (O0

adj −O0
1st)

+ (C0
adj − C0

1st)T WC0 (C0
adj − C0

1st)
+Wα (αadj − α1st )2 ], (5)

where Ndata was the number of model–data pairs, Nctrl the number of control variables,
T0 the initial temperature field, S0 the initial salinity field, F the atmospheric forcings, i
indices indicating the kind of forcings, K the vertical diffusion coefficient, O0 the initial
δ18Owater field, C0 the initial δ13CDIC field, W the weight matrices for each quantity, and
Wα was the weight factor for the penalty for α. The superscript “adj” meant adjusted val-
ues (i.e., values in the current iteration), and “1st” meant first-guess values (i.e., values
in the first iteration). The weight matrices were the inverse of the error covariances. The
prior uncertainties assumed for the 200-year or longer state estimations are summarized
in Table 2. For Wα , however, a greater penalty was given for deviations larger than two
standard deviations as in the Wssh case, because we were not able to evaluate the consis-
tency between αadj and biogeochemical processes that were not explicitly included in our
simplified model.

The factor Ndata/Nctrl was only used for the LGM state estimation to balance Jctrl
and Jdata, because Nctrl was much larger than Ndata for the LGM. Without this factor, the
model did not move away from the first guess during optimization. It should be noted that
Jctrl = 0 (i.e., no adjustment) at the beginning of the state estimation procedure and that
it generally increases with the progress of optimization. The balancing factor Ndata/Nctrl
served to compensate for the increase in Jctrl with a reduction in Jdata of a comparable
magnitude, which allowed for a decrease of the total cost (J).

We sought a model ocean that corresponded to the minimum value of the objective
function, and we assumed that such an optimized model ocean provided the best estimate
for the ocean state. The adjoint method was used to calculate the gradient of the objective
function with respect to the selected control variables (i.e., model inputs and parameters
that determine the model state), hence, the direction to its minimum. With this informa-
tion one can iteratively approach the optimized state by incrementally improving the con-
trol variables; in our case this was accomplished with a quasi-Newton algorithm [Gilbert
and Lemaréchal, 1989].

For the state estimation with the adjoint method, we needed to prepare a starting
point of the iterative search (first guess). It is desirable to have as good a first guess as
possible for a successful estimation process. This should be emphasized especially when
a long state estimation (i.e., a state estimation with longer forward simulations) is made,
because in such a case the model state can show a large drift that may cause great dif-
ficulties with the adjoint method [Dail, 2012]. Therefore, although we aimed at a state
estimation of 200 years or longer, we started out from a 20-year preparatory estimation
only for the physical ocean state, followed by a gradual extension of the estimation length
with the “carry-over" technique suggested by Dail [2012].

The problem was further preconditioned and regularized by normalizing every con-
trol variable according to the characteristic scale of each variable, which typically has a
scale similar to the uncertainties, so that we could adjust all control variables in a bal-
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anced manner. The corresponding fields were smoothed with a 9-point spatial smoothing
filter.

4.2 Modern state estimation

The first guess fields of the physical ocean state (i.e., for the preparatory phase) was
the reference state of Kurahashi-Nakamura et al. [2014], which was simulated by the MIT-
gcm driven by external atmospheric forcing fields based on the protocol of the Coordi-
nated Ocean-ice Reference Experiments (COREs) project [Griffies et al., 2009].

To calculate Jdata for the modern state estimation, we took the difference between
the model results that were averaged over the last 10 years of a model integration and the
observations (Equation 3). While the time-averaged model results for δ18O and δ13C did
not take into account seasonal changes, for temperature and salinity we took the difference
between the monthly-mean model results and the corresponding monthly-mean data. We
determined the prior uncertainties of the temperature and salinity data from the standard
error of the monthly mean, although 1 K and 0.1 psu were added considering uncertain-
ties due to data representativeness and model errors. For example, the observations are
scattered with respect to time and do not cover the time window evenly, the pattern of the
scatter is different from grid cell to grid cell and the spatial resolution of the model would
be too coarse to accurately capture the observations that reflected smaller-scale processes.
Moreover, the climatological data, which resulted from interannually varying atmospheric
forcing, could not be reproduced accurately, because our model was driven by purely peri-
odic atmospheric forcing. Because it was beyond the scope of this study to obtain precise
values for these uncertainties, they were determined in an ad-hoc way. However, the over-
all uncertainties had a magnitude similar to those used in another data assimilation study
[Gebbie, 2014] that was based on the World Ocean Circulation Experiment (WOCE) cli-
matology [Gouretski and Koltermann, 2004].

In this study’s framework of data assimilation, the adjustment of atmospheric forc-
ings was controlled to avoid too large deviation from the first-guess values. The devia-
tion, however, was only assessed by a single scalar number in the penalty terms (Eq. 5)
of the objective function, hence it does not necessarily guarantee that the adjusted atmo-
spheric forcings are within a reasonable range in every spatial and temporal location. Ac-
tually, in a preliminary state estimation for the modern ocean assimilating all available
data from the WOD (see Appendix), the adjusted atmospheric forcings assumed physi-
cally unreasonable values (e.g., negative precipitation, negative specific humidity, too low
air temperature, and so on) in several regions, although the lumped penalty terms had ac-
ceptable values. We took three measures against this problem of the preceding run. First,
to remove quasi-isolated grid cells along coasts that did not have sufficient communica-
tion with the open ocean, we slightly modified the model bathymetry; otherwise, such grid
cells can have unreasonable tracer concentration (e.g., too high salinity). Second, we ex-
cluded regions having unreasonable atmospheric forcings (see Appendix for the definition)
from the domain of model–data comparison with regard to the temperature and salinity.
Practically, we gave zero weights for Jdata to any temperature and salinity data located in
such regions, which implicitly assumed that the prior uncertainties were actually much
larger than the prescribed values in those regions. As a result, the data coverage of the
modern temperature and salinity data was reduced by 21% from the original one (also
see Appendix). Third, because the unreasonable atmospheric forcings were not eliminated
completely even with the reduced data sets, we set an upper and lower bound for air tem-
perature, specific humidity, and precipitation, and forcibly replaced any remaining unrea-
sonable forcings with those values for each forward model run in the iterative searching.
These alterations enabled us to obtain a more plausible ocean state consistent with reason-
able inputs from the atmosphere.
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For the geochemical tracers, the first-guess initial and boundary conditions of δ18Owater
and δ13CDIC for the 200-year estimation were the optimized states given by the preceding
state estimation with the original (i.e., unreduced) WOD data sets. The uncertainties for
δ18Owater and δ13CDIC data were assumed to be 0.2%# [Dail, 2012; Gebbie, 2014]. They
also implicitly contained various sources of uncertainties such as sampling error, time
variation of the tracers and errors due to the highly-simplified geochemical tracer model
[Dail, 2012].

4.3 LGM state estimation

Similarly to the modern case, the model results were averaged over the last 10 years
and compared with the reconstructions by the MARGO project to calculate the model–
data misfits for the SST. We used prior data errors derived from the uncertainty estimated
for each individual data point by the MARGO project [MARGO Project Members et al.,
2009]. MARGO uncertainty estimates are conservative and meant to give an upper bound.

For the model–data comparison of the geochemical tracers, we calculated δ18Ocalcite
from δ18Owater as a function of seawater temperature (T) [Marchal and Curry, 2008]:

δ18Ocalcite = 3.35 + 0.97 · δ18Owater − 0.21 · T (6)

δ13Ccalcite was obtained for δ13C model–data comparison from the following conversion
[Marchal and Curry, 2008]:

δ13Ccalcite = 0.13 + 0.90 · δ13CDIC (7)

For both δ18O and δ13C, a prior error of 0.2%# was assumed for the data uncertainty ac-
cording to Marchal and Curry [2008] and Dail [2012], that is, the same value as for the
modern ocean case.

The original first guess of the physical ocean state for the LGM was made by spin-
ning up the model forward in time for 2000 model years with climatological monthly-
mean atmospheric forcing fields derived from an LGM simulation with the comprehensive
Community Climate System Model Version 3 (CCSM3) [Merkel et al., 2010]. The LGM
bathymetry was created by remapping of the ICE-5G topography [Peltier, 2004] onto our
model grid. The initial temperature and salinity states were taken from modern observa-
tions [Levitus, 1982], although a 1.1%# offset was added to the salinity to take into ac-
count the mean salinity change due to the lower sea level during the LGM [Adkins and
Schrag, 2001]. This original first guess was improved by a sequence of preparatory state
estimations of up to 100 years. We used the improved first guess to initialize a 400-year
state estimation that was the major achievement of this study.

The first-guess initial and boundary conditions of δ18Owater for the 200-year state
estimation were separately prepared by adding a constant offset of 1.1%# [Duplessy et al.,
2002] to the modern distribution given by the experiment shown in the Appendix. Simi-
larly, the first-guess initial and boundary conditions of δ13CDIC were constructed by adding
0.15%# uniformly for depths shallower than 1500 m and by subtracting 0.6%# for depths
deeper than 2000 m according to the average difference between the late Holocene and the
LGM [Hesse et al., 2011].

4.4 Experimental design

The main part of this paper describes four state estimations: two for the modern
day, and two for the LGM. In both cases, a 200-year state estimation was carried over to
a 400-year state estimation (i.e., a 400-year model run for each iteration). The 200-year
state estimation for the modern day and for the LGM are called MOD200 and LGM200,
and the 400-year estimation MOD400 and LGM400, respectively.
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Considering the equilibrium time scales for tracer distributions in the global ocean
[Wunsch and Heimbach, 2008], 200 years would be too short to reach consistency between
the surface boundary conditions and the physical and geochemical tracer distributions in
the deep ocean, and thus the thermohaline circulation. This motivated us to conduct longer
state estimations (i.e., state estimations with longer forward simulations).

However, longer state estimations cause greater computational costs and can be diffi-
cult to achieve because of the potentially unreasonably large drift (see Section 4.1). There-
fore, we adopted 400 years as the length of the extended state estimations. Although it
was still not long enough compared to the equilibrium time scale especially for the very
deep ocean in the South Atlantic and Southern Ocean [Wunsch and Heimbach, 2008], it
led to the longest adjoint-based ocean state estimation for the LGM that has been achieved
to date. The 400-year state estimations (“MOD400” for the modern day and “LGM400”
for the LGM) were initialized from the optimized state obtained by MOD200 and LGM200,
respectively. For the LGM, we assumed

√
10-times smaller uncertainties of the control

variables in the penalty terms than those for LGM200, which corresponded to 10-times
larger weights, because the control variables had been already improved in LGM200.
That was also helpful to stabilize the longer adjoint run. For the modern case, however,
we kept the same uncertainties for MOD400, because we judged that the improvement in
MOD200 was not enough especially for the temperature and salinity distributions and that
considerable adjustments of the control variables was still necessary.

As a general behavior of our state estimation, a rapid reduction of the total cost (J)
occurred at an early stage of the iterative procedure, followed by a phase of a very slow
reduction seemingly approaching a non-zero limit value. Because it was then highly time-
consuming to obtain a substantial further decrease, the iterative search was stopped when
J was reduced by less than 1% during the last ten simulations.

5 Evaluation of model–data misfit

5.1 Measures of model–data misfit

To quantify and evaluate how well the model was optimized in terms of the agree-
ment with observation, several measures of fit were introduced and used throughout this
study. The most straightforward way is to follow the development of the objective func-
tion. In particular, it is practical to observe the normalized total cost (J ′), namely, the nor-
malized root-mean-square misfit [e.g., Köhl et al., 2007; Dail, 2012; Kurahashi-Nakamura
et al., 2014]. This idea is based on the principles of the χ-squared test. When a proper
model–data agreement is achieved, the normalized cost (i.e., objective function divided by
the number of model–data comparisons) should be of the order of one, which implies that
the model is statistically consistent with the data within the prior uncertainty.

A similar idea was applicable to the two penalty costs (JSSH and Jctrl). The normal-
ization made no difference for JSSH, because it only had one comparison term. As to Jctrl,
the normalized cost was calculated by dividing the original Jctrl by the total number of
control variables and also by Ndata/Nctrl (cf. Equation (5)). The magnitude of the normal-
ized control-variable adjustments should be smaller than one if the adjustments stay within
the assumed allowable deviations from the first-guess values.

Further indices that indicate the quality of the model–data match would be a “frac-
tion within 2σ and 1σ” (hereafter, FW2σ and FW1σ). For grid cells with any data points,
the ratio of model results that are within the range of ±2σ (±1σ) of the corresponding
data should be around 95% (68%), if the model results were considered to be statistically
consistent with the data within random noise.
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5.2 Modern state estimation

The improvement of model–data misfits for the modern state estimations are sum-
marized in Table 3. For the physical tracers (i.e., temperature and salinity), a substantial
amount of the cost decrease was achieved in the preparatory phase. With the help of the
improved first guess, a further decrease led to acceptable normalized costs (1.5 for the
temperature and 2.4 for the salinity) in MOD200. Without the preparatory phase, 200-
year state estimations were hardly able to generate a decrease of costs (not shown). The
indices FW2σ and FW1σ for temperature after the optimization were 94% and 72%, re-
spectively. Combined with the normalized cost, these values indicate that the model was
successfully fitted to the temperature data. The results for salinity (87% and 65%) were
somewhat worse than for temperature, although the optimized value of FW1σ nearly met
the requirement.

The synthesis of the geochemical tracers in MOD200 was as good as for the physi-
cal tracers. For the δ18O component, although the optimized value of J ′O18 was somewhat
larger than one, the indices FW2σ and FW1σ met the requirements, suggesting that the
synthesis of the δ18O data was largely successful. For δ13C, all the three measures were
improved through the state estimation scheme, closely approaching the required values.

Lastly, the SSH drift after the optimization was 7.4 × 10−2 m/200 yr to give J ′SSH =
0.55, which was well below the allowed magnitude, which indicated that the penalty term
in the objective function was actually effective in minimizing the SSH changes. Similarly,
J ′ctrl was smaller than one, which showed that the magnitude of the control-variable ad-
justments was acceptable. We also needed to ensure that the total adjustment of control
variables including the preparatory phase was not excessively large. To assess the devia-
tion from the original first-guess values (i.e., the values before the preparatory runs), we
calculated the normalized total adjustments assuming the total uncertainties for the air
temperature, the downward shortwave radiation and the wind velocity components to be
10 K, 10 W/m2, and 1.0 m/s, respectively. It yielded the normalized adjustment of 0.1,
which showed that the adjustments were in a reasonable range.

Using the carry-over technique again, we extended the 200-year state estimation to a
400-year estimation (MOD400). Although a dramatic further improvement of the model–
data misfit did not occur for the physical tracers, at least we could keep almost as good
results as those in MOD200, so that we were able to show that our results were robust
with regard to the increased length of the state estimation. The model–data misfits for
δ18O was improved not only compared to the first guess, but also compared to MOD200,
indicating a successful synthesis of those data. On the other hand, the model–data misfits
for δ13C were slightly worse than in MOD200 at the expense of the longer run ensuring
more equilibrated tracer distribution.

On the whole, the optimized normalized-cost in MOD400 was somewhat higher than
one for all our measures of model–data misfit. However, it is known that the optimization
with the adjoint method does not always yield a normalized cost for the model–data misfit
as small as one [e.g., Köhl et al., 2007]. Furthermore, J ′SSH and J ′ctrl were readily within
the allowed ranges.

5.3 LGM state estimation

The improvement of the model–data misfits for the LGM state estimations are sum-
marized in Table 4. Both in LGM200 and LGM400, all three indicators for SST show
that the optimized model was statistically consistent with the SST data. In fact, the model
was already in accordance with the data at the initial state of LGM200 as a result of the
preparatory estimation. Similarly to the modern case, the preparatory phase greatly helped
to carry out the 200-year state estimation without severe problems. For the δ18O compo-
nent, the FW2σ and FW1σ indices were well improved and perfectly met the require-
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ments, although the optimized cost was somewhat larger than one. It is suggested that the
synthesis of the δ18O data was basically successful, but that the spread of model results
around the corresponding data deviated from a perfect normal distribution.

On the other hand, the fit to the δ13Ccalcite data was somewhat worse than for the
SST and δ18O. Although J ′C13 was substantially reduced, it was still almost twice as large
as required. Contrary to the δ18O case, the optimized FW2σ and FW1σ indices were
also insufficient. Those three indicators became even worse during the 1st-guess run for
LGM400, because a 200-year forward run was too short to reach a steady state and the
remineralization factor (α) optimized for the 200-year run was not suitable for a 400-year
run. During LGM400, however, the model–data misfits greatly improved. The optimized
J ′C13 of 2.1 corresponded to 0.29%# in terms of a root-mean-square (RMS) of model–data
discrepancies. Actually, if we took σ = 0.29%# to calculate FW2σ and FW1σ, they be-
came 98% and 72%, respectively.

The J ′SSH value was dramatically reduced from its first-guess in LGM200, but, al-
though the first-guess J ′SSH was below one in LGM400, the optimized value became larger
than one in exchange for the improvement for δ13C. However, it was still within the 2σ
range. J ′ctrl was well below one, showing that the magnitude of the control-variable adjust-
ments was acceptable. Similarly to the modern case, to assure that the total adjustment of
the control variables including the preparatory phase was not too large, we assessed the
deviation from the original first-guess values taken from Merkel et al. [2010] (i.e., the val-
ues of F(i) before the preparatory runs). The normalized total adjustment was equal to
0.008, which implied that the model required much smaller control-variable adjustments
to meet the much scarcer data coverage (i.e., much weaker constraint) as compared to the
modern state estimation.

6 Reconstructed tracer fields

The globally-averaged difference of SST (LGM400 minus MOD400) was −2.2 K.
As suggested by the normalized cost, the estimated global SST field in LGM400 was
generally in good agreement with the MARGO paleo-data (Figure 2a). Relatively larger
differences were found in the upwelling regions along the west coasts of the South Amer-
ican and African continents probably caused by the poor representation of the coastal up-
welling phenomenon in our coarse-resolution model. Compared to the reconstructed mod-
ern SST field in MOD400, the LGM SST was lower in most regions. In particular, it was
colder by up to 10 degrees in the mid-latitude (30◦–60◦) bands of both hemispheres (Fig-
ure 2b). In some regions, however, the LGM SST was higher than the modern one. Most
of the positive temperature anomalies along the latitude of 30◦S are caused by the positive
anomalies in the data themselves [MARGO Project Members et al., 2009; Annan and Har-
greaves, 2013]. Also in the North Atlantic, there was one region with positive anomaly
near data points from an alkenone-based SST reconstruction.

The RMS of model–data discrepancies for the modern δ18Owater was 0.24%#, and
0.25%# for the LGM δ18Ocalcite. The reconstructed modern distribution of δ18Owater (Fig-
ure 3a) showed a water mass with positive δ18Owater values that can be identified with
North Atlantic Deep Water (NADW) spread southward up to 45◦S at a depth of 2000–
3000 m, while another water mass corresponding to Antarctic Intermediate Water pene-
trated northward to the equator at a depth of about 1000 m. The optimized LGM δ18Owater
distribution (Figure 3b) was obtained from the fitting the model to the δ18Ocalcite data
(Figure 3c). For a direct comparison to Figure 3a, the color scale was adjusted by taking
the 1.1%# offset into account (see Section 4.3). In LGM400, the core of northern-source
deep water was shallower by ∼1000 m than in MOD400. The northward penetration of
southern-source water, on the other hand, was weaker both for the bottom water and for
the intermediate water, suggesting stronger stratification of the Southern Ocean.
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In MOD400, the estimated δ13CDIC field had an RMS of model–data discrepan-
cies of 0.27%#, whereas that for δ13Ccalcite was 0.29%# in LGM400. The optimized LGM
δ13CDIC field (Figure 4b) was obtained from the fitting to the δ13Ccalcite data (Figure 4c).
The main deviations from the modern distribution included the southern-source water hav-
ing a very low end-member value, a larger vertical gradient in the depth range of 1000–
5000 m, and a less pronounced tongue of northern-source water.

A prominent discrepancy between the modern estimate and the data was the too
low δ13CDIC in the bottom water of the estimate. A likely reason for this underestima-
tion is the highly-simplified remineralization model of Equation 1 that assumed a homo-
geneous amount of remineralization. In reality, the amount of remineralization decreases
with depth [e.g., Yamanaka and Tajika, 1996; Gebbie, 2014]. Because the remineraliza-
tion releases isotopically depleted δ13C to the sea water, the assumption of homogeneous
remineralization would indeed correspond to supplying too much low δ13C to the bottom
water, hence causing too low δ13CDIC at such depths. In contrast to MOD400, the recon-
structed LGM δ13CDIC for the bottom water were not too light as compared to the recon-
structions in spite of the same simplified remineralization model. One possible reason was
that, for the LGM, there were only a few data points that constrained the shallower part
(1000–2000 m) of the water column in the tropical region and the Southern Hemisphere,
and hence the model adjustment focused on the data in the bottom water.

7 Reconstructed circulation and water-mass distribution

The volume transport of the AMOC in LGM400 as indicated by the maximum of
the streamfunction (Figure 5) was 21.3 Sv, which is 32% stronger than in MOD400. The
rate of southward deep water export at the equator or at 30◦S was also substantially larger
in the LGM than in the modern case.

To visualize the distribution of water masses more clearly, a passive dye tracer was
released at the sea surface in the high-latitude Northern Atlantic (cf. Gebbie [2014]) in ad-
ditional forward model runs with the optimized atmospheric forcings and parameters ob-
tained in MOD400 or LGM400. The concentration of the “dye” was fixed at 1 for every
surface grid cell from 50◦N to 80◦N in the northern North Atlantic. To ensure a quasi-
steady state of the tracer distribution, the model was run for 2000 model years by repeat-
ing the 400-year forcings five times.

The dye concentration showed that the northern-source deep water occupied shal-
lower depths in the LGM than in the modern case (Figure 6). In the modern case, the
core of the northern-source deep water was located at a depth of ∼2500 m, while in the
LGM case it was at a depth between 1500–2000 m. Since the maximum of δ13CDIC was
found in the same depth range (Figure 4b), this water mass may be identified with the
13C-rich intermediate water that was postulated by Duplessy et al. [1988] and Curry and
Oppo [2005] and called Glacial North Atlantic Intermediate Water (GNAIW). Focusing
on the 0.5 contour lines, the dye concentration would be larger than 0.5 between approxi-
mately 1000 and 4500 m in the modern case and between 1000 and 3500 m in the LGM
case.

The shoaling of the northern-source water also affected the upper ocean (depths
shallower than 1000 m). For example, while a dye concentration of 0.2 was observed
at a depth of 700–1000 m in the modern case, it occurred at a depth of 500 m or even
shallower in the LGM case. This feature would be consistent with a substantially weaker
southern-source intermediate water in the LGM case as indicated in Figures 3b and 4b.

Although the AMOC streamfunction showed a thicker and much stronger cell with
anti-clockwise circulation in the deepest part of the Atlantic (Figure 5), the dye concen-
tration in the LGM bottom water was as high as in the modern bottom water (0.3–0.4),
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which suggests that one can not easily infer the relative contributions of northern- and
southern-source water from the zonally integrated streamfunction only.

8 Discussion

8.1 Comparison with previous studies

8.1.1 Sea surface temperature

The globally-averaged SST difference between LGM400 and MOD400 was also
consistent with the anomaly estimate by the CLIMAP project [Climap Project Members,
1976], although nowadays the CLIMAP anomaly is considered to be too small [e.g., Crow-
ley, 2000].

By averaging over all 5◦ × 5◦ grid cells that contain data, MARGO Project Members
et al. [2009] estimated the globally-averaged SST anomaly between the LGM and mod-
ern ocean as (−1.9±1.8) K. The estimates based on our study (LGM400 minus MOD400)
agreed with those by MARGO Project Members et al. [2009] within the error bars, for the
global as well as the regional anomalies (Table 5). However, there seems to be a system-
atic difference in that our estimates tend to imply a slightly larger glacial cooling. This
tendency was most pronounced in the tropics, where our estimate for the Pacific was sta-
tistically distinguishable from the MARGO estimate. In our case, the data assimilation
scheme using an ocean general circulation model compensated for the sparseness of the
data and provided for a physics-based method of interpolation and extrapolation. In the
case of MARGO Project Members et al. [2009], extrapolation into areas void of data was
avoided on purpose, but as a consequence their estimates of the global and regional SST
anomalies suffer from the low grid coverage (which is ∼20% for the global ocean).

The global mean anomaly of surface air temperature was −5.8 K (−4.2 K over the
ocean) in our estimates, which was somewhat larger than the recent estimate of (−4.0 ±
0.8) K by Annan and Hargreaves [2013]. The corresponding anomaly for the first-guess
forcing fields between the modern and LGM state estimation was already −5.8 K. This
implies that the state estimation did not require large adjustments of surface air tempera-
ture in extensive areas to fit the model to the sparse ocean data.

8.1.2 Isotopic composition fields

The reconstructed modern distribution of δ18Owater (Figure 3a) showed a good agree-
ment with a gridded data set based on regional δ18O-salinity relationships and an objec-
tive interpolation method [Figure 2 in LeGrande and Schmidt, 2006]. Because through
the adjoint method our reconstruction was based on the physics of ocean dynamics, it
did not suffer from the sharp discontinuities along regional boundaries that are unavoid-
able in the method devised by LeGrande and Schmidt [2006]. Instead, the constraint by
model physics made it more difficult for the model to fit the data. As a result, the RMS
of model–data discrepancies in our estimates was somewhat larger than in the study by
LeGrande and Schmidt [2006].

The reconstructed LGM δ18Owater could be directly compared with the oxygen-
isotope composition of seawater restored from pore water samples from sea-floor sedi-
ments [Adkins et al., 2002], although the δ18Owater may not be determined uniquely from
the pore water [Wunsch, 2016]. Our result for the Southern Hemisphere (ODP site 1093)
agrees with the pore-water value within the errors, whereas our estimates for the North-
ern Hemisphere were considerably higher than the observations (Table 6). In the frame-
work of this study, the assimilation of δ18O information was done in terms of δ18Ocalcite.
Because δ18Ocalcite depends on both δ18Owater and temperature of the ambient sea water,
the δ18Ocalcite information alone does not uniquely determine δ18Owater. The comparison
with the pore-water observation implied that in LGM400 the model adjusted δ18Owater too
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much instead of adjusting sea-water temperature, although that was the best estimate with
respect to the chosen objective function. Another potential problem could be the limited
length of the forward runs (400 year) that is still not long enough to advect the Northern
Hemisphere information to the Southern Hemisphere [Wunsch and Heimbach, 2008]. Thus,
the short integration time compared to the advective time scales of δ18Owater could have
been compensated by unreasonably large adjustment of δ18Owater values in the Northern
Hemisphere.

The reconstructed modern δ13CDIC field was consistent with previous studies [Curry
and Oppo, 2005; Schmittner et al., 2013; Gebbie, 2014] in the Atlantic (Figure 4a), at least
with respect to the contour lines of 0.8%# or 1.0%# reaching up to ∼40◦S at a depth of
2000–3000 m. The LGM δ13CDIC distribution also agreed in general with previous stud-
ies’ reconstruction [Curry and Oppo, 2005; Brovkin et al., 2007; Gebbie, 2014]. We note
again that our estimate was based on both the physical ocean dynamics and the available
proxy data. Although the RMS of model–data discrepancies of 0.29%# was somewhat
larger than the assumed data uncertainty (0.2%#), it was clearly smaller than the 0.68%#
reported by Hesse et al. [2011], which demonstrates the beneficial effect of the data assim-
ilation in the current study.

The reconstructed isotopic composition fields for the LGM were also compared
with independent data compilations for the global ocean including the Pacific and In-
dian Oceans [Oliver et al., 2010; Peterson et al., 2014] (Figure 7). The δ18O data from the
data sets are associated with large uncertainties in the dating up to 10 kyr [Oliver et al.,
2010]. Taking the Pacific and Indian data into account for the LGM400 results leads to
J ′O18 = 2.4 and J ′C13 = 6.3 , which correspond to the RMS values of model–data differ-
ences of 0.31%# and 0.50%#, respectively. These cost-function values suggest that the re-
constructed isotopic composition fields do not fit the observations within prior errors, even
though the model–data misfits in the Pacific and Indian Oceans were slightly improved
in the optimization that used only the Atlantic data. More precisely, on the one hand, the
LGM400 δ13C field fit the measured δ13C values in the Indian Ocean reasonably well,
because of a good first guess and because the Atlantic data lead to improvement in the In-
dian Ocean. On the other hand, the LGM400 δ18O values in the Pacific are systematically
lower than the measured δ18O values of Oliver et al. [2010]. Our estimated δ13C values
in LGM400 are also substantially lower (as much as 1%#) at 3000 m in the Pacific Basin
than the measured data.

A 400 year (forward) simulation is not long enough for signals from the Atlantic
Ocean to reach all parts of the global ocean. This hypothesis was tested by running the
model for 3000 extra years forward in time with the optimized forcings and parameters of
LGM400. On the one hand, the longer integration clearly improved the negative bias for
δ18O (Figure 7c, g), calling for an even longer adjoint-based state estimate. On the other
hand, the 3000-year model run did not reduce the δ13C bias in most parts of the Pacific
and Indian Oceans (Figure 7d, h) to suggest that, even though signals from the Atlantic
are allowed to propagate into the Pacific, the deep ocean circulation and remineralization
processes in the Pacific can not entirely be constrained by processes in the Atlantic. Dur-
ing the LGM, the water-mass structure and circulation in the deep Pacific Ocean may have
been different from today because of deep-water formation in the North Pacific Ocean
[e.g., Matsumoto et al., 2002; Herguera et al., 2010; Rae et al., 2014]. Such processes in
the North Pacific Ocean would have been independent from the Atlantic Ocean and can
only be constrained with a sufficient amount of local data. In the worst case, there is a
considerable impact of North Pacific deep water on the global circulation, in which case
our global state estimate would be very inaccurate in the absence of data to constrain the
North Pacific Ocean locally. In future estimates, more Pacific data would be desirable and
a remineralization model that depends on the oceanographic provinces should be included
to improve the model–data fit.
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8.1.3 Atlantic meridional overturning circulation

The stronger AMOC in LGM400 is in line with independent evidence from paleo-
data that were not assimilated in this study: 231Pa/230Th isotope ratios [Yu et al., 1996;
Lippold et al., 2012]; grain-size analysis of ocean sediments [McCave et al., 1995; Manighetti
and McCave, 1995; McCave and Hall, 2006]; and combined Cd/Ca and δ13C measure-
ments [Curry and Oppo, 2005]. In particular, the shoaled but more active overturning
cell during the LGM is supported by combined proxies of the 231Pa/230Th ratio and Nd
isotopes [Lippold et al., 2016]. But, there is also evidence that suggests that the LGM
AMOC was weaker than today [e.g., Lynch-Stieglitz et al., 1999; Piotrowski et al., 2005;
McManus et al., 2004; Negre et al., 2010]. Previous adjoint-based state estimations show
a 30% weaker AMOC [Winguth et al., 2000] or a strength similar to the modern value
[Dail, 2012]. Apart from the remaining ambiguity of the AMOC strength, the three adjoint-
based studies agree on the change in depth of the overturning circulation cell. For exam-
ple, in this study, the shoaling of the AMOC from ∼3500 m in MOD400 to ∼2500 m in
LGM400 was observed. Such a shoaling of the AMOC is also observed in the results
of Winguth et al. [2000] and Dail [2012]. Stammer et al. [2016] show time-mean AMOC
stream functions from 1960 to 2007 by six different data assimilation projects. Although
the time window is not identical to that of our modern state estimate, four out of the six
reconstructions clearly have a deeper NADW cell than our LGM reconstruction, and an-
other four of them have a significantly weaker strength of NADW transport.

The difference in maximum AMOC strength between MOD400 and LGM400 can
be linked to the difference in average densities of two latitudinal strips (50−55◦N, and
35−40◦S) at mid-depth (750 m). The hemispheric density difference was 0.63 kg/m3 in
LGM400, while 0.45 kg/m3 in MOD400, supporting the positive correlation between the
AMOC strength and the meridional density gradient across the Atlantic as suggested by
Rahmstorf [1996]. The larger north-south density gradient in LGM400 is due to the salin-
ity difference as seen in Figure 8a. There are (at least) two mechanisms for that. First, the
gyre circulation is stronger in LGM400 due to stronger wind stress. As a consequence,
more salt is transported northward with the western boundary current in the North At-
lantic, contributing the denser water in the convection regions. This is consistent with
Muglia and Schmittner [2015] who suggest that strengthened wind-driven northward salt
transport into the North Atlantic contributes to the increase of surface-water density at
high latitudes, leading to the stronger and deeper AMOC in LGM simulations with the
Paleoclimate Model Intercomparison Project Phase 3 (PMIP3) models. Second, in the re-
constructed LGM ocean, a distinct positive anomaly of evaporation was found in the high-
latitude North Atlantic because of a lower specific humidity and a slightly higher SST. It
also contributes to the increase in the density of the surface water.

Another potential mechanism leading to stronger AMOC during the LGM is the
intensification of the overturning by increased tidal mixing caused by the sea-level drop
[Wunsch, 2003; Egbert et al., 2004; Green et al., 2009; Schmittner et al., 2015]. Tidal en-
ergy, which at present is dissipated by friction on the shallow continental shelves, would
during the LGM instead be dissipated in the deep ocean, because a substantial area of the
continental shelves were exposed. For example, Schmittner et al. [2015] estimated that
the global mean vertical diffusivity (used as input parameters to a climate model) during
the LGM was more than 3 times larger than at present day. The prior vertical diffusiv-
ity was 3 × 10−5 m2/s for all the experiments in our study, and rather small uncertainties
were prescribed (Table 2) mostly because it aided stabilizing the searches for the opti-
mum solution. The adjustment of the diffusivity was substantially smaller than the given
uncertainty both for the modern and LGM state estimates, which suggested that the dif-
ference in ocean circulation resulted mostly from the different surface forcing fields. This
result, however, does not necessarily lead to rejecting the hypothesis that a more vigorous
vertical mixing affected the LGM ocean circulation. Instead, it suggests that a vertical dif-

–15–



Confidential manuscript submitted to Paleoceanography

fusivity similar to the modern one is consistent with the LGM data and their uncertainty
used in this study.

We did another 200-yr LGM state estimate with larger prior vertical diffusivities:
3 × 10−5 m2/s for the depths shallower than 1500 m and 3 × 10−4 m2/s for deeper depths.
We obtained as good a cost reduction as in LGM200, with a maximum AMOC strength
of 19.8 Sv and a similar depth to that for LGM400. The fit to the LGM data was equally
good, suggesting that the vertical diffusivity cannot be constrained better with our method.

8.2 Implication for the atmospheric pCO2 level

The optimized remineralization factor α was 0.823 in MOD400 and 1.08 in LGM400,
so 30% larger for the LGM. Using process-based biogeochemical models for the LGM,
Bopp et al. [2003]; Tagliabue et al. [2009]; Oka et al. [2011]; Schmittner and Somes [2016]
suggest a slightly (from several % up to 10%) lower export production during the LGM.
Although those estimates are apparently in contradiction with ours, it should be noted that
α meant the amount of remineralization in the ocean deeper than 1000 m, which depends
on the decomposition efficiency of organic matter as well as on the export production.
Considering that the lower sea-water temperature during the LGM would slow down the
decomposition of organic matter [Matsumoto et al., 2007], the lower export production
would be counteracted by the slower decomposition in the deep water.

On the other hand, the reconstructed ocean state in LGM400 was more stratified in
salinity and density (Figure 8). Several lines of independent evidence support this result
[Adkins et al., 2002; Insua et al., 2014], although a recent study suggests that salinity am-
plification in the abyss during the LGM is not necessarily constrained by the data [Wun-
sch, 2016]. A more stratified ocean would be consistent with a larger carbon storage in
the deep ocean, which would contribute to a lower pCO2 in the atmosphere [e.g., Sigman
and Boyle, 2000; Marchitto et al., 2007], in particular in conjunction with a larger volume
of Antarctic Bottom Water (AABW) as shown in Brovkin et al. [2007].

Because our model did not include tracers such as O2 and 14C, we were not able
to directly infer the ventilation rate of the deep ocean. However, the reconstructed LGM
δ13CDIC having a larger vertical gradient of concentration especially in the Southern Ocean
(Figure 4) suggested a more isolated very deep or bottom water mass. This reduced ven-
tilation combined with the increased remineralization could contribute to the lower atmo-
spheric pCO2 during the LGM.

However, the higher AABW production rates estimated for the LGM that are im-
plied by the maximum circulation rate (Figure 5) may not support a pCO2 drawdown hy-
pothesis [De Boer and Hogg, 2014]. In fact, a reduction of the AABW production rate
during the LGM was suggested to be able to account for the drawdown of pCO2 [Tog-
gweiler et al., 2006; de Boer et al., 2010]. Burke and Robinson [2012] argue that the ob-
served depletion of radiocarbon in the Southern Ocean is consistent with a reduced deep-
ocean ventilation during the LGM via the Southern Ocean, and suggest that carbon in the
deep ocean was more isolated from the atmosphere than in modern days. On the other
hand, the glacial water mass geometry reconstructed from geochemical tracers indicates
that the southern source water mass occupied a larger volume fraction of deep water than
today [e.g., Duplessy et al., 1988; Curry and Oppo, 2005]. Therefore, larger deep-water
volumes of southern origin produced at a slower rate would be required for a consistent
pCO2 drawdown scenario, which implies that reduced vertical mixing between AABW
and the northern source water mass would be required [De Boer and Hogg, 2014]. Re-
duced vertical mixing is also suggested by Lund et al. [2011] from the viewpoint of δ18O
distribution. Moreover, if the diapycnal mixing between NADW and AABW was smaller
during the LGM, then the CO2 may be favorably sequestered in the abyssal ocean [cf.
Stephens and Keeling, 2000; Ferrari et al., 2014]. On the other hand, more tidal energy
input to the deep ocean would contribute to an overall increase in vertical mixing as dis-
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cussed in Section 8.1.3 [Wunsch, 2003; Egbert et al., 2004; Green et al., 2009; Schmit-
tner et al., 2015]. The actual magnitude of vertical mixing and its effect on the deep- and
bottom-water ventilation are expected to depend on the distribution of water masses and
their relative position to the bottom topography [Lund et al., 2011; Ferrari et al., 2014].
Therefore, in order to better contribute to the question of ventilation rates, one needs to
determine the changes in spatial patterns of vertical mixing during the LGM by estimating
the three-dimensional distribution of vertical diffusivity. Our method appears to be very
well suited to address this question, but as mentioned in Section 8.1.3, the vertical diffu-
sivity was not well constrained by the available data.

8.3 Uncertainty of the estimates

The adjoint-based state estimate provides a solution that is physically plausible and
consistent with the assumed cost function and probability distribution. In the case of the
LGM state estimate, the number of data was much smaller than the number of control
variables of the model. Such mathematically underdetermined problems are ill-posed
and do not have a unique solution, but our regularization term Jctrl resolves the issue at
the cost of introducing a bias towards the first guess. The reconstructed LGM ocean in
LGM400 was similar to the first guess by CCSM3 [Merkel et al., 2010] with regard to the
depth of NADW cell and the strength of AABW cell, but was distinct with regard to the
maximum strength of NADW cell (21.3 Sv in LGM400 vs. 12 Sv for CCSM3). To deter-
mine the degree of dependency on the choice of first guess, we would need to carry out
a series of state estimates using different first-guess fields. However, we can at least con-
clude that the LGM ocean reconstructed from the CCSM3 first guess is consistent with
the data sets in this study.

Here, we are interested in four other aspects of the uncertainty of the estimated
ocean circulation and water-mass distribution: 1. variability or sensitivity around a single
local minimum of the objective function, 2. uniqueness of the minimum, that is to say, the
possible existence of a different, global minimum, 3. the possibility of a different shape
of the objective function near the minimum that would result from perturbed data, and 4.
systematic model errors. Item 4 is beyond the scope of this paper, as it would require at
least one more adjoint OGCM. For items 2 or 3, we would need a large number of addi-
tional adjoint simulations, which would be computationally too expensive. However, we
were able to infer the uncertainty caused by item 1 as follows.

We conducted several forward runs with random noise added to the optimized at-
mospheric forcings from LGM400. The noise was normally distributed with the following
standard deviation: 1% for the air temperature (∼3 K) and 5% for other forcing fields. We
prepared five sets of perturbed forcing fields to carry out five runs. The maximum AMOC
strength in those runs was 21.3 Sv, 20.0 Sv, 20.4 Sv, 21.3 Sv and 21.0 Sv, and in all runs
the depth of the GNAIW circulation cell was as shallow as in LGM400. The model–data
misfits for the perturbed runs were naturally somewhat worse (several % larger) than the
best estimate. These experiments give us some confidence that the estimated ocean state
in LGM400 was sufficiently robust from the viewpoint of the sensitivity around the local
minimum of the objective function.

9 Conclusions

Aiming at a physically plausible and reliable reconstruction of the LGM ocean state,
an adjoint-based state estimation framework was developed based on state-of-the-art nu-
merical models and proxy data. The framework enabled us to make maximal use of the
available knowledge and data in an objective way and carry out the longest LGM adjoint
simulations to date. The model–data misfit as formulated in terms of the objective func-
tion was successfully minimized in order to provide an LGM ocean state supported both
by ocean dynamics and observations. This suggests that the various proxy data of differ-
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ent origin were compatible with each other within their uncertainties in the sense that they
could be tied together by the physical and biogeochemical processes in the model. Com-
pared to the modern ocean state estimated with the same method, the reconstructed LGM
ocean state was characterized by a larger rate of the AMOC, a northern-source interme-
diate water mass GNAIW shallower than the present-day NADW by 500–1000 m and a
stronger stratification with more saline deep water. It is noted that the shallower GNAIW
did not imply a weaker influence of northern-source deep water on the bottom water of
the Atlantic. The state estimation also provided a continuous global mapping of the sea
surface temperature based on model physics.

The main problem of any LGM state estimation to date is the vast imbalance be-
tween the number of observations and the number of control variables, and thus the very
large number of degrees of freedom. Naturally, increasing the number of independent ob-
servations as much as possible would be the most straightforward way to mitigate this
difficulty. Otherwise, more prior knowledge would need to be added by, for example,
re-arranging the control variable space or adding more model physics. In a feasible next
step, the cost function could be extended to include seasonal surface temperature fields
[cf. Paul and Losch, 2012] to take full advantage of seasonal SST reconstructions provided
by the MARGO project as well as by other studies [Benz et al., 2016]. Another desirable
and potentially very important next step is obtaining sufficient data in the Pacific Ocean
to include them in the state estimation framework. These data constrain the Pacific Ocean
state better and would help to evaluate hypotheses about ocean circulation patterns in the
Pacific Ocean during the LGM, which would in turn shed light on the role of the Pacific
Ocean in large-scale climate variability.
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Table 1. Data sets that were used for state estimation in this study. SST stands for sea-surface temperature.
The data coverage refers to the surface area (for annual-mean SST data) or the volume (other data) of the
ocean when mapped onto the model grid.

Data Source Data coverage Note

LGM

Annual SST MARGO Project Members et al. [2009] 9.4% Global
δ18Ocalcite Marchal and Curry [2008] 0.58% (2.3% for the ATL) only for the Atlantic domain
δ13Ccalcite Hesse et al. [2011] 0.79% (3.2% for the ATL) only for the Atlantic domain

Modern-day

Temperature World Ocean Database [Locarnini et al., 2010] 26% 1951-1980 monthly climatology
Salinity World Ocean Database [Antonov et al., 2010] 26% 1951-1980 monthly climatology
δ18Owater Schmidt et al. [1999] 4.6% only for deeper than 150 m
δ13CDIC Schmittner et al. [2013] 7.2% only for deeper than 1000 m

Table 2. Assumed prior uncertainties of the control variables for the 200-year estimates. The weight of the
penalty terms is given by the inverse of the square of prior errors, that is, for example, a

√
10-times larger

prior error corresponds to a 10-times smaller weight.

Variables Uncertainty units

Initial temperature 3.2 × 100 K
Initial salinity 3.2 × 10−1 psu
Surface air temperature 1.0 × 100 K
Specific humidity 1.0 × 10−3 kg/kg
Precipitation 1.0 × 10−8 m/s
Downward shortwave radiation 1.0 × 100 W/m2

Wind velocities 3.2 × 10−1 m/s
Vertical diffusion coefficient 3.2 × 10−6 m2/s
Initial δ18Owater 3.2 × 10−1 %#
Initial δ13CDIC 3.2 × 10−1 %#
Remineralization factor 1.0 × 10−1 –
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Table 4. Terms of the objective function (the normalized costs J ′), the fraction within 2σ (FW2σ) and
within 1σ (FW1σ) for the LGM state estimates. For LGM200 and LGM400, the upper row shows the first-
guess values and the lower row shows the optimized values, respectively. The top row shows the original
first-guess values (i.e., before the preparatory runs) for the SST.

SST δ18O δ13C
J ′SST FW2σ FW1σ J ′O18 FW2σ FW1σ J ′C13 FW2σ FW1σ J ′SSH J ′ctrl

original 1st guess 2.3 84% 54%

LGM200 1st 0.89 95% 74% 5.3 69% 42% 4.1 76% 50% 2.0×105 0.0
opt 0.89 96% 74% 1.5 95% 67% 1.9 89% 60% 0.093 0.028

LGM400 1st 0.88 95% 74% 1.6 96% 68% 6.2 61% 39% 0.16 0.0
opt 0.88 95% 74% 1.6 96% 68% 2.1 87% 48% 2.7 0.11

Table 5. Regional mean SST anomalies (LGM − modern) by the MARGO project [MARGO Project Mem-
bers et al., 2009] and this study.

Latitude zone Reference Global Atlantic Indian Pacific

90◦S – 90◦N MARGO −1.9±1.8 K −2.4±2.2 K −1.6±1.1 K −1.5±1.8 K
This study −2.2 K −2.8 K −1.7 K −2.1 K

15◦S – 15◦N MARGO −1.7±1.0 K −2.9±1.3 K −1.4±0.7 K −1.2±1.1 K
This study −2.6 K −3.2 K −1.9 K −2.7 K

Table 6. δ18Owater from pore water samples taken at several ODP sites [Adkins et al., 2002] and our esti-
mates at the nearest model grid points.

Site information pore water LGM400
ODP site latitude longitude depth [m] δ18Ow [%#] δ18Ow [%#]

981 55◦N 14◦W 2184 1.05±0.1 1.5
1063 33◦N 57◦W 4584 0.75±0.1 1.2
1093 50◦S 6◦E 3626 1.17±0.1 1.2
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Figure 1. Geochemical tracer locations (a) for the modern state estimate and (b) for the LGM state esti-
mate. Blue dots indicate the locations of δ18O data and red dots those of δ13C data.

Figure 2. Estimated SST field in LGM400. (a) Comparison with the MARGO data shown as dots on the
same color scale. (b) Difference from the modern SST obtained in MOD400.

Figure 3. Estimated distribution of the oxygen isotopic composition shown as a meridional cross section
at 32.5◦W. (a) δ18Owater in MOD400, (b) δ18Owater in LGM400 and (c) δ18Ocalcite in LGM400. The dots
indicate observations from the Atlantic west of 30◦W.

Figure 4. Estimated distribution of the carbon isotopic composition shown as a meridional cross section
at 20◦W. (a) δ13Cdic in MOD400, (b) δ13Cdic in LGM400 and (c) δ13Ccalcite in LGM400. The dots indicate
observations from the Atlantic between 10◦W and 30◦W for MOD400, and east of 30◦W for LGM400.

Figure 5. Streamfunction of the Atlantic Meridional Overturning Circulation (AMOC) calculated for (a)
MOD400 and (b) LGM400. The maximum circulation rates of the equivalents of modern North Atlantic Deep
Water (NADW) and modern Antarctic Bottom Water (AABW) cells were (a) 16.1 Sv and −2.2 Sv and (b)
21.3 Sv and −5.3 Sv, respectively (1 Sv = 1.0 × 106 m3/s).
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Figure 6. Concentration of northern-source water obtained from the “dye” tracer experiments. Meridional
cross sections at 35◦W for (a) MOD400 and (b) LGM400.

Figure 7. Reconstructed distributions of (a) δ18Ocalcite and (b) δ13Ccalcite at the depth of 3000 m in
LGM400. The dots indicate observations including data in the Indian Ocean and Pacific. Distributions after
3000-year model integration are also shown in (c) and (d). The differences between the reconstructions and
observations are shown in (e)–(h). Grid cells with differences smaller than 0.2 %# in magnitude (i.e., the
assumed uncertainty) are depicted as gray in color.

Figure 8. Atlantic zonal-mean differences (LGM400 −MOD400) for (a) salinity and (b) potential density.
For both quantities, the global mean values were subtracted to remove the effects of a systematic difference
and reveal the patterns of the difference.
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A: State estimation for the modern ocean with the original data sets

Prior to the state estimations for the modern day described in the main text (i.e.,
MOD200 and MOD400), we had done another series of modern state estimation without
the three countermeasures to avoid unreasonable atmospheric forcing fields in the opti-
mized states (Section 4.2). In addition to that, there were a few alterations; the first-guess
initial and boundary conditions of δ18Owater for the 200-year estimation were taken from
LeGrande and Schmidt [2006]. For δ13CDIC, they were prepared by interpolating the dis-
crete observations collected by [Schmittner et al., 2013] using Data-Interpolating Varia-
tional Analysis (DIVA) [Troupin et al., 2012]. Otherwise, we used the same configurations
as used for MOD200 and MOD400.

The results of the preceding state estimations (hereafter, called MOD200org and
MOD400org) are summarized in Table A.1. Judging from J ′, FW2σ, and FW1σ, no ex-
cessive differences were observed between the optimized ocean state in MOD400org and
that in MOD400 (Table 3). The reconstructed ocean circulation had 16.4 Sv of the max-
imum AMOC strength and −2.5 Sv of the bottom circulation with AABW, which were
also similar to those in MOD400. The reconstructed ocean had a stronger stratification
with more saline deep water, too.

The resultant modified atmospheric forcings, however, showed remarkable discrepan-
cies. In MOD400org, the bulk assessment of the deviation of modified atmospheric forc-
ings from the first guess (J ′ctrl) showed the acceptable magnitudes of modification to them;
besides, the normalized total adjustments that assess the deviation from the original first-
guess values were 1.4, which indicated that the adjustments were in a reasonable range.
Nevertheless, the adjusted atmospheric forcing fields were found physically unreasonable
in some regions.

If we defined the regions of unreasonable adjustments as grid cells that had any of
the following: air-temperature adjustment larger than 40 K, negative precipitation, negative
specific humidity, or negative downward shortwave radiation, typically they are coast ar-
eas including the upwelling regions along the west coasts of continents, “tongues” in the
tropical Pacific and Atlantic affected by the equatorial upwelling processes, the Arctic re-
gions, and comparatively closed (i.e., insufficient communication with the open oceans)
seas. It implied that the model has significant bias in such regions caused by, for example,
the poor representation of the coastal upwelling processes due to the coarse resolution of
model, so that, to compensate for the model deficit, the model input needed to be modi-
fied to realize a good match to the observation. From this point of view, MOD400org was
not consistent with plausible reconstructed atmospheric conditions, although it succeeded
in providing continuous tracer distributions that are consistent with as much data as avail-
able.

To avoid this problem and to give priority to plausible atmospheric forcings, we ex-
cluded the regions of unreasonable adjustments from the domain of model–data compar-
ison regarding the physical tracers for the main state estimations for modern days (see
Section 4.2), thereby minimizing the emergence of outliers in modified forcing fields. The
data coverage before and after the data reduction is shown in Figure A.1.
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Figure A.1. Locations of monthly SST data for the modern state estimate: (a) the original data sets, and (b)
the reduced data sets. The value shows the number of months that have data.
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