

Master Track RV Heincke HE482

Data Processing Report

Contents	,
----------	---

1	Introduction	1
2	Workflow	1
3	Sensor Layout	2
4	Processing Report	3

Contact: Dr. Rainer Knust Alfred-Wegener-Institute Am Handelshafen 12, D-27570 Bremerhaven, GERMANY Mail: info@awi.de

Processing Agency: FIELAX Schleusenstr. 14, D-27568 Bremerhaven, GERMANY Mail: info@fielax.de

1 Introduction

This report describes the processing of raw data acquired by position sensors on board RV Heincke during expedition HE482 to receive a validated master track which is used as reference of further expedition data.

2 Workflow

The different steps of processing and validation are visualized in figure 1. Unvalidated data of up to three sensors and ship-motion data are extracted from the DAVIS SHIP data base (https://dship.awi.de) in a 1-second interval. They are converted to ESRI point shapefiles and imported to ArcGIS. A visual screening is performed to evaluate data quality and remove outliers manually. The position data from each position sensor are centered to the destined master track origin by applying ship-motion data (angles of roll, pitch and heading) and lever arms. For all three resulting position tracks, a quality check is performed using a ship's speed filter and an acceleration filter. Filtered positions are flagged. In addition, a manual check is performed to flag obvious outliers. Those position tracks are combined to a single master track depending on a sensor priority list (by accuracy, reliability) and availability / applied exclusion of automatically or manually flagged of data. Missing data up to a time span of 60 seconds are linearly interpolated. To reduce the amount of points for overview maps the master track is generalized by using the Ramer-Douglas-Peucker algorithm. This algorithm returns only the most significant points from the track. Full master track and generalized master track are written to text files and imported to PANGAEA (http://www.pangaea.de) for publication.



Figure 1: Workflow of master track data processing

3 Sensor Layout

This chapter describes the position sensors mounted during this cruise.

Cruise details

Vessel name	RV Heincke
Cruise name	HE482
Cruise start	2017-04-11 Bremerhaven
Cruise end	2017-04-15 Bremerhaven
Cruise duration	5 days
Master track reference point:	Resulting master track is referenced to PHINS installation point.

Position sensors

Sensor name	IXSEA PHINS III, short: PHINS				
Description	Inertial navigation system with reference positions from Trimble DGPS				
Accuracy	\pm 0.5-3.0 m				
Installation point	Electrician's workshop, close to COG				
Installation offset	Offset from master track reference point to sensor installation pointXPositive to bow0.000 mYPositive to starboard0.000 mZPositive upwards0.000 m				

Sensor name	Trimble Marine SPS461, short: Trimble					
Description	DGPS-Receiver, correction type DGPS RTCM 2.x, correction source					
	DGPS Base via radio					
Accuracy	Horizontal: \pm 0.25 m + 1 ppm & Vertical: \pm 0.50 m + 1 ppm					
Installation point	Observational Deck, fore rail					
Installation offset	Offset from master trackreference point to sensor installation pointXPositive to bow13.648 mYPositive to starboard2.976 mZPositive upwards11.406 m					

Sensor name	SAAB R5 SUPREME NAV, short: SAAB				
Description	DGPS-Receiver, SBAS-correction with RTCM-104 input				
Accuracy	GPS: ± 3.0 m; DGPS (2D RMS): ± 1.0 m				
Installation point	Observational Deck, fore rail				
Installation offset	Offset from master track reference point to sensor installation pointXPositive to bow12.985 mYPositive to starboardZPositive upwards11.328 m				

Motion sensor

Sensor name	IXSEA PHINS III, short: PHINS		
Description	Inertial navigation system with reference positions from Trimble DGPS		
Accuracy	\pm 0.01 roll, \pm 0.01 pitch, \pm 0.05 heading (deg)		
Installation point	Electrician's workshop, close to COG		

4 Processing Report

Database Extraction

Data source	DSHIP database (dship.awi.de)		
Exported values	342393		
First dataset	2017-04-11T07:37:35 UTC		
Last dataset	2017-04-15T06:44:07 UTC		

Centering & Motion Compensation

Each position track has been centered to the *PHINS installation point* by applying the correspondent motion angles for heading, roll and pitch as well as the installation offsets from chapter 3. The motion data were acquired by IXSEA PHINS III.

Automatic Validation

The following thresholds were applied for the automatic flagging of the position data:

Speed	Maximum 20 kn between two datapoints.		
Acceleration	Maximum 1 m/s ² between two datapoints.		
Change of course	Maximum 5° between two datapoints.		

Manual Validation

Obvious outliers were removed manually. For details see Processing Logbook of RV Heincke (hdl:10013/epic.45841).

Flagging result

	PHINS		Trimble		SAAB	
Missing	133	0.0%	1349	0.4%	892	0.3%
Speed	22	0.0%	2104	0.6%	1468	0.4%
Acceleration	101	0.0%	1158	0.3%	923	0.3%
Course	39081	11.4%	52255	15.3%	184990	54.0%
Manually	0	0.0%	0	0.0%	0	0.0%

Master Track Generation

The master track is derived from the position sensors' data selected by priority.

Sensor priority used:

- 1. SAAB
- 2. PHINS
- 3. Trimble

Filters applied: manual, speed, acceleration.

Distribution of position sensor data in master track:

Sensor	Data points	Percentage
Total	342393	100.0%
PHINS	1479	0.4%
Trimble	139	0.0%
SAAB	340628	99.5%
Interpolated	22	0.0%
Gaps	125	0.0%

Remarks

None.

Score

For each cruise, a score is calculated ranging from 0 (no data) to 100 (only very good data). the score for the cruise HE482 is 98.

Generalization

The master track is generalized to receive a reduced set of the most significant positions of the track using the Ramer-Douglas-Peucker algorithm and allow a maximum tolerated distance between points and generalized line of 4 arcseconds.

Results:

Number of generalized points	72 points
Data reduction	99.9790 %

Result files

Report in XML format:

The XML contains all information of the master track generation in a machine-readable format. In addition a XSD schema file is provided.

Master track text file:

The format is a plain text (tab-delimited values) file with one data row in 1 second interval.

Column separator	Tabulator "	\t"
Column 1	Date and time expressed according to ISO 8601	
Column 2	Latitude in decimal format, unit degree	
Column 3	Longitude in decimal format, unit degree	
Column 4	Flag for data source	
	1	PHINS
	2	Trimble
	3	SAAB
	INTERP	Interpolated point
	GAP	Missing data

Text file of the generalized master track:

The format is a plain text (tab-delimited values) file.

Column separator	Tabulator "\t"
Column 1	Date and time expressed according to ISO 8601
Column 2	Latitude in decimal format, unit degree
Column 3	Longitude in decimal format, unit degree

Processing Report:

This PDF document.

Cruise map

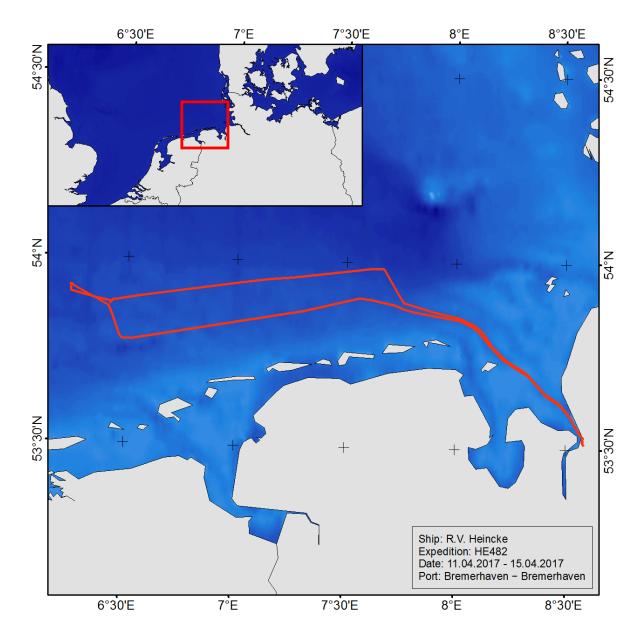


Figure 2: Map of the generalized master track