

Comparing spectral characteristics of Landsat-8 and Sentinel-2 data for Arctic permafrost regions

A. Runge^{1,2}, G. Grosse^{1,2}

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany, ²Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany

Background

- Optical remote sensing in the Arctic is highly restricted by frequent cloud cover and low illumination angles. Hence, only few useable optical images are acquired by the Landsat mission during the short vegetation period every year.
- The new ESA Copernicus Sentinel-2 mission, containing two satellites with a revisit time < 5 days, enhances data availability in the Arctic and the chance of useable images.

Objectives

- Compare spectral characteristics and check compatibility of Landsat-8 and Sentinel-2 in Arctic permafrost regions.
- Assess the sensor-signal responses of Landsat-8 and Sentinel-2

days, enhances data availability in the Aretic and the chance of ascable intages.

Combining Landsat-8 (L8) and Sentinel-2 (S2) images will increase data coverage and enable dense time-series analysis which will allow for:

- Mapping and monitoring of vegetation
- ✓ Change detection
- ✓ Differentiating between gradual and rapid changes
- ✓ Trend analysis

This will help tremendously in describing permafrost regions, their changes, disturbance schemes and the effects on the carbon cycle in a warming Arctic.

Method

Data selection

All data processing steps were conducted in Google Earth Engine (GEE)
Image filtering by point location with a cloud cover < 80 % and selecting</p>

same-day acquisition image-pairs of Landsat-8 and Sentinel-2

Data processing

To surface reflectance corrected images (L8 = GEE, S2 = SNAP) were cloud ssing masked, reprojected to WGS 84 /UTM zone 52 and then resampled to 60 m resolution

Comparison

Single band comparisons on a pixel-by-pixel basis and multispectral index
 (NDVI) calculation as well as the temporal sensor response of the NDVI over summer based on three same-day acquisition image-pairs

Analysis

Applying the globally available Harmonized Landsat-8 Sentinel-2 product (**HLS**) (Claverie et al., 2016) to the same-day acquisition image-pairs while also deriving a locally *Lena Delta-applicable* linear regression band adjustment for the dataset (Lena Delta Adjustment = **LDA**).

and define spectral adjustments for a combined use in Northeastern Siberia.

Data

The study area is the Central Lena Delta, including Samoylov island. Samoylov island coordinates where used for point image filtering. The below dataset combines images from several satellite paths and rows, all covering the Central Lena Delta.

		Landsat-8 Wavelength	Resolution		Sentinel-2 Wavelength	Resolution	_	_	_		
	Band	[μm]	[m]	Band	[μm]	[m]					
Coastal Aerosol	1	0.43-0.45	30	1	0.43-0.46	60					
Blue	2	0.45-0.51	30	2	0.45-0.55	10					
Green	3	0.53-0.59	30	3	0.53-0.58	10					
Red	4	0.64-0.67	30	4	0.65-0.68	10					
NIR	5	0.85-0.88	30	8A	0.85-0.88	20					
SWIR 1	6	1.57-1.65	30	11	1.54-1.69	20	01.07.2016	13.07.2016	25.07.2016	06.08.2016	18.0
SWIR 2	7	2.11-2.29	30	12	2.08-2.32	20					
Cirrus	9	1.36-1.38	30	10	1.34-1.41	60			🗖 L 8 📒 S	2 📕 L8 + S2	

Tab. 1: Landsat-8 and Sentinel-2 specifications. Adapted from Claverie et al. (2016) and ESA (2018).

а.

Fig. 3: Number of Landsat and Sentinel-2 images during summer season per year.

Google Earth Engine and technical acquisition specifications.

Fig. 2, Tab. 2: Central Lena Delta L8

and S2 same-day acquisition on

23.08.2016 after cloud masking in

Landsat-8

03:40:06

178.97

60.9

185

Acquisition

time (UTC)

Solar Azimuth

Angle [deg]

Solar Zenith

Angle [deg]

Swadth width

[km]

Sentinel-2

03:47:34

184.35

61.1

290

Fig. 5: Comparison of NDVI values for a. Moist to dry dwarf shrub-dominated Yedoma tundra and b. Wet Yedoma upland land cover from sameday acquisitions of Landsat-8, Sentinel-2, Sentinel-2 HLS and Sentinel-2 LOC adjusted. Including field pictures (M. Fuchs and A. Runge, 2018),

- Landsat-8 and Sentinel-2 divert from 1:1 line (black line in Fig. 5)
- Systematic offset between Landsat-8 and Sentinel-2, esp. NDVI
- HLS product corrects the offset moderately
- > LDA adjustment shows a slightly better correction of the offset
- For different land covers (Fig. 5) the spectral sensor response varies, which has to be considered

Conclusions

Fig. 4: Band comparisons between Landsat-8 and Sentinel-2 in the Central Lena Delta on 23.08.2016.

RED	Intercept	Slope	Intercept	Slope	R	🛛 ≽ Ban
HLS	-0.00104	1.017	0.0185	0.7628	0.96	RED
LDA	0.0177	0.7757	0.0000009	1.0001	0.96	_ (rig
NIR	Intercept	Slope	Intercept	Slope	R	
HLS	0.00025	0.999	0.0374	0.792	0.92	- + HLS
LDA	0.0376	0.7912	-0.00005	1	0.92	_ + LDA _
	RED HLS LDA NIR HLS LDA	RED Intercept HLS -0.00104 LDA 0.0177 NIR Intercept HLS 0.00025 LDA 0.0376	RED Intercept Slope HLS -0.00104 1.017 LDA 0.0177 0.7757 NIR Intercept Slope HLS 0.00025 0.999 LDA 0.0376 0.7912	REDInterceptSlopeInterceptHLS-0.001041.0170.0185LDA0.01770.77570.000009NIRInterceptSlopeInterceptHLS0.000250.9990.0374LDA0.03760.7912-0.00005	REDInterceptSlopeInterceptSlopeHLS-0.001041.0170.01850.7628LDA0.01770.77570.0000091.0001NIRInterceptSlopeInterceptSlopeHLS0.000250.9990.03740.792LDA0.03760.7912-0.000051	REDInterceptSlopeInterceptSlopeRHLS-0.001041.0170.01850.76280.96LDA0.01770.77570.0000091.00010.96NIRInterceptSlopeInterceptSlopeRHLS0.000250.9990.03740.7920.92LDA0.03760.7912-0.0000510.92

Tab. 3: Linear regression equations used for band adjustment highlighted in blue. HLS from Claverie et al., 2016. The linear regression equations highlighted in orange show the relation between Landsat 8 and Sentinel-2 after band adjustment.

- Band comparison for RED (left) and NIR (right)
- + HLS band adjustment+ LDA band adjustment
- Band adjustment is necessary to correct for the spectral offset between Landsat-8 and Sentinel-2 images, before any combined dense time-series analysis is possible
- The Harmonized Landsat-8 Sentinel-2 product correction is not sufficient which underlines that a local adjustment procedure is necessary

Next Steps

- Broadening the linear band adjustment approach by:
 - Looking at multiple same-day acquisition image-pairs
 - Looking at multiple sites, e.g. along a longitudinal transect in Siberia: Central Lena Delta, Batagay, Yukechi
 - Taking different types of land cover into account
- Investigating whether an Arctic band adjustment product can be derived

References

Claverie, M., Masek, J. and Ju, J., 2016. Harmonized Landsat-8 Sentinel-2 (HLS) Product User's Guide.

ESA, 2018. Sentinel-2 MSI Technical Guide.

Google Earth Engine was used for all processing steps. GEE receives the satellite images directly from USGS (Landsat) oder ESA Copernicus (Sentinel-2).

Alexandra Runge PhD Candidate Alfred Wegener Institute Telegrafenberg A45 14473 Potsdam, Germany alexandra.runge@awi.de Phone : +49-331-288-20107