

Stefanie Arndt, Stephan Paul, Nicolas Stoll, Christian Haas Alfred Wegener Institute Helmholtz Center for Polar and Marine Research

Vertical snow structures on Antarctic sea ice from in-situ and remote sensing measurements

Objective: The challenge of scales

Investigating seasonal variability of snow properties on different spatial scales

Vertical snow profiling: Local scale

Snow pits

Detailed characterization of the snowpack

- Temperature
- Density
- Salinity
- Stratigraphy
- Liquid water content

SnowMicroPen (SMP)

High-resolution snow penetrometer retrieving essential snow structural parameters by measuring the bonding force between snow grains

- Density
- SSA

Variability on small scales - SMP transects

PS111_SIP_3

11 February 2018, seasonal sea ice

- Transect length:23 m
- Measurements: twice every 0.5 m

PS111: 19 January - 14 March 2018

Variability on medium scales - Weddell Sea

Variability on medium scales - Weddell Sea

Snowmelt patterns from passive microwave observations - A pan-Antarctic approach

Method: Analysis of diurnal variations in brightness temperature (passive microwave, 37 GHz, vert. pol.)

Key points

Temporary snowmelt shows a latitudinal dependence

Continuous snowmelt is usually 17 days after temporary snowmelt onset observed Results indicate **four characteristic melt types**

Arndt et al., 2016 (JGR)

Snowmelt patterns from active microwave observations - A perennial sea ice approach

Snowmelt patterns from active microwave observations - A perennial sea ice approach

Latitudinal gradient in snowmelt onset dates

- north: warm-air advection
- *south:* diminished warm-air advection and stronger heat loss at the snow surface

Perennial sea ice Ross Sea 180° Pacifi	ern c Ocean	From scatterometer data			From passive microwave observations
	Region	Pre-melt Onset	Snowmelt Onset	Diurnal thawing- refreezing Onset	Temporary Snowmelt Onset (TeSMO)
	Southern Weddell Sea	27 Nov ± 25 days	16 Dec ± 19 days	19 Dec ± 13 days	21 Dec ± 11 days
	Northern Weddell Sea	24 Nov ± 16 days	06 Dec ± 16 days	09 Dec ± 9 days	13 Dec ± 11 days
Mean snowmelt onset dates.	Bellingshausen Sea	01 Dec ± 29 days	04 Dec ± 27 days	19 Oct ± 20 days	19 Oct ± 28 days
	Amundsen Sea	24 Nov ± 23 days	06 Dec ± 18 days	02 Dec ± 10 days	05 Dec ± 16 days
Arndt & Haas, in prep.	Ross Sea	11 Dec ± 18 days	15 Dec ± 17 days	13 Dec ± 8 days	16 Dec ± 10 days
	All regions	29 Nov ± 10 days	10 Dec ± 12 days	09 Dec ± 5 days	12 Dec ± 8 days

Vertical snow structures from space

Hypothesis:

Different sensors respond to snow melt processes in different depths within the snow cover

time

Vertical snow structures from space

Hypothesis:

Different sensors respond to snow melt processes in different depths within the snow cover

Using satellite remote sensing sensors with different signal frequencies might allow to describe snowmelt processes in different layers (= vertical structures)

Again: The challenge of scales

Again: The challenge of scales

Regional/ Temporal scale

Modeled snow-ice formation from Snow Buoys

[L. Rossmann et al., DFG SPP 1158 project: SCASI]

Autonomous icetethered platforms to study seasonal and regional variabilities of key parameters

Global scale

