AWI Data Science Workshop, Bremerhaven, December 6, 2018

# **Enhancing Data Sets through Data Assimilation**

# Lars Nerger

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

> M. Goodliff, H. Pradhan (AWI) F. Schwichtenberg, I. Lorkowski, T. Brüning (BSH) Watson Gregg (Nasa/GSFC)



# **Motivation**





## **Data Assimilation**

This

talk

Methodology to combine model with real data

Optimal estimation of system state:

| <ul> <li>initial conditions</li> </ul> | (for weather/ocean forecasts,)   |  |
|----------------------------------------|----------------------------------|--|
| <ul> <li>state trajectory</li> </ul>   | (temperature, concentrations,)   |  |
| <ul> <li>parameters</li> </ul>         | (ice strength, plankton growth,) |  |
| <ul> <li>fluxes</li> </ul>             | (heat, primary production,)      |  |

- boundary conditions and 'forcing' (wind stress, ...)
- More advanced: Improvement of model formulation
  - Detect systematic errors (bias)
  - Revise parameterizations based on parameter estimates



# Example 1

# Coastal ocean-biogeochemical state in the North- and Baltic Seas

### Project MeRamo – cooperation with BSH



### **Model and Domain**



### **Biogeochemical model: ERGOM**



Lars Nerger – Enhancing Data Sets through Data Assimilation

# **Augmenting a Model for Data Assimilation**

Couple PDAF (Parallel Data Assimilation Framework) with model

- Modify model to simulate ensemble of model states
- Insert correction step (analysis) to be executed each 12 model hours
- PDAF is free open-source Software developed at AWI (http://pdaf.awi.de)



## **Observations**



#### Used here:

- sea surface temperature (SST)
  - 2012: from NOAA satellites
  - 2017: from Sentinel-3a
- 12-hour composites
- Interpolated to both model grids (satellite data resolution ~1 km)
- Many data gaps (clouds)

#### Possible further data:

- Satellite ocean color (chlorophyll, diffuse attenuation, reflectance)
- In situ data (here used for validation)



## **Influnce of Assimilation on Surface Temperature**

Temperature RMS error

ensemble mean

5km grid

• root-mean square (RMS) error

#### RMS error (°C)

| Grid | Model | Assim. |
|------|-------|--------|
| 5km  | 0.78  | 0.60   |
| 900m | 0.81  | 0.74   |



1.6

1.4

1.2

0.0 gWXse

Modell Assim

## **Influence of Assimilation on Ecosystem Variables**



## **MSFD Indicators (unofficial result)**

- EU Marine Strategy Framework Directive requires monitoring
- MSFD Indicator: total nitrogen (nitrate, ammonium, nitrogen in phytoplankton, zooplankton, ..)
- OSPAR region ICNF (Inner Coastal North Frisian) red frame
- Limit 23.66 mmol / m<sup>3</sup>
- Number of days exceeding limit
  - Change due to assimilation: -30 to +12 days



# **Outcomes of applying data assimilation**

Each 12 hours, at analysis time, we get

- complete surface temperature fields
   & 3D physical model state
- modified biogeochemical fields
- derived indicator quantities
- ensemble of 40 realizations

at 5 km and 900 m resolution



# Example 2

# Assimilation of Satellite Ocean Color Data into Ocean-biogeochemical Model

# Project IPSO – AWI strategy fund



# **Coupled Model: MITgcm - REcoM**

#### MITgcm

General ocean circulation model of MIT (*Marshall et al., 1997*).

#### **Global configuration**

80°N - 80°S, 30 layers

#### **Resolution:**

- lon: 2 deg
- lat: 2 deg in North up to 0.38 deg in South
- layers: 10 m 500 m



Regulated Ecosystem Model – Version 2 (Hauck et al., 2013)



# Assimilation of chlorophyll data for phytoplankton groups

#### Assimilated data:

Total chlorophyll data from OC-CCI and Phytoplankton group data SynSenPFT (Losa et al. 2018)



### Assimilation:

- Assimilate each 5th day for years 2008 & 2009
- Handle logarithmic concentrations
- Validate with in situ data



# **Assimilation effect on Total Chlorophyll (April 20, 2008)**

![](_page_15_Figure_1.jpeg)

Pradhan et al., J. Geophy. Res. Oceans, under review

# Validation with in situ data

![](_page_16_Figure_1.jpeg)

- Assimilation of total chlorophyll or SynSenPFT group data
- Validation with independent data
- Assimilation of total Chlorophyll improves both groups
- Stronger error-reductions for group data assimilation
- Stronger error-reductions for Diatoms (slightly below SynSenPFT for group data assimilation)

→ global (gap-free) fields with similar error as SynSenPFT

![](_page_16_Picture_8.jpeg)

# **Summary**

• Data assimilation merges observational data with model data

Allows

- to dynamically interpolate through data gaps
- improve data quality where observational data exists

→ Yields data products at resolution of model grid

Multivariate data assimilation also constrains unobserved variables

- Opportunity to generate additional data products
- Ensemble data assimilation also provides uncertainty estimates

Thank you!

Lars.Nerger@awi.de

![](_page_17_Picture_11.jpeg)