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Abstract 
 

Nitrogen availability in the open ocean regulates primary productivity and a cascade of 

associated carbon-nitrogen coupled transformations mediated by both eukaryotic and 

prokaryotic microorganisms. An understanding of potential alterations at the base of the food 

chain particularly reductions in planktonic biomass is essential, as a decline or community shift   

in primary productivity will impact ecosystem services, such as O2 production, carbon 

sequestration and biogeochemical cycling. This study, as part of the OISO (Ocean Indien 

Service d'Observation) campaign, aimed to shed light into prokaryotic and photoautotrophic, 

eukaryotic community composition between four different water masses as well carbon and 

nitrogen assimilation rates in the Southern Indian Ocean and the French Southern and 

Antarctic lands. To understand ecosystem dynamics, we linked microbial community 

composition, using high resolution molecular 16S rDNA amplicon sequencing techniques and 

functional pigment analysis, to in situ rate measurements of carbon (C) and nitrogen (N). While 

temperature and salinity were the driving factors for carbon fixation, water masses defined 

prokaryotic community composition. We could link prokaryotic diversity to high carbon 

fixation rates emphasizing positive foodweb recoupling and recycling processes. 

Photoautotrophic community composition clearly separated between the warm Indian Ocean 

and the Southern Ocean. While the Indian Ocean was vastly dominated by the unicellular 

cyanobacterium Prochlorococcus, the relative abundance of the diatom diagnostic pigment 

fucoxanthin increased in the Southern Ocean.  C fixation was relatively higher (84.8 ± 44.5 

µmol L-1 h-1) in the nutrient-rich Southern Ocean, in comparison to the oligotrophic Indian 

Ocean (14.2 ± 7.9 µmol L-1 h-1). In general, high variations within-station replicates of C fixation 

were found, ranging from 43.4 – 134.9 µmol L-1 h-1. We measured N2 fixation at all sampling 

stations, up to 56°S latitude, supporting the hypothesis that N2 fixation is an ubiquitous 

process which is not restricted to warm oligotrophic water. N2 fixation rates showed similar 

patterns as C fixation rates within station replicates, ranging from 0.9 to 7.9 nmol N L-1 d-1. 

Among other interpretations, this suggests sub-mesoscale dynamics and potential small-scale 

differences in biochemical conditions. Our observations point out the importance of high 

resolution (i.e., sub-mesoscale and smaller) in situ studies in combination with remote- 

sensing techniques, to be able to fully understand the scale of variation in ocean dynamics. 
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Collectively our results are another piece of the puzzle of the complex dynamics in the 

Southern Indian Ocean sector. Understanding biogeochemical and biological processes 

supports our ability to further understand C and N fluxes to be able to predict and model 

future climate change scenarios. 
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1. Introduction 
 

1.1 The Southern Indian Ocean and Southern Ocean  

The Indian Ocean (IO) is an important contributor to global marine biodiversity and production 

of marine resources, yet is still the most understudied ocean worldwide (Wafar et al., 2011; 

Alexander et al., 2012; Hood et al., 2016). The IO appears to be the most complex ocean 

regarding its topography and geology (Hood et al., 2015). Topographic highs are important in 

terms of biodiversity for all trophic levels (Sheppard et al., 2012; Boissin et al., 2017; Sautya 

et al., 2017). Different seabed depths and hydrothermal vents provide a variety of ecological 

zones (Sautya et al., 2017) that are especially important for endemic species which are often 

rare and thus tend to be more vulnerable to climate change and pollution (Boissin et al., 2017). 

Shallow platforms, like Chagos Archipelago, are refuges for fish and invertebrate larvae as well 

as a large coral reef area relatively undamaged by human interference (Sheppard et al., 2012). 

Furthermore, topography impacts both ocean circulation and mixing, which can support 

unusually high productivity areas surrounded by less productive deep water (Hood et al., 

2015). However, biogeochemical processes in the warm oligotrophic waters of the southern 

Indian Ocean gyre remain poorly understood (Hood et al., 2015). 

In contrast to the oligotrophic waters of the IO gyre, the upwelled water of the Southern 

Ocean (SO) is comparatively nutrient-rich, meaning it consists of elevated sea surface 

concentrations of nitrate (6 – 24 µmol L-1), phosphate (0.4 - 1.6 µmol L-1) and silicic acid (up to 

80 µmol L-1) (Levitus et al., 1993). Large fractions of these upwelled waters are transported 

northwards to the warmer, saline waters of the polar front (PF). Eventually, they leave the 

surface through transformation into intermediate and mode waters (Wyrtki, 1973). Although 

these nutrient rich upwelled waters of the Southern Ocean are exposed to direct sunlight, 

phytoplankton growth is not widely stimulated, and chlorophyll ɑ concentrations in the 

Southern Ocean generally remain lower than 1 mg m-3 (Boyd et al., 2000). The low 

concentrations of iron (pico- nanomolar; Nolting et al., 1998) in the open ocean limit the 

growth of phytoplankton and other microorganisms (Martin, 1992; Moore et al., 2002). 

Therefore, these regions are described as high nutrient low chlorophyll (HNLC). Approximately 

20% of the global ocean are HNLC regions (Goeyens et al., 1998; Blain, Sarthou and Laan, 

2008). The SO is the largest HNLC region in the world. However, massive phytoplankton 
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blooms occur regularly in the South Georgia, Crozet and Kerguelen regions (Sullivan et al., 

1993; Sarmiento et al., 2004; Tyrrell et al., 2005). The Kerguelen Islands and plateau sustain a 

distinct border, with warm, tropical water from the Indian Ocean to the north and the 

Subpolar Front to the south. The Kerguelen region is known for its high dissolved iron (DFe) 

concentrations ranging up to 0.51 nM DFe above the plateau in contrast to 0.09 nM DFe in 

the adjacent HNLC waters (Blain et al., 2007; Bowie et al., 2015).  A strong vertical gradient in 

iron concentrations, ranging from 19 nM at the surface to maximum values of 0.51 nM close 

to the seafloor (Blain et al., 2007), suggest a mainly sediment-derived contribution. High-

energy internal tidal waves erode the sediment of the Kerguelen plateau and most likely cause 

such a vertical profile (Park et al., 2008(a)).  

 

1.2 The Nitrogen Cycle 

Not only iron (Fe), but also other key nutrients such as nitrogen (N), shape the occurrence and 

abundance of phytoplankton and other organisms in the world ocean. Nitrogen serves both 

as building block (e.g. for deoxyribonucleic acid (DNA) and proteins), and as an energy source 

in catabolic reactions (Fig. 1). In seawater, nitrogen occurs mainly as dissolved di-nitrogen (N2) 

gas. Most organisms cannot break the strong triple bond of N2 and therefore rely on a reactive 

fixed form that is bonded to carbon, hydrogen, or oxygen (Fig. 1). Thus, fixed N can be a 

limiting factor for plankton biomass and growth in many marine ecosystems, such as the 

oligotrophic waters of the IO gyre and Pacific gyres.  

To overcome this limitation, a group of microorganisms called diazotrophs have specialized to 

fix atmospheric N2 into a usable form, thereby making themselves independent from dissolved 

and organic nitrogen (DON and PON) sources (Goering, Dugdale and Menzel, 1966). 

Diazotrophs are capable of breaking the triple bond of N2 compound and converting it into 

organic N. This fixed N can be released through grazing pressure, bacterial interactions or 

environmental stress (Benavides et al., 2013), which can then be taken up by other organisms 

such as phytoplankton. N2 fixation is an important source of bioavailable N to marine waters 

and could possibly balance N losses through denitrification and anammox (Moore and Doney, 

2007). Gruber and Sarmiento (1997) estimated global heterotrophic denitrification rates of ~ 

200-450 Tg N yr-1. Rates for global N2 fixation were estimated to be far lower, which are 

predicted to cause a significant imbalance of the global oceanic N budget (Gruber and 
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Galloway, 2008; Voss et al., 2013). Recently, however, several model outputs indicate 

potential intense feedback loops between N2 fixation, denitrification, and anammox that could 

maintain the global N budget in balance. N2 fixation could be a crucial fixed N source, 

especially in oligotrophic environments like the subtropical gyres (e.g. the IO gyre) or marginal 

seas (Gruber and Sarmiento, 1997). It has also been estimated that N2 fixation can support up 

to 50% of the primary production in tropical low productivity areas such as the eastern IO 

(Raes et al., 2014). The quantity of N2 fixation depends mainly on the sheer biomass of 

nitrogen fixing organisms, which in turn have an adaptive optima for temperature (Capone, 

1997; Karl et al., 2002; Staal, Meysman and Stal, 2003; Breitbarth et al., 2007), iron (Falkowski, 

1997; Kustka, Carpenter and Sanudo-Wilhelmy, 2002; Fu and Bell, 2003) and phosphorus 

availability (Karl et al., 1997; Sañudo-Wilhelmy et al., 2001; Moutin et al., 2007). Studies 

revealed that even CO2 concentration can influence growth rates and total biomass of 

diazotrophs (Levitan et al., 2007; Hutchins et al., 2015), thus raising the question whether 

increased pCO2 concentrations  (>400ppm; Tans and Keeling, 2018) would support global N2 

fixation. However, iron is mostly a limiting factor because it is an important co-factor of N2 

fixation (Falkowski, 1997; J. Kim and D. C. Rees, 1992; Raven, 1988). 

 

Figure 1: Marine nitrogen cycle. New nitrogen input from (1) river runoff and (2) autotrophic and 

heterotrophic nitrogen fixation. (3) Ammonium can be oxidized to nitrite and nitrate by nitrifying 

microbes. Ammonium and nitrate can be taken up by phytoplankton (4) and transferred to higher 
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trophic levels (5). Decomposing microbes can turn organic N (Norg) into Ammonium (6). Under suboxic 

conditions, nitrate can be reduced to Nitrite and N2 by denitrifying microbes (7); Anammox (anoxic 

ammonium oxidation) microbes can oxidize ammonium using nitrite as electron acceptor to N2 (8). 

Physically different oceanic niches are occupied by different diazotrophic communities. The 

chain forming cyanobacterium Trichodesmium dominates warm, oligotrophic waters and 

contributes significantly to the global N budget (estimated to about 1.6- 2.4 1012 mol N yr-1 in 

the tropical North Atlantic; Capone et al., 2005). Besides Trichodesmium, the heterotrophic 

picoplankton UCYN-A (Candidatus Atelocyanobacterium Thalassa; Thompson et al., 2012) and 

Crocosphaera watsonii have been postulated to have an equal or even higher contribution of 

N2 fixation rates (Zehr et al., 2001; Montoya et al., 2004; Montoya, Voss and Capone, 2007; 

Großkopf et al., 2012; Martínez-Pérez et al., 2016). Furthermore, other diazotrophs occupy 

other adaptive zones than Trichodesmium, meaning that N2 fixation regions outside the 

ecological optima of Trichodesmium have mostly been neglected so far. nifH gene analyses 

have revealed that UCYN-A occurs up to the edges of the Arctic and Antarctic circles 

(Moisander et al., 2010; Bentzon-Tilia et al., 2015; Messer et al., 2015; Scavotto et al., 2015; 

Fernández-Méndez et al., 2016; Martínez-Pérez et al., 2016). Moreover, the ability to fix 

nitrogen is not restricted to autotrophic organisms, but can also be detected in several 

heterotrophic prokaryotic clades, including Alpha- and Gammaproteobacteria as well as 

archaea (Mehta, Butterfield and Baross, 2003; Short, Jenkins and Zehr, 2004; Farnelid et al., 

2011; Loescher et al., 2014). 

The N cycle is closely interconnected with the C cycle through biological processes and the 

dependence of primary production on N availability. Oceanic phytoplankton contributes to 

around 50% of global net primary production (Field et al., 1998). Only 10% of the fixed C in 

the photic zone get eventually exported to the deep sea (Carbon pump), while 90% stays in 

the upper ocean through heterotrophic recycling processes (Michaels and Silver, 1988). Both 

the export of C and the recycling processes highly depend on the microbial community 

composition. 

1.3 Aims of this Study 

As a result of human-induced climate change and predicted increases in the thermal 

stratification of the oceans (Capotondi et al., 2012), the importance of N2 fixation as a major 

N source for primary production has been brought to the focus of scientific attention (Hood, 

Coles and Capone, 2004; Breitbarth et al., 2007; Hood et al., 2015). Strong stratification 
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prevents nutrient fluxes across the pycnocline, meaning that primary productivity is limited 

by new nitrogen input (Boyd et al., 2010; Garcia et al., 2011). N2 fixation can cause an excess 

of N in comparison to commom N: P ratios (16; Redfield, (1958)) which is described by the N* 

parameter (N*=[NO3
-] – 16[HPO4

2-]; Gruber and Sarmiento, (1997)). We raise the importance 

of N2 fixation as a major import source for new N and to balance N* in the ocean. Physical 

factors, like temperature and mixed layer depth (MLD), as well as habitats and microbial 

community composition influencing the abundance of diazotrophs, will shift in the future. 

Even though the oligotrophic, warm waters of the Indian Ocean have been shown to provide 

a suitable environment for high N2 fixation rates (Raes et al., 2014; Waite et al., 2013), very 

few studies have been conducted in the Southern Indian Ocean (González et al., 2014). Our 

data, as part of the OISO (Ocean Indien Service d'Observation) campaign, contributes to a 

better understanding of the physical and biological factors controlling N2 fixation in the 

Southern Indian Ocean and the French Southern and Antarctic lands during austral summer 

(January and February in 2017). Furthermore, this study sheds light on primary productivity 

and major N sources for autotrophic organisms in these waters. We expect that the 

distribution of water masses is a driving factor for physical and biological parameters. The 

cruise stations have been visited annually since 1997 and provide insights into long term 

nutrient availability. An in-depth understanding of biogeochemical and biological processes in 

this region will help to predict and model future scenarios in consideration of human induced 

climate change and pollution.  

This study aims to investigate the differences in community composition as well carbon and 

N2 fixation rates between different water masses. Our goal is to (1) describe the physical and 

biogeochemical conditions of the understudied area of the Southern Indian Ocean and the 

French Southern and Antarctic lands, spanning four different water masses. (2) to provide an 

in-depth understanding of the community composition of eukaryotic primary producers and 

prokaryotes. (3) to understand regional variations of carbon and N2 fixation as well as 

ammonium and nitrate assimilation between four different water masses lastly, (4) to 

describe the occurrence of different diazotrophic organisms using diagnostic gene markers.
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2. Materials and Methods 
 

2.1 Sampling strategy 

The Océan Indien Service d'Observation (OISO) MD206 cruise was conducted on board the 

R/V Marion Dufresne from 6th of January to 7th of February 2017 from La Reunion to the 

Kerguelen Islands in the Southern Ocean (49.25°S, 69.58°E) and back (Fig. 5 A). Stations 

covered an area from the Southern Indian Ocean Gyre to the Polar Front. Twenty stations 

were revisited as part of a larger repeated sampling campaign – OISO 

(http://dx.doi.org/10.17600/17002400). Physical and biogeochemical data as well as 

metadata from Conductivity Temperature Depth (CTD), starting in 1998, were evaluated, 

thereby allowing us to monitor changes in physical and chemical oceanographic properties 

over time. A combination of temperature, salinity and dissolved oxygen (DO) concentrations 

with dissolved inorganic nutrient concentrations (NO3
−, NO2

−, NH4
+, Si, and PO4

3-) were 

assessed to characterize the physical and biogeochemical environment of the study region. 

Additional water samples from a flow-through intake (6m depth) were taken for dissolved 

inorganic nutrients (NOx, NH4
+).  

During the MD206 voyage we conducted nitrogen fixation (N2 fixation) and carbon fixation 

measurements, and nitrogen assimilation (NO3
- and NH4

+) measurements. Furthermore, we 

analysed the pelagic microbial community composition by means of distinct gene sequencing 

(16S, nifH) and pigment analysis. The 16S ribosomal DNA is a suitable primer to measure 

prokaryotic diversity. In contrast, the nifH gene is a functional gene of the nitrogenase and can 

therefore be used to assess diazotrophic diversity. 

We measured temperature and oxygen throughout the water column. Seawater samples for 

dissolved inorganic carbon (DIC), silicate, NOx and NH4 were taken from Niskin bottles. 

Pigment analysis were performed using high performance liquid chromatography (HPLC; see 

below). N2 and carbon fixation rates were obtained from incubation in bottles spiked with 15N 

and 13C on deck (see below). To be able to compare the interconnection between primary 

production, N fixation and assimilation, as well as the genetic signature of the microbial 

http://dx.doi.org/10.17600/17002400
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diversity, we conducted on-deck incubation perturbation experiments. Incubation bottles 

were incubated on board at ambient sea surface temperature (SST) using a flow through 

system (Fig. 3). We used two different incubation bins, which differed in their incubation 

temperature for certain stations (Fig.4). Temperature of both incubation bins was 

continuously measured (Fig. 4).  We used a neutral density screen to correct for incident light 

intensity.  

  

Figure 3: Schematic of incubation setup. Water inflow from ship underway system. Arduino 

continuously measured temperature in both bins. 

 

Figure 2: Schematic overview of experimental setup. 

Incubations were done in triplicates for each 

enrichment (NO3
-, NH4

+, N2 and NaHCO3). T0 as well 

subsamples from the incubations were taken for HPLC, 

DNA and DIN analysis in two different incubation bins 
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2.2 Perturbation experiments 

The temperature of the incubation bins was unexpectedly high with respect to in situ sampling 

temperatures (Fig. 4). Moreover, variations within one incubation bin ranged up to Δ20°C on 

a time range over 24 hours (Station 4). Overall, the difference between bin 1 and bin 2 was 

significant (paired t-test; p < 0.002, n = 26307) with a mean differences of 1.02°C. Both bin 1 

and bin 2 were significantly different from the in-situ temperature with a mean difference (n 

= 14) of 5.6°C and 4.6°C, respectively.  

 

Figure 4: Temperature continuously measured in incubation bins (blue line bin 1, red line bin 2) and 

sporadically for sea surface temperature (SST) (black dots). Arrows indicate where ship was crossing 

different fronts; yellow arrows highlight Indian Ocean (IO), blue arrows indicate Antarctic 

circumpolar current (ACC) and green arrow highlights polar front (PF) 



Materials and Methods 

9 
 

2.3 Biophysical data 

Salinity, temperature and oxygen data were collected at each station using a 24- Niskin bottle 

rosette with a Seabird SBE32 conductivity- temperature- depth (CTD) system equipped with a 

SBE43 O2 sensor and a Chelsea Aqua tracker fluorometer.  

Mixed layer depth was calculated using Δd = 0.03 kg m-3 compared to a surface reference 

depth of 5 m according to Thomson and Fine (2003). 

2.4 Nutrient Analysis 

Dissolved inorganic nutrient concentrations, including phosphate (PO4
3-), silicate (Si(OH)4), 

mono- nitrogen oxides (NOx), nitrite (NO2
-) and ammonium (NH4

+) were assayed on a 

Quaatro39 Continuous Segmented Flow Analyzer (Seal Analytical). Calibrations were 

conducted using potassium dihydrogen phosphate for PO4
3-, sodium meta-silicate 

nonahydrate for Si(OH)4, potassium nitrate for NOx, sodium nitrite for NO2
- and ammonium 

sulphate for NH4
+. All calibrations were corrected for concentrations using certified reference 

materials (CRM) CRM1 CJ-2050 (target conc. 16.67 µmol L-1) and CRM2 CD-0342 (target conc. 

5.65 µmol L-1). Calibration curves had an R2 value of 0.999. Phosphate, silicate, mono-nitrogen 

oxides and nitrite were measured following widely used colorimetric methods (Armstrong, 

1951; Murphy and Riley, 1962; Wood, Armstrong and Richards, 1967) with adaptions to 

particular needs for Seal Analytical QuAAtro autoanalyzer (unpublished). Phosphate, 

molybdate ion and antimony ion follows a reduction with ascorbic acid to a blue phospho-

molybdenum complex that can be read at 880 nm. The detection limit of phosphate with this 

method is 0.01 µmol L-1. The detection of silicate is based on the reduction of a silicomolybdate 

complex in acid solution to molybdenum blue by ascorbic acid. The absorbance is measured 

at 820 nm (detection limit: 0.3 µg L-1). Determination of nitrate and nitrite is based on the 

reduction of nitrate to nitrite at pH 8 in a copperized cadmium reduction coil. Nitrite reacts 

under acid conditions with sulphanilamide to a diazo compound which couples with N-1-

naphthylethylenediamine dihydrochloride (NEDD) to form a reddish-purple azo dye. The 

absorbance is measured at 520nm (detection limit 0.03 µmol L-1). Nitrite concentration is 

measured the same way without the previous reduction step from nitrate to nitrite (detection 

limit 0.01 µmol L-1).  

Ammonium was measured using a fluometric method (Keroul et al. 1997). The sample reacts 

with o-phthalaldehyde (OPA) at 75°C in the presence of borate buffer and sodium sulfite to 
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form a fluorescent species proportional to the ammonia concentration. The fluorescence was 

measured at 460 nm following excitation at 370 nm. 

2.5 Functional pigment analysis 

For HPLC analysis, 4 L of seawater were filtered (< 10 kPa) on 47 mm Whatman GF/F filter and 

stored at -80°C until further analysis. Samples were dissolved in 4 ml acetone and disrupted 

using glass beads and included 150 µl of the internal standard canthaxanthin. Detection of the 

sample at 440 nm absorbance using a HPLC analyser (VARI AN Microsorb- MV 100-3 C8). 

Pigment concentration were calculated according to Kilias et al. (2013).  

HPLC output data were analysed using diagnostic pigments for the different taxa after  Hirata 

et al. (2011). Furthermore, diagnostic pigments were used to delineate three different size 

classes (pico-, nano-, and microplankton) according to Vidussi et al. (2001). Relative 

proportion of each phytoplankton size class (PSC) was calculated using a linear regression 

model proposed by Uitz et al. (2006). The relative proportion of phytoplankton functional 

types (PFTs) to the sum of diagnostic pigments was calculated after Hirata et al. (2011). We 

checked for ultraoligotrophic conditions (chl a < 0.08 mg m-3; Brewin et al., 2010), however, 

none of our stations was ultraoligotrophic according to these terms. Pigment data were 

quality controlled after these three statistical rules according to Aiken et al. (2009):  

(1) The difference of total chlorophyll a (TChla) and accessory pigments (AP) must be less than 

30% of the total pigment concentration (TPig concentration). 

(2) The regression between TChla and AP should have a slope within the range of 0.7 - 1.4 and 

a R2 > 0.9. 

(3) the data can be accepted only if > 85% of the dataset passes the first two rules. 

For our data, the difference between TChla and AP varied in the given range between 7% and 

27%, with one outlier in OISO 37 (51%) because of the high quantification of diatoxanthin (and 

beta carotenoids). The regression between TChla and accessory pigments had a slope of 0.96 

and R2>0.9. 

Supplementary data are available at https://doi.pangaea.de/10.1594/PANGAEA.885895 (DOI 

registration in progress). 
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2.6 Microbial diversity analysis based on 16S rDNA 

Two litres of seawater from each station were filtered through a 0.22 µm Sterivex® filter 

cartridge for DNA isolation, snap frozen in liquid nitrogen and stored at -80°C until extraction 

at the shore-based laboratory. 

DNA was extracted using a DNeasy® Plant Mini Kit (QIAGEN, Valencia, CA, USA, Catalog 

No./ID: 69106) following the manufacturer’s instruction with some modifications for cell 

disruption. Sterivex cartridges were gently cracked open and filters were removed and 

transferred into a new and sterile screw cap tube. Approximately 0.3 g of pre-combusted glass 

beads (Ødiameter 0.1 mm; 11079101 Bio Spec Products) and 400 µl Buffer AP1 were added 

to the filter, followed by a bead beating step with two times at 5500 rpm for 20 seconds with 

two minutes on ice in between and a final beat beating step at 5000 rpm for 15 seconds. 

After DNA extraction, DNA concentration was quantified by the Quantus™ Fluorometer and 

normalized to 2 ng µl-1. 

2.6.1 Amplicon 16S PCR 

To determine the bacterial community composition, we amplified the v4 and v5 hypervariable 

regions of the 16S gene using universal primers proposed by Parada et al. (2016). DNA 

amplification was conducted in a triplicate 22µl reaction mixture containing 8 ng DNA, 4 µl of 

1 µM forward primer 515F-Y (5’-GTG YCA GCM GCC GCG GTA A-3’), 4µl of 1µM reverse primer 

926R (5’-CCG YCA ATT YMT TTR AGT TT-3’) and 10 µl 2x KAPA HiFi HotStart ReadyMix (Roche). 

Cycling conditions included a 5min heating step at 95°C followed by 25 cycles of 95°C for 45 s, 

60°C for 45 s and 72°C for 30 s. Triplicate reactions were pooled, and 5 μl were used to check 

for amplification on a 1% agarose gel using 5x Gel pilot loading dye (Qiagen). 

The second amplification procedure was performed as described above, but the annealing 

temperature was at 65°C and the cycle number was reduced to 10 cycles. 1 µl of the product 

was used as template for index PCR to a total volume of 12 µl reaction volume using 1 µl 

primer (bioosystems' 384 12-base barcodes), 4 µl PCR water and 6 µl NEBNext Q5 Hot Start 

HiFi PCR Master Mix (New England Biolabs). The PCR product was checked on a 1% agarose 

gel (see appendix Fig. S-1). 3 µL from each reaction were pooled and purified using QIAquick 

PCR Purification Kit (QIAGEN, Valencia, CA, USA).  
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2.6.2 Amplicon nifH PCR 

To determine diazotrophic diversity, we amplified the nifH gene using universal primers nifH1-

4 (eurofins Genomics, Germany) in a nested polymerase chain reaction (PCR; Zehr et al., 2001; 

Zehr and Mcreynolds, 1989). In the first step of the nested PCR we used forward primer nifH4 

(5'-TTYTAYGGNAARGGNGG -3') and reverse primer nifH3 (5'-ATRTTRTTNGCNGCRTA-3'). In the 

second PCR nifH1 (5'-TGYGAYCCNAARGCNGA-3') and reverse primer nifH2 (5'-

ADNGCCATCATYTCNCC-3') were used. For the third PCR, specific overhang adaptors were 

attached to the nifH1 and nifH2 primers.  We used cultivated Clostridium pasteurianum as a 

positive control. DNA amplification was done in duplicate, with 25µl total reaction volume 

containing 10ng DNA template, 4 µl of 10 µM forward primer and 4 µl of 10 µM reverse primer 

and 12 µl 2x KAPA HiFi HotStart ReadyMix (Roche). Cycling conditions were followed after 

Gradoville et al. (2017). The reaction was cycled at 94°C for 7 min followed by 30 cycles of 

94°C for 1 min, annealing at 57°C for 1 min, and extension at 72°C for 1 min, with a final 

extension at 72°C for 7 min. The second round of nifH PCR was with the same thermocycling 

conditions and components but 1 µL PCR product from the first reaction was used as a 

template for the reaction mixture. 10 µl of reaction product was checked on a 1% agarose gel 

with Qiagen Gel Pilot 5x loading dye (Appendix Fig. 1). PCR product was cleaned using AmPure 

XP beads following the protocol for 16S Metagenomic Sequencing Library Preparation. 

2.6.3 Index PCR 

To add the Illumina-specific adapters and sample specific barcodes, we used 1µl of previous 

PCR product to a total volume of 12 µl, including 1 µl primer (12bp barcode and Illumina 

adapter 384; applied biosystems), 4 µl PCR grade water and 6 µl Mastermix (NEBNext Q5 Hot 

Start HiFi PCR Master mix). The reaction was cycled at 95°C for 5 min, followed by 15 cycles of 

95°C for 45 sec, annealing at 60°C for 20 sec, and extension at 72°C for 30 sec. PCR product 

was checked on a gel (Appendix Fig. S-2). 3 µl of each sample were pooled and cleaned with 

QIAquick PCR Purification Kit (Qiagen). DNA concentration was quantified with Qubit™ dsDNA 

HS Assay Kit (ThermoFisher). 

2.6.4 Sequencing and data analysis 

PCR products were sequenced using MiSeq Sequncer (Illumina) at EMBL in Heidelberg 

(Germany). Nucleic acid sequence data were trimmed using Trimmomatic (Bolger, Lohse and 

Usadel, 2014). Paired end reads were merged using PEAR (Zhang et al., 2014). We used 
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Cutadapt (Martin, 2011) to adjust read direction (forward primer- read- reverse primer) and 

to cut primers. We filtered for reads based on phred scores with an expected error of ± 50bp 

read length difference and denovo chimeras (vsearch; Rognes et al., (2016)). Sequence reads 

were clustered to operational taxonomic units (OTUs) using swarm (Mahé et al., 2014). OTU 

singeltons were removed. We used the software mothur® for taxonomical annotation having 

Silva database as reference data for 16S amplicon data. All nifH amplicons were annotated 

using diazotroph database by Luo et al. (2012). For statistical analysis, we removed Chloroplast 

and Mitochondria from 16S dataset since they are no true representatives of the bacterial 

community. 

Further, we analysed taxonomic diversity in our samples using SILVAngs (https://www.arb-

silva.de/ngs/Index.html#). SILVAngs is an automated data analysis service for 16S or 18S rDNA 

amplicon reads from high-throughput sequencing. Therefore, the SILVA rDNA database and 

taxonomies are used as a reference.  

Here, we only present 16S sequence data since nifH data analysis has not been completed yet.  

 

2.7 N2 fixation rates 

N2 fixation experiments were carried out in triplicates for each station. Incubations were 

executed in acid-washed polycarbonate bottles on deck with ambient light conditions. All 

polycarbonate incubation bottles were rinsed with deionized water and seawater prior to 

incubation. We used the combination of the bubble approach (Montoya et al., 1996) and the 

dissolution method (Mohr et al., 2010) proposed by Klawonn et al. (2015). Bottles were filled 

up headspace-free. Incubations were initialized by adding a 10 ml -15N2 gas bubble. Bottles 

were gently rocked for 15 minutes. Finally, the remaining bubble was removed to avoid 

further equilibration between gas and the aqueous phase. After 24 hours, a water subsample 

was transferred to a 12 ml exetainer and preserved with 100 µl HgCl2 solution for later 

determination of exact 15N-15N concentration in solution. Natural 15N2 was determined using 

Membrane Inlet Mass Spectrometry (MIMS; GAM200, IPI) for each station. MIMS is a highly 

precise method to determine N2 isotopes (28N2, 29N2, 30N2). Calibration of the system was done 

with air saturated water (salinity = 0 psu). 
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Bottles were incubated in triplicates for 24 hours in one of the two incubation bins (bin 1 or 

bin 2). N2 fixation experiments were terminated by collecting the suspended particles from 

each bottle by gentle vacuum filtration through a 25 mm pre-combusted GF/F filter (pressure 

drop <10 kPa) immediately after enrichment (T0) and 24 hours (T24). Filters were snap frozen 

in liquid nitrogen and stored at -80°C while at sea. Filters with enriched and T0 samples were 

acidified and dried overnight at 60°C. Analysis of 15N2 incorporated was carried out by the 

Isotopic Laboratory at the UC Davis, California campus. The detection limit for 𝛿 13C is 0.2 ‰ 

and 0.3 ‰ for 𝛿15N. 

We calculated nitrogen fixation rates after Montoya et al. (1996) with the exception that rates 

are displayed in nmol N L-1 d-1. 

𝑁 𝑢𝑝𝑡𝑎𝑘𝑒 [𝑛𝑚𝑜𝑙 𝑁 𝐿−1 𝑑−1] =
𝑃𝑁𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑[nmol 𝐿−1]∗(𝛿𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑−NA )

(𝛿𝑖𝑛𝑖𝑡𝑖𝑎𝑙−NA)∗𝑑
         (1) 

Supplementary data are available at https://doi.pangaea.de/10.1594/PANGAEA.885894 (DOI 

registration in progress). Furthermore, we calculated the minimum quantifiable rate according 

to Montoya et al. (1996) and Gradoville et al. (2017). The minimum quantifiable rate is the 

square root of the total variance, meaning the sum of all possible error contribution calculated 

of the variance between all replicates for PNfinal, PNinitial and PON. Supplementary data are 

available at https://doi.pangaea.de/10.1594/PANGAEA.885932 (DOI registration in progress). 

 

2.8 Carbon and Nitrogen assimilation experiments 

We used stable isotope tracers (15N) to measure dissolved inorganic nitrogen (DIN) 

assimilation rates. Experiments were initiated by adding a known concentration of 0.05 of 

K15NO3 and 15NH4Cl for oligotrophic waters of the IO and 0.625 μmol L-1 for HNLC regions in 

the ACC and PF (Knap et al., 1994, Waite et al., 2007) to one litre polycarbonate bottles. For 

the incubation, we followed the same procedure as for N2 fixation experiments. In order to 

obtain the natural abundance of PON/C, which is needed as a t-zero value to calculate the 

assimilation rates, 4 L of water were filtered onto a pre-combusted GF/F filter for each station. 

Carbon assimilation rates were calculated according to Knap et al. (1996).  

𝐶 𝑢𝑝𝑡𝑎𝑘𝑒  [𝑛𝑚𝑜𝑙 𝐶 𝐿−1 ℎ−1] =
(𝐶𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑− 𝑁𝐴)∗𝑃𝑂𝐶𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑

[[
100∗13𝐶

13𝐶+12𝐶
]−𝑁𝐴]∗ℎ

                   (2) 
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 Additionally, we normalized the 13C assimilation rates for carbon fixation efficiency with 

biomass obtained from HPLC data using the total volume of pigments. 

𝐶 𝑢𝑝𝑡𝑎𝑘𝑒 [µ𝑚𝑜𝑙 𝐶 𝑔−1 ℎ−1] =
𝐶 𝑢𝑝𝑡𝑎𝑘𝑒  [𝑛𝑚𝑜𝑙 𝑁 𝐿−1 ℎ−1]

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 [𝑛𝑔∗𝐿−1]
                      (3) 

Nitrate and Ammonium assimilation rates were calculated according to Knap et al. (1996).  

𝑁𝑂3𝑢𝑝𝑡𝑎𝑘𝑒  [𝑛𝑚𝑜𝑙 𝑁 𝐿−1 𝑑−1] =
(𝑁𝑂3−𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑− 𝑁𝐴)∗𝑃𝑁𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑

[[
100∗15𝑁

15𝑁+14𝑁
]−𝑁𝐴]∗𝑑

      (4) 

𝑁𝐻4𝑢𝑝𝑡𝑎𝑘𝑒  [𝑛𝑚𝑜𝑙 𝑁 𝐿−1 𝑑−1] =
(𝑁𝐻4+𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑− 𝑁𝐴)∗𝑃𝑁𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑

[[
100∗15𝑁

15𝑁+14𝑁
]−𝑁𝐴]∗𝑑

                   (5) 

Supplementary data are available at https://doi.pangaea.de/10.1594/PANGAEA.885892 (DOI 

registration in progress).  

 

2.9 Statistical analysis 

All statistical tests were performed in R version 3.3.3 (R Core Team, 2017). Differences in 

temperature were analysed using paired t-test between both bins and between bins and in 

situ temperature, respectively. Relationships between nutrient distribution and assimilation 

rates were tested for correlation with latitude, salinity and sea surface temperature (SST). For 

most of the data (except N2 fixation rates, where salinity could explain more of the variance) 

SST had the best fit. In the following we only show correlation plots against SST. 

Nutrient (NO3
-, PO4

-, Si) and DIC concentrations could be described using a trendline (4th 

polynomial fit) and tested for significance using linear regression. C and N2 fixation, as well as 

NO3
- and NH4

+ assimilation rates were tested for significant relationships with SST using linear 

regression model. Trendlines for absolute C fixation was tested for significance using a linear 

regression model. Differences between incubations in bin 1 and bin 2 were tested using a 

paired t-test. Differences in community composition, using pigment concentrations, in bin 1 

and 2 and between stations were analysed using two-way ANOVA. Two- way ANOVA was also 

used assessing differences in total biomass in bin 1 and 2 and between stations. Phytoplankton 

size classes (PSCs) relative abundance followed 2nd polynomial fits which were tested for 

significance using linear regression models. 
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Autotrophic community composition analysis was performed using the concentrations of the 

HPLC analysis using the packages phyloseq and vegan. Principal coordinate analysis (PCoA) 

was calculated based on Bray- Curtis dissimilarity matrix. Significant differences between 

water masses were analysed using Adonis test (vegan package) along with a beta dispersion 

test to evaluate the homogeneity of dispersion. To see how environmental variables are 

associated with the different sites, we used a constrained ordination to linear combinations 

of the environmental parameters. We combined the environmental scores with the 

unconstrained analysis of the HPLC analysis data. We checked the constrained ordination axes 

for significance using permutational ANOVA, which was significant (Pr(>F) = 0.001).  

DNA analysis was performed using the package phyloseq. Distribution of sample sequencing 

depth was visualized, to examine a normal distribution of the reads (appendix Fig. S-5) Relative 

abundance of phyla (>2%) were calculated and plotted. Unconstrained ordination analysis, 

using the function from miseqR.R for scaling the data. Principal coordinate analysis (PCoA) and 

non-metric dimensional scaling (NMDS) were calculated based on Bray- Curtis dissimilarity 

matrix. In case of NMDS, a square root transformation and Wisconsin double standardization 

were performed prior to analysis. Significant differences between water masses were 

analysed using Adonis test (vegan package) along with a beta dispersion test to evaluate the 

homogeneity of dispersion. To see how environmental variables are associated with the 

different sites, we used a constrained ordination to linear combinations of the environmental 

parameters. We combined the environmental scores with the unconstrained analysis of the 

OTU table. We checked the constrained ordination axes for significance using permutational 

ANOVA, which was significant (Pr(>F) = 0.001).  

We calculated Richness and alpha diversity (Inverse Simpson Index) in each sample by 

subsampling the minimum number of reads (9246) to estimate the species abundance of the 

real population. We repeated the calculation 100 times and averaged the results from all trials 

to achieve best estimate of real diversity by standardizing the sampling effort.  

Correlations between all physical (Salinity, Temperature, MLD), nutrients (NH4
+, NOx, PO4

-, Si), 

PSCs as well as assimilation rates were tested for significant relationships using spearman 

correlation.
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3. Results 
 

3.1 Hydrographic conditions 

The OISO MD206 cruise took place in the Austral summer in the south Indian Ocean and 

Subpolar region around Kerguelen island. The study site is characterized by three major water 

masses, namely the Southern Indian Ocean Gyre (IO), the Antarctic Circumpolar Current (ACC) 

and the Polar front (PF), which is partly influenced by the Fawn Trough (Fig. 5 A; combined 

from Park et al., 2008(b)). These water masses separate physically according to their salinity 

and temperature values (Fig. 5 B). The Indian Ocean Gyre is characterized by warm (20-25°C), 

saline (>35psu) water. The ACC is distinct from the IO according to surface temperature (3-

6°C) and salinity (<34psu). The PF is more saline than the ACC (~33.8 psu) while sea surface 

temperature is around 4.7°C ±0.1°C. Depth profiles for temperature, oxygen and salinity along 

two longitudinal transects indicate a clear difference between IO and ACC (Fig. 6). The first 

transect covers OISO stations 2, 3, 4, 6, and 37 (30°S – 50°S Latitude, 53 ± 0.9 °E Longitude; 

mean ± SD; Fig. 6 A-C). The second transect, located further east, covers the stations 18, 16, 

15, 14, E, 10, 11 (27°S – 56°S Latitude, 70 ± 5°E Longitude; mean ± SD; Fig. 6 D-E). Both 

transects show significant decrease in temperature and salinity and increase in oxygen 

concentration crossing from the IO to the ACC. The difference between ACC and PF, however, 

is not as distinct as the IO and ACC.  
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Figure 5: A, Map of sampling stations within different water masses, water masses modified from Park 

et al. 2008(b); B, Temperature- salinity plot differentiating these water masses. Mixed water is 

encircled with dashed lines. 
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The mixed layer depth (MLD) showed high variability among the stations (appendix Fig. S-3). 

MLD was deepest above the plateau (82 – 91 m; Station 10, E) and shallowest in the IO (<23 

m; Station 2,3,16,18). 

The Kerguelen plateau is characterized by natural iron fertilization (Station E; Blain et al., 2007) 

while off the plateau (Station 37,11) high nutrient low chlorophyll (HNLC) conditions prevail 

(Hart, 1942; Sullivan et al., 1993; Tyrrell et al., 2005; Blain et al., 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Depth profiles of temperature, oxygen and salinity along two transects of the OISO stations. 

A-C, covering OISO stations 2, 3, 6 and 37; a clear difference in all parameters is shown between IO and 

ACC. D-F, show latitudinal transect of OISO stations E. Blue arrows highlight the Antarctic circumpolar 

current (ACC), green arrow the Polar Front (PF) and yellow arrows the Indian Ocean (IO). 
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3.2 Nutrient distributions 

Nutrient concentrations were regularly measured around the same time of the year (January-

February) as part of the OISO campaign. Nitrate concentrations increased with decreasing SST 

(Fig. 7 A). The solubility of NO3
- follows an exponential decrease with increasing temperature 

(trendline 4th polynomial fit; R2 = 0.91, p < 0.002, n = 81). In warmer surface waters of the 

Indian Ocean (IO) nitrate concentration was below detection limit. Phosphate concentrations 

follow a similar trend as nitrate (Fig. 7 B; R2 = 0.93, p < 0.001, n = 19). N* ([NO3
-]-16[PO4

-]; 

Gruber and Sarmiento, (1997)) varies between -1.5 and -3.6 in cold-water in cold water (<15°C 

SST), which is slightly less than the Redfield ratio (16N:1P; Redfield, 1958). For the warm water 

stations (>15°C SST), however, N* could not be calculated because N concentrations were 

below the detection limit. Silicate concentrations remained low down to 5°C SST and then 

exponentially increased (trendline 4th polynomial fit; R2 = 0.67, p < 0.002, n = 88). Maxima of 

Si concentrations were measured in the mixed water of the PF and Fawn Trough with 

concentrations of 20 and 25 µmol kg-1 (Station 11, 37). Dissolved inorganic carbon (DIC) 

concentrations changes not only between temperatures but also over time. DIC concentration 

follows a 4th order polynomial regression (R2 = 0.81, p < 0.002, n = 62) with a decline in 

concentration towards higher temperature according to its solubility. However, a local 

maximum around 20°C SST is shown (Fig. 7 D). The DIC concentration increased over the past 

19 years, having an increase of an average of 34 ±10 µmol kg-1 between 1998 and 2017.  
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Figure 7: Nutrient and DIC concentration against sea surface temperature (SST) over the past 19 years. 

Trendlines 4th polynomial fit. A, nitrate concentration in µmol L-1. B, phosphate concentration in µmol 

L-1 C, Silicate concentration in µmol L-1. D, DIC concentration in µmol kg-1. 
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3.3 Carbon and Nitrogen fixation rates 

Total 13C assimilation was highest at Station 9 (141.5 nmol L-1 h-1) and Station E (111 nmol L-1 

h-1), both above the Kerguelen plateau. High 13C assimilation rates were also measured in 

other stations of the ACC (Stations 6, 7) and mixed water between IO and ACC (Stations 4, 14, 

15). Lowest uptake rates were measured for IO stations with a maximum of 26.8 nmol L-1 h-1 

(Station 3). Overall, a maximum was reached in the mixed water of the IO and ACC, dropping 

on either side of the front, both towards warmer and colder water (Fig. 8 A; p <0.001, R2 = 

0.52, n = 65). While warm-water stations show very little variations within one station (e.g. 

12.6 ± 2.5 nmol L-1 h-1, mean±SD, n = 6, Station 18) and water mass, variation within cold-

water stations was relatively high (e.g. 49.4 ± 23.5 nmol L-1 h-1, mean±SD, n = 6, Station 37). 

Biomass- specific 13C uptake showed a different scenario relative to absolute fixation values. 

In this case, average rates in the IO were highest (93.2 µmol kg-1 h-1). The maximum rate was 

still at Station 9 (170.59 µmol kg-1 h-1), but other stations in the ACC had very low carbon 

uptake efficiency (44.7 µmol kg-1 h-1, Station 6 bin 1; 58.31 µmol kg-1 h-1, Station 7 bin 1). 

Overall, variation between stations was not significantly different (p = 0.48, n = 65). No 

significant difference could be measured between bin 1 and bin 2, except for station 37 (p = 

0.048).  

Table 1: C fixation rates in different incubation bottles and Incubation bins. Shown are temperatures 

in incubation bins (InT) 1 and 2 as well as carbon fixation rates. Fixation rates in nmol C L-1 h-1. 

Station SST (°C) InT bin 1 

(°C) 

InT bin 2 

(°C) 

Rep. 1 

bin 1  

Rep. 2 

bin 1 

Rep. 3 

bin 1 

Rep. 1 

bin 2 

Rep. 2 

bin 2 

Rep. 3 

bin 2 

37 3.08 8.8 9.1 33.2 78.1 30 55.9 74.6 24.5 

11 3.3 5.3 7.8 64.2 86 42.5 NA NA NA 

E 4.7 12.9 12.7 111 92.2 129.8 108.3 112 108.2 

7 5.59 12.5 12.9 39.3 67.9 58.2 179.4 120.2 67.4 

9 5.84 8.4 8.6 148.1 134.9 NA NA NA NA 

6 6.3 10 11.1 51.2 64.1 28.2 176.8 93 81.1 

14 11.59 18.3 18.6 69.6 160.3 137.6 41.4 115.2 134.9 

15 15.44 21.8 22.2 65.8 97.6 72.2 NA NA NA 

4 16.99 13.3 14.7 45.1 78.2 59.2 30.5 32.5 21.8 

3 20.48 20.9 23.5 14.6 35.2 30.5 NA NA NA 

16 23.78 NA NA 15.4 22.4 14.2 7.1 22.4 13 

2 25.78 24.2 27.1 7.1 11.5 13.5 7.8 5 2.6 

18 27.38 NA NA 14.5 15.5 14 11.9 10 9.4 
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Nitrogen fixation showed an inverse trend in comparison to absolute C fixation. High N2 

fixation rates (2.3 ± 2.2 nmol L-1 d-1; mean ± SD, n = 24) were measured in the warm 

oligotrophic waters of the IO (stations 2, 3, 16, 18). Minima were measured in the productive 

zone of mixed water from IO and ACC (stations 4, 14, 15; 1.2 ± 1.5 nmol L-1 d-1; mean ± SD, n 

= 16). A slight increase (2.0 ± 0.8 nmol L-1 d-1; mean ± SD, n = 6) in N2 fixation could be measured 

in the PF/ Fawn Trough, station 37. In general, variation of N2 fixation between different sea-

surface temperatures (SSTs) was significant (p = 0.025, n = 65). However, variation between 

replicates was quite high as well, and could range between triplicates from 0.9 to 7.9 nmol L-

1 d-1 (Station 18). 

Ammonium assimilation was not significantly different between different SST (p = 0.74, n = 

65). It ranged between 8.8 nmol L-1 d-1 (Station 2) and 105.1 nmol L-1 d-1 (Station E), with an 

outlier at station 15 ranging from 233.4 to 359.1 nmol L-1 d-1 between triplicates (Table 2). 

Nitrate assimilation was significantly different between different SSTs (p = 0.0007, n = 65). 

However, a clear relationship between N2 fixation and SST could not be determined. In 

general, nitrate assimilation was very low ranging between 0.4 – 36.2 nmol L-1 d-1. 
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A B 

C D 

Figure 8: Carbon and nitrogen fixation rates against sea surface temperature (SST) from two different 

incubation bins with three replicates each. A, carbon fixation, followed a trend with relative high rates 

in the mixing zone between IO and ACC; trendline: R2 = 0.5. B, chlorophyll a- normalized, specific carbon 

fixation rate against SST; C, Ammonium assimilation. D, Nitrate fixation rates having relatively higher 

rates in the warm water of the IO. Arrows indicate major fronts as described for figure 6. 
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Figure 10: Nitrogen fixation rates shown in nmol N L-1 d-1. Grey bar indicates minimum quantifiable 

rate (MQR = 0.8 nmol N L-1 d-1). 

δ
1

5 N
 

Figure 9: Relationships between particulate organic matter (POM) composition and sea-surface 

temperature (SST). A, Natural abundance of δ15N from the particulate organic nitrogen (PON). Red lines 

are smoothing curves with a second polynomial order. B, POC: PON ratios in POM. 
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Table 2: Sampling stations visited during the OISO cruise, including N2 fixation, ammonium and nitrate 

assimilation rates. NA indicates no data. Standard deviation (average ± STD; n = 3 for stations 3, 9, 11, 

15; n = 6 for stations E, 37, 2, 4, 6, 7, 14, 16, 18). 

Natural abundance of 15N in the PON fraction varied with SST, following a 2nd polynomial fit 

(R2 = 0.84; n = 13). δ15N ranged from -5.24 in the PF to 7.58 in the mixed water of the ACC and 

IO, where high productivity is also measured.  δ15N drops to -3.2 in the IO. The molar ratio 

between POC and PON is low in the PF and ACC (5.1-5.3) and increases in the mixed water of 

the ACC and IO until it reaches a maximum of 7.2 at 23.8°C (Station 2) in the IO. Unexpectedly, 

Station 18, having the highest SST in the IO, had the lowest ratio of just 5.0.   

  

Station Longitude 

[°E] 

Latitude 

[°S] 

MLD  

[m] 

N2 fix  

[nmol L-1 d-1] 

ρNH4
+  

[nmol L-1 d-1] 

ρNO3
-  

[nmol L-1 d-1] 

E 72.367 48.79967 82.281 0.92±0.8 89.12±15.3 1.58±0.6 

37 52.0025 55.00383 51.525 1.97±0.8 19.31±10.6 1.05±0.6 

2 54.09983 30.0005 7.945 1.58±0.9 13.06±4.7 2.56±2.8 

3 53.49933 34.99967 15.884 2.81±3.6 44.14±3.8 21.23±8.6 

4 52.7895 40.0015 54.571 2.01±1.9 40.36±10.8 26.35±10.7 

6 52.10233 45.00017 40.663 1.02±1.4 61.01±46.1 1.07±0.9 

7 58.0035 47.66733 49.576 1.75±1.3 53.29±21.9 1.74±0.8 

9 64.99917 48.5015 69.398 0.88±1.1 27.81±13.2 1.34±1.1 

10 68.42117 50.66717 91.185 NA NA NA 

11 63.00617 56.4985 47.556 0.89±1.1 44.92±2.5 1.96±0.6 

14 74.884 42.49917 29.761 0.79±0.9 34.59±14.7 0.81±0.2 

15 76.40683 39.99933 50.603 0.48±0.8 279.1±69.5 1.37±0.5 

16 73.46633 35.0005 0 1.05±0.6 58.88±16.8 4.26±1.3 

18 65.832 27.99983 23.835 4.04±2.5 37.72±10.3 11.18±6.1 
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3.4 Community composition 

3.4.1 Autotrophic pigment analysis based on High Performance Liquid Chromatography  

Total biomass was relatively low, with an average pigment concentration of 0.176 ± 0.05 mg 

m-3 (n = 7) in warm water stations of the IO (Stations 2, 3, 16, 18; Fig 11 A) whereas all other 

stations had higher biomass (average 1.2 ± 0.6 mg m-3; n = 16). The pigment concentration of 

zeaxanthin was high in the IO (average 0.048 ± 0.01 mg m-3; Fig. 11 A) indicating a relative high 

abundance of prokaryotes (Fig. 11 B; Fig. 12 A). Zeaxanthin still occurred in mixed water of IO 

and ACC, but disappeared towards colder water of the ACC, PF and Fawn Trough. Besides 

prokaryotes in general, Prochlorococcus was highlighted through its diagnostic pigment divinyl 

chlorophyll a (Fig. 11 B) and showed also a relative high abundance in the IO (Fig. 12 A). β-

carotene had a relative high abundance in the IO as well (Fig. 11 B). Although dinoflagellates 

occurred in all water masses, they were slightly more relatively abundant in the IO. 

∑
 

Figure 11: pigment analysis, showing (A) the relationship of different pigment concentrations for 

each station at T0 and T24. Stations are ordered according to their SST (non-linear). Arrows 

indicate changes of water masses. B, pigment concentrations normalized by total pigment 

concentration. 

B A 

∑
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Pigments such as chlorophyll c3 and peridinin (Dinoflagellates) appeared in mixed water from 

IO/ACC, ACC, PF and Fawn Trough (Fig. 11; Fig. 12 A). 

Moreover, the concentration of 19’-hexanoyloxyfucoxanthin (19-Hex) was high in all stations 

in the mixed water from IO and ACC, ACC, PF and mixed water PF and Fawn Trough (0.17 ± 

0.07 mg m-3) in comparison to the IO (0.017 ± 0.009 mg m-3; Fig. 11 A). 19-Hex is an accessory 

pigment found in the nano- to picoplankton size fraction such as pico-eukaryotes and 

prymnesiophytes (haptophytes).  

Stations 14 and 15 (mixed water IO/ACC) as well as all stations in the ACC, PF and Fawn Trough 

had relatively high concentrations of fucoxanthin (0.17 ± 0.17 mg m-3) which is an indicator 

for diatoms. Relative abundance of diatom concentration was highest in the PF and PF/ Fawn 

Through (0.6±0.1, mean±SD, Fig. 12 A). Along with fucoxanthin, diadinoxanthin (Diadino) also 

appeared in those water samples and incubations. Diatoms were relatively more abundant in 

B 

Figure 12: Phytoplankton functional types (PFTs) and Phytoplankton size classes (PSCs) against SST. A, 

relative abundance of different PFTs calculated after Hirata et al. (2011), stations are sorted after 

increasing temperature. B, relative abundance of size classes against SST calculated after Uitz et al. 

(2006). Brown arrow highlights the mixed water between PF and Fawn Trough, green arrow PF, dark 

blue arrow ACC, light blue arrow mixed water of ACC and IO and yellow arrow IO 

A 
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the cold-water of the Fawn Trough and PF (Fig. 12 A) and continuously declined towards the 

IO. Green algae predominantly occurred in the ACC and mixed water of the ACC and IO, 

however, having a relative low abundance of the total phytoplankton community.  

The phytoplankton size classes (PSCs; pico- nano- and microplankton) showed a clear pattern 

over SST variations (Fig. 12 B). While picoplankton dominated warm water in the IO, they 

sharply decreased (R2 = 0.94, p = 3.34 e-13, n = 24) towards lower SST. Microplankton showed 

a contrary trend to picoplankton abundance, having high abundance in cold-water and 

decreasing towards warmer SST (R2 = 0.73, p = 1,27 e-6, n = 24). However, they had a minimum 

at 20°C SST and slight increases towards 25°C SST. Nanoplankton had a maximum at 12°C SST 

and decreased both towards warmer and colder water (R2 = 0.61, p = 5,29 e-5, n = 24). 

Overall, the community composition as well as the total biomass did not change significantly 

between T0 and T24 (Fig 11, Fig. 12 A).  

 

Figure 13: Microbial photoautotrophic community structure of different water masses. Constrained 

Analysis of Principal Coordinates (CAP) of pigment concentrations (HPLC). Pigment concentrations 

were used to calculate Bray- Curtis distances and constrained analysis was performed by water mass. 

Constrain reflects 84.4 % of overall variance in the data. There was a significant relationship between 

water masses and community dissimilarity (adonis test; p < 0.001). Different water masses were 

coloured according to the legend; water mass (WM); Indian Ocean (IO); mixed water of Indian Ocean 
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and Antarctic Circumpolar Current (IO/ACC); Antarctic Circumpolar Current (ACC); Polar Front (PF) and 

mixed water of Polar Front and Fawn Trough (PF/Fawn Trough). Data with environmental samples 

represented as arrows. 

Constrained analysis of the HPLC data revealed significant differences between the water 

masses (adonis test; p<0.001) (Fig. 13). However, only samples of the IO clustered together. 

Additionally, both salinity and SST were associated with the IO samples. Samples of all other 

water masses could not be separated according to their similarity. Samples of the cold-water 

stations were more associated with nutrient concentrations, oxygen concentration, 

chlorophyll ɑ concentration and MLD.   
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3.4.2 16S rDNA amplicon sequence analysis 

16S Amplicons: From each of 14 stations small subunit ribosomal protein DNA (16S) was 

amplified and sequenced to obtain insights into the diversity and community composition of 

both bacteria and archaea. To monitor potential shifts in community composition in the 

incubation bins we took samples from 9 x 24h incubation bottles. 5600 OTUs were recovered 

using local threshold clustering technique which represents biological needs better than 

arbitrary cut-offs. Sequence reads of 16S amplicon data showed no conspicuous outliers 

(appendix S-5). 

OTU richness was significant (linear fit) higher in the IO and in the mixed water of the IO and 

ACC in comparison to the cold-water stations (Fig.14). Alpha diversity was highest at station 

15 in the mixed water of the IO and ACC. Both Richness and alpha diversity normally did not 

change significantly between the T0 sampling event and 24h incubation. There was no clear 

preference for higher richness or diversity between T0 and T24. However, the 24h incubation 

at station E showed a significant increase in both richness and diversity in comparison to the 

T0 sample.  

 

Figure 14: A, OTU richness of 16S amplicon sequences changing over SST. B, Alpha diversity of OTUs 

calculated as inverse Simpson Index against SST. Arrows indicate major fronts as described in figure 6. 
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Figure 15: A, relative abundance of phyla for each station and within incubations. Arrows indicate 

major water masses according to the legend; Indian ocean (IO), mixed water of Indian Ocean and 

Antarctic Circumpolar Current (IO/ACC), Antarctic Circumpolar Current (ACC), Polar Front (PF), and 

mixed water of Polar Front and Fawn Trough (PF/Fawn Trough). B, Bacterial community structure of 

different water masses. Constrained Analysis of Principal Coordinates (CAP) of 16S rDNA diversity. OUT 

abundance table was used to calculate Bray- Curtis distances and constrained analysis was performed 

by water mass. Constrain reflects 58.5 % of overall variance in the data. There was a significant 

relationship between water masses and community dissimilarity (adonis test; p < 0.001). Data with 

environmental samples represented as arrows. 

Within the phylum level, all stations were dominated by Proteobacteria. Alphaproteobacteria 

were the most dominant order within the proteobacteria. Second most abundant were 

bacteria belonging to the phylum Bacteroidetes, however, their relative abundance decreased 

towards warmer SST in the IO. Instead, Cyanobacteria occurred in the mixed water of the IO 

and ACC and in the IO. By looking at a higher resolution at the phylogeny (Fig.16) one can see 

that the IO is mostly dominated by Prochlorococcus sp. with relatively low abundance of 

Synechococcus, except Station 4 where we found 100% Synechococcus within the 

Cyanobacterial fraction. In addition, Actinobacteria occurred in relative constant fraction 

throughout all IO/ACC and IO water samples. We found ~5% OTU abundance annotated to the 

phylum Verrucomicrobia in the IO/ACC waters. Prokaryotes belonging to the kingdom Archaea 

were found in abundance over 2% only in 4 samples all belonging to the phylum 

Euryarchaeota. The ACC and PF show a high relative abundance of the order Flavobacteriales 
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within the phylum Bacteroidetes. Moreover, we found a great dominance of ecotype Ia, Ib 

and II of SAR11 clade throughout all samples. Notably, the 24h incubation which already 

showed high diversity and richness, showed a similar pattern to the IO samples in the relative 

abundance of prokaryotic phyla. This pattern is also represented in the CAP analysis where all 

stations separate according to the water masses they are in, except the 24h incubation of 

Station E. Stations of the ACC, PF and mixed water of PF and Fawn Trough were all relatively 

similar to each other, while stations in the IO and mixed water of the IO and ACC showed 

greater variability, similar to the results from the richness calculations. We assume, these 

results were due to wrong labelling or processing of the sample and will not be taken further 

into account in the analysis.  
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Figure 16: Prokaryotic community composition of 3 samples each representing a water mass (Polar Front (PF), Antarctic Circumpolar Current (ACC) and Indian 

Ocean (IO)) as shown by 16S rDNA gene amplicon sequencing. All abundant phyla are shown as composite Krona plots (SilvaNGS) resolved down to the genus 

level. The relative fraction of Krona circles represents the relative abundance of kingdom, phyla, order, class, family, genus. Note that Chloroplasts and 

Mitochondria were not removed in this representation.
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Figure 17: Spearman correlation coefficients (rs) plot including NO3
- and NH4

+ assimilation, C fixation 

and N2 fixation rates as well as PSCs (n=13). For prokaryotic diversity, PSCs and chl ɑ only T0 samples 

were used for correlation calculations. Blue colour indicates positive correlation, red negative 

correlation. Cross indicates no significant correlation (significance level: p = 0.05). 

Several significant correlations occurred between physical-chemical parameters 

(temperature, salinity, nutrient concentration, respectively) and C fixation, N assimilation and 

phytoplankton size classes (PSCs; Fig. 17).  

Noteworthy was a positive correlation between N2 fixation and salinity (rs = 0.47). N2 fixation 

rates did not show any significant correlations with either NH4
+ or NO3

- assimilation rates. N2 

fixation revealed a significant negative relationship with C fixation (rs = -0.46). Furthermore, 

N2 fixation was positive with the picoplankton component (rs = 0.55). In contrast, N2 fixation 

was negative associated with prokaryotic diversity (rs = -0.59). 

C fixation was negatively correlated with temperature and salinity (rs = 0.68, rs = 0.72, 

respectively). In addition, C fixation was positive correlated with NOx concentration. Both 

δ 
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microplankton and nanoplankton were positively correlated with C fixation, while 

picoplankton concentrations were negatively correlated.  

NO3
- assimilation rates did not show many significant relationships with other rates or 

environmental parameters other than a significant negative correlation with PO4
-, NOx and Si 

concentration and positive relationship with salinity. NH4
+ assimilation was positively 

correlated with NH4
+ concentration (rs = 0.77).  

Microplankton abundance correlated negatively with temperature and salinity, but positively 

with all nutrients (rs = 0.79, 0.52, 0.79 and 0.58 for PO4
- , Si, NOx and NH4

+, respectively; Fig. 

17). Prokaryotic diversity was positively associated with MLD, C fixation and ammonium 

concentration. δ15N had a positive relationship with prokaryotic diversity (rs = 0.37) and POC: 

PON ratio (rs = 0.69) but was negatively associated with all nutrients.  

 

 



Discussion 

30 
 

4. Discussion 
 

The OISO (Ocean Indien Service d'Observation) campaign aims to understand the seasonal and 

temporal fluctuations of the Indian Ocean (IO) and the Southern Ocean (Indian Ocean sector) 

carbon budget. The program’s longterm goals are for a better knowledge about carbon budget 

evolution and ocean acidification, as well as improving the global prognostic climate models 

such as the Global Carbon Project and the Global Ocean Acidification Observation Network 

(IPCC, 2014). The global carbon cycle is tightly connected to the nitrogen (N) cycle in oceanic 

ecosystems (reviewed in Gruber and Galloway (2008)). N is a key element for all kinds of 

biological processes, such as protein synthesis and cellular growth (reviewed in Gruber, 2008). 

Thus, the input of N into aquatic ecosystems potentially stimulates additional C fixation (e.g. 

Boynton et al., 1982). N is an essential building block for all organisms, where it generally 

accumulates at the POC: PON ratio in marine organic matter described as the Redfield ratio 

(6.625; Redfield, (1958)). However, several factors can cause a deviation from this ratio, 

including nitrogen- and light-limitation, zooplankton abundance (Talmy et al., 2016) and the 

activity of heterotrophic microbes (Crawford et al., 2015). A fundamental process influencing 

the balance between C and N is the fixation of atmospheric N2 by diazotrophs, which provide 

organic N for both phytoplankton growth and C fixation. Our data, as part of the OISO 

campaign, contribute to a better understanding of the physical and biological factors 

controlling C and N cycling processes in four different water masses of the Southern Indian 

Ocean and regional waters of the French Southern and Antarctic islands, during Austral 

summer January and February 2017.  

The physical (T, S and O2) and biochemical parameters (DIN, DIC, PO4
- and Si) allowed us to 

distinguish clear differences between water masses of the Indian Ocean (IO), Antarctic 

Circumpolar Current (ACC), Polar Front (PF) and Fawn Trough in surface waters. However, 

there was a distinct boundary between the IO and the ACC about 1000 m below the surface. 

The mixed layer depth (MLD) was deepest above the Kerguelen plateau, which is consistent 

with the measurements of  Blain et al. (2007) and Mongin et al. (2008) for the summer season. 

A deep MLD can be caused by high internal tidal waves (Park et al., 2008 (a)). This process is 

also the reason inferred for elevated Iron (Fe) concentrations above the plateau, which leads 

to extensive phytoplankton blooms (Blain et al., 2007).  
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Major differences in water mass chemistry were observed (high SST and salinity in the IO) 

which were associated with lower dissolved gasses and nutrients, possibly because cold water 

can hold more dissolved oxygen and DIC. DIC concentrations in seawater are a function of 

temperature, but also a function of salinity and partial pressure of CO2 (Henry’s law). There 

was a clear increase of DIC concentration between 1998 und 2017 throughout the whole 

sampling area, likely due to an anthropogenic increase of atmospheric pCO2 in the past years 

(>400ppm; Tans and Keeling, 2018).  

The long-term data did not show significant differences in nutrient concentrations over the 

past 9 years, suggesting a relatively stable nutrient pool in these waters. The Fawn Trough, PF 

and ACC contained higher nutrient concentrations, likely due to upwelling in the Southern 

Ocean. Although nutrient concentrations are relatively high, primary productivity remains low 

due to iron limitation (Blain et al., 2007). This phenomenon is described as a high nutrient low 

chlorophyll situation (HNLC; Blain et al., 2007; Hart, 1942; Sullivan et al., 1993; Tyrrell et al., 

2005). N* is negative in cold-water, potentially indicating N limitation or P excess. This is 

congruent with the findings by Weber and Deutsch (2010) with N* ~ -2 in the PF zone. This 

can be interconnected with high diatom abundance which have a N:P ratio of 11:1 rather than 

the normal 16:1 (Weber and Deutsch, 2010). In contrast, González et al. (2014) measured a 

positive N* in the adjacent naturally iron- fertilized waters above the Kerguelen plateau. A 

positive N* originates through deposition of N-rich material from the atmosphere, N2 fixation 

and/or export of P-rich material (Blain et al., 2015). In this case, we infer that an indirect 

influence of dFe on an oversaturated N pool, for instance through supporting N2 fixation, is 

most likely (González et al., 2014). 

The POC: PON ratio across all the water masses within our study was almost exactly the 

Redfield Ratio (6.7±0.9). However, we showed POC: PON ratio has a linear relationship with 

SST across the range from 5.9 to 8.4. These findings match the observation by Martiny et al., 

(2013) of higher (>7) POC: PON ratios in high-temperature, low nutrient waters than in low-

temperature and high nutrient waters (~6). Increasing chlorophyll biomass is negatively 

correlated with POC:PON ratios (Martiny et al., 2013), which we also observed. Low POC: PON 

ratios can occur for instance through high abundance of heterotrophic microbes and lower 

abundance of larger cells, such as diatoms and dinoflagellates (Crawford et al., 2015). 

Furthermore, different life strategies, such as growth rate (r/K- selection), the ability of algae 
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to store nutrients in internal pools (Arrigo, 2005) or selfish substrate uptake in prokaryotes 

(Reintjes et al., 2017) can potentially further influence the cellular C:N ratio. The impact of 

these processes in our study, however, remain still unknown and needs to be elucidated in 

future. Our data show a reversed trend to the findings proposed by Crawford et al. (2015), 

having increased abundance of larger cells and the PFT diatoms along with decreased 

POC:PON values.  The proportion of chl a to total POC decreases from low SST to high SST, 

likely indicating that the proportion of heterotrophic organisms increase towards higher SST 

(Appendix S-4). This could be a reason for the shifted POC: PON ratios, having lots of nitrate 

saturated autotrophs in the PF and ACC, and more heterotrophic organisms in the IO which 

potentially need less N than autotrophs (Martiny et al., 2013).  

In the face of human induced climate change and resulting increased stratification of the 

ocean (Capotondi et al., 2012), nutrient supply [from below] could alter the community 

composition (Arrigo, 2005). For instance, in the polar regions, a shift towards higher diatom 

abundance is possible (Arrigo, 1999, 2005). Diatoms prefer stratified waters and have low N: 

P requirements. As a result, global nutrient inventories could be influenced by such a change 

in community composition, such as the depletion of NO3
- relative to PO4

- (Arrigo, 2005).  

Supplies of inorganic N and organic N are controlled via different processes including vertical 

and lateral transport (Torres-Valdes et al., 2009), grazing, excretion and viral lysis (Azam et al., 

1983). Assimilation rates of both NO3
- and NH4

+ provide insights into production and turnover 

at the base of the food web. Which process dominate the N pool is reflected in the particulate 

organic matter (POM) elemental composition. Organisms prefer to take up light isotopes of 

macronutrients, because of their faster reaction rates in comparison to heavy isotopes. 

Therefore, δ15N can drop below seawater standard in nutrient saturated environments or 

where N2 fixation is the primary source for new N (Carpenter et al., 1999; Montoya, Carpenter 

and Capone, 2002; Montoya, 2007). These processes were evident in our dataset, having 

nitrate excess in the HNLC areas of the PF and ACC with accompanying δ15N values below the 

standard and negative δ15N in the IO where N2 fixation has a relative high contribution to 

primary productivity. In the mixed water of the ACC and IO, δ15N was relatively high suggesting 

a consumption of subsurface nitrate (Fawcett et al., 2014) as well as the transfer of N to higher 

trophic levels (Montoya, 2007). These findings also match our nutrient measurements, which 

showed low macronutrient concentrations >15°C SST. In the following section we discuss the 
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different N- cycling processes in conjunction with primary productivity and microbial 

community composition.  

Prokaryotic community composition 

Overall, bacterial community was dominated by Proteobacteria, Cyanobacteria and 

Bacteriodetes. All samples showed a large fraction of the ubiquitous alphaproteobacterial 

SAR11 clade. SAR11 reach their largest numbers in stratified, oligotrophic gyres, mainly 

harvesting low-molecular-weight DOM (Giovannoni, 2017). The SAR11 clade is grouped into 

several subclades each of which is associated with specific environmental and seasonal 

parameters (Giovannoni, 2017). We found ecotypes of Cluster Ia, Ib and II throughout our 

samples; all are described as surface ocean associated clades, while cluster Ib and II specifically 

occur in spring and summer season. 

The IO was characterized by high abundances of cyanobacteria and some actinobacteria. 

Cyanobacterial fraction was dominated by Prochlorococcus and Synechococcus. These 

organisms are considered the most abundant photosynthetic organisms in the ocean 

(Waterbury et al., 1986; Partensky, 1999(a); Hess and Vaulot, 1999). In co-occurrence, 

Prochlorococcus is the dominating species (Partensky, 1999(a); Blanchot and Vaulot, 1999). 

Our data supports this observation with little relative abundance of Synechococcus (1-5%) in 

conjunction with Prochlorococcus (95-99%). The mixed water of the IO and ACC is more 

diverse, and contains, among others, some bacteria belonging to the phylum Verrucomicrobia 

which has been described to be characteristic for south of the PF south of Australia in austral 

summer (Wilkins et al., 2013). Bacterial communities in the ACC and PF were overwhelmingly 

dominated by Bacteriodetes, especially of the order Flavobacteria. Flavobacterial abundance 

has been observed to be tightly coupled with diatom concentration (Pinhassi et al., 2004) since 

these bacteria specialize on successive decomposition of algal- derived organic matter (OM) 

(Teeling et al., 2012). Flavobacteria have also been associated with marine snow due to their 

ability to break down highly complex OM (Edwards et al., 2010; Thomas et al., 2011; Gómez-

Pereira et al., 2012). 

The microbial composition was distinctly more similar within the same water mass than 

between water masses. The greatest differences could be measured between the cold-water 

stations of the ACC and PF and the IO. We found a high influence of nutrients on microbial 

diversity within the PF and ACC, with temperature and SST more clearly influencing the IO 
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samples. Notably, having a high temperature influence in the IO waters, we measured relative 

high concentration of β carotene, which is known as a photoprotective pigment (Paerl, 1984). 

Remarkably, the mixed water of the IO and ACC did not show any association with other water 

masses. We conclude that the mixing process causes unique environmental sorting of 

bacterial populations. This data is in agreement with Baltar & Arístegui (2017) who highlighted 

the importance of permanent fronts as oceanographic features which may account for 

microbial community composition and activity.  Furthermore, we found highest OUT diversity 

within this mixed water of the IO and ACC suggesting high niche partitioning. OUT richness 

was also highest in the mixed water of the IO and IO/ACC. However, diversity was relatively 

low in the IO suggesting low evenness of bacterial OTUs. Since we found a great proportion of 

Prochlorococcus (or Synechococcus) in the IO, we conclude that evenness is greatly influenced 

by the vast dominance of Prochlorococcus (or Synechococcus) along with very diverse other 

species with low abundance.  

Carbon fixation 

Carbon fixation was highest above the Kerguelen plateau, potentially stimulated by high Fe 

concentrations (Blain et al., 2007). However, it needs to be noted that Fe availability is not the 

only limiting factor in the Southern Ocean. Light and/or silicate can both play important roles 

in phytoplankton growth and in the accumulation of biomass (Boyd et al., 2000). In general, 

we noted high C fixation values in the IO/ACC and ACC and lower C fixation both in colder and 

warmer SSTs. Notably, when C fixation values were normalized to chl ɑ concentrations, no 

significant difference could be measured between sites suggesting that specific productivity 

did not vary greatly.  

Differences in phytoplankton biomass and, associated therewith, lower absolute C fixation 

rates, can be interpreted as evidence for top down control instead of bottom up control. 

Cavagna et al. (2015) describes an increase of primary productivity per unit biomass 

associated with an increase in total biomass in the adjacent Kerguelen region waters in spring. 

This relationship collapses in summer and, typical for a post-bloom situation, the community 

composition shifts from autotrophic to predominantly heterotrophic organization suggesting 

a top-down control of phytoplankton biomass (Christaki et al., 2014; Cavagna et al., 2015). 

Our study region crossed the edge of the Kerguelen region with its massive naturally iron-

fertilized spring blooms, and we infer that community composition at the sites we visited 
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could still have been influenced by such events. Our data show lower chl ɑ: total POC ratios in 

the IO than in the (non-nutrient limited) PF (Appendix S-4), demonstrating that the IO is likely 

to be dominated by heterotrophic organisms. Carbon fixation rates in the IO showed little 

variation between replicates, while differences between replicates were relatively high in the 

other water masses. González et al. (2014) reported similar patterns for their N2 fixation rate 

measurements. Great variations between replicates can be the result of a strong 

heterogeneity in the sub-mesoscale dynamics of water masses, especially in the PF, ACC and 

mixed water of PF and Fawn Trough and IO and ACC. These complex conditions also have been 

observed by Mongin et al. (2008) highlighting the importance of high resolution studies and 

the development of new and specific tools to assess reasons shaping such heterogeneity.  

We could not find a relationship between prokaryotic diversity and absolute C fixation rates. 

We infer that the community composition per se has no significant impact on C fixation. 

However, certain prokaryotic groups can certainly contribute significantly to C fixation. We 

found that in the IO, prokaryotes make up a large fraction of total autotrophic organisms. 

Prochlorococcus is the most abundant photosynthetic organism on earth (Partensky, 1999(b); 

Hess and Vaulot, 1999). However, it does not occur in cold, high- latitudinal waters (>40°S/N). 

Our data confirms this hypothesis; analysis of 16S rDNA, as well as pigment analysis, revealed 

that Prochlorococcus of the phylum Cyanobacteria had a relative high abundance in the IO but 

were not found in the ACC and PF. Phytoplankton within the PF are typically dominated by 

larger diatoms (Lutjeharms, Walters and Allanson, 1985; Laubscher, Perissinotto and 

McQuaid, 1993; Dafner and Mordasova, 1994; de Baar et al., 1995; Jochem, Mathot and 

Quéguiner, 1995; Smetacek et al., 1997; Brown and Landry, 2001; Moore and Abbott, 2002). 

In addition to trace element deficiency and unfavourable light conditions, strong grazing 

pressure is considered a significant limiting factor for primary production in the Southern 

Ocean (Hart, 1942; Smetacek, Assmy and Henjes, 2004). Bigger cell sizes and hard frustules 

can be of advantage as protection against predators (Price, Ahner and Morel, 1994; Sherr and 

Sherr, 1994; Selph et al., 2001). The relative abundance of nano- and microplankton size 

classes increased within the ACC and PF, while picoplankton decreased to undetectable 

concentrations. Additionally, we could show that the relative abundance of diatom species 

was high in the ACC and PF (up to 74%).  
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Interestingly, in the mixed waters of the IO and ACC, where we measured relatively high C 

fixation rates, both autotrophic biomass and prokaryotic diversity was exceptionally high. 

Furthermore, pigment analysis revealed a great diversity of all kinds of different pigments in 

this region. Additionally, the prokaryotic fraction is remarkably diverse (Inverse Simpson Index 

= 57.6). These observations are in accordance with one out of two major ecological 

mechanisms driving marine biodiversity: (1) diversity increases with increasing productivity, 

i.e. more resources can drive niche partitioning and (2) diversity increases with increasing 

temperature due to kinetic metabolism (Fuhrman et al., 2008). A strong positive correlation 

between primary productivity and bacterial diversity has been observed in the PF zone 

(Wilkins et al., 2013). Additionally it has been postulated that primary productivity plays a 

major role in determining bacterial richness, while temperature gradients are of less 

importance (Raes et al., 2017). We note, that our data revealed a great difference between 

16S richness and 16S diversity. For instance, we observed a positive correlation (rs = 0.5) 

between primary productivity and diversity but a negative correlation (rs = -0.5) between 

primary productivity and richness. Bacterial richness was highest in the IO and in the mixed 

water of the IO and ACC. We observed a predominance of the Cyanobacterium 

Prochlorococcus in these waters which gives rise to the assumption that OTU richness is high 

in these waters, thus evenness is low due to the vast dominance of Prochlorococcus. Absolute 

primary production and autotrophic biomass was relatively low in the IO and to a great extent 

driven by Prochlorococcus. In the mixed water of the IO and ACC and the in the ACC proper, 

diatoms, green algae, prymnesiophytes and pico- eukaryotes (all pos. correlated with C 

fixation) were the dominant primary producers. Moreover, we could measure pigment 

concentration on a large variety of all kinds of different pigments, indicating a great diversity 

in the photoautotrophic fraction. We speculate that not only primary productivity itself but 

also diversity and community composition of primary producers have a great impact on the 

prokaryotic diversity.  

The δ15N reaches its maximum value (7.58) at the same high-diversity station, supporting the 

notion of a very complex and diverse (microbial) community composition on many trophic 

levels. This, in turn, can support further the idea of niche partitioning (Menge and Sutherland, 

1976; Huston, 1979; Polis and Strong, 1996). Canonical analysis of 16S OTUs did not strongly 

associate with a specific environmental parameter (minimal positive correlation with 
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ammonium concentration and chl ɑ), however, it cannot be excluded that the supply of trace 

elements, such as Fe, could control diversity and productivity in this region.  

N2 fixation 

N2 fixation is a process with high energy costs, because of the strong triple bond in the N2 

molecule. Therefore, it has been assumed that N2 fixation occurs predominantly in oceanic 

regions with limited organic N availability such as the subtropical gyres (Mather et al., 2008). 

The chain forming cyanobacterium Trichodesmium dominates these warm, oligotrophic 

waters and has been postulated to contribute significantly to the global N budget (estimated 

to about 1.6 10-1 in the tropical North Atlantik; Capone et al., (2005)). However, a great 

diversity of bacterial nifH have been obtained also outside the (sub-)tropical region 

(Moisander et al., 2010; Bentzon-Tilia et al., 2015; Messer et al., 2015; Scavotto et al., 2015; 

Fernández-Méndez et al., 2016; Martínez-Pérez et al., 2016) suggesting an underestimation 

of both N2 fixation rates and the diversity of diazotrophs.  

Raes et al. (2015) showed that N2 fixation rates in the eastern Indian Ocean were independent 

of the availability of other sources of DIN. Trace micronutrient availability, such as iron, can 

also limit growth and activity of diazotrophic organisms (Raven, 1988; Falkowski, 1997). Our 

data show higher rates in the oligotrophic water of the IO, however, measurable nitrogen 

fixation rates occurred throughout the whole sampling area. Noteworthy is a slight increase 

in N2 fixation in the PF/Fawn Trough. Replicates showed a great rate heterogeneity, which was 

also described by González et al. (2014) above the adjacent Kerguelen plateau. This could 

imply submesoscale physical and potential biological parameters influencing the N2 fixation 

efficiency. Interestingly, we found a stronger correlation of N2 fixation with salinity rather than 

temperature, rejecting the hypothesis that temperature acts as the main driving factor for N2 

fixation rates. Overall, N2 fixation rates were comparable to N2 fixation rates measured by 

González et al. (2014) above the Kerguelen plateau. We found a strong positive correlation 

between N2 fixation and Prochlorococcus (rs = 0.68) abundance. However, Prochlorococcus is 

not capable of N2 fixation, but generally prefers warm SSTs (Johnson et al., 2006) just as the 

highly abundant diazotroph Trichodesmium  (Capone, 1997; Karl et al., 2002; Hood, Coles and 

Capone, 2004; Breitbarth et al., 2007). 

Every species has its temperature optimum. It is known that diazotroph activity is very 

sensitive to both physical (e.g., temperature) and chemical changes (Barcelos e Ramos et al., 
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2007; Breitbarth et al., 2007; Hutchins et al., 2007; Levitan et al., 2007; Rost, Zondervan and 

Wolf-Gladrow, 2008). We note that temperature in incubation experiments could not kept 

stable because of logistic limitations, and ranged between maximum values of -7.7°C below 

and 9°C above the in-situ temperatures of the water samples. Both underestimation and 

overestimation of the N2 fixation rates are therefore possible. We therefore consider relative 

measurements rather than absolute values in our analysis. Our data highlights the importance 

of a careful setup of perturbation experiments, with a strong necessity to keep continuous 

track of temperature.  

Overall, our data contribute to closing the gaps in global N2 fixation rates, especially 

considering previous underestimation of N2 fixation at higher latitudes. We could show that 

N2 fixation occurs independent of nitrate concentration rejecting the hypothesis from 

Breitbarth et al. (2007) that N2 fixation just occurs when other sources of N are limited. We 

note, however, that N2 fixation and ammonium concentrations are negatively correlated.  

NO3
- assimilation 

In contrast to ammonium assimilation, nitrate assimilation is a more energy-intensive process 

because NO3
- must be reduced to NH4

+ prior to metabolic usage (McCarthy, 1981; Syrett, 

1981; Berges and Mulholland, 2008). Still, measured NO3
- uptake rates can exceed NH4

+ 

assimilation (Cavagna et al., 2015). The turnover of N has been suggested to be relatively rapid 

in the south-eastern Indian ocean (Beaufort, 1997; Thompson et al., 2011; Waite et al., 2013), 

having a significant impact on the biogeochemical nutrient cycling (Codispoti et al., 2001; 

Hoegh-Guldberg and Bruno, 2010). Regeneration of NO3
- can also occur rather close to the 

surface, so the concentration of NO3
- varies at a weekly timescale. In our data, high NO3

- 

assimilation rates were measured where the nutrient rich water of the ACC mixed with the 

warm oligotrophic IO. These stations contained high biomass (~1.7) and high C fixation rates 

(~94 nmol L-1 h-1). The δ15N of the POM was also exceptionally high, suggesting transfer of 

POM to higher trophic levels.  NO3
- assimilation rates showed a strong negative correlation 

with nutrient availability indicating a high uptake efficiency in oligotrophic waters. In general, 

however, NO3
- assimilation rates were an order of magnitude lower than those reported in 

other studies (Cavagna et al., 2015; Raes et al., 2015). Cavagna et al. (2015) report rates 

around 29 – 1900 nmol L-1 d-1 in the adjacent Kerguelen region in spring. Raes et al. (2015) 

report NO3
- assimilation rates of around 43.2 – 84 nmol L-1 d-1 in the south-eastern IO in middle 
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to late winter. Although these studies are at different times of year, we consider that our data 

do show exceptionally low rates.  

 

NH4
+ assimilation 

NH4
+ uptake provides an important N source for primary production. Generally, NH4

+ 

assimilation rates have been observed to follow the same trend as C fixation in this region 

(Cavagna et al., 2015). However, Cavagna et al (2015) also report high nitrification rates, which 

indicate potential competition between autotrophs and nitrifiers. Assuming a high conversion 

rate of NH4
+ to NO3

-, classical separation between NO3
- and NH4

+ (f-ratio; Dugdale & Goering 

1967) is not applicable for these regions (Raes et al., 2015). Since the [eastern] IO is considered 

to be nitrogen depleted (relative to phosphate and silicate; (Raes et al., 2015)) other sources 

than NO3
- and NH4

+, through regeneration and microbial recycling, are needed to support 

primary productivity. NH4
+ assimilation rates in our work were in the same range as reported 

by Cavagna et al (2014), who indicated that NH4
+ assimilation rates were relatively constant 

throughout the area around Kerguelen Island. In our data set, NH4
+ assimilation rates were 

also relatively constant throughout the whole sampling area, though they had no direct 

correlation with primary production.  
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5. Conclusion 
 

Our data show that the water masses in the Southern Indian Ocean (IO) and the IO sector of 

the Southern Ocean separate not only physically but also biologically. The IO is a warm 

oligotrophic environment dominated by the known ubiquitous cyanobacterial species 

Prochlorococcus and Synechococcus. However, these are not dominant in the cold- water of 

the Antarctic Circumpolar Current (ACC) and Polar Front (PF). The latter two water masses are 

dominated by diatoms and pico-eukaryotes. In areas of relatively high diatom concentrations 

we found prokaryotes of the order Flavobacteria which have been described to co-occur with 

diatoms. We found a great variety of autotrophic pigments and highest prokaryotic diversity 

in the mixed water of the IO and ACC. We also measured relatively high C fixation rates for the 

same area, suggesting that both primary production itself, and community composition of 

primary producers can be a source for great microbial diversity. Interestingly, cell specific C 

uptake did not show a trend between different water masses, suggesting top- down control 

rather than bottom up control of productivity.  

In contrast to previous studies, which suggested N2 fixation exclusively to oligotrophic warm 

waters, we could measure N2 fixation throughout the whole sampling area to 56°S. However, 

the natural abundance of δ15N suggests that the relative importance of N2 fixation to the total 

N pool potentially varies strongly between water masses. Our data contributes to an 

understanding of N2 fixation in high latitude waters. Supporting and understanding of the 

factors driving diazotroph community and activity. 

We observed a high variance between within-station replicates of C- and N2 fixation 

measurements as well as measurements of N assimilation. Among other interpretations, this 

suggests sub-mesoscale dynamics and potential small-scale differences in biochemical 

conditions. Our observations point out the importance of high resolution (i.e., sub-mesoscale 

and smaller) in situ studies in combination with remote- sensing techniques, to be able to fully 

understand the scale of variation in ocean dynamics. Absolute C fixation rates, and microbial 

community composition, have significant impact on C and N cycles. Understanding 

biochemical and biological processes supports our ability to further understand C and N fluxes 

to be able to predict and model future climate change scenarios. 
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Appendix 
 

 

Figure S- 1: gel after (A) 16S and (B) nifH amplicon PCR. A, 16S amplicon PCR. B, nifH amplicon PCR; 

PCR product was further used for Index PCR. Positive (+) and negative (-) controls worked for both 

PCR reactions. 

Figure S- 2: gel after (A) 16S and (B) nifH index PCR. negative controls (-) worked for both reactions, 

old PCR product used as positive control (+). 
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Figure S- 3: Mixed layer depth (MLD) and sea surface temperature (SST) (10m) for all sampling stations. 

A, MLD, showing deepest MLD in the PF around Kerguelen island. B, SST, showing clear temperature 

difference between IO and ACC. 
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Figure S- 5: Distribution of sample sequencing depth of 16S amplicon sequence data.  

 

Figure S- 4: relative proportion of chl ɑ to total POC against sea surface 

temperature (SST). 
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