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Abstract 
 
The Southern Ocean is a region with strong seasonality in sea ice coverage, food supply 

and photoperiod (the day length). Antarctic krill (Euphausia superba) a key organism in 

this habitat show remarkable adaptation to this environment by evolving daily and 

seasonal rhythmicity of physiological and behavioural functions. Recent investigations of 

these rhythms have demonstrated that an endogenous circadian clock times metabolic 

output rhythms in krill, synchronized by photoperiod. In krill, the mechanisms of clock 

genes and their products, however, leading to these rhythms, the distributions of the 

genes as well as chronobiological functions are essentially unknown. The present study 

aims for a more comprehensive analysis of endogenous circadian regulation in Antarctic 

krill, especially with regard to possible optimization of the methodological approach to 

the identification of putative rhythmic gene expression patterns in brain and eyestalks of 

krill, in the laboratory. Within this study, were able to demonstrate significant 24h 

rhythmic oscillation for Cyc and Vri in brain and in general within the eyestalks more 

pronounced patterns and agreement with literature, could be identified. We further 

conclude that gene expression probably play the same role in both tissues, except for 

Dbt. However, we conclude that the analysis of the whole head is more suitable for the 

future, because amplitudes of the oscillation are the same and only Dbt obtained 

differences in gene expression within the tissues. Moreover, there is probably first 

evidence that the interactions between the genes within a tissue might be displaced by 

a 4 hour rhythm as well as that the transmission between the tissues needs a larger time 

frame. Further studies in Antarctic krill needs to investigate more knowledge on 

chronobiological behavior and the associated endogenous timing system, on the 

contributions of individual clock genes on transcriptional as well as on protein level and 

on neuroanatomical signal perception and transmission. 

 

Key words: Antarctic krill, circadian clock, clock genes, brain and eyestalks, 

laboratory, relative mRNA level, 12L:12D 
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Zusammenfassung 
 
Das Südpolarmeer ist eine Region mit ausgeprägter Saisonalität in Hinblick auf 

Eisbedeckung, Nahrungsmittelversorgung und die Photoperiode (Tageslänge). 

Antarktischer Krill (Euphausia superba), ein Schlüsselorganismus innerhalb dieses 

Habitats, weist eine bemerkenswerte Anpassung in diesem Umfeld auf, indem er seine 

tägliche sowie saisonale Rhythmik der Physiologischen,- und Verhaltensfunktion 

verändert. Neuste Untersuchungen dieser Rhythmen haben bewiesen, dass eine 

endogene innere Uhr, synchronisiert durch die Photoperiode, den Metabolismus in Krill 

steuert. Im Krill sind jedoch die Mechanismen von Uhr-Genen und deren Produkten, die 

zu diesen Rhythmen führen, die Verteilungen der Gene sowie chronobiologische 

Funktionen im Wesentlichen unbekannt. Die vorliegende Studie zielt auf eine 

umfassendere Analyse der endogenen zirkadianen Regulation im antarktischen Krill ab, 

insbesondere in Hinblick auf eine mögliche Optimierung des methodischen Ansatzes, 

zur Identifizierung von mutmaßlichen rhythmischen Genexpressionsmustern im Gehirn 

und den Augenstielen von Krill im Labor. Innerhalb dieser Studie konnten signifikante 

24h rhythmische Oszillationen für Cyc und Vri im Gehirn sowie in den Augenstielen 

identifiziert werden. Zudem konnte gezeigt werden, dass innerhalb der Augenstiele die 

Genexpressionsmuster deutlich ausgeprägter sind und mit vorhandener Literatur 

größere Übereinstimmung zeigen. Weiterhin schlussfolgern wir, dass die Genexpression 

wahrscheinlich die gleiche Rolle in beiden Geweben spielt, mit Ausnahme von Dbt. 

Jedoch können wir auch das Fazit ziehen, dass für zukünftige Experimente die 

Verwendung des ganzes Kopfes eine bessere Eignung zeigt, da die Amplituden der 

Oszillation gleich sind und lediglich Dbt einen Unterschied zwischen den untersuchten 

Geweben aufweist. Darüber hinaus gibt es wahrscheinlich erste Hinweise darauf, dass 

die Interaktionen zwischen den Genen innerhalb eines Gewebes um einen 4-Stunden-

Rhythmus verschoben sein könnten, und das Interaktionen zwischen den Geweben 

einen größeren Zeitrahmen benötigen. Zukünftige Studien im antarktischen Krill sollten 

darauf abzielen, mehr Wissen über das chronobiologische Verhalten und das damit 

verbundene endogene Timing-System, über die Beiträge einzelner Uhr-Gene auf 

Transkriptions- und Proteinebene sowie über die neuroanatomische 

Signalwahrnehmung und –Übertragung, zu erlangen. 

 

Schlüsselwörter: Antarktischer Krill, innere Uhr, Uhr-Gene, Gehirn und 

Augenstiele, Labor, relative mRNA Level, 12L:12D 
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1 Introduction  
Antarctic krill (Euphausia superba; referred to as krill in the following) is a small 

euphausiid crustacean with is endemic in the Southern Ocean (SO) (Meyer et al. 2010; 

Siegel 2016). Over 70 % of its total stock are located in the Atlantic sector of the SO 

between longitudes 0° and 90°W (Scotia Sea and southern Drake Passage) (Atkinson 

et al. 2008; Atkinson et al. 2004; Hill et al. 2013). Krill, which their biomass between 

67 to 297 million tons, is a key organism in the SO and serves as direct link between 

primary producers and top predators such as penguins, seals and whales as well as 

several fish species and also constitute the main fisheries target in this region (Zane et 

al. 1998; Siegel 2005; Siegel 2016; Asoc 2010).  
Changing environmental conditions due to global warming cause an increase in 

deep ocean temperature as well as a decrease in winter sea-ice duration at several 

locations (Clarke & Harris 2003; Curran et al. 2003). A positive correlation between krill 

density and the sea-ice cover suggest that the extent as well as the duration of the sea 

ice might be fundamental for krill (Atkinson et al. 2004). A strong krill density decline has 

been observed in concert with the winter sea ice extent and duration since the 1970s in 

the SW Atlantic sector of the SO (Atkinson et al. 2008; Atkinson et al. 2004). Other 

studies demonstrated, that also ocean acidification, may impact krill recruitment and 

population density (Kawaguchi et al. 2013).  

Therefore, climate change in addition to an increasing krill fishery (Kawaguchi et 

al. 2013; Nicol & Yoshinari 1997) may enhance the pressure on krill populations in the 

future, which profound consequences for the SO food web (Atkinson et al. 2004; 

Schiermeier 2010). For this reason, it is crucial to understand the machinery of krill’s life 

cycle to make predictions how krill might cope with a changing environment. 

1.1 Seasonal and diel rhythms in the life cycle of Antarctic krill (E. superba) 
The SO is a region with strong seasonal and daily fluctuations in several parameters, 

such as photoperiod, light intensity, food supply and sea-ice extent (Quetin & Ross 

1991). Krill show remarkable adaptation to this environment (Miller, D. G. M. & Hampton 

1989) and have evolved seasonal and daily rhythmicity of physiological and behavioral 

functions (Quetin & Ross 1991; Murphy et al. 2007; Teschke et al. 2011).  

  



1 Introduction 

 
2 

1.1.1 Seasonal rhythms 

When food is scarce during winter due to sea-ice cover and lack of light, seasonal 

adaptation of physiological processes could be observed (Quetin & Ross 1991). To cope 

with the scarcity of food, physiological parameters like oxygen consumption, feeding 

rates, and metabolic enzyme activity revealed a significant decrease during autumn and 

winter. For example, Meyer et al. (2010) demonstrated that krill from the field showed 

reduced respiration rates (30 % to 50 %) as well as reduced feeding activity (80%) in 

autumn and winter compared to late spring. On the enzyme level, citrate synthase (CS) 

and MDH (malate dehydrogenase), key enzymes of metabolic activity were also 

significant reduced compared to summer data, suggesting an energy saving mechanism 

in krill during periods of low food availability (Teschke et al. 2011; Meyer et al. 2002; 

Meyer et al. 2010). 

Growth is a matter of food supply and temperature and reflected the same 

patterns, with highest values in spring compared to growth activities in winter (Meyer et 

al. 2010). In addition, for their utilization during winter when food supply is scarce, krill 

accumulate large amount of body lipids during summer when high phytoplankton blooms 

are formed (Meyer et al. 2010). In the laboratory, it has been shown that feeding activity, 

oxygen consumption and metabolic enzyme activity of MDH in krill are strongly 

influenced by seasonal changes of photoperiod (Teschke et al. 2007). Parameters 

increased in krill exposed to constant light (LL) and 12h light and 12h dark conditions 

(L:D 12:12) whereas, krill exposed to constant darkness (DD) showed no response to 

the high food availability and also oxygen consumption and metabolic enzyme activity 

was significantly lower compared to LL and LD light conditions (Teschke et al. 2007). 

Also the sexual organs of krill follow a seasonal cycle, with a reduction from 

autumn to winter and a re-maturation during the up-coming spring (Siegel et al. 2004). 

The maturity cycle could also be observed in the laboratory, suggesting that the pattern 

of the cycle as well as the length for completing it seems to be influenced by 

environmental parameters (food availability, temperature and photoperiod) (Thomas & 

Ikeda 1987; Kawaguchi et al. 2007). Controlled laboratory studies showed that the 

photoperiod is essential for the stimulation and induction of maturation and spawning of 

krill (Hirano et al. 2003; Teschke et al. 2008; Brown et al. 2011). 
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1.1.2 Daily rhythms 

In addition to seasonal cycles, krill perform daily rhythms of migration in the water column 

to minimize predator risk. They hide in deeper water layers during the day and migrate 

up to the photic zone during night (Gliwicz 1986). This clear pattern governed by the day-

night rhythm can be observed in winter (February to October) whereas DVM is changing 

in late spring to early summer and accordingly DVM is ceased during summer (October 

to November) (Cisewski et al. 2010). Diurnal and seasonal fluctuations in DVM and krill 

swarm aggregation in spring and summer seem to be closely linked to the feeding and 

spawning ecology of krill (Taki et al. 2005). 

In the field, the DVM patterns showed a main 24 h rhythm (night up, day down) 

as well as a subordinated 12 h rhythm (migrating again during the day), with high food 

availability this rhythm is ceased and even more pronounced when food is scarce 

(Godlewska M. 1996; Gaten et al. 2008). Gaten et al. (2008) identified an endogenous 

rhythm of locomotor activity of specimens under laboratory settings with a period of 12 h 

and 24 h, which correlate with the findings in the field. Also metabolic key processes 

such as oxygen consumption and the temporal activity profiles of aerobic key enzyme 

CS oscillated in an daily 9-12 hour rhythm (Teschke et al. 2011). De Pitta et al. (2013) 

provided the first insight into the regulation of physiological processes of krill during the 

Antarctic summer and observed rhythmicity in transcript expression of important 

processes such as translation, proteolysis, energy and metabolic processes, redox 

regulation, visual transduction and stress response, which can be related to daily 

environmental changes.  

Therefore, it seems that the regulation of seasonal and daily rhythms in krill 

physiological processes may be under the control of endogenous mechanisms, which 

might be influenced by photoperiod.  

1.2 Biological clocks control the daily life of organisms 
Due to the formation of seasons, tides and the diurnal light cycle, periodic fluctuations 

determine the life of pretty much every organism on earth (Strauss & Dircksen 2010; 

Dunlap 1999). As a consequence organisms adapted to these cyclic changes of their 

environment by evolving periodic fluctuations of physiological and behavioral processes 

(Roenneberg & Merrow 2005; Teschke et al. 2011). As a cause of evolutionary 

development light-sensitive organisms, including plants, animals and photosynthesizing 

cyanobacteria evolved endogenous biological clocks, to adapt diel fluctuations of the 

environment (Strauss & Dircksen 2010; Roenneberg & Merrow 2005; Dunlap 1999). 
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1.2.1 Molecular mechanisms of the circadian clock 
The molecular mechanisms underlying the eukaryotic circadian clock have first been 

identified in the fruit fly Drosophila. It is based on positive and negative transcriptional 

and translational feedback loops regulated by a set of clock genes (Dunlap 1999; 

Roenneberg & Merrow 2005). The circadian system of the fruit fly is very advanced: One 

of the core oscillatory loops is based on the interaction of the products of Clock (Clk) and 

cycle (cyc) genes. By forming a heterodimer they activate the transcription of period (per) 

and timeless (tim) during late day to early night (Fehler! Verweisquelle konnte nicht 
gefunden werden.) (Tomioka & Matsumoto 2015). To produce an auto-regulative 

negative feedback loop, PER and TIM form a heterodimer in the middle of the night, 

enter the nucleus and suppress their own transcription by inactivating the transcription 

of Clk/cyc. Moreover, the CLK/CYC heterodimer also activates the transcription of vrille 

(vri) and Par domain protein 1ɛ (Pdp1ɛ). Due to the accumulation of the VRI protein, the 

transcription of Clk is suppressed through a V/P box in the Clk regulatory region. PDP1ɛ 

accumulates later than VRI and paves the way for the Clk transcription and 

consequently, CLK accumulation during the day. The transcription of clockwork orange 

(cwo), regulating the amplitude of per and tim mRNA oscillation, is also activated by 

CLK/CYC. The Drosophila type cryptochrome (d-cry or cry1), which has been identified 

as the blue light photoreceptor, is known to entrain endogenous clocks due to promoting 

the light-dependent degradation of TIM (Breedlove 2000; Tomioka & Matsumoto 2015). 

The mammalian type chryptochrome (m-cry or cry2) has lost the ability of photoreception 

(Tomioka & Matsumoto 2015). 



1 Introduction 

 
5 

 

Figure 1: Hypothetical molecular mechanism of the insect circadian clockwork in 
Drosophila. Auto regulative negative feedback loop consists of the transcription factors 

CLOCK (CLK), CYCLE (CYC), PERIOD (PER) and TIMELESS (TIM). In many insects 

CRYPTOCHROME2 (CRY2) is known to function as a negative regulator. TIM is 

degraded by CRY1 in a light-dependent manner to reset the clock’s phase. TIM and PER 

are phosphorylated regulating the timing of nuclear entry by SHAGGY (SGG) and 

DOUBLETIME (DBT). CLK and CYC are expressed by VRILEE (VRI) and PAR DOMAIN 

PROTEIN 1ɛ (PDP1ɛ) and probably, by HR3 and E75. CLOCKWORK ORANGE (CWO) 

is regulated by another loop. Solid lines indicate pathways known for Drosophila; dashed 

lines indicate hypothesized clockwork mechanisms in other insects [Adapted from 

(Tomioka & Matsumoto 2015)]. 

1.2.2 The circadian clock 
Circadian (latin: circa=about, dies= a day) rhythms oscillate within an 

approximate 24 h rhythm under constant conditions (Kuhlman et al. 2007; Strauss & 

Dircksen 2010). Endogenous rhythmicity persists even if no entraining by environmental 

cues occurs (free-running) (Roenneberg & Merrow 2005; Strauss & Dircksen 2010). 

Therefore, a control by internal pacemakers takes place, which autonomously regulate 

cellular activity levels and hence the physiological and behavioral events in an oscillatory 

pattern (Strauss & Dircksen 2010). However, under normal conditions the clock is always 

exposed to a cyclic environment and the rhythm is driven by external time cues 
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(“Zeitgeber”, german for time giver). Moreover, reliable environmental cues are required 

to entrain endogenous rhythms to their 24h period (Pittendrigh C 1981). Because of the 

constant light/dark period due to the rotation of the earth, light is the most reliable and 

utilized Zeitgeber (Aschoff 1960). In addition to light, temperature, food availability and 

social cues also act as predominant pacemakers (Aschoff 1960; Roenneberg & Merrow 

2005; Gaten et al. 2008; Mauvoisin et al. 2014). 

Therefore an adaptation of circadian clocks to the local environment with regard 

to internal biochemical and physiological processes as well as behavior is possible 

(Kuhlman et al. 2007). In synchronization with the light-dark cycle, organisms display a 

significant daily oscillation in metabolic activity such as sleeping, resting or migrating in 

the water column (Godlewska M. 1996; Roenneberg & Merrow 2005; Gaten et al. 2008; 

Teschke et al. 2011).  

Circadian rhythmicity is also well documented in several crustaceans, e.g. for 

locomotion, reproduction, sensory organs or the central nervous system such as 

metabolism and developmental processes (Strauss & Dircksen 2010). The pacemaker 

of crustacean is, as in many other animals, located in the nervous system (Aréchiga et 

al. 1993). However, no crustacean single central brain oscillator or master clock could 

have been identified so far (Strauss & Dircksen 2010). Several neuronal tissues act 

together in a complex system, which all contain distinct oscillators located in the brain 

(supraoesophageal ganglion), the retina of the eye, the eyestalks and the caudal 

photoreceptors (Strauss & Dircksen 2010). Several circadian clock components have 

been identified. The CLK protein and the PER-like protein was first identified  in the prawn 

Macrobrachium rosenbergii and the CRY- like protein in the crayfish Procambarus clarkii 

(Arechiga & Rodriguez-Sosa 1998; Sandeman et al. 1992; Naylor & Emeritus 2010; 

Aréchiga & Rodríguez-Sosa 2002; Yan et al. 2006). 

 

1.2.3 The circadian clock in E. superba  
Due to the very advanced research of the circadian system in Drosophila and 

other crustaceans, analogies to the Antarctic krill can be drawn. Mazzotta et al. (2010) 

identified the cryptochrome (CRY) clock gene (EsCry) in E. superba for the first time. It 

clusters with the insect Cry2 family of Drosophila and displayed a 24h oscillation in 

mRNA expression in the krill head. On the basis of these findings it was the first step 

toward establishing the presence of an endogenous circadian time-keeping system in 

krill. In addition, the EsCry2 gene is similar to the gene identified in the monarch butterfly 

Danaus plexippus, whereby one cry gene encodes a fly-like protein with photosensitive 

properties, while the other encodes a mouse-like protein with potent transcriptional 

repressive activity (Zhu et al. 2006). On the basis of the findings of Mazzotta et al. (2010), 
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Teschke et al. (2011) determined transcript levels of cry2 in krill and observed highly 

rhythmic patterns in gene expression in light-dark 16:8 and constant darkness. In 

addition, the oxygen consumption oscillates with a period of ~9-12 hours, correlating well 

with key enzyme activity profiles of citrate CS, trypsin (TRY), aldo-keto reductase (AK) 

and N-acetylglucosaminidase (NAGase) during light-dark and constant darkness. These 

results constitute the first report of an endogenous circadian timing system in krill which 

might be linked to metabolic key processes (Teschke et al. 2011). Recently, Biscontin et 

al. (2017) suggested that the high level of conservation of the EsCRY1 and EsCRY2 

genes and functions indicated that the circadian clock machinery in krill represents an 

ancestral circadian clock in crustaceans. Furthermore, EsClock, EsCycle, EsPeriod, 

EsTimeless1 and EsCryptochrome2 could also be identified and showed significantly 

different, daily rhythmic expression patterns (Biscontin et al. 2008). Laboratory studies 

of krill indicated that even with the absence of the Zeitgeber photoperiod, seasonal 

changes in metabolic activity (Teschke et al. in preparation) as well as the maturity cycles 

(Kawaguchi et al. 2007) persist. 

Therefore, it might be most likely that biochemical and physiological processes 

and even behavior of Antarctic krill are controlled by an endogenous circadian timing 

system. There are already initial indications and findings about these complex 

mechanisms but in general, the knowledge is still scarce and research is only at the 

beginning to understand these complex interactions (Mazzotta et al. 2010; Teschke et 

al. 2011). On the basis of its superordinate role as key species in the food web of the SO 

it is essential to expand this knowledge for future prediction how Antarctic krill might be 

affected by the consequences (increasing water temperature, changing sea-ice duration 

and expand and changing of time for phytoplankton formation) of global warming and 

whether an adaptation of the endogenous circadian timing system to these changes is 

possible. 
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1.3 Aim of the study 
The present study aims for a more comprehensive analysis of endogenous circadian 

regulation in Antarctic krill, especially with regard to possible optimization of the 

methodological approach to the identification of putative rhythmic gene expression 

patterns of krill in the laboratory. Previous results often gained a high variance by 

examining individual biological replicates, as well as a low amplitude of oscillations 

between the studied time points. In order to optimize these two sources of error, a tissue-

specific examination was executed in comparison to previous experiments. The following 

sub-targets should be investigated within this thesis:  

1) detection of putative rhythmic gene expression patterns of clock genes (clock, cycle, 

period, timeless, cryptochrome 2, clockwork orange, vrille, E75, doubletime2, shaggy).  

2) tissue-specificity of clock gene expression in different tissues (eyestalks and brain) to 

identify potential interactions between clock genes and specific tissues.  

3) efficiency of different primer sets of clock and timeless to draw conclusions on the 

accuracy of clock gene expression quantification in different tissues of krill.  

This study provides a basic approach, to understand whether examined genes play a 

more superordinate role in the eyestalks or brain and if the tissue-specific examination 

causes more significant patterns of oscillation. The master thesis was investigated within 

the framework of the Helmholtz Virtual Institute (HVI) Polar Time. In addition to the clock 

gene expression data generated in this thesis DVM and respirometric data, from another 

project, were used to describe the relationship between clock gene activities in relation 

to behavior functions. The krill used for the clock gene expression analysis and the 

behavior studies are from the same population in the field and reared under same 

laboratory conditions before they were used for the different experimental approaches. 

The gene expression patterns examined in this study may provide together with the DVM 

and respirometric results first insights into the complex interactions between behavior 

and biochemical processes, regulated a the circadian clock gene machinery, in krill.  
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2 Material & Methods 

2.1 Sampling of E. superba in the field and maintenance in the laboratory 
E. superba were caught in East Antarctica (66°47’S, 65°08’E ) at February 12th, 2013 by 

a Rectangular Midwater Trawl (RMT 8) in the upper 20-30 metres (m) of the water 

column during the voyage V3 12/13 with RSV Aurora Australis from the Australian 

Antarctic Division (AAD). On board, krill were maintained in 3 x 200 litres (l), 3 x 100 l 

and 1 x 50 l tanks. Water was delivered directly to the tanks from the ship’s 

uncontaminated seawater line until the water temperature reached 1°C. The incoming 

water was then glycol-chilled to 0.5°C until the water flow was stopped completely and 

the air temperature (0.5°C) kept the water chilled. The krill arrived at the AAD aquarium 

on February 22th, 2013 and were transferred into 200 l holding tanks. Water temperature 

(0.5°C) and quality was monitored by a 5000 l seawater recirculation system. A detailed 

description of the Australian Antarctic Division holding system is described by King et al. 

(2003). The specimens were fed daily with a mix of live algae (Geminigera cryophila (2 

x 104 cells ml-1), Phaeodactylum tricornutum (2.2 x 104 cells ml-1), Pyramimonas 

gelidicola (2.4 x 104 cells ml-1). A mix of instant algae of 1 x 104 cells ml Thalassiosira 

weissflogii (1200TM, CCMP1051/TWsp., Reed Mariculture, USA), 5 x 104 cells ml 

Isochrysis sp. (1800TM, Reed Mariculture, USA) and 4.8 x 104 cells ml Pavlova sp. 

(1800TM, Reed Mariculture, USA) were added. Krill also received 2 g per tank of 

nutritional supplements (1 g of Frippak #1 CAR, 1 g of Frippak #2 CAR, INVE, Thailand). 

After feeding, the water flow was shut off for 2 h to enable the krill to filter-feed on the 

algal mixture. Using a PC-controlled timer and dimming system (winDIM v4.0e, EEE, 

Portugal) the light regime in the holding system resembles that of the Southern Ocean. 

This enables a sinusoidal cycle with monthly variations of the photoperiod and different 

light intensity during the day by assuming continuous light and a maximum of 100-lux 

light intensity at the surface of the tank (equal to 1 % light penetration at 30 m depth) 

during summer midday (December at 66°S). Every month the system was adjusted to 

simulate the Southern Ocean light conditions.  

2.2 Experimental design and sampling 
Prior to the experiment (November 29th, 2016, 192 adult krill specimens were transferred 

from the holding tank into the three experimental tanks (200 l; n=63 in tank A, n=69 in 

tank B and n=60 in tank C) at 0.5°C. The experiment was started on December 5th, 2016 

at 2:00 AM and ended after 80 h on December 8th, 2016 at 10:00 AM (Fehler! 
Verweisquelle konnte nicht gefunden werden. A). Nine krill specimens (three of each 

tank (A,B,C)) were sampled at 2:00 AM, 6:00 AM, 10:00 AM, 14:00 PM, 18:00 PM and 

22:00 PM, respectively (Fehler! Verweisquelle konnte nicht gefunden werden. A). 
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After 24 h under a 12:12 LD photoperiod it was changed to constant darkness (Fehler! 
Verweisquelle konnte nicht gefunden werden. B). During the experiment, feeding was 

suspended. For the master thesis the samples of the first 28 h were analyzed due to the 

limited time frame (Fehler! Verweisquelle konnte nicht gefunden werden. C). 

 

Figure 2 Experimental set up: A) Sampling time points every 4 hours (h) over 80 h. B) 

Photoperiod in November at 66°south at 30 m depth in lux. The light settings in the 

aquarium do not go below zero. C) First 28 hours analyzed in the following project. 

For the analysis of gene expression in different tissues of the head, a separation of the 

head from the body was necessary, which was executed with a fine scissors in a skewed 

angle to cut directly behind the eyes and without the stomach (Fehler! Verweisquelle 
konnte nicht gefunden werden.). In the following, the antennas and the endopods were 

cut directly behind the eyes. Dissected heads were stored in 1 ml RNAlater™ 

Stabilization Solution (Thermo Fisher Scientific, USA) in a 2 ml Cryo vial over night at 

4°C for fixation. The heads were then cleaned until only eyes, eyestalks and brain were 

left (Fehler! Verweisquelle konnte nicht gefunden werden.A) and then stored at -

80°C for later analysis. 
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Figure 3 Separation of the head from the body. The head was cut in a skewed angle 

directly behind the eyes and separated from the rest of the body without the stomach. 

The red dashed line indicates the section line. [Reference: 

http://www.fao.org/fishery/species/3393/en] 

2.3 Dissection of tissues  
Before dissection, the brain, eyestalks and eyes stored at -80°C (see 3.2) were 

transferred to -20°C to ensure a gentle thawing process. The dissection was performed 

using a binocular (Leica MZ125) and cooling chambers for Petri dishes. The tissues were 

dissected into eyes (E), eyestalks (ES) and brain (B), using fine scissors and tweezers. 

First, the eyes were separated by cutting as close at the transition between eyes and 

eyestalks as possible (Figure 4B) without contaminating the eyestalks with pigments of 

the eyes. Leftover pigments on the eyestalks had to be removed thoroughly before RNA 

extraction to avoid any interference during RNA concentration measurements. The 

eyestalks were cut as close to the brain as possible (Figure 4Fehler! Verweisquelle 
konnte nicht gefunden werden.C). The brain was cleaned by removing chitin leftovers 

as well as irrelevant tissues (Figure 4B). The dissected tissues were stored individually 

in 500 µl RNAlater™ Stabilization Solution at -20°C until RNA extraction. 
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Figure 4 Separation of krill head into specific tissues: a) Exemplary preparation of 

the connected eyes (E), eyestalks (ES) and brain (B) before separation. b) Separation 

of eyes without contamination of the eyestalks with pigments of the retina, if possible. 

Cleaning of brain by removing chitin leftovers as well as irrelevant tissues. c) Separation 

of eyestalks as close to the brain as possible. Red dashed line indicate the section lines. 
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2.4 RNA extraction  
To develop and adapt a suitable protocol for RNA extraction of brain and eyestalks tests 

were necessary. However, for RNA extraction of the eyes, a suitable method could not 

be established in the brief period of time. The pigments of the retina could not be 

separated by the extraction columns of the direct-Zol™ RNA Mini Prep Kit (Zymo 

Research, USA), the NucleoSpin® RNA Kit (Macherey and Nagel), the RNeasy Plus Mini 

Kit and the RNeasy Lipid Tissue Mini kit (Qiagen). They possibly distort RNA 

quantification using the Nanodrop 2000 Spectrophotmeter (Thermo Fisher Scientific, 

USA). Furthermore, purifications using the RNA Clean & Concentrator™-5 (Zymo 

Research, Irvine, USA) and precipitations with sodium acetate (3M) and lithium chloride 

(8M) could not provide satisfactory results. RNA of eyestalks and brain were extracted 

using the direct-Zol™ RNA MircoPrep kit (Zymo Research, USA). For tissue 

homogenization, 300 µl TRIzol™ Reagent (Thermo Fisher Scientific, USA) was added 

into 0.5 ml Precellys® tubes containing 1.4 mm ceramic beads. Tissues were dried on 

KimWipes (Kimberly-Clark Corporation, USA), transferred into the prepared tubes and 

homogenized immediately by using the Precellys® 24 homogenizer (bertin 

Technologies, France) for 2x15 seconds (s) at 5000 rpm and 4°C. Homogenates were 

transferred into 1.5 ml RNase-free Eppendorf® tubes (Eppendorf, Hamburg, Germany) 

and incubated for 5 minutes (min) at room temperature (RT). 60 µl chloroform (Sigma-

Aldrich, USA) was added, the tube securely vortexed and after 3 min incubation at RT 

centrifuged at 12,000 x g for 15 min at 4°C. The mixture separated into three phases 

(lower red phenol-chloroform, interphase and a colorless upper aqueous phase 

containing the RNA). Only the upper colorless aqueous phase was transferred into a 

new 1.5 ml RNase-free Eppendorf® tube and stored on ice. 50 µl nuclease-free water 

(Sigma-Aldrich, USA) was added to the remaining mixture, securely vortexed, 

centrifuged and the resulting upper aqueous phase was removed and again added to 

the first aqueous phase. An equal volume of 100% molecular biology grade ethanol 

(AppliChem, Germany) was added and the mixture thoroughly mixed. The mixture was 

transferred into a Zymo-Spin™ IC column with collection tube and centrifuged at 

16,000 x g for 30 s. The column was transferred into a new collection tube and the flow-

through discarded. 400 µl RNA Wash Buffer was added to the column, centrifuged and 

the flow-through was discarded again. For the DNase I treatment in the column a 

mastermix was prepared (5 µl DNase (6U/µl) and 35 µl DNA digestion buffer) mixed and 

stored on ice until further use. 40 µl mastermix were added directly to the column and 

incubated at RT (20-30°C) for 15 min. The column was washed two times by adding 

400 µl direct-Zol RNA Prewash Buffer and the flow-through was discarded by pipetting. 

700 µl RNA Wash Buffer was added and centrifuged at 16,000 x g for 2 min and the flow-
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through discarded again. To ensure the complete removal of RNA Wash Buffer, the 

column was centrifuged again. To elute the RNA, 15 µl of nuclease-free water were 

directly added to the column and centrifuged at 16,000 x g for 30 s. The eluate was 

stored on ice to determine RNA concentration and then stored at -80°C. RNA 

concentrations and purity were determined by using the Nanodrop 2000 

Spectrophotometer. 260/280 ratios of ~2.0 are generally accepted as pure RNA. 

Furthermore, the 260/230 ratios of pure nucleic acid are often 1.8-2.2 and higher than 

the 260/280 ratio. For the brain samples the mean 260/280 ratios were 2.04 and 1.88 for 

the 260/230 ratio. Eyestalk samples had a mean 260/280 ratio of 2.35 and 2.20 for the 

260/230 ratio. Integrity of RNA and presence of leftover genomic contamination were 

tested using the Agilent Bioanalyzer 2100 (Figure 5) and the RNA 6000 Nano Kit (Agilent 

Technology) according to manufacturer’s instructions. 

 

Figure 5 Electropherogram (A) and gel (B) of an exemplary eyestalk (ES) and brain 
(B) sample of Antarctic krill (E. superba): Results of microfluidic electrophoresis in 

Agilent 2100 Bioanalyzer using the RNA 6000 Nano Kit System. RNA degradation, 

usually indicated by small smeared peaks within the 200-1000 nt region, and genomic 

contamination, usually indicated by big bulked peaks within the 2000-4000 nt region, 

were not present. Time of RNA peak appearance (size related; x-axis) is plotted against 

the fluorescence (concentration related; y-axis). 

2.4.1 Comparison of RNA quantification methods  
Due to the potential overestimation of the Nanodrop 2000 Spectrophotometer RNA 

concentration measurements of the eye samples, the concentrations of the eyestalk and 

brain samples were additionally measured with the Qubit RNA Broad-Range Assay Kit 

(Thermo Fisher Scientific, USA). As a result, the accuracy of the Nanodrop 2000 

Spectrophotometer should be checked in order to have precise concentration values for 

the following cDNA synthesis. To determine the absolute difference (%) the 
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concentration (ng/µl) of the same sample was measured with the Nanodrop 2000 

Spectrophotometer (measurements=2) and with the Qubit fluorometer 

(measurements=3) mean value for each method calculated (Table 1). 

Table 1: Comparison of Nandrop 2000 Spectrophotometer and Qubit Fluorometric 
Quantitation. Calculation of the absolute difference [%] of the mean Nanodrop 

concentrations (measurements=2) and the mean Qubit concentrations 

(measurements=3). Samples from the eyestalk (ES) and brain (B) were used. 

Sample # mean [Nanodrop [ng/µl]] mean [Qubit [ng/µl]] absolute difference [%] 

    
ES#2900 249.85 255.00 2.02% 
ES#2908 445.55 439.00 1.49% 

ES#2907 417.55 408.00 2.34% 

ES#2910 427.20 446.00 4.22% 

ES#1856 636.50 671.00 5.14% 

ES#2904 494.05 532.00 7.13% 

ES#1850 261.30 289.33 9.69% 

ES#1852 265.45 280.00 5.20% 
ES#1848 273.85 283.00 3.23% 

ES#1847 240.10 268.33 10.52% 

B#2902 72.75 72.33 0.58% 

B#1841 112.60 129.67 13.16% 

B#1845 81.25 73.83 10.05% 

B#2910 137.65 139.33 1.21% 

B#1856 92.95 96.60 3.78% 

B#1846 108.05 105.43 2.48% 
B#1842 109.30 105.33 3.77% 

B#1847 143.95 149.33 3.60% 

B#1850 129.00 120.33 7.20% 

B#2909 184.25 185.67 0.76% 

 

Due to the low mean in the absolute difference (4.88 %) and the large number of RNA 

extraction in this study, concentrations were measured with the Nanodrop 2000 

Spectrophotometer.  
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2.5 Validation of spike controls 
Besides using an internal control or housekeeping gene which itself may show 

fluctuations in expression levels, an exogenous target sequence control was spiked into 

the sample RNA during cDNA synthesis for an accurate normalization of gene 

expression. The exogenous target sequence controls (spikes) were selected from a 

human transcript plasmid library and generated by cooperation partners at the 

Department of Biology of the University of Padova (Padova, Italy). Spikes were added to 

each sample at a constant concentration. 

2.5.1 Spike transcription, purification and quality control 
3 µg dry pellet of linearized plasmids of six different spikes (Spike 5, Spike 6, Spike 15, 

Spike 18, Spike 20, Spike 25) were re-suspended in 20 µl nuclease-free water by gentle 

vortexing. The suspensions were stored over night at 4°C. 1.5 µg of DNA were 

transcribed into RNA using the MAXIscript™ T3 Transcription Kit (Thermo Fisher 

Scientific, USA). 20 µl of total volume for one reaction included 10 µl of re-suspended 

spike and 10 µl of the mastermix for one reaction (2 µl 10 x transcription buffer, 

1 µl 10 mM ATP, 1 µl 10 mM CTP, 1 µl 10 mM GTP, 1 µl 10 mM UTP, 

2 µl T3 enzyme mix and 2 µl nuclease-free-water). The mixture was gently pipetted up 

and down, briefly microfuged and incubated for 1 h at 37°C. 1 µl TURBO DNase™ was 

added, mixed well and incubated for 15 min at 37°C. 30 µl nuclease-free water was 

added to a final volume of 50 µl. The transcripts were purified using the 

RNA Clean & Concentrator™-5 (Zymo Research, Irvine, USA). 100 µl RNA Binding 

Buffer was added, mixed and 150 µl 100% molecular biology grade ethanol was added. 

After mixing, the sample was transferred to the Zymo-Spin™ IC column and centrifuged 

for 30 s at 12,000 x g. 400 µl RNA Prep Buffer was added and the flow-through 

discarded by pipetting. The same procedure was repeated using 700 µl RNA Wash 

Buffer. 400 µl RNA Wash Buffer was added and centrifuged for 2 min. The flow-through 

was discarded and the column centrifuged again for 30 s to ensure the removal of the 

RNA Wash Buffer.10 µl nucelase-free water was added directly to the column and 

centrifuged for 30 s. The concentration and purity of the eluted RNA was immediately 

measured using the Nanodrop 2000 Spectrophotometer and then stored at -80°C. 

Additionally, the integrity of the RNA and the presence of contamination was checked 

with the Agilent Bioanalyzer 2100 (Figure 6).  
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Figure 6 Gel (A) and electropherogram (B) of the spikes 20 and 25 for E. superba: 
Results of microfluidic electrophoresis in Agilent 2100 Bioanalyzer using a RNA 6000 

Nano Kit System. Time of RNA peak appearance (size related; x-axis) is plotted against 

fluorescence of the peak (concentration related; y-axis). The peak at 25 nt is the lower 

marker of the RNA 6000 Nano Kit System and the peak around 220 [nt] is the spike. All 

electropherograms showed the same peak pattern (750 nt, 1000 nt and 1800 nt) which 

might be a result of non-completed digestion. These peaks do not affect the analysis. 

For a more precise evidence, sequencing is necessary.  

2.5.2 Real-time PCR (qPCR) titration curves of spike controls and cDNA 
amplification without spike control 
In order to establish the optimal spike control as well as spike concentration for the final 

analyses, real-time quantitative PCR (qPCR) titration curves were implemented. A 

dilution series of each spike transcript was prepared (10 ng, 1 ng, 100 pg, 10 pg, 1 pg) 

and cDNA synthesis was performed adding 1 µl of the different spike dilutions (for cDNA 

synthesis protocol see 2.6 cDNA synthesis). For each qPCR reaction, 5µl of 1:5 diluted 

cDNA (4 ng/µl) were added to 4 µl nuclease-free water, 1 µl primer mix (forward and 

reverse (360 µl, 20x mix ) of the spike control or clock-gene) and 10 µl 2x TagMan® Gene 

Expression Master Mix for a final reaction volume of 20 µl. For each cDNA sample, three 

technical replicates were added on a 96-well reaction plate and relative abundance of 

target RNAs was measured using the ViiA™ 7 Real-Time PCR System (Thermo Fisher 

Scientific). The PCR 96-well reaction plate was sealed, briefly vortexed and centrifuged. 

Reaction conditions were as follows: 1 cycle of stage 1 with 50°C for 2 min and 95°C for 

10 min, 40 cycles of stage 2 with 95°C for 15 s and 60°C for 1 min. In addition to the 

samples, no template controls (NTC) and no reverse transcription controls (-RT) were 

added to each plate. In the NTCs, nuclease-free water instead of RNA template was 

used during cDNA synthesis to identify putative contaminations of the RT-qPCR Master 

Mix. Reliable results of the NTCs should only display background noise or have high Ct 

(cycle threshold) values as a result of primer-dimer formation. In the -RT controls, the 
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enzyme reverse transcriptase is omitted during cDNA synthesis, thus preventing the 

synthesis of cDNA in the sample. The –RT control allows the identification of genomic 

DNA contamination. In case of contamination, genomic DNA gets amplified during qPCR 

and Ct values similar to that of samples may be obtained. For the analysis of the samples 

and to compare between data obtained from different genes and qPCR runs, the 

baseline threshold for all qPCR runs were set to 0.1. For each spike, the logarithmic 

mean Ct value of each concentration step was plotted and the slope used for the 

calculation of primer efficiency. Due to the results of the RT-qPCR and considering the 

efficiencies, 10 pg of spike 20 (efficiency: 87.5%) and spike 25 (efficiency: 89.8%) were 

used for further analysis. Furthermore, this concentration exhibited similar Ct values 

compared to test runs with known clock-genes (Fehler! Verweisquelle konnte nicht 
gefunden werden.B) and therefore, seemed appropriate. To exclude unspecific binding 

of the spike primer sequences to the cDNA templates, qPCR was performed without the 

addition of spike primers (Fehler! Verweisquelle konnte nicht gefunden werden.C). 

 

Figure 7 Amplification plots of the TaqMan® Real-Time PCR-Assays. (A) 

Amplification plot of the spike controls 20 and 25 with different concentrations 

(1 ng,100 pg, 10 pg, 1 pg). (B) Amplification plot of spike control 20 (10 pg) and the 

chryptochrome 2 gene (cry2). (C) Specification of spikes: qPCR was performed without 

the addition of spike primers  
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2.6 cDNA synthesis 
The extracted RNA has to be reverse transcribed into cDNA. For cDNA synthesis 5 µl of 

the spike 20 and spike 25 mastermix (2 pg/µl) and 23.25 µl of RNA (1 µg RNA was 

diluted with RNase-free water) and 21.75 µl of mastermix (10 µl 5 x buffer, 1 µl dNTPs 

(10 mM), 0.5 µl RNase I (40 U/µl), 5 µl RNase-free water, 5 µl pentadecamere (500 µM) 

and 0.25 µl reverse transcriptase; Thermo Fisher Scientific Molecular Biology) were 

mixed (total volume: 50 µl). After mixing and centrifuging, the RNA was reversely 

transcribed to cDNA with the T100TM Thermal Cycler (Biorad). NTCs were included on 

each cDNA synthesis plate. As the total amount of RNA was too small to allow for –RT 

controls, they were conducted using test RNA from similar krill samples to exclude DNA 

contamination. The cDNA synthesis was performed at 25°C for 10 min, 37°C for 50 min, 

70°C for 15 min and cDNA was stored at -20°C for further analysis. Due to low RNA 

concentration for a couple of samples not all 9 biological replicates for each time point 

(TP) could analyzed. Consequently, for the ES samples (TP1 n=8; TP2 n=7; TP3 n=8; 

TP4 n=8; TP5 n=8; TP6 n=9; TP7 n=9; TP8 n=9) and for the B samples (TP1 n=8; TP2 

n=8; TP3 n=8; TP4 n=9; TP5 n=8; TP6 n=9; TP7 n=9; TP8 n=9) were reverse transcribed 

into cDNA. 

2.7 Preparation of the Custom TaqMan® Array Card and TaqMan® Gene 
Expression Assays 

2.7.1 Gene selection for TaqMan® Gene Expression Assay 
Based on already published data (Teschke et al. 2011; Mazzotta et al. 2010; Tomioka & 
Matsumoto 2015; De Pittà et al. 2013; Hardin 2005; Hunt et al. 2017) the regulatory 
genes clock (clk), cycle (cyc), period (per), timeless (tim), cryptochrome 2 (cry2), 
clockwork orange (cwo), vrille (vri), E75, doubletime 2 (dbt2) and shaggy (sgg), all 
involved in the first major regulatory loop of the insect circadian clockwork (Fehler! 
Verweisquelle konnte nicht gefunden werden.) were selected. Ubiquitin specific 
peptidase 46 (USP46) was selected as endogenous control (housekeeper). The 
sequences of the genes were obtained from the Krill database 
(http://krilldb.bio.unipd.it/) (Sales et al. 2017). Besides using an endogenous control (  
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Table 2) the exogenous target sequence controls (spike20; XM_017004857.1 and spike 

25; XM_011537537.1) were chosen.  

2.7.2 Sequence verification 
The selected target gene sequences for the Custom TagMan® Array Card were checked 

using the Basic Local Alignment Search Tool (BLAST) of the National Center for 

Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov). BLASTN and BLASTX 

search were used to verify the selected sequences. Additionally, they were verified 

against the krill-specific sequence database (http://krilldb.bio.unipd.it; Sales et al. 2017). 

Besides this, the reading frame of each target sequence was examined and was 

converted if necessary using the web-based tool Reverse complement 

(https://www.bioinformatics.org/sms/rev_comp.html). Furthermore, low-complexity 

regions and repeats were masked using the web-based tool RepeatMasker 

(http://www.repeatmasker.org). A 150 nucleotide part close to the 3’ end of each target 

sequence without low-complexity regions and repeats was then selected and cut using 

EMBOSS seqret (http://www.ebi.ac.uk/Tools/sfc/emboss_seqret). Afterwards, 

processed target sequences were loaded into the Custom TaqMan Assay Design Tool 

from Thermo Fisher Scientific (https://www.thermofisher.com/order/custom-genomic-

products/tools/gene-expression/) for automatic primer design. After primer design, assay 

IDs were created and inserted into the format of the Custom TaqMan® Array Card ( 

Figure 8). For primer sequences of target genes, housekeeping genes and spike 
controls used for RT-qPCR, see   
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Table 2.  

 

Figure 8 Custom TaqMan ® Array Card format used in this study. Instead of the slot 

of the mandatory control (CTL) another gene was loaded. [Reference: 

http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldo

cuments/cms_040127.pdf]. 
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Table 2: Primer sequences of target genes, housekeeping genes and spike 
controls used for RT-qPCR. The sequences of the genes were taken from the Krill 
database (http://krilldb.bio.unipd.it/) (Sales et al. 2017). 

Target gene  Primer sequence (‘5-‘3) Accession number 
clock_F fwd GGCCTCAGTTGGTACGAGAAATG ESS034514 
 rev AATTTCCATTCTATACTGTGCCTTGATG

T 
 

clock_A fwd GCAGCGTCAGCTTCAAGAG ESS034514 
 rev GCTGTTGTCGCATTATCATTTGCT  
cycle fwd GCAGGATCAGATTGTGCGTCAA ESS133965 
 rev TGCTATCTACACAGGAAGCTCTTCT  
period fwd TGAGGGTAAATTCAACAATAAATGGAAT

ACATCT 
ESS133963 

 rev GAGTAACATCAACATTTTCCAACCAACT  
timeless_F fwd CAAGACAAAGCGAGATGGCATTT ESS040526 
 rev AGGGTTGGAAGAAGGTTTTGTGAAA  
timeless_A fwd CAGCTTGTGCTCCATGGAAAAC ESS040526 
 rev CTTAGGCAGTTGATGTAAGATCATGTCT  
cryptochrome 2 fwd CAGTGCTCAAGAACTTCCCAACTAA FM200054,  

Mazzotta et al 2010 
 rev GTCCTATGACACATTTAGACTGT  
clockwork orange  fwd AAAACTTTGATAAACAAAACCTCTTTCA

TC 
ESS049812 

 rev GAGGGAGCTCATGACATGTGT  
vrille fwd GAAGTAGCTACACTTAAATACCTGTTGG

T 
ESS123359 

 rev CAAAACTATTCTAACGAGATCCATCGGA  
E75 fwd CAGTCTGCTTCTGCTTCAACCT ESS094384 
 rev GCCTTCTGACGGTGCTCTAC  
doubletime 2  fwd AAAGAATAGAGCTTCAATATGTATATAT

TTAAAACAAAGT 
ESS096455 

 rev TGAAAACAAGAAAAATTATAGAATCTTC
TATCCTAGATAAGG 

 

shaggy  fwd GGTGGGTTGCGGAACATTG ESS074789 
 rev TGGTCCACCACTGCCA  
adenosine 
triphosphate-ɣ  

fwd GTCAAGAACATCCAGAAGATCACTCA ESS108986 

 rev GCTTCAACTCCCTTTCAGCTCTT  
Housekeeping 
gene 

 Primer sequence (‘5-‘3)  

ubiquitin specific 
peptidase 46 

fwd TGGAACTGGTATTAACAGAGGACACT 
 

ESS079224 

 rev CTGCATCGTCATCAAAGAGCA  
Spike control  Primer sequence (‘5-‘3)  
Spike 20 fwd TGCAATGATGATAACCGTTCCCTTTAA XM_017004857.1 
 rev CCAGATATGCTTGAATTGGATCACCT  
Spike 25 fwd GCTGGGACCTAGTGTCAAGTAC XM_011537537.1 
 rev TGGAGTAACCATGCTAGATTAAAGAAAT

ACAATT 
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2.7.3 TaqMan® Gene Expression Assays 
For TaqMan® Gene Expression Assay, 100 µl of total volume per reaction (20 µl of the 

cDNA (20 ng/µl) and 30 µl of RNase-free water and 50 µl of the TaqMan® mastermix) 

was prepared in a 1.5 ml Eppendorf tube. The tubes were shortly centrifuged. For each 

reaction, 98 µl were slowly added into the well of the corresponding sample-loading port. 

The TaqMan® card was centrifuged two times at 1,200 rpm for 1 minute. The card was 

inserted into the sealer and each well was closed. Loading-ports were removed using a 

scissor and the card loaded into the Vii-A7 Real-Time PCR System (Thermo Fisher). For 

analysis and to maintain comparability between data obtained from different genes and 

runs, the machine-aided relative threshold for all qPCR runs was set. Due to technical 

problems (power failure) one TaqMan® card, loaded with cDNA samples from the brain, 

was excluded from the analysis. Consequently, for the analysis of the gene expression 

the following biological replicates of the brain (TP1 n=7; TP2 n=7; TP3 n=6; TP4 n=8; 

TP5 n=7; TP6 n=7; TP7 n=7; TP8 n=7) and of the eyestalks (TP1 n=8; TP2 n=7; TP3 

n=6; TP4 n=8; TP5 n=8; TP6 n=9; TP7 n=9; TP8 n=9) were analyzed. 

2.8 Data analysis 

2.8.1 Data quality control 
To assess the expression stability of the housekeepers, mean raw Ct-values were plotted 

over time (see Figure 9a). Overall, the level of the raw Ct-values were higher in the 

eyestalks compared to the brain. Except for ZT4, housekeeper mRNA expression was 

stable over time and showed very little variation within both tissues (Figure 9a). At ZT4, 

expression peaked and showed very high standard errors in both tissues in Spike 20, 

Spike 25 and Usp46. In order to obtain stable housekeepers for expression 

normalization, biological replicates were compared among each other at ZT4 (Figure 9b). 

At ZT4 3 samples with extraordinarily high values could be identified as outliers 

according to Nalimov ((Lozán & Kausch 1998); brain: TP3_B#32;eyestalks:TP3_ES#32 

and TP3_ES#41) and removed from the data set. After removal, housekeeper 

expression was stable the in both tissues (Figure 10). Technical errors as well as 

biological variations between krill individuals could have accounted for the difference in 

expression in these three samples.  
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Figure 9: Raw Ct-values of endogenous and exogenous housekeepers. ZT = 

Zeitgeber Time, indicating the time intervals from the beginning of the light phase (x-axis) 

plotted against raw Ct-values of (y-axis). a) Raw mean Ct-values of the endogenous 

(Usp46) and exogenous housekeepers (Spike 20 and Spike 25) in eyestalks (ES) and 

brain (B). Data are expressed as mean ± SEM (n=6-9). b) Raw Ct-values for each 

biological replicate at different time points (TP), exemplary for Spike 20, in eyestalks (ES) 

and brain (B). Stars indicate outliers.  
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Figure 10: Raw Ct-values of endogenous and exogenous housekeepers after 
outlier removal. ZT = Zeitgeber Time, indicating the time intervals from the beginning 

of the light phase (x-axis) plotted against raw Ct-values (y-axis). a) Raw mean Ct-values 

of the endogenous (Usp46) and exogenous housekeepers (Spike 20 and Spike 25) in 

eyestalks (ES) and brain (B). Shown is the mean ± SEM (n=6-9). b) Raw Ct-values for 

each biological replicate at different time points (TP), exemplary for Spike 20, in 

eyestalks (ES) and brain (B). 

2.8.2 Selection of housekeepers/reference genes 
For normalization, a combination of Usp46 and one of the exogenous target sequence 

genes was used. To assess the most stable combination of exogenous controls (Spike 

20, spike 25) and Usp46, the geometric mean of the combinations (Usp46 + Spike 20; 

Usp46 + Spike 25) was calculated and plotted over time (Figure 11). The combination of 

Usp46 and Spike 20 expression was more consistent over time in both tissues compared 

to Spike 25. Furthermore, the NormFinder software in R identified the combination of 

Spike 20 and Usp46 as most stable (Andersen et al. 2004). Therefore, the combination 

of Usp46 and Spike 20 was used as reference. 
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Figure 11: Geometric mean of raw Ct-values of endogenous and exogenous 
control. ZT = Zeitgeber Time, indicating the time intervals from the beginning of the light 

phase (x-axis) plotted against the geometric mean of raw Ct-values (y-axis). Upper 

panel: Combination of Spike 20/ Spike 25 + Usp46, respectively in eyestalks (ES). Lower 

panel: Combination of Spike 20/ Spike 25 + Usp46, respectively in brain (B). Data are 

expressed as geometric mean ± SEM (n=6-9). 

2.9. Normalization and relative quantification 
A combination of Usp46 and Spike20 were used as reference for normalization of gene 

expression. Normalized relative quantities (NRQs) were calculated according to 

Hellemans et al. (2007). Scaling of raw Ct-values (calculation of relative quantities; RQs) 

was performed for each tissue separately as well as across both tissues to maintain 

tissue-specific expression levels.  

2.10 Statistics 
For statistical analysis the RStudio (R Core Team (2017). R: A language and 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria) package RAIN (Thaben & Westermark 2014) was used to identify putative 24 h 

rhythmicity in daily patterns of gene expression. For each tissue, data were adjusted in 

a 24h period to a sinusoidal curve by expressing the probability of consistency by 

p-values and the phases of the sinusoidal curve (amplitude of the oscillation is maximal). 

The p-values were then corrected for multiple comparison using the false discovery 

method (fdr) of Benjamini, Hochberg, and Yekutieli (Benjamini & Hochberg 1995; 
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Benjamini & Yekutieli 2001) implemented within the package. For each tissue, Kruskal–

Wallis non-parametric ANOVAs followed by multiple t-tests corrected for multiple 

comparisons (Bonferroni method) were applied to test for differences between time 

points within a gene.To compare gene expression levels between eyestalk and brain 

tissues for each time point (TP), non-parametric Mann-Whitney-Wilcoxon tests were 

used. Significant differences between tissues at the respective TP are indicated by hash 

keys. 
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3 Results 
3.1 Primer efficiency of timeless and clock 
By comparing the two primer pairs for Clk in brain, it became visible that the relative NRQ 

levels for Clk_F displayed higher expressed compared to Clk_A (Figure 13) although, 

expression patterns were not-significant and similar for both primer pairs. In the 

eyestalks, the patterns of Clk_F and Clk_A showed a trend to even greater consistency 

over time (Figure 13). The comparison of Tim_F and Tim_A primers in the brain revealed 

similar expression patterns for both primer pairs, despite higher mRNA levels for Tim_F 

(Figure 13). In the eyestalks, the pattern displayed less consistency for Tim primer pairs 

and also higher NRQ levels in Tim_A. 

 

Figure 12: Relative mRNA levels using different primer sets of clock and timeless. 
Relative mRNA level plotted against Zeitgeber-Time (ZT), indicating the sampling 

intervals from the beginning of the light phase in brain and eyestalk, respectively. Data 

are expressed as mean ± SEM (n=6-9). Grey (= dark phase) and yellow (= light phase) 

bars beneath the graph indicate the respective photoperiod. From ZT24, experimental 

light conditions remained at constant darkness. 

To compare efficiencies of the two different primer sets for timeless and clock, Ct-values 

were plotted against the logarithm of the dilution series/logarithm of CDNA 

concentrations (100 ng, 200 ng, 400 ng, 800 ng) (see Figure 13). Values for the 

correlation coefficient (R2) were close to 1 (0.9785 to 0.9996) (see Figure 13).  
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Figure 13 Primer efficiency using different primer sets. Ct-values of different primer 

sets of Clk and Tim were plotted against the logarithm of cDNA concentration used in 

the dilution series (100 ng, 200ng, 400ng and 800ng) in brain and eyestalks, respectively.  

Efficiencies were calculated for each primer pair using the formula  

E = (10(-1/slope) -1) x 100. Good primer pairs should have an efficiency between 90% and 

110%, hence calculated efficiencies (Table 3) are below the acceptable range. By 

comparing the different efficiencies, Clk_F and Tim_F primers indicated significantly 

higher efficiencies in both tissues compared to Clk_A and Tim_A. 

 

Table 3: Primer efficiencies: Efficiencies for each primer pair in eyestalks (ES) and 
brain (B), respectively. Efficiency (E) was calculated according to 
(www.thermofisher.com/primerefficiency) using the formula E = (10^(-1/slope) -1) x 100.  

 

 

 

 

 

 primer efficiency (%) 
brain Tim_A 82.56 

 Tim_F 82.11 
 Clk_A 80.34 
 Clk_F 87.93 

eyestalk Tim_A 82.13 
 Tim_F 84.53 
 Clk_A 85.35 
 Clk_F 89.50 
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Based on the higher primer efficiency of the Clk_F and Tim_F primer pairs in brain and 

eyestalks (Table 3) and considering the similarity of mRNA expression patterns between 

the different primer pairs/sets for Clk and Tim (Figure 12), only Clk_F and Tim_F primer 

pairs were used for further analyses.  

3.2 Regulatory network of clock gene expression patterns 
Correlation of clock gene expression was visualized using hierarchical clustering in both, 

brain and eyestalks. In brain, daily mRNA expression patterns of Per, Clk, Cyc and Vri 

as well as Sgg, Cwo and E75 and finally, Cry2, Tim and Dbt were correlated (Figure 

14Fehler! Verweisquelle konnte nicht gefunden werden.a). Besides the similarity of 

gene expression the heat map visualized for Vri highest expression levels at TP1, for 

Tim highest expression at TP3 and for Per, Cyc, Sgg, Cwo, E75 and Cry2 highest 

expression at TP6 and for Clk and Dbt highest values at TP7.  

In eyestalks (Figure 14Fehler! Verweisquelle konnte nicht gefunden 
werden.b) clock genes clustered in a different way compared to brain. Cyc, Vri, Tim, Per 

and Clk gene expression patterns were correlated. Sgg, E75 and Dbt as well as Cry2 

and Cwo daily expression patterns showed high similarities. Besides the similarity of 

gene expression the heat map visualized highest values at TP6, TP7 and TP8 during 

darkness. Sgg showed also highest expression values in the first dark phase at TP2.  

By comparing the gene expression patterns of both tissues, in the eyestalks the 

heatmap visualized that the genes more correlated with each other. Moreover, in 

eyestalks gene expression pattern showed higher levels during dark phase (TP6-TP8) 

compared to brain. 
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Figure 14 Heat maps of daily clock gene expression patterns in brain and 
eyestalks. a) Clock gene expression (Clk, Cyc, Dbt, Per, Tim, Sgg, Cry2, Cwo, E75 and 

Vri) over time (28h) in brain. b) Clock gene expression (Clk, Cyc, Dbt, Per, Tim, Sgg, 

Cry2, Cwo, E75 and Vri) over time (28h) in eyestalks (for more details on clock gene 

regulatory network see Figure 1). Genes clustered together based on the similarity of 

daily gene expression patterns. 

3.3 Daily profiles of clock gene expression in brain and eyestalks 

3.3.1 Within tissues 
A similar pattern could be observed for Clk in brain (range from 1.10 to 1.17) and eyestalk 

(range from 0.96 to 1.08) (Figure 15a). The increase during dark phase (ZT12-24) is 

more remarkable in eyestalks (increase of 0.25) compared to brain (increase of 0.18). 

For Cry2, two maxima could be identified over time, reaching the first peak at ZT4 and 

the second peak at ZT16 in both tissues (Figure 15b). Again, relative mRNA levels in 

eyestalks showed a more distinct increase during dark phase. In the eyestalks, relative 

mRNA levels of Cwo increased from ZT4 to ZT16 (increase of 0.18) followed by an abrupt 

decrease (Figure 15c) whereas in brain two maxima could be identified at ZT8 and ZT16, 

respectively. As can be seen in Figure 15d, relative mRNA levels of Cyc remained 

constant from ZT-4 to ZT12 in brain (range from 0.90 to 1.08) and peaked at ZT16 (4h 

after nightfall). In contrast, two maxima could be determined at ZT4 and, at ZT16 (dark 

phase) with much higher levels, in the eyestalks. Furthermore, daily oscillations of Cyc 

showed a significant period of 24h in both tissues (p=0.029). The daily expression pattern 

of Dbt showed two maxima for both, brain and eyestalk (Figure 15e). At ZT0/ZT4, when 

lights were switched on as well as at ZT12, when lights were switched off, higher mRNA 

levels could be detected. Only within the eyestalks, Kruskal–Wallis non-parametric 

ANOVAs followed by multiple t-tests corrected for multiple comparisons (Bonferroni 
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method) indicated significant differences TP1-TP7 (p=0.042) (Table 6). A similar pattern 

could also be identified for E75 in both tissues (Figure 15f). Relative mRNA levels 

increased from ZT0 to ZT4 and increased again at ZT16 until lights were switched off. 

For Per, an almost identical expression pattern over time was measured in both tissues 

(Figure 15g). mRNA levels increase from ZT0 to ZT4 (brain: increase of 0.14; eyestalk: 

increase of 0.22) after the light was switched on, decreased in the following and 

increased again to a second peak with highest levels at ZT16 (brain: 1.29; eyestalk: 

1.28). Only within the eyestalks, Kruskal–Wallis non-parametric ANOVAs followed by 

multiple t-tests corrected for multiple comparisons (Bonferroni method) indicated 

significant differences TP2-TP6 (p=0.0083) and TP2-TP7 (p= 0.042) (Table 6). Sgg 

showed two peaks, one smaller at ZT0 (brain:0.89; eyestalk:1.07) when the light was 

switched on, in both tissues (Figure 15h). However, in eyestalks the increase started 

from ZT16, increasing slowly up to ZT20 and then slowly decreased whereas in the brain, 

mRNA expression abruptly decreased at ZT16. Relative mRNA expression pattern of 

Tim were different between eyestalks and brain (Figure 15i). In brain, levels increased 

until peaking at ZT4 (1.03), followed by a decrease up to ZT12 (0.71) and another slight 

increase up to ZT20 (0.95). Compared to brain, mRNA levels in the eyestalks did not 

display the first peak and a constant increase starting at ZT8 during constant darkness 

could be determined. In brain, daily patterns of Vri displayed highest expression levels 

during night (ZT-4 (0.75) and ZT12 (0.70)) (Figure 15j). In eyestalks, Vri peaked at ZT4. 

Afterwards, levels decreased and again, increased at ZT12 with a peak at ZT20 (0.91). 

Furthermore, for Vri expressed in brain and eyestalk, a significant daily pattern (p= 0.029) 

with a 24h period could be observed. Only within the eyestalks, Kruskal–Wallis non-

parametric ANOVAs followed by multiple t-tests corrected for multiple comparisons 

(Bonferroni method) indicated significant differences TP7-TP2 (p=0.024 and TP7-TP5 

(p= 0.019) (Table 6). 

3.3.2 Between tissues 
For each gene analyzed, relative mRNA levels for each time point (TP) were compared 

among each other in eyestalk and brain tissue (see Figure 15). In general, relative mRNA 

levels in Clk, Cry2, Cwo, E75, Per, Tim and Vri were expressed in the same way in both 

tissues. For Cyc and Sgg only separate TP indicated significant variations between both 

tissues (Figure 15d,h). Even measured mRNA levels in Cyc evinced significantly higher 

values in brain at ZT0 (p-value: 0.02622), ZT8 (p-value: 0.01476) and ZT14 (p-value: 

0.01111). In comparison, relative mRNA levels in Sgg indicated significantly higher 

values at ZT20 (p-values: 0.01111) and ZT24 (p-values: 0.002468) in the eyestalks. In 

Figure 15e, it can be seen that over the entire time series, with the exception of ZT12, 
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significantly higher mRNA levels in the brain could be measured for Dbt (p-values of 

0.001243 (ZT-4), 0.01107 (ZT0), 0.002165 (ZT4), 0.001088 (ZT8), 0.007898 (ZT16), 

0.01111 (ZT20) and 0.0274 (ZT24)). 

 

Figure 15: Clock gene expression patterns in brain and eyestalks. Ten clock genes 

(Clk, Cry2, Cwo, Cyc, Dbt, E75, Per, Sgg, Tim and Vri) were analyzed over 28h. Relative 

mRNA level (NRQ) are plotted against ZT = Zeitgeber Time, indicating the time intervals 

from the beginning of the light phase. Data are expressed as mean ± SEM (n=6-9). Grey 

(dark) and yellow (light) bars beneath the graph indicate the respective photoperiod. 

Black asterisks and schematic sinus curve indicate significant daily oscillation with a 

period of 24h in eyestalks and brain determined by RAIN analysis (for p-values see 

appendix). Hash keys indicate significant differences between both tissues tested for 
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each ZT (Whitney-Wilcoxon test). From ZT24 onwards, experimental light conditions 

remained in constant darkness. 

3.4 Potential co-regulation of clock genes within and between brain and 
eyestalks 
Schematic representation of the relative mRNA level maxima in brain and eyestalks. 

Within the brain, Cyc and Clk showed highest relative mRNA levels around ZT16. Similar 

expression pattern could also be shown for E75, Per and Cry2, with maxima around ZT4 

and ZT16. The maxima of the relative mRNA levels of Cwo (maxima: ZT8; ZT16), Dbt 

(maxima: ZT4; ZT20), Sgg (maxima: ZT0; ZT16) and Tim (maxima ZT4; ZT20), were 

shifted by a 4 hours period before or after ZT4 and ZT16. As the only exception, Vri were 

shifted by 8 hours period, with reference to ZT4 and ZT16, with maxima around ZT-4 

and ZT16. Within the eyestalks, Cyc and Per showed highest relative mRNA levels 

around ZT4 and ZT16. Dbt (maxima: ZT4; ZT20), Sgg (maxima: ZT0; ZT20), Tim 

(maximum: ZT20) and Vri (maxima ZT4; ZT20), were shifted by a 4 hours period before 

or after ZT4 and ZT16. A shift of up to 8 hours, with reference to ZT4 and ZT16, have 

been showed Clk (maximum: ZT17), Cry2 (maxima: ZT-4; ZT16), Cwo (maxima: ZT-4; 

ZT16) and E75 (maxima: ZT3; ZT20). Comparing maxima of relative mRNA levels 

between tissues, similar patterns could be determined for Clk, Dbt, E75 and Per in brain 

and eyestalks. In contrast, Sgg has been showed a shift in maxima of 4 hours between 

the tissues. For Cry2, Cwo and Vri, maxima of relative mRNA levels were shifted by 8 to 

12 hours between brain and eyestalks. For Tim, the eyestalks indicated a less 

pronounced pattern, therefore the maximum in the brain at ZT4 is no longer present. 

Cyc, behaved the other way round, with double peak at ZT4 and ZT16 in the eyestalks, 

though the first peak is no longer present in the brain. RAIN analysis (tested periods: 4, 

8, 12, 24), only indicated significant 24 hours periods for Cyc and Vri in brain and 

eyestalks (Figure 15d,j). However, detection limits of RAIN should not be excluded, as 

the regular shift of 4 hours between genes is no particular case. 
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Figure 16: Schematic representation of clock gene expression over time. Relative 

mRNA expression levels of Clk, Cry2, Cwo, Cyc, Dbt, E75, Per, Sgg, Tim and Vri in brain 

and eyestalks were analyzed over 28h and plotted against ZT = Zeitgeber Time. Peaks 

only show when the genes have reached their highest relative mRNA levels. Values on 

y-axis can not be equated with relative mRNA levels. Grey (dark) and yellow (light) bars 

beneath indicate the respective photoperiod.  
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4 Discussion 
Recent studies provided information’s on the existence of an endogenous timing system 

in krill that governs metabolic and physiological output rhythms (Mazzotta et al. 2010; 

Teschke et al. 2011; De Pittà et al. 2013; Biscontin et al. 2017). The present study aimed 

to identify potential circadian clock gene (clock, cycle, period, timeless, cryptochrome 2, 

clockwork orange, vrille, E75, doubletime, shaggy) expression patterns as well as 

methodological optimization to reduce gene expression variability and enhance the 

detection of potential oscillation patterns in Antarctic krill (E. superba).  

4.1 Regulatory network of clock genes in E. superba 
The present Drosophila circadian clock model consists of three major regulatory 

loops. One of the core oscillatory loops is based on the interaction of the products of Clk 

and Cyc genes. By forming a heterodimer they activate the transcription of Per and Tim 

during late day to early night (Tomioka & Matsumoto 2015). Thus, Per and Tim mRNA 

levels increase almost in synchrony at late day to early night (Tomioka & Matsumoto 

2015). A similar expression pattern could also be identified in the monarch butterfly (Zhu 

et al. 2008). An upregulation of Per at the beginning of the night could be shown in the 

head of the pea aphid Acyrthosiphon pisum, held under the same photoperiod (Cortés 

et al. 2010). By the same course of Per relative mRNA levels in both tissues, it can be 

concluded that expression seemed to play the same role in both tissues, in E.superba 

(Figure 15g). In brain of E. superba, synchronized expression of Per and Tim could not 

be detected in brain (Figure 14a). In addition, only Per showed an trend of increased 

relative mRNA levels during night, compared to the entire course of the day (Figure 14a, 

Figure 15g). In contrast in the eyestalks, the correlation of Per and Tim is more 

pronounced (Figure 14b). Besides clustering of Per and Tim, only Per indicated a 

significant increase (p= 0.0083; 0.0289, see Table 6) of mRNA levels during night (TP6 

and TP7) compared to early day (TP2) (Figure 14b, Figure 15g). In the eyestalks of the 

norway lobster (Nephrops norvegicus) held under same light conditions, mRNA 

expression of Tim and Per increased during day with maximum levels at the end of the 

day (Sbragaglia et al. 2015). However, in E. superba eyestalks, synchronized gene 

expression patterns of Tim and Per seemed to be more pronounced, moreover Per 

indicated higher gene expression during night, which shows agreement with literature in 

Drosophila and A. pisum (Tomioka & Matsumoto 2015; Cortés et al. 2010).  

PER and TIM proteins did not accumulate to peak levels until late evening (Hardin 

2005). This delay is elicited due to phosphorylation dependent destabilization of Per by 

Dbt, followed by stabilization of phosphorylated Per by Tim binding (Price et al. 1998).  
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In krill brain and eyestalks, Dbt indicated two maxima, starting during the night with 

highest values 4 hours after the light is on, and a second maximum starting at the end of 

the day with highest values during the night. Only in the eyestalks, significantly 

differences (p=0.042, see Table 6) between 2AM (TP1) and 2AM (TP7) could be 

determined. Comparing Dbt and Per within both tissues, it can be shown that both 

maxima of Dbt coursed always 4 hours after the maxima of Per. It is very vague to 

correlate the measured relative mRNA levels between Dbt and Per, in order to make a 

statement whether mRNA levels of Dbt may have resulted lower expression of Per and 

how the 4 hour shift between Dbt and Per might be related to Dbt as suppressor. 

Rhythmic oscillations in mRNA expression of Cyc were already shown in the 

honey bee as well as in aphids, where Cyc mRNA levels increased at the beginning of 

the dark phase (Rubin et al. 2006; Cortés et al. 2010). A significant rhythmic 24 hour-

oscillation of Cyc mRNA expression could also be identified in krill brain and eyestalks 

(Figure 15d). A trend of increasing relative mRNA levels could also be determined at the 

beginning of the dark phase, more pronounced in eyestalks. However, this trend is not 

supported by statistics analysis, as no significant difference between the times points 

could be determined in either tissue. 

In the butterfly head, relative mRNA levels of Cry2 slightly increased during the 

day with highest levels at the end of the light phase (Zhu et al. 2008). Previous studies 

on Antarctic krill heads by Teschke et al. (2011) already showed highly rhythmic mRNA 

expression patterns of Cry2 under a 16:8 light:dark (LD) regime with an upregulation 

starting in the morning until the midday. As can be seen in Figure 14a,b, in brain and 

eyestalks, Cry2 indicated a trend of higher relative mRNA levels during darkness, more 

pronounced in the eyestalks. However, no significant differences could be identified 

between the time points for either tissue, so that our results do not show oscillatory 

rhythms and agreement with results from Teschke et al. (2011). Moreover, it had to be 

considered that a direct comparison between the data of Teschke et al. (2011) and our 

data is not possible because the animals were kept under a different light regime. Due 

to involvement of Cry2 in the first major loop, synchronized expression patterns with Per 

and Tim could be revealed in the monarch butterfly (Zhu et al. 2006). In krill brain, Cry2 

and Tim mRNA expression patterns were correlated (Figure 14a), indicating for Cry2 

highest relative mRNA levels at ZT4/ZT8 and ZT16, and for Tim highest levels at ZT4 

and ZT20. Relative mRNA levels in krill eyestalks indicated a similar pattern for Tim and 

Per, however no direct correlation with Cry2 (Figure 14b). In summary, it can be said that 

only in eyestalks there are similarities between Cry2 and Tim. Nevertheless, Cry2 

indicated no clear oscillatory pattern therefore a comparison with Tim and Per is not 

possible. 
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A distinct feedback loop in Drosophila controls the rhythmic mRNA expression of 

Clk, activated by PDP1e (Tomioka & Matsumoto 2015). Clk transcription levels oscillated 

in an antiphase to Per and Tim, with peaking transcription levels in the early day 

(Tomioka & Matsumoto 2015; Amrein & Bray 2003). In the honey bee (Apis mellifera) 

brain, Clk relative mRNA levels increased at nightfall (Rubin et al. 2006). However, it is 

also known that the temporal pattern of gene expression in the honey bee brain is 

strikingly distinct from the patterns observed in Drosophila. Previous studies of brain and 

eyestalks in crustaceans indicated that Clk mRNA is not expressed in a circadian rhythm 

(Strauss & Dircksen 2010). Comparing krill’s relative mRNA levels of Clk in brain and 

eyestalks, levels coursed relatively constant over time and show no significant 

differences between the time points. Within both tissues, Clk indicated no antiphase to 

Per and Tim, due to similar patterns (Figure 14a,b), as described in Drosophila (Tomioka 

& Matsumoto 2015; Amrein & Bray 2003). Consequently, our results show agreement 

with data from Crustaceans (Strauss & Dircksen 2010), which leads us to the conclusion 

that Clk probably show no endogenous oscillatory rhythms in krill. 

Besides the genes composing the main feedback loop in Drosophila, several 

other genes (Vri, Cwo, Sgg and Dbt) are known to be necessary for the rhythmic 

expression of Clk or the modification of the oscillatory loop. 

Cortés et al. (2010) showed an increase of Vri relative mRNA levels in the head 

of the pea aphid (A. pisum) at nightfall. A significant rhythmic 24 hour-oscillation of Vri 

mRNA expression could also be identified in krill brain and eyestalks. However, only Vri 

in eyestalks indicated a significant increase (p= 0.024; 0.019, see Table 6) of mRNA 

levels during night 2AM (TP7) compared to 6AM (TP2) and 6PM (TP5) (Figure 14b, 

Figure 15j). Vri is expressed in Drosophila circadian pacemaker cells in the head and 

oscillates in the same pattern like Per and Tim, regulated by the transcription factors CLK 

and CYC (Blau & Young 1999; Glossop et al. 2003). In krill brain, results of the heat map 

indicated no agreement between Vri, Tim and Per. Within the eyestalks, high agreement 

between Vri, Tim and Per could be shown with highest relative mRNA levels after the 

light was switched off, as described in existing literature of Drosophila and A. pisum in 

the head (Blau & Young 1999; Glossop et al. 2003; Cortés et al. 2010).  

Cwo transcription is directly induced by CLK-CYC, and repressed by PER-TIM in 

Drosophila. Cwo mRNA expression is ryhtmically expressed in the fly head peaking very 

closely with Per and Tim (Matsumoto et al. 2007). In krill, the course of Cwo relative 

mRNA levels showed no significant pattern, only a trend of increase during the day with 

peaking 4 hours after the light is off, followed by decrease during night (Figure 15c). 

Within brain and eyestalks in krill, Cwo, Per and Tim indicated no correlation (Figure 
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14a). Considering the results of krill, no clear oscillatory pattern as well as correlation to 

Per and Tim could be detected.  

In summary, correlations between relative mRNA levels of the clock genes analyzed in 

krill, indicated less pronounced or different patterns compared to Drosophila and other 

model organisms. Within the eyestalks of krill, correlations between clock genes are 

more pronounced and indicate more agreement with literature. Clear 24h oscillatory 

patterns could be only identified in Cyc and Vri in brain and eyestalks. Significant 

differences between time points within a gene, we only determined in eyestalks for Per, 

Dbt and Vri. This results and the more pronounced correlations within the eyestalks, 

visualized in the heat maps, leads us to the conclusion that clearer results of potential 

oscillatory rhythms can be identified in krill’s eyestalks. Nevertheless, as the knowledge 

about clock genes in crustacean is still at the very beginning, compared to the fruit fly 

and monarch butterfly, yet it is not clear whether the regulation in krill might be work in a 

different way.  

4.1.2 Comparison of relative mRNA levels in brain and eyestalks  
In crustaceans, the brain (supraoesophageal ganglion), the retina of the eye, the eyestalk 

and the caudal photoreceptor are already identified as an important part of circadian 

regulation (Strauss & Dircksen 2010). The brain photoreceptors could be identified to be 

necessary for light entrainment but the endogenous rhythm generator likely resides in 

the eyestalks (Strauss & Dircksen 2010). However, knowledge on the interaction of both 

tissues on transcriptional level is scarce. By comparing both tissues at the same time 

within the same individuals, the course and the range of relative mRNA levels of Clk, 

Cry2, Cwo, E75, Per, Tim and Vri indicated no significant differences (Figure 

15a,b,c,f,g,I,j). Only in Vri, a trend could be shown that, the last two time points indicated 

higher relative mRNA levels during night, within the eyestalks (Figure 15j). Based on 

these results, it can be assumed that both tissues are equally important for the gene 

expression of the examined genes. For Cyc, three of eight investigated time points, and 

for Sgg, two of eight investigated time points, indicated significant higher mRNA levels 

in the brain and in the eyestalks. Thus, the course of the relative mRNA levels was the 

same in both tissues and not all investigated time points indicated significant differences 

between the tissues, it is difficult to make a statement whether gene expression may play 

a more prominent role in one of the investigated tissues. Interestingly, our results 

indicated for Dbt, accepted for one investigated time point, significantly higher relative 

mRNA levels in the brain. As a result of the same course of relative mRNA levels in both 

tissues, it can be assumed that the gene expression of Dbt might be more important role 

in the brain than in the eyestalks. Thus, Dbt is the only gene where we could clearly 
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conclude that for the detection of potential gene expression pattern, the brain is more 

suitable. In conclusion, due to the quite similar gene expression patterns in both tissues, 

for future experiments it is better to work with the whole head, to eliminate potential 

sources of error in tissue separation. 

4.1.3 Potential interactions between the tissues 
Neurotransmission, a fundamental process happens in a fraction of a second and 

constitutes an important part of the transmission of information from cell to cell - neurons 

to their respective targets. This process regulates both, excitatory and inhibitory 

functions, in the central nervous system (CNS), underlies sensory processing and 

regulates autonomic motion (Raven et al. 1996). Within this complex process, the use of 

electrical potential and chemical signaling agents are involved. Neurons are the basic 

information processing structures in the CNS. In the fruit fly, this process and involved 

interactions are already well established. Circadian clocks, the pathway by which the 

pacemakers neurons transfer the circadian information’s to the subsequent cells are 

involved within the neuronal network (Helfrich-Forster 1995). Rhythmic cycles of clock 

gene expression as well as subcellular localization were assigned to a set of pacemaker 

neurons that control circadian rhythms of locomotor activity in Drosophila (Blanchardon 

et al. 2001; Kaneko et al. 2000; Renn et al. 1999). Light inputs via neuronal signals, 

originating in the eyes, activate pacemaker cells and entrain behavioural rhythms 

(Helfrich-Förster et al. 2001; Emery et al. 1998). In crustaceans, neuroanatomy as well 

as their association with identified chemical mediators is much less studied and only 

roughly located at tissue level (Strauss & Dircksen 2010). To date, the general 

mechanism how signals are induced, the interactions between the tissues and the 

signaling of the individual genes is unknown. Interestingly, the comparison of the relative 

mRNA maxima in the respective tissues over time often indicated a defined temporal 

shift between the genes examined. In the brain, for Cry2, E75 and Per we determined 

highest relative mRNA levels at ZT4 and ZT16 (Figure 16). Interestingly, Clk, Cwo, Cyc, 

Dbt, and Sgg maximum mRNA expression was shifted by 4 hours, in relation to ZT4 and 

ZT16 where Cry2, E75 and Per indicated highest relative mRNA levels (Figure 16). In 

the eyestalks the same pattern could be shown, but less pronounced. These temporally 

defined shifts in maximum mRNA expression between genes may indicate that signal 

transduction took place between the genes and may even be induced by the same 

stimuli. Considering the maxima of the relative mRNA levels of a particular gene between 

brain and eyestalks, findings indicated even between tissues a time shift. However, these 

shifts often demonstrated longer time intervals up to 12 hours, which may be an 

indication that the signal transmission between the tissues is significantly slower or the 
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signaling of the pacemaker is different between the tissues than within a tissue. 

Therefore, a variety of questions need to be answered in the future in order to understand 

the interactions of clock genes: How do the distinct pacemakers connect, synchronise 

and entrain, within and between tissues? Where are the synaptic connections? 

4.1.4 Improvements and important clues for future studies 
When studying gene expression of biologically distinct individuals, 

methodological limitations occur: i) differences in gene expression levels due to 

biological variation. For example, for the optimization of housekeepers for expression 

analysis, biological replicates had to be removed due to outlier identification (see 2.8.1 

Data quality control) and ii) sex specific differences. Here the sex of the animals was not 

taken into account and therefore, different patterns of gene expression affected by 

different sex can not be excluded.  

Additionally, improvements of the experimental design should be taken into 

account. During the experiment no feeding took place (usually the feeding took place 

every morning), animals caught later during experiment were in a different 

condition/feeding cue was missing. Therefore, an influence due to the lack of feeding 

can not be excluded. This is especially true, as a close link between metabolic activity 

and clock gene expression was already shown in krill by (Teschke et al. 2011). 

Another target of this study was to determine if there are differences gene 

expression levels between the two tissues examined, in order to find the optimal tissue 

for further investigations in the future. Focusing on brain and eyestalk tissues, as already 

known as important tissues in crustacean due to containing circadian clocks (Strauss & 

Dircksen 2010; Yan et al. 2006), in Antarctic krill, it could also be shown that both tissues 

are suitable for the identification of clock gene expression. However, the tissue-specific 

investigation of gene expression patterns in brain and eyestalks obtained that the 

oscillation amplitudes are still very small/not clear as in previous experiments with the 

whole head. In addition, it could be shown that for only Dbt, brain, is the more suitable 

tissue type for future investigation due to the 2-fold higher expression of this gene. Due 

to the fact that no difference in the tissues can be recognized for all other genes and the 

separation is always a potential source of error, it must be considered whether the work-

intensive dissection of the head into the individual tissues is meaningful, for the future. 

Nevertheless, more attention needs to be paid to the exact morphology of the krill head. 

Little is known about which structures belong to the brain because until now only 

analyzes with the whole head or with the eyestalks were done (Biscontin et al. 2008; De 

Pittà et al. 2008; Mazzotta et al. 2010; Teschke et al. 2011; Kilada et al. 2017; Biscontin 
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et al. 2017). As a result, it cannot be excluded that possibly errors in the separation of 

the tissues may have been made. 

5 Conclusion  
Generally, in marine crustaceans and specifically in krill, knowledge about clock genes 

and their products with respect to oscillatory activity, distribution, and chronobiological 

functions is scarce.  

The methodical part of the present study aimed to optimize gene expression 

patterns, due to tissue-specific analysis, for future studies. Thus, the tissue specific gene 

expression showed significant 24h rhythmic oscillation for Cyc and Vri in brain and 

eyestalk, as well as more pronounced correlations between the genes within the 

eyestalks. However, the tissue-specific amplitudes of oscillation are not more 

pronounced and therefore obtained same results by using the whole head. 

However, we were able to show higher gene expression of Dbt in the brain, 

concluding that its gene expression might be more important in this tissue than in the 

eyestalks. All in all, brain and eyestalks are suitable tissues for the identification of 

oscillatory rhythms in krill. However, we conclude that the analysis of the whole head is 

more suitable for the future, because amplitudes of the oscillation are the same and only 

Dbt obtained differences in gene expression within the tissues. Moreover, the dissection 

of the head entails high sources of error as krill is just too small to cleanly separate the 

tissues from each other. 

The chronological order of the maximum relative mRNA levels, measured in this 

study, indicated that most genes peaked synchronous or shifted by ~4 hours within the 

respective tissue. However, because most oscillatory patterns could not clearly be 

identified, a putative co-regulation of the individual genes can only be cautiously 

assumed. Furthermore, it could be shown that most of the maximum gene expression 

levels are often synchronized in both tissues of shifted by ~12 hours. In crustaceans, 

neuroanatomy research is still in the early stages. However, to contribute to the overall 

understanding of clock genes and their functions, this important field should be more 

recognized in future chronobiologic research. Therefore, future studies need to focus the 

entrainment of distinct pacemakers as well as on the synchronization of individual 

components of the clock within and between tissues, thereby identifying possible signal 

transmission pipelines in the krill head.  

Recapitulating, this study identified significant 24h oscillatory rhythms in the 

mRNA expression of two important clock genes brain and eyestalks in krill and in general 

more pronounced patterns and agreement with literature, within the eyestalks. We further 
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conclude that gene expression probably play the same role in both tissues, except for 

Dbt, and found initial evidence that the interactions between the genes within a tissue 

might be displaced by a 4 hour rhythm as well as that the transmission between the 

tissues needs a larger time frame. 

6 Outlook  
Mus musculus and Drosophila, model organisms which have been extensively studied 

over a long period of time already provide a lot of knowledge on chronobiological 

behavior and the associated endogenous timing system, on the contributions of 

individual clock genes on transcriptional as well as on protein level as well as on 

neuroanatomical signal perception and transmission (Hardin 2005; Williams & Sehgal 

2001; Sokolowski 2001; Dunlap 1999; Herzog et al. 1998; Herzog 2007). In Antarctic krill 

(E. superba), a polar marine non-model organism, only a fraction of this system could 

yet be investigated. However, with the identification of the E. superba transcriptome in 

2017 (Hunt et al. 2017), a first molecular framework was provided.  

As a first step, detailed studies are needed in the future in order to characterize 

the clock system in krill. Individual clock genes need to be studied in relation to possible 

trigger mechanisms (Zeitgeber) on mRNA as well as on protein level to determine a 

functional relationship within the krill endogenous clock system. However, in order to 

clearly define the regulatory network as well as the functional relationships of clock 

genes, a knock-out of the respective gene must be implemented. For example, in 

biomedical research knock-out mice have already been used over decades in order to 

investigate the effects (metabolic deficits, cardiovascular problems, immune dysfunction, 

difficulty sleeping and cognitive deficits) of the disruption of the circadian system (Colwell 

2015; Yu & Weaver 2011). Also for Drosophila knock-out cell lines do already exist, 

however, however this methodological aspect in krill does not seem to be possible. 

Problems such as the difficult keeping of krill in captivity, focused reproduction as well 

as molecular genetic work on this small organism will be a huge challenge to science in 

the future. 

In addition, the exact localization of clock components should be determined. As 

already shown in Drosophila, anti-PER-labeled neurons are located between the inner 

margin of the medulla neuropil and the central brain, and the expression of PER within 

these neurons, could be identified to be important for the generation of circadian 

locomotor activity (Frisch et al. 1996; Siwicki et al. 1988; Zerr et al. 1990; Dushay et al. 

1989). To assess, responsibilities and interactions, synchronization and entrainment of 

the clock genes within and between tissues, the cellular distribution had to be defined. 
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This approach is currently limited by the availability of krill specific antibodies. However, 

in the marine zebrafish, anti-mouse CLK antibodies could be used, therefore it would 

probably be worthwhile to test already existing antibodies from the fruit fly for the 

suitability in krill (Lahiri et al. 2005).  

We can see that much work needs to be done in the future on the circadian clock 

system in Antarctic krill in order to completely understand how important ecological and 

physiological processes as e.g. metabolic activity etc. are regulated by this endogenous 

timing system. However, the data collected in this thesis can be used for a first overview 

if there are parallel, within the same krill population, between respiratory and DVM results 

caused by the endogenous timing system. An interesting aspect in future studies is the 

comparison, of the mentioned experimental setup, with data (same experimental setup) 

from animals in the field, to investigate how krill is affected in captivity on the basis of its 

circadian timing.  
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8 Appendix 
Table 4: Results of statistical RAIN analysis in brain implemented by R. The data 

were adjusted in a 24h period to a sinusoidal curve. P-values and the phases of the 

sinusoidal curve (amplitude of the oscillation is maximal) are shown in the table for each 

gene. Significant values are indicated in bold. Significant p-values were then corrected 

for multiple comparison using the fdr method of Benjamini, Hochberg, and Yekutieli 

gene p-value phase 
fdr-

adjustment 
Clk 0.757 24  
Cyc 0.029 24 0.029 
Per 0.870 24  
Tim 0.837 24  
Cry2 0.838 24  
Cwo 0.052 24  
Vri 0.017 4 0.029 
E75 0.394 24  
Sgg 0.644 24  
Dbt 0.821 24  

 

Table 5: Results of statistical RAIN analysis in eyestalk implemented by R. The 

data were adjusted in a 24h period to a sinusoidal curve. P-values and the phases of the 

sinusoidal curve (amplitude of the oscillation is maximal) are shown in the table for each 

gene. Significant values are indicated in bold. Significant p-values were then corrected 

for multiple comparison using the fdr method of Benjamini, Hochberg, and Yekutieli 

gene p-value phase fdr-adjustment 
Clk 0.942 24  
Cyc 0.018  24 0.029 
Per 0.062 24  
Tim 0.789 24  
Cry2 0.849 24  
Cwo 0.176 24  
Vri 0.026 4 0.029 
E75 0.875 24  
Sgg 0.901 4  
Dbt 0.322 20  
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Table 6: Significant p-values in eyestalks of Kruskal–Wallis non-parametric 
ANOVAs followed by multiple t-tests corrected for multiple comparisons 
(Bonferroni method). Comparison of differences between time points within a gene. 

  Kruskal-Wallis adjustment:bonferroni 
Dbt 0.008163  TP1-TP7 0.042  
Per 0.00593  TP2-TP6 0.0083  

   TP2-TP7 0.0289  
Vri 0.002036  TP7-TP2 0.024  
      TP7-TP5 0.019   

 

Table 7: P-values of Mann-Whitney-Wilcoxon test. To compare the level of gene 

expression for each time point (TP) between eyestalk and brain tissues the Mann-

Whitney-Wilcoxon test were used and significant results marked with bold letters 

 

 

  

  Clf_F Cyc Per Tim_F Cry2 Cwo Vri E75 Sgg Dbt 
TP1 0.8665 0.1206 0.6126 0.3969 0.3969 0.2319 0.5358 0.6943 0.6126 0.00124 

TP2 0.3176 0.02622 0.2593 0.4557 0.62 0.535 0.9015 0.2593 0.1282 0.01107 

TP3 0.3939 0.5887 0.9372 0.6991 0.8182 0.06494 0.3939 0.4848 0.06494 0.00217 

TP4 0.8785 0.01476 0.7209 0.6454 0.8785 0.3282 0.9591 0.5054 0.2786 0.00109 

TP5 0.6126 0.1893 0.6943 0.1893 0.07211 0.05408 0.6943 0.6126 0.4634 0.2319 

TP6 0.8148 0.01111 0.743 0.5414 0.5414 0.3213 0.8148 0.743 0.3704 0.00790 

TP7 0.673 0.4234 0.4807 0.673 0.1996 0.2359 0.1388 0.05923 0.01111 0.01111 

TP8 0.4807 0.2766 0.6058 0.2766 0.5414 0.1139 0.0464 0.4234 0.00247 0.0274 
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